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Nonlinear Functional Equations and Eigenvalue Problems
in Nonseparable Banach Spaces?)

PeTER HESs (Chicago, Ill. 60637, USA)

1. Let X be a real reflexive Banach space and 4, B nonlinear mappings of X into
the conjugate space X*, with 4 of monotone type and B compact. In the last years,
much interest in nonlinear functional analysis has been concentrated on the problem
of determining useful conditions under which the functional equation

Au=20 (D
or the eigenvalue problem
Au = tBu forsomerealt )

admit solutions (which possibly satisfy additional restrictions).

For A satisfying certain asymptotic conditions (such as 4 coercive or 4~ ! bounded),
various results on the solvability of equation (1) have been obtained (e.g. Brézis [3],
Browder [4, 6, 8, 9], Browder-Hess [13], Leray-Lions [22], Minty [23]). There is an
alternative type of hypothesis one may impose on the mapping A in order to get
existence theorems for equation (1), namely the hypothesis that 4= A4, is homotopic
to a mapping A; which commutes with a group ¢ of transformations on the spaces
X and X*, with ¢4 having elements of finite order (in particular 4, odd). Under the
assumption that X is separable, several mathematicians have derived existence
theorems involving homotopy arguments, making use of an approximation method
of Galerkin type (e.g. Browder [8, 9, 10, 11], Browder-Petryshyn [14]). (For a com-
pletely different approach see Hess [19]). Though most of the concrete reflexive
Banach spaces occurring in applications are separable, it is necessary for the investiga-
tion of certain specific problems to have a similar approach in nonseparable spaces.
For that reason, Necas [24] has recently given a method which works in nonseparable
spaces, and which is extended in the writer’s papers [17, 18].

One way of attacking the eigenvalue problem (2), is by variational methods (e.g.
Browder [5], Hess [16], Krasnoselskii [21], Vainberg [26]). In [7, 8], Browder has
developed a theory for nonlinear eigenvalue problems in separable spaces based on
Galerkin approximations. This latter approach has the advantage that it does not
involve the theory of infinite-dimensional manifolds (Lusternik’s principle), and that it
permits to prove the existence of an infinite number of distinct normalized eigen-
functions (Lusternik-Schnirelman theory) under milder differentiability hypotheses.

1) Research supported by NSF grant GP-23563 and by the Schweizerischer Nationalfonds.
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It is our purpose in the present note to describe an easy argument of Galerkin
approximation type which allows to prove both existence theorems and results on
eigenvalue problems in nonseparable Banach spaces. In contrary to the Galerkin
approximation method in separable spaces, which is based on an a priori given injective
approximation scheme, our method consists in recursively constructing a suitable
scheme. The main result is the Proposition proved in Section 2. In Section 3 we
apply the conclusions of the Proposition to the functional equation (1), assuming that
A=A, is homotopic to an odd mapping A4,. The result is closely related to that of
Necas [24], but it seems that our proof is simpler. A brief discussion follows of how
our theory can be used in order to study nonlinear equations of Hammerstein type in
nonreflexive Banach spaces. In Section 4 we finally show the applicability of the
Proposition to the treatment of nonlinear eigenvalue problems in nonseparable
spaces.

2. For X a real Banach space and X* its conjugate space, we let (w, #) denote the
duality pairing between elements we X* and ue X. An operator 4 defined on a closed
set Cc X, with range contained in X'*, is said to be of zype (S) if it satisfies the con-
dition: for any sequence {u,} < C converging weakly to some ue X, for which lim (Au,,
u,—u)=0, its strong convergence follows. Mappings of type (S) have been introduced
by Browder [7] and have shown to form a very useful class of operators of monotone
type for homotopy considerations and eigenvalue problems. The mapping A4 is further
bounded if it maps bounded sets onto bounded sets. Let A be the set of all finite-
dimensional subspaces of X, ordered by inclusion. For Fe A, jr denotes the injection
mapping of F into X. If the operator A maps C< X into X*, the Galerkin approximant
Ap:CNF— F* is defined by Ap=jpAjp. In the following we use the symbols “—”’
and “—~’ to denote strong and weak convergence, respectively.

PROPOSITION. Let X a real reflexive Banach space, C a closed subset of X, I a
closed interval in R, and A(u, t) a mapping of Cx I into X* with the following pro-
perties:

(i) Forfixedt, A(u,t):C— X*, is bounded, continuous, and of type (S);

(i) A (u, t) is uniformly continuous in t with respect to u in bounded subsets of C.

Let {E,},2, be a given increasing sequence in A with C\E;#0. Suppose to each
Fe A with Fo E, there exist elements upe C (\F and tpel such that j§ A (ug, tr)=0, and
assume said elements are uniformly bounded for Fo E|.

Then A (uq, to)=0 for some uyeC and tyel. Moreover, there exists an increasing
sequence {F,} in A with F,>E, for each n, such that for some subsequence {n(k)} of
{n}, up, o, > uoand ty, > to.

Proof. We construct the asserted sequence {F,} in A as follows:

(a) Weset F,=E,.
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(b) Suppose we have already constructed Fy <---cF,, and let u,=uy €eCnF, and
t,=tr €l denote the described elements corresponding to F, such that jﬁnA (un, t,)=0.
There exists v,eX, ||lv,]l =1, such that |(4(u,, t,), v,)| =}l 4 (u,, t,)|l. We then choose
Fn+1 :Fn +En+1 +[U,,].

By hypothesis, the sequences {u,} and {z,} are bounded. We may pass to infinite
subsequences and assure that u,—~u,eX and ¢, — t,€l. It follows from condition (ii)
that

1A (s t) — A (s to) =0 (n—00). 3)
We assert that
(A (s 10), w) >0 (n—>c0) “4)

for all weX, =closure {|_J;Z, F;}. Indeed, if w lies in some F; and nZ j, we have

|(A (s 10)> W = 1(A4 (s 1), W) + [ (A (s 10) — A (s 1), W)l

where the first term on the right side vanishes, while the second term tends to O as
n—» 00 according to (3). Because of the boundedness of the sequence {A4 (u,, #,)}, (4)
extends to all we X,,. We now get

l(A (um to)a Up — uo)l é |(A (um tn)’ un)l
+ |(A (um tO) —4 (um tn)a un)i + I(A (uns to)’ uo)l ¢

On the right side of this estimate, the first summand vanishes, the middle term tends
to 0 because of (3), and the last approaches 0 according to (4), since the weak limit u,
of the sequence {u,} <X, lies in X,. Property (S) of the mapping A4 (u, #,) implies
that u, — u,. Hence uoe C, A(u,, ty)—> A (1, t,), and

A(uy,, t,)— A(ug, to) )

because of the continuity of the mapping A4 (u, #,) in » and the estimate (3). We infer
that, according to (4),

(A (uo, to), w) =0 forall weX,. (6)

We finally prove that 4 (u,, t,)=0. Suppose to the contrary that 4 (u,, #,)#0. Then,
by (5), || 4 (4, t,)|| =d> 0 for some constant d and all n = n,, which implies that

(A (tns 2,)> v,)| 2 d[2 >0

for n=n,. But (5) and the fact that some subsequence of {v,} (denoted again by {v,})
converges weakly to an element v, € X, have as a consequence that

(A (um tn)’ vn) =¥ (A (u09 to)a Uo),
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the expression on the right being 0 according to (6). This contradiction shows that
A(uo, t0)=0, q.e.d.

3. We apply the Proposition in order to obtain results on the existence of solutions
of the functional equation (1).

THEOREM 12). Let X a real reflexive Banach space, G an open bounded subset of
X containing O and symmetric about the origin, and Aju= A (u, t) a mapping of cl(G) x
x [0, 1]into X * as follows:
(i) For fixedt, A, is a bounded continuous mapping of type (S);
(ii) A4 (u, t)is uniformly continuous in t with respect to uecl(G);
(iii) A, is odd onbdry(G),i.e. A(—u, 1)=—A(u, 1) for uebdry(G).
Assume that A(u, t)#0 for all uebdry (G) and all te[0, 1]. Then the equation Aqu=0
has a solution u, in G.
Theorem 1 follows by the classical Borsuk theorem [2, 15, 21], the invariance of
the Brouwer degree under homotopies, and arguments which have become standard
in the theory of mappings of monotone type (e.g. [3, 4, 6, 8, 9, 13, 17, 18, 22, 23]) from

LEMMA 1. Let EcA be given. Then under the assumptions of Theorem 1 there
exists FeA, FoE, such that j3A(u, t)#0 for all uebdry(G)nF and all te0, 1].

Proof of Lemma 1. Suppose to each FeA with FoE we can find elements
upebdry (G) n Fand t;€[0, 1] such that j ;4 (ug, tr)=0. Applying the Proposition with
C=bdry(G)and I=[0, 1], we are led to a contradiction to the assumptions of Theorem
1, q.e.d.

DEFINITION. 4 mapping A from X to X* is said to be pseudo-monotone if for any
sequence {u,} in X with u,—u and limsup (Au,, u,—u) =0, it follows that for all ve X,
liminf(4u,, u,—v)=(Au, u—vo).

Pseudo-monotone mappings have been introduced by Brézis [3] and have grown
increasingly important in the discussion of nonlinear elliptic boundary value problems
[3, 11, 13, 22]. Everywhere defined continuous monotone operators from X to X * (i.e.
mappings A satisfying (4du— Av, u—v) =0 for all 4, v in X) are pseudo-monotone.

For pseudo-monotone operators we have the following extension of Theorem 1.

THEOREM 2. Let G a convex open bounded subset of the real reflexive Banach
space X, with 0e G and G symmetric about 0. Suppose the mapping Aju=A(u, t): X X
X [0, 1] — X* satisfies the conditions:

(i) For fixedt, A, is bounded, continuous, and pseudo-monotone;

2) For G a subset of a Banach space, cl(G) denotes its closure and bdry (G) its boundary.
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(ii) A (u, t)is continuous in t, uniformly with respect to uecl(G);
(iii) A, is odd on bdry (G).
If there exists ¢>0 such that | A (u, t)|| Z ¢ for all uebdry (G) and t€|0, 1], then the
equation Aqu=0is solvable in G.
Proof. By arecentresult of Troyanski [25] we can assume without loss of generality
that both X and X* are locally uniformly convex spaces. Let J denote the (single-
valued) normalized duality mapping from X to X * given by

Ju={geX*:(q,u) = liqll llull, lgll = llul}.

For each 1>0 and r€[0, 1], the mapping B! = 4, + AJ is then continuous and of type
(S). By the boundedness of G, there exists g, >0 such that B*u0 for all uebdry (G),
te[0, 1], and 0<A<e,. Hence for fixed A€(0, &), the mapping Bu satisfies the
assumptions of Theorem 1, and there exists an element u;eG with (4, +4J) u; =0.
Taking a sequence {4,} —»0" and assuming that u,=u; —~uyecl(G), we obtain
Agu,= — A, Ju,— 0 and lim (4yu,, u,—u,)=0. By the pseudo-monotonicity of 4,

0 =Ilim (Aoun, u, — U) _2_ (Aouo, Ug — U)

for all ve X. This implies that Aju,=0and u,eG, q.e.d.
We show now how our theory can be applied to the investigation of nonlinear
equations of Hammerstein type

u+TFu=f

in a nonreflexive Banach space X. Here F denotes a (nonlinear) mapping of X to X'*,
T alinear operator of X* to X, and fe X a given element. Without assuming that T is
compact (which case leads back to the now-classical theory of compact operators in
Banach spaces), it seems to be the first time that Hammerstein equations are considered
by methods of operators of monotone type in a nonreflexive space X. Former in-
vestigations were restricted to equations in a reflexive space X, or in the conjugate
space X* of some Banach space X (e.g. [1, 3, 12, 18, 20]).

DEFINITION. A bounded linear monotone operator T of X* into X is said to be
angle-bounded if there exists a constant y=0 such that for all v, w in X*,

|(v, Tw) — (w, Tv)| <7 (v, Tv)'"* (w, Tw)"/2.

LEMMA 2. Let X an arbitrary real Banach space, F a pseudo-monotone mapping
of X to X*, and T an angle-bounded linear operator of X* to X. Then the equation
u+TFu=fin X can be reduced to an equivalent equation Av=0 in a Hilbert space H,
with A a pseudo-monotone mapping of H into itself. If X* is nonseparable, then H has the
same property in general.
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Proof. By the natural imbedding, we identify X with a subspace of X** and
consider T as an (angle-bounded) mapping of X* to X**. By a result of Browder-
Gupta [12] (cf. also Amann [1], Hess [20]), there exist a Hilbert space H (whose norm
and inner product we denote by ||.|g and (.,.)y, respectively), a continuous linear
mapping S of X* to H with range dense in H, and a monotone linear bijective mapping
C of H onto H, such that T=S*CS and (C ~'v, v)y=d|v| % for all ve H, with d>0.
Since T has range contained in X and CS(X*) is dense in H, it follows that the range
of S*is contained in X < X'**,

By the above result, the equation

u+TFu=f @)
is equivalent to the equation
u—f+S*CSFu=0.

Since S* is injective, there exists a uniquely determined v in H with u—f=S*v, and
the initial equation (7) and

v+ CSF(S*+ f)=0 (8)
are equivalent. By the bijectiveness of C, (8) holds if and only if

C 'v+ SF(S*v+ f)=0.
It is readily seen that the operator A4:

Av=C v+ SF(S*v + f) (veH)

is a pseudo-monotone mapping of H into itself. Finally, if X* is nonseparable, the
same is true in general for H as the completion of a factorspace X* modulo some
subspace (cf. the construction of Hin [12]), q.e.d.

An application of Theorem 2 gives the following existence theorem of Fredholm
alternative type for asymptotically homogeneous and odd Hammerstein equations.

THEOREM 3. Let X a separable real Banach space, B a bounded continuous
pseudo-monotone mapping of X to X* which is odd and homogeneous (i.e. B(Au)=ABu
for AeR"), and N:X — X* a bounded continuous operator with lim ., o llu| = || Nu|| =0,
and such that B+ N is pseudo-monotone. Let further T a linear angle-bounded operator
of X* to X. Then the range of I+ T(B+ N) is all of X, provided u+TBu=0 implies that
u=0.

Proof'3). In order to show that the mapping I+ 7 (B+ N) is surjective, it suffices

8) Here we denote by *‘—’* weak convergence in X or H, by «*7 weak* convergence in X*.
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by Lemma 2 to prove the solvability of the equation
C'v+S(B+N)(S*+f)=0 )

in H for arbitrarily given fe X. We observe that if u+TBu=0 only for u=0, then the
equation C ™ 'v +SBS*v=0 implies that v =0.
In the following let fe X be fixed. For [0, 1]and ve H we let

Av=C v+ (1=3)S(B+N)(S*o+ f)—3tS(B+ N) ($*(—v) + f).

It is readily seen that the homotopy 4,v has the following properties:
(1) For fixed ¢, A, is pseudo-monotone, bounded and continuous;

(ii) A,vis continuous in ¢, uniformly for v in bounded sets;

(ili) Agv=C 'v+S(B+N) (S*v+f), while 4, is odd.
The desired result on the solvability of the equation (9) follows from Theorem 2, if
we prove that, assuming C v+ SBS*v=0 only for v=0, there exists R>0 such that
| 4,0llz =1 for all t[0, 1] and all ve H with ||v]z = R.

Suppose that to each n we can find elements v,e H with |v,|z2=n, 7,€[0, 1], and
e € H with |e,|g <1, such that 4, v,=e,. We may assume that z, > re[0, 1]. Setting
W, = ||v,]| g 'v,, we then obtain

C™'wy, + (1 = 3t) SB(S*w, + llvallg” f) + 3tSB(S*w, — llvallz" f)
=3(t,— 1) {SB(S™w, + llvalla" f) — SB(S*w, — lvallz" £)}
— (1= 4t) lvallz" SN (S*0, + f) + $tullvala” SN (S* (= v,) + f)
+ lvallz’ €, >0 (n—00).

Because of the separability of X, the weak* topology on closed balls in X * is metrizable,
and balls in X* are thus weak* sequentially compact. By passing to infinite subsequen-
ces, we may assure that w,—w in H, B(S*w,+||v,|z'f )% a and B(S*w,— v,z f)
* b in X*. It follows that S*w,+ |v,lglf—S*w in X, C”'w,—~C"'w in H, and

C 'w+(1—4t) Sa+%tSb=0. We further infer that

(C™ Wy Wy = W) + (1 = 38) (B(S™wy + lvallg” f), (S*wn + loalla” f) — S*w)
+ 3t(B(S™Wy — llvallz " £), (S*Wn — llvallz* ) — S*w) > 0.

We assume that 0<¢=<1 (the case t=0 is treated similarly) and choose further
infinite subsequences such that the three limits lim (C ~'w,, w,—w)g,
lim (B(S*w, + 10l 5 f), (S*W, + 0.l 1) — S*w), and
lim (B(S*w,—|vallg ' f), (S*Ww,— |4z f )= S*w) exist. By the pseudo-monotonicity
property of the mappings C ™! and B, all of the three limits are 0. Hence, again by
pseudo-monotonicity, a=b=BS*w, and consequently C ~w + SBS*w=0.
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Since (C ~'v,,v,)g2d||v,|%, we conclude that (C~'w,, w,)y=d>0. Moreover
(C w,, w)g— (C™'w, w)g. Thus w#0, q.e.d.
Remark. Theorem 3 remains true for X nonseparable, but reflexive.

4. Our principal methodological result on nonlinear eigenvalue problems which
extends the corresponding Theorem 1 of Browder [7] to mappings in nonseparable
spaces is

THEOREM 4. Let X a real reflexive Banach space, C a closed subset of X, and A,
B continuous mappigs of C into X*, with A bounded and of type (S) and B compact.
Let {E,},Z, be an increasing sequence in A with CNE,#Q. Suppose to each FeA
with Fo E, there exist elements upe CNF and tye R' such that ji Aup=tgjy Bug, and
assume uy and ty remain uniformly bounded for Fo E,.

Then there exists a sequence {F,} in A with F,o E, for each n, such that for some
subsequence {n(k)} of {n}, ug,,, ~1o€C, tr,,, 1R, and Auy=t,Bu,.

Proof. Follows immediately from the Proposition, with /=R' and A(u,t)
= Au~—tBu.

As an application to the ‘“‘selfadjoint’’ case where 4 and B are the derivatives of
two functions, we get the following extension of Theorem 3 in [7] and Theorem 14
in [8]:

THEOREM 5. Let f, h continuously differentiable real-valued functions defined
on the (not necessarily separable) real reflexive Banach space X, with f' bounded and
of type (S) and h' compact. Suppose that for a given constant c the level set M,(f)
={ueX: f(u)=c} is nonempty and bounded, and that for ueM.(f), (f u, u)#0.
Suppose further that there exists a point voeM,(f) and a constant d>0 such that
for allueM_( 1) for which h(u)=h(v,), (h'u, u)=d.

Then h assumes its maximum on M.(f) at a point u, which is a solution of the
equation f 'uy =ty h'u, for some real number t.

Proof. By the continuity of f, the level set M.(f) is closed in X. Let F an ar-
bitrary element of A with M, ( f)n F#0, and let f, hr denote the restrictions of f'and
h to F. The functions fr and Ay are continuously differentiable on F, with ( fz)' = jg f 'jg,
(he) =jrhjg. We set M, x(f)=M,(f)nF. Since ((f¢)u, u)=(f"u, u)#0 for all
ueM, ¢ (f), M, r(f) is a compact manifold of codimension 1 in . Thus there exists
upe M, p(f) such that h(up)=sup,cu. . (#). By the Lagrange multiplier method,

(he)up = Ap(f F) Ur (10)

for some real .
Let {w,} be a sequence in M,(f) with A(w,)—>m=sup, .y, 1 (1). We choose
an increasing sequence {E,},2, in A such that E, > {v,, w;}, while w,eE, for n=2.
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In order to prove the applicability of Theorem 4 with C=M_( f), we show that for
FeA, FoE,, the corresponding numbers (A¢)~! of (10) are uniformly bounded. In-
deed, it follows from (10) that |(h'ug, ug)|=|Ag| |(f uF, up)|, where |(h'ug, ug)| =d>0
and |(f'ug, up)| Sk, for each FeA with Fo E,. Thus [A;|=k;>0, and we can write
(f¥) up=1p(hg) ug, with tp=(Af) ! uniformly bounded.

By Theorem 4 there exists a sequence {F,} in A with F,> E, for each n, such that
Up, g 2> UEM(f), tp, .2 t0ER, and f'uo=t,h'u,. Since w,eE,cF,, h(w,)=
< h(up,). In this last relation the left side converges to m, while & (ug, ,,) - h(uo) by
continuity of . Hence k(uy) =sup, epr 2 (), q.e.d.

In a similar way one generalizes Theorem 15 of [8].
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