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Espaces de Riesz, espaces de fonctions et espaces de sections

par Claude Portenier

Introduction

Nous nous proposons dans ce travail d'étudier certaines classes d'espaces de Riesz
et de les représenter par des espaces de fonctions ou de sections (continues).

Dans le paragraphe 0 nous rappelons les notions et les résultats dont nous aurons
besoin. Nous les avons tirés en général des livres de H. Schaefer ([15]) et A. Perressini

([13]). Nous utiliserons aussi leur terminologie et leurs notations.
Si E est un espace de Riesz localement convexe, nous montrerons (1.6.) qu'il y a

correspondance biunivoque par polarité entre les voisinages de 0 pour %{E, E') qui
sont fermés solides et co-réticulés et les chapeaux du cône positif dual. Cela nous

permet de caractériser un espace de Kakutani comme un espace de Riesz localement

convexe dont le cône positif dual est bien coiffé (1.8.). Remarquons que S. Kakutani
(dans [11]) a déjà étudié ces espaces, dans le cadre des espaces de Banach, sous le

nom de «abstract (M)-spaces»; R. G. Kuller ([12]) et G. Jameson ([10]) les appellent

respectivement «locally m-convex vector lattices» et «topological Af-spaces».
Comme autre conséquence nous montrerons que le cône positif dual est l'enveloppe
fermée convexe de la réunion de ses génératrices extrémales si et seulement s'il existe

une topologie d'espace de Kakutani séparée sur E, moins fine que %(E, £") (1.12.).
Un tel espace de Riesz localement convexe sera dit fonctionnel. A la fin de ce premier
paragraphe nous donnons des conditions suffisantes pour qu'un espace de Riesz

régulièrement ordonné soit un espace de Kakutani pour sa topologie de l'ordre (1.17.).
Dans le paragraphe 2 nous donnons trois réponses différentes à la question suivante ;

étant donné un espace de fonctions (2.3.), quand toute forme linéaire réticulante
continue est-elle évaluante? Ceci nous permet de retrouver les théorèmes classiques
de S. Kakutani ([11], théorème 8) et L. Nachbin ([9], p. 170).

Le paragraphe 3 traite de la représentation des espaces de Riesz localement

convexes fonctionnels. On montre que la réunion ^ des génératrices extrémales du
cône dual positif est l'espace total d'un fibre principal ^ -> X de groupe structural R%,

appelé le spectre de E, et que E s'identifie à un espace de sections du fibre en droite
associé au spectre (3.7.).

Dans [10] (théorème 6), G. Jameson représente E comme un espace de fonctions
positivement homogènes sur ^, en remarquant qu'il n'y a pas de manière évidente de

choisir un point par génératrice extrémale. Dans le cas norme, S. Kakutani ([11]),
théorème 1) peut prendre les points qui sont de norme 1, mais l'espace topologique
que l'on obtient peut être très pathologique. Il est conduit à prendre son adhérence, ce
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qui introduit les liaisons et pose le problème du meilleur quotient ([14], p. 38). Une
nouvelle solution consiste à choisir une section continue du spectre. Nous verrons
(3.23) que cela n'est pas toujours possible globalement. Toutefois il en existe au-dessus

d'un ouvert X dense dans #*, ce qui conduit à représenter E comme un espace de

fonctions sur X, ces fonctions ayant un certain comportement sur le bord de X (3.22.).
Dans le paragraphe 4, nous démontrons, en utilisant un résultat de G. Jameson

([10], théorème 7), un théorème de Stone-Weierstrass abstrait, valable dans les

espaces de Kakutani (4.3.). Cela nous permet de retrouver les théorèmes classiques,

par exemple celui de S. Kakutani ([11], théorème 3) et de répondre à une question de

R.C.Buck([4],p. 101).

Dans le paragraphe 5, nous introduisons une classe d'espaces de Riesz localement

convexes (appelés quasi de Kakutani) intermédiaire entre celle des espaces de
Kakutani et celle des espaces de Riesz localement convexes fonctionnels. Cette classe

semble être la plus intéressante. On peut en effet démontrer un théorème de Dini (5.3.)
et caractériser les idéaux fermés (5.5.).

Qu'il me soit permis ici de remercier très sincèrement Monsieur le Professeur

Roger Bader, qui m'a suivi, aidé et conseillé tout au long de ce travail.

§0. Généralités

0.1. Tous les espaces vectoriels que nous considérerons seront définis sur le

corps des réels R. Tous les espaces topologiques seront séparés et tous les espaces
vectoriels topologiques seront localement convexes et séparés, sauf mention expresse
du contraire.

0.2. Si E est un espace vectoriel ordonné nous désignerons toujours par C le

cône convexe des éléments positifs de E. Une partie A de E est dite pleine si l'intervalle
[/> g] est contenu dans A pour tout/, geA. Si E est un espace de Riesz, nous dirons

que la partie A est solide si feA et |g|<|/| implique geA, et co-réticulée si /, geA
implique sup(/, g) et inf(/, g)eA. Un sous-espace vectoriel solide de E sera appelé

un idéal.

Rappelons que l'enveloppe convexe d'une partie solide est solide et que l'enveloppe
solide d'une partie co-réticulée symétrique est co-réticulée et convexe. Si E est un
idéal de E, alors E/F est muni canoniquement d'une structure d'espace de Riesz telle

que l'application linéaire canonique soit réticulante (i.e. permute avec sup).

0.3. Si E est un espace de Riesz et un espace localement convexe, nous dirons

que E est un espace de Riesz localement convexe si l'application (/, g)»->sup(/, g)
est uniformément continue. Pour que E soit un espace de Riesz localement convexe, il
faut et il suffit qu'il existe un système fondamental de voisinages de 0, qui soient
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fermés convexes et solides. Dans un tel espace l'adhérence d'un ensemble solide est
solide et celle d'un ensemble co-réticulé est co-réticulée.

Soit E un espace de Riesz localement convexe. Nous dirons qu'il est de Kakutani,
s'il existe un système fondamental de voisinages de 0 co-réticulés. Dans un tel espace
il existe un système fondamental de voisinages de 0 fermés solides et co-réticulés. Si

la topologie de E est définie par une norme et si la boule unité est solide, nous dirons

que E est un espace de Riesz norme; si en plus elle est co-réticulée, nous dirons que E
est un espace de Kakutani norme. Si F est un idéal fermé de E, alors E/F est un espace
de Riesz localement convexe pour les structures quotients. Si E est un espace de

Kakutani, il en est de même de E/F.

0.4. Si <j£, F} est un système dual et A une partie de E ou F, nous désignerons

par A0 le polaire de A et par Aa le polaire absolu de A. F sera toujours muni de la

topologie faible a (F, E).

0.5. Si E est un espace vectoriel ordonné, nous noterons C* l'ensemble des

formes linéaires positives sur E, cône dual (pour <2s, E*}) de C, et par E+ le sous-

espace vectoriel C*-C* engendré par C*.
Si E est un espace de Riesz, E* est aussi l'ensemble des formes linéaires relativement

bornées sur E. Rappelons la formule importante suivante: pour tout/eC et

tout jtieE+, on a

M(/)= sup

0.6. Rappelons qu'une forme linéaire fi est dite réticulante si /z(sup(/, g))
=sup(/*(/), ii{g)) pour tout/, geE, ou, ce qui est équivalent, ju(|/|) |iu(/)| pour
toutfeE. On a le résultat important suivant:

Soit fieE+, JJ7ÉO. Pour que ju soit une forme linéaire réticulante, il faut et il suffit
que \i engendre une génératrice extrémale deC*.

Remarquons encore que l'ensemble des formes linéaires réticulantes est fermé
dans E* et que C* est faiblement complet.

0.7. Si E est un espace de Riesz localement convexe, alors E' (le dual de E) est

un idéal de E"1". Réciproquement si (E9 2s+> est un système dual (on dit que E est

régulièrement ordonné) et si E' est un idéal dense de E+a, alors la topologie o(E, E')
de la convergence uniforme sur les intervalles de E' est la moins fine des topologies
compatibles avec la dualité <£", E'}, qui font de E un espace de Riesz localement

convexe.

0.8. Si E est un espace de Riesz régulièrement ordonné, nous noterons $~0 sa
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topologie de l'ordre, qui est égale à t(E, E + et est la plus fine qui en fasse un espace
de Riesz localement convexe. On peut la décrire de la manière suivante. Soit H une
partie cofinale de C pour le préordre: «il existe A>0 tel que A-/<g» (on dit positivement

cofinalé). Pour toute application a de H dans R*, nous noterons Ua l'enveloppe
convexe de la réunion des oc (h)- [-h, A]. L'ensemble des Ua est un système fondamental

de voisinages de 0 de J~o.

Si E possède une unité e, alors \_ — e,e~\ est la boule unité pour une norme définissant

la topologie de l'ordre de E. C'est en outre un espace de Kakutani norme.

Rappelons encore le résultat suivant: un espace de Riesz normable complet est

muni de sa topologie de l'ordre, i.e. E'=E +

0.9. Soit E un espace vectoriel. Un point x d'un ensemble convexe AdeE est dit
extrémal s'il n'est contenu dans aucun segment ouvert contenu dans A. Si E est un
espace localement convexe, on appelle tranche de A toute intersection non-vide de A
avec un demi-espace ouvert affine de E, i.e. un ensemble formé des xeA tels que

/ (x)>a, où /est une forme linéaire continue sur E et a un nombre réel. Un point de

A est dit extrémal fort s'il possède dans A un système fondamental de voisinages
formé de tranches. G. Choquet a montré (cf. [6]) que tout point extrémal d'un
ensemble convexe faiblement complet est un point extrémal fort.

0.10. Soient C un cône convexe saillant pointé de sommet 0, d une génératrice
ouverte de C et H un hyperplan coupant d en x. d est dite une génératrice extrémale si

tout segment ouvert contenu dans C et coupant d est contenu dans d. Pour que d soit

une génératrice extrémale de C, il faut et il suffit que x soit un point extrémal de Hn C.

On appelle tranche conique de C toute intersection de C avec un demi-espace

homogène ouvert de E, i.e. un ensemble formé des xeC tels que/ (x)>0, où/est une
forme linéaire continue sur E. Une génératrice ouverte de C est dite génératrice extrémale

forte si elle possède dans C un système fondamental de voisinages coniques
formé de tranches coniques. On a aussi que toute génératrice extrémale d'un cône

convexe saillant faiblement complet est une génératrice extrémale forte. Ce résultat

sera très important par la suite.

0.11. Quand un cône convexe fermé est-il l'enveloppe fermée convexe de ses

génératrices extrémales? Pour étudier ce problème G. Choquet a introduit la notion
suivante (cf. [6]):

Soit C un cône convexe d'un espace vectoriel topologique. On appelle chapeau de

C toute partie convexe compacte non-vide de C de complémentaire convexe dans C.

On peut montrer (0.13.) que si C est égal à la réunion de ses chapeaux (on dit que
C est bien coiffé), alors C est l'enveloppe fermée convexe de la réunion de ses génératrices

extrémales.
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Certaines propriétés géométriques d'un chapeau (cf. [1], p. 109 et ss.) sont valables

pour une classe d'ensembles convexes plus grande, celle des tubes, définie ci-après.

0.12. Soient E un espace vectoriel, C un cône convexe saillant pointé de sommet 0,
A une partie de C convexe contenant 0 et p sa jauge. On suppose encore que A est
l'ensemble des x tels que p {x) < 1, ce qui est vrai par exemple si A est une partie fermée
d'un espace vectoriel topologique.

A sera dit un tube si A est plein (pour l'ordre défini par C) et de complémentaire
convexe dans C. On a le résultat:

Pour que A soit un tube, ilfaut et il suffit quep soit additive sur C.

Si A ne contient pas de demi-droite et est de complémentaire convexe dans C, on
montre que/? est additive sur C, donc que A est un tube.

0.13. La proposition suivante est une généralisation immédiate d'une propriété
vraie pour les chapeaux :

Soit A un tube de C. Les points extrémaux de A sont 0 et les points x situés sur les

génératrices extrémales de C et tels quep (jc) 1.

0.14. Le résultat suivant nous sera utile par la suite :

Si E est un espace de Riesz et un espace vectoriel topologique, alors les enveloppes

«fermée solide» et «fermée convexe symétrique» d'un tube de Csont égales.

0.15. Rappelons quelques résultats concernant les fibrations principales (cf. [3]).
Soient ^ un espace topologique dans lequel le groupe R* des nombres réels >0

opère continûment, X un espace topologique et n une application continue de ^
dans X. Rappelons que nous supposons toujours les espaces topologiques séparés.
Nous dirons que n est une fibration principale de groupe structural R* si pour tout
xeX, il existe un voisinage ouvert U de x et un homéomorphisme 9: UxR* -> n'1 (U)
tels que n (9 (u, a)) w et 0 (w, a • /?)=a • 0 (u, j8) pour tout u e U et a, P e R*. <& s'appelle
l'espace total et X la base de n.

La relation d'équivalence définie par n coïncide avec celle définie par R*. n étant

ouverte, X s'identifie à l'espace des orbites ^/R* muni de la topologie quotient. En
outre R* opère proprement et librement.

0.16. Réciproquement soit ^ un espace topologique dans lequel R* opère continûment,

proprement et librement. Nous désignerons par X l'espace des orbites âP/RÎ
muni de la topologie quotient (qui est séparée) et par % l'application canonique @-*X.

Pour toute partie A de X et toute section s de n au-dessus de A, soit 9 l'application
bijective (x, a) -> <x-s(x) de A x R* sur n'1 (A). Pour que s soit continue, il faut et il
suffit que 9 le soit. Si tel est le cas, 9 est un homéomorphisme de A x R* sur tt"1 (^4).
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On en déduit que, pour tout /xe^, l'application ah-xx*/* est un homéomorphisme de

R* sur la fibre tt"1 (jc) au-dessus de x=n(n) et que n est une fibration principale si et
seulement s'il existe localement des sections continues.

0.17. Nous désignerons par 3tf {&) l'espace de Riesz des fonctions/réelles
continues sur & qui sont positivement homogènes, i.e. telles que/(a-/x)=a*/(ju) pour
tout ne& et tout aeR^. Par exemple, si s est une section continue de n au-dessus de A,
alors/, définie par fit-*(x9 <x)h-kx, appartient à J^(n~1(A)) et/(ju)>0 pour tout
tien"1 (A). Réciproquement soit feJ^(n~x (A)) satisfaisant cette dernière condition
et désignons par s la section de n au-dessus de A définie par/(,s(x)) l. Alors s est

une section continue.

0.18. R% opère continûment et proprement dans ^xR. L'application 7ioprt de

surf passe au quotient (par R*) en une application continue nR:^R-^^.
7iR (ou ^R) est appelé l'espacefibre associé à n défibre type R. Si l'on note (n,a)\->ii*a
l'application de ^xR sur ^R, on a a-/i*a-a=/j*a et nR(fi*a)=n(n) pour tout
lie&, aeRetaeR*.

Soient xe$E et fie@ tel que n(jn)=x. L'application ah-+fi*a est un
homéomorphisme de R sur la fibre n'1 (x) de @R au-dessus de x. Plus généralement si s est

une section continue de n au-dessus de A, alors (x, a)t-+s(x)*a est un
homéomorphisme de ^4xR sur tt^1

0.19. Si /est une section de tir, pour tout jue^, il existe un unique élément

<p (//)eR tel que/(n (/*)) =n*<p (^u). La fonction réelle sur & : ii\-*cp (fi) est positivement
homogène. Pour que/soit continue, il faut et il suffit que cp le soit. On obtient ainsi

une bijection de l'ensemble ^(nR) (resp. ^(nR)) de toutes les sections (resp. continues)
de nR sur l'ensemble des fonctions réelles (resp. continues) positivement homogènes

sur ^. En général nous ne ferons pas de distinction entre/et cp.

0.20. La structure d'espace vectoriel ordonné de R étant invariante par R%, on

peut la transporter dans les fibres de ttr. Cela nous permet de munir ^(nR) d'une

structure d'espace de Riesz. Si f,ge£f(nR)9 on a sup(/ g) (x)=sup(/(x), g(x))
pour tout xeSC. Si/et g sont continues, il en est de même de sup (/ g), donc *€ (ttr) est

co-réticulé dans ^(nR).
Remarquons que la bijection de ^(nR) sur «^(^) est un isomorphisme d'espaces

de Riesz.

§1. Dualité et espaces de Kakutani

1.1. Dans tout ce paragraphe E désignera un espace de Riesz localement con-
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vexe et &~ sa topologie. Rappelons que E' est un idéal de E+, donc les génératrices
extrémales de C° sont exactement celles de C* qui sont contenues dans Ef. Par suite

une forme linéaire continue ^0 est réticulante si et seulement si elle engendre une
génératrice extrémale de C° (0.6.).

1.2. PROPOSITION. Si A est une partie de E stable pour inf, alors A0 n C° est un
tube de C °. Si A est pour %(E,E')un voisinage de 0 stable pour inf, alors A0 n C° est un

chapeau de C°.

Désignons par/? la jauge de l'ensemble A° n C°. On vérifie immédiatement que l'on
a p(n)=supfeA — ti(f) pour fieC0. Pour démontrer la première assertion, il suffit
de voir que/7 est additive sur C°, donc que/?(ju)-f/?(v)</?(^ + v) pour tout fi, veC°.
Soient s>0 et f,geA tels que /?(^)-e/2< -/*(/) et /?(v)-s/2< -v(g). On a

h =inf(/, g)eA et il vient

p(ji + v) > - (ji + v) (h) ^ - n(f) - v{g)>p{ii)+p{v) - e,

d'où le résultat. La seconde assertion est alors évidente.

1.3. PROPOSITION. Soit K un chapeau de C\ Alors Ka est pour t(E, E') un

voisinage de 0 fermé solide et co-réticulé.
Ka est pour t(E, E') un voisinage de 0, puisque K est faiblement compact. En

outre, par le théorème de Krein-Milman, K est l'enveloppe fermée convexe de ses

points extrémaux, qui se trouvent sur des génératrices extrémales de C°, donc sont des

formes linéaires réticulantes. Ainsi si/, geKa, on a /* sup(/, g)eKa; en effet ceci est

équivalent à \fi(h)\^l pour tout ju point extrémal de K, d'où le résultat car on a

IM*)IHa*(suP(/,^ Ainsi Ka est co-
réticulé, mais aussi équilibré. On en déduit qu'il est solide, car si/ei£fl et |g|< |/|, on a

l/l =sup (/,-/>#* et lAi(^)|<Ai(|g|)<A*(|/|)<l pour tout fieK, donc geKa.

1.4. THÉORÈME. Soit V une partie de E fermée convexe et solide. V est pour
?(E9 Er) un voisinage de 0 co-réticulé si et seulement si V° nC° est un chapeau de C°.

Onaalors{V°nC°)a V.

Soit K une partie de C° fermée convexe pleine et contenant 0. K est un chapeau de

C° si et seulement si Ka est pour t(E, E') un voisinage de 0 co-réticulé. On a alors

Par ce qui précède les conditions sont nécessaires. Elles sont aussi suffisantes par
le lemme qui suit.

1.5 LEMME. Si A est une partie fermée convexe solide de E et si A°nC° est un
tube de C°tona {A0 n C°)a —A. Si K est un ensemble compact convexe plein et contenant

OdeC°,alorsKaonC°=K.
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A°, qui est solide, est l'enveloppe solide de A° n C°, donc est l'enveloppe fermée

convexe symétrique de A°nC°9 cet ensemble étant un tube (0.14.). Le polaire absolu
de A° n C° est égal au polaire de l'enveloppe fermée convexe symétrique de A0 n C°,
donc au bipolaire de A, qui est égal à A.

Kao est l'enveloppe convexe symétrique de K, donc si fieKaonC0, ona/z^Oet
/j=a-v— (1— a)-A, oùae[0, l]etv, AeK, d'où O^^a-v^v et par suite \ieK.

Le théorème 1.4. signifie en fait:

1.6. COROLLAIRE. Il y a correspondance biunivoque entre les voisinages V de 0,

pour t(E,E'), qui sont fermés solides et co-réticulés et les chapeaux K de C° par
V*-*V°nC°etKt->Ka.

1.7. COROLLAIRE. Les chapeaux de C° forment un ensemble filtrant croissant;
plus précisément si Kt et K2 sont deux chapeaux de C°, alors l'enveloppe convexe K de

Kt v K2 est un chapeau de C °.

En effet K est fermé convexe contenant 0 et est plein par le lemme de décomposition ;

en outre Kl =K2 n Ka est évidemment pour % (E, Ef) un voisinage de 0 co-réticulé.

1.8. THÉORÈME. Pour que C° soit bien coiffé, ilfaut et il suffit qu'il existe sur E
une topologie d'espace de Kakutani compatible avec la dualité.

Il suffit de remarquer que pour fieC°, «n appartient à un chapeau K» est équivalent

à «Ka est contenu dans l'ensemble FM des feE tels que |/*(/)|<l», et que la
famille des intersections finies de V^ (pour fxeC0) est un système fondamental de

voisinages de 0 pour la topologie faible g{E, E'), car pour \i quelconque on a

1.9. Remarque. La famille des Ka, où K parcourt celle des chapeaux de C°9

définit toujours une topologie ^k d'espace de Kakutani sur E, mais en général non-

séparée. Elle est évidemment la plus fine parmi celles qui sont moins fines que t (2s, E')
et qui font de E un espace de Kakutani (non nécessairement séparé), et elle est

compatible avec la dualité (donc en particulier séparée) si et seulement si C° est bien
coiffé.

Si E est un espace de Kakutani, C° est bien coiffé, donc est égal à l'enveloppe
fermée convexe de la réunion de ses génératrices extrémales. Nous poserons la
définition suivante:

1.10. DÉFINITION. Nous dirons qu'un espace de Riesz localement convexe E
est fonctionnel si le cône dual C° est l'enveloppe fermée convexe de la réunion de ses

génératrices extrémales. De même un espace de Riesz sera dit fonctionnel si c'est un
espace de Riesz localement convexe fonctionnel pour sa topologie de l'ordre.
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Pour caractériser ces espaces nous aurons besoin du lemme évident suivant:

1.11. LEMME. Soient A une partie, contenant 0, d'un espace vectoriel topologique
et P un cône de sommet 0. Les enveloppes fermées convexes de A+P et A\jP sont
égales.

1.12. THÉORÈME. E est un espace de Riesz localement convexe fonctionnel si
et seulement s'il existe une topologie d'espace de Kakutani (séparée) sur E, moins fine
quez(E, E').

Remarquons que C° est l'enveloppe fermée convexe de la réunion de ses génératrices

extrémales si et seulement si la réunion des chapeaux K de C° est dense dans C°.

Il nous suffit donc de montrer que les assertions «\^JK=C°» et «$~k est une topologie
séparée» sont équivalentes. Mais la première est équivalente à «C f>\K0». Cette
dernière implique que 3~k est séparée, car Ka— {K\j — K)°=K°n(—K)°9 donc

f}Ka Cn(-C) {0}. D'autre part on a KaonC°=K, donc K° est l'enveloppe
fermée convexe de Ka\jC, donc est égal par le lemme à l'adhérence de C+Ka. Cet

ensemble étant contenu dans C+2Ka9 on a f)K° f] (C+Ka). Par suite «U^= C°»
est équivalent à «C est fermé pour ^k». Nous venons d'utiliser deux fois (l'une pour
t (E, E'), l'autre pour &"k) que dans un espace vectoriel topologique on a Â p) (A + U),
où U parcourt un système fondamental de voisinages de 0. Ainsi si ^k est séparée, E,
muni de vette topologie, devient un espace de Riesz localement convexe, donc C est

fermé, ce qui termine la démonstration.

1.13. EXEMPLE. Soient X un ensemble et E un espace vectoriel de fonctions
réelles sur X, co-réticulé dans R*. Cette dernière hypothèse signifie que pour tout
fgeE, on a sup(/, g)eE, où sup(/,g) (x)=sup(/(*), g(*)) pour tout xeX, ou
encore, que les formes linéaires d'évaluation sx:f\->f{x) sont réticulantes. Si l'on
munit E d'une topologie d'espace de Riesz localement convexe plus fine que celle de

la convergence simple dans X, i.e. telle que toutes les formes linéaires d'évaluation (sur
X) soient continues, alors E est un espace de Riesz localement convexe fonctionnel, la

topologie de la convergence simple dans Xétant manifestement une topologie d'espace
de Kakutani (séparée).

Tout espace de Riesz localement convexe fonctionnel E est en fait de ce type. En
effet prenons pour X la réunion ^ des génératrices extrémales de C°. Pour toutfeE,
désignons par #(/) la fonction réelle sur ^\\x\-^\i{f\ II est alors clair, car ^ est

total dans E'a et formé de formes linéaires réticulantes, que 0 est un isomorphisme
(d'espace de Riesz) de E sur un espace vectoriel de fonctions réelles sur ^, co-réticulé
dans R^. Cette représentation n'est pas très intéressante, car ^ est beaucoup trop
grand. Par la suite (§3) nous reprendrons cette question.
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1.14. EXEMPLE. L'exemple de G. Choquet ([7]) d'un cône convexe saillant
faiblement complet sans génératrices extrémales nous fournit un exemple d'espace de

Riesz fonctionnel que l'on peut munir d'une topologie d'espace de Riesz localement
convexe pour laquelle il n'est pas fonctionnel.

Soit E l'espace de Riesz des fonctions réelles continues sur [0, 1]. On sait que E +

est l'espace des mesures de Radon sur [0, 1], car E muni de la norme uniforme est un
espace de Riesz norme complet, donc est muni de sa topologie de l'ordre. En outre il
est de Kakutani, donc E est un espace de Riesz fonctionnel. Soit E' le sous-espace
vectoriel des mesures de Radon \i pour lesquelles toutes les fonctions x\-*\x~a\~a
(ae[Q, 1] et 0<a< 1) soient |/i|-intégrables. Il est évident que E' est un idéal de E +

et par conséquent que C° ne possède pas de génératrices extrémales, celles-ci devant
être engendrées par les ex(xe[0, 1]; cf. 2.15. corollaire 1.). Muni de la topologie
o(E, Er) (O.7.), E est un espace de Riesz localement convexe non-fonctionnel, son
dual E\ contenant la mesure de Lebesgue, étant dense dans E*.

1.15. Soit E un espace de Riesz régulièrement ordonné, muni de sa topologie
de l'ordre. On peut décrire la topologie ^Otk (remarque 1.9.) par une méthode

identique à celle utilisée pour la topologie de l'ordre &"0 (0.8.).
Soit Hune partie positivement cofinale de C. Pour toute application a:H\-^R%,

on note Va l'ensemble des feE tels qu'il existe une partie finie la H et que l'on ait

1.16. PROPOSITION. L'ensemble des Va est un système fondamental de voisinages

En effet cet ensemble est un filtre de parties absorbantes, solides et co-réticulées

(et par suite convexes et équilibrées), donc définit une topologie d'espace de Kakutani,
peut-être non-séparée, évidemment moins fine que $~Oik. Elle est aussi plus fine, car
si F est un voisinage de 0 de ^Otk9 on peut supposé qu'il est solide et co-réticulé, donc
si l'on choisit a (h) > 0 tel que a (h) • he V, on a Va c V.

Nous savons qu'un espace de Riesz régulièrement ordonné possédant une unité
est un espace de Kakutani pour sa topologie de l'ordre. Plus généralement on a le

théorème:

1.17. THÉORÈME. Soit E un espace de Riesz régulièrement ordonné satisfaisant
Vune des deux conditions suivantes:

(i) il existe une suite {h,)positivement cofinale de C.

(ii) pour toute suite (hn) de C il existe heC majorantpositivement tous les hn.

Alors E muni de sa topologie de l'ordre est un espace de Kakutani.
La suite (hn) étant positivement cofinale à C on peut l'utiliser pour définir & 0 et

&"0tk. Soient Ua un voisinage de 0 de &\ et pn—<xj2n. Nous allons montrer que
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Vfi c C/a. Si/eE est tel que | /1 < supj ^ ^n (pt • ht\ on a

~r

et ce dernier élément appartient à l/a, d'où (i).
Soit Ua un voisinage de 0 de ^ 09

h parcourant C. Montrons que a =lim sup afc>0.
Sia=0, alors lim ah=0, donc pour tout n il existe hn tel que 0<atf< \]n pour tout g
majorant positivement /*„. Soit /* majorant positivement tous les /*„; on a afc=0, ce

qui est absurde. Ainsi il existe une partie H positivement cofinale de C telle que
(xh^a/2 pour tout heH.Si l'on pose /?,, =a/2 pour tout heH9le voisinage Vfi de 0 pour
¦TOtk est contenu dans Ua. En effet sifeE est tel que |/Ksup(/?f •/*;), où (Af) est une
suite finie de H, on a \f\^a/2'g^ag'g pour tout ge// majorant positivement les

h i9 doncfeUa.

1.18. Remarques. 1) La même conclusion subsiste s'il existe une partie H
positivement cofinale de C qui soit isomorphe au produit de deux ensembles préordonnés
satisfaisant respectivement (i) et (ii).

2) La partie (i) du théorème était déjà connue de G. Choquet sous une forme plus
générale, mais un peu plus faible.

Si/eJE'nous désignerons par Vf l'ensemble des fieE+ tels que |ju(/)| < 1. L'ensemble

des Vfr\C* pour/e C est un système fondamental de voisinages de 0 dans C*, car
pour / quelconque on a V2f+ nV2f-<^Vf. Si/, geC, alors />g est équivalent à

Vf n C* c F^ n C*. La condition (i) peut donc s'énoncer sous la forme : 0 possède dans

C* un système fondamental dénombrable de voisinages. Le résultat de G. Choquet
(cf. [1], chap. 2, §7, prop. 5, p. 112) affirme qu'alors C* (qui est faiblement complet)
est bien coiffé. Par suite ^Otk est compatible avec la dualité (E9E + } par le théorème
1.8. Nous avons en fait démontré un peu plus, c'est-à-dire ^Otk =t(E9 E + )=&~0.

1.19. EXEMPLES. Soient X un espace topologique localement compact et

E=JT(X) l'espace de Riesz des fonctions réelles continues à support compact sur X9

muni de sa topologie limite inductive habituelle, qui est sa topologie de l'ordre (cf. [2],
chap. 3). Soit Jf une famille exhaustive de compacts de Xet pour tout KeJf choisissons

9Ketf{X) telle que 9K^0 et 6K^ 1 sur K. L'ensemble de ces 0K est une partie
positivement cofinale de C. Du théorème 1.17. découle le résultat suivant:

Si Xest dénombrable à l'infini ou sipour toute suite (Kn) de compacts deXla réunion

U Kn est relativement compacte, alors Jf (X) est un espace de Kakutanù
Par exemple un espace d'ordinaux 0a (cf. [8], 5.11., p. 72), i.e. l'ensemble de tous

les ordinaux strictement plus petit qu'un certain ordinal a, muni de la topologie des
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intervalles ouverts, qui en fait un espace topologique localement compact, jouit
toujours de l'une ou l'autre des propriétés ci-dessus.

Dans la planche de Tychonoff (cf. [8], 8.20., p. 123), i.e. l'espace topologique
localement compact

[0, coq] x [0, coj - {(œ0, co^},

la famille (Kna), n<œ0 et a<a>1, KKta désignant l'ensemble des (j, f$) tels quey<« ou
j8<a, est une famille exhaustive de compacts vérifiant la condition de la remarque 1)

ci-dessus. Jf (X) est donc aussi un espace de Kakutani.
Si X est un espace discret, JT(Z) s'identifie à la somme directe R(X) et E + à Rx.

Si X est non-dénombrable, alors JT(X) n'est pas un espace de Kakutani, car C* =R+
n'est pas bien coiffé (cf. [1], chap. 2, §7, Ex. 28, p. 158).

§ 2. Espaces de fonctions et formes linéaires évaluantes

2.1. Soient X un ensemble et E un espace vectoriel de fonctions réelles sur X,
co-réticulé dans R*, muni d'une topologie $~ d'espace de Riesz localement convexe
plus fine que celle de la convergence simple dans X.

Les formes linéaires d'évaluation vont jouer un rôle central dans l'étude de ces

espaces. Plus généralement nous dirons qu'une forme linéaire sur E est évaluante si elle

est de la forme a-sx pour un xeX et a^0. Si E est un sous-espace vectoriel de E,

a, jS^O et x, yeX, les relations «a- 8x=p-8y sur F» et «a*/(x) =/?•/(>>) pour tout
feE» sont équivalentes. Si tel est le cas nous dirons que (x, y; ce, /?) est une liaison de

F sur X. Les liaisons (x, x; a, a) et (x, y; 0, 0) sont dites triviales.
La question qui va maintenant nous intéresser est la suivante :

Sous quelles conditions (portant sur X, E et &~) toutes les formes linéaires réticu-
lantes continues sont-elles évaluantes, ou plus généralement, comment peut-on
décrire les formes linéaires réticulantes continues à l'aide des formes linéaires
évaluantes? Nous répondrons de trois manières différentes à cette question.

2.2. Pour commencer il nous faut introduire une topologie, voire une structure
uniforme, sur X.

Plongeons X dans E'a par s:x\-+ex. Cette application identifie les points x,yeX
tels que/ (x) =/ (y) pour tout feE. Toute fonctionfeE est égale à la composition de

e et de la forme linéaire sur F':iuh->/x(/) associée à/. Sachant que la structure
uniforme de E'a est la structure uniforme initiale relativement aux formes linéaires

fih->fi(f) pour feE, on voit qu'elle induit sur X (par e) la structure uniforme initiale
relativement aux fonctions feE. En outre l'espace topologique séparé associé à X
s'identifie à s(X). Au besoin en remplaçant X par e(X) — {0} et E par l'ensemble des
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restrictions à e(X)—{0} des formes linéaires tu-+fi(f) pour feE, nous pouvons
supposer que nous sommes dans la situation suivante:

2.3. DÉFINITION. Soient Xo un espace topologique et X un sous-espace dense de

Xo dont le complémentaire est vide (resp. réduit à un point, le point à l'infini). Par abus

nous dirons dans le second cas que Xest un espace topologique avec point à l'infini.
Nous dirons que E est un espace de fonctions (sur X) si E est un espace vectoriel,

co-réticulé dans Rx9 de fonctions réelles continues sur X (resp. et tendant vers zéro à

l'infini, i.e. suivant le filtre trace sur X du filtre des voisinages du point à l'infini dans

Xo), tel que la topologie initiale relativement auxfeE soit celle de X (resp. Xo) et

que pour tout xeXil existe/eis tel que/ (x)^0.
Si E est muni d'une topologie nous supposerons qu'elle en fait un espace de Riesz

localement convexe et qu'elle est plus fine que celle de la convergence simple dans X.
Nous munirons toujours X de la structure uniforme initiale relativement aux/eis.
X s'identifie par e avec son image dans E'a, le point à l'infini s'identifiant avec 0

lorsqu'il existe, c'est-à-dire lorsque 0 est adhérent à X.
On peut aussi considérer Xcomme plongé dans E*, puisque la structure uniforme

faible a(E+, E) induit la structure uniforme faible c>(E + E). L'adhérence %0 de Xo
dans C*, qui est faiblement complet, s'identifie au complété de X. %=%0 — {0} étant

un ensemble de formes linéaires réticulantes, on peut considérer E comme un espace de

fonctions sur X.

2.4. Remarque. Soient X un espace topologique (resp. avec point à l'infini) et E
un espace vectoriel, co-réticulé dans Rx, de fonctions réelles continues sur X (resp.
et tendant vers zéro à l'infini).

Si X (resp. Xo) est compact, E est un espace de fonctions si et seulement si E
sépare les points de X1) et si, pour tout xeX, il existefeE tel que/ (x) ^0.

Si, pour tout xeX et tout voisinage V de x, il existe feE tel que/ (x)^0 et/=0
hors de F, alors E est un espace de fonctions. Dans ce cas nous dirons qu'il est riche.

2.5 EXEMPLE. Si X est un espace topologique complètement régulier, nous
désignerons par fé7 (X) (resp. të* (X)) l'espace de Riesz des fonctions réelles continues
sur X (resp. et bornées). Si X a un point à l'infini nous désignerons par ^° (X) (resp.
tëOb(X)) l'espace de Riesz des fonctions réelles continues sur X tendant vers zéro à

l'infini (resp. et bornées) et par JT(Z) (resp. X*b(X)) l'espace de Riesz des fonctions
réelles continues sur X nulles sur un voisinage du point à l'infini (resp. et bornées).
Tous ces espaces de fonctions sont riches.

Remarquons qu'un espace topologique localement compact, non-compact, est

x) i.e. pour tout x, yeX,x^ y, il existe feE tel que f(x
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muni canoniquement d'un point à l'infini en le plongeant dans son compactifié
d'Alexandroff.

2.6. EXEMPLE. Soit X l'intervalle [0, 1] et E l'espace de Riesz des fonctions/
réelles continues sur [0, 1] telles que/(0) =4/(1). (0, 1; 1, i) est une liaison (et la
seule) de E sur X. E n'est pas riche.

2.7. EXEMPLE. Soit X l'intervalle ]0, l] et E l'espace de Riesz des fonctions/
réelles continues sur ]0, 1] telles que \imx^of(x)/x existe. La forme linéaire réticu-
lante: /h> limx_>0 f(x)/x n'est pas évaluante et n'est pas continue pour la topologie
de la convergence uniforme. E possède une unité, la fonction e(x)=x9 et, muni
de la norme canonique associée, c'est un espace de Kakutani norme complet (M-
espace). On voit immédiatement que Xo s'identifie à [0, 1],

1ère, réponse

2.8. Soit E un espace de Riesz localement convexe. Nous désignerons par ^ la
réunion des génératrices extrémales de C° (i.e. l'ensemble des formes linéaires ré-

ticulantes continues), muni de la topologie induite par o(E\ E), par Tun sous-cône

de & et par <T} le sous-espace vectoriel fermé engendré par T. Nous noterons
indifféremment par une barre l'adhérence dans E'a ou dans ^.

2.9. PROPOSITION. On a <J}n& T, ou encore, pour tout ne&tfi$T, il existe

feCtelquefi (f)>0etv (/) =0pour tout veT.
Le cône C* étant faiblement complet, toutes ses génératrices extrémales sont

fortes. Il en est donc de même de celles de C°. Il existe donc feE tel que ju(/)>0
et v(/)<0 pour tout veT. On vérifie immédiatement que/+ répond à la question.

2.10. THÉORÈME. Soit E un espace de fonctions sur X. Toute forme linéaire
réticulante continue est limitefaible déformes linéaires évaluantes.

tétant total dans E'a9 il est clair par la proposition précédente que le cône engendré

par X, ensemble des formes linéaires évaluantes, est dense dans ^.

2.11. Remarques. 1) Nous montrerons plus tard, lorsque E est riche (théorème
3.22), que pour toute forme linéaire réticulante continue ju, il existe qgE et un filtre
$ sur Ztels que ju =limsx/Q (x)9 i.e. \i (/)=lim/ (x)/q (x) pour tout/eE.

2) Dans l'exemple 2.7., X est fermé dans ^. Ceci n'est donc pas une condition
suffisante pour que toutes les formes linéaires réticulantes continues soient évaluantes.
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2ème. réponse

2.12. THÉORÈME. Soit E un espace de fonctions. Si l'ensemble B desfeE tels

que \f (x)\ < 1 pour tout xeX est un borné total de E et si Xo est complet, alors toute

forme linéaire réticulante continue est évaluante.

B est une partie solide et co-réticulée et on a X°=B + C. On en déduit que
Xoo (B + C)o=B°nCo par le lemme 1.11., donc que B°r\C° est l'enveloppe
fermée convexe de Iu{0}. Remarquons maintenant que B° n C° B* n C* n E', en

désignant par B* le polaire de B pour la dualité (E, E + y. Comme B*nC* (resp.

B°nC°) est un tube de C* (resp. C°), tout point extrémal de B°nC° est un point
extrémal de l'ensemble convexe faiblement complet B*nC*, donc est un point
extrémal fort; par suite X contient tous les points extrémaux ^0 de B°nC°. Il faut

remarquer que cela n'implique pas en général l'existence d'un tel point, car il se

trouverait sur une génératrice extrémele de C° coupant B° et non-contenue dans B°.
La conclusion est alors immédiate par le lemme évident suivant.

2.13. LEMME. B est borné (resp. total) pour a (E, <^>) si et seulement si B° n C°
absorbe lespoints de & (resp. ne contient pas de génératrices extrémales de C°).

2.14. Remarque. On a en fait montrer que «Xo est fermé» est une condition
suffisante pour que toute forme linéaire réticulante continue soit évaluante. Cette condition
est nécessaire si Xn'a qu'un point dans chaque génératrice extrémale de C°.

2.15. Ce théorème nous fournit une démonstration «analyse fonctionnelle» des

résultats classiques suivants :

COROLLAIRE 1. Soit E un espace de fondons bornées sur X, muni de la norme
uniforme. Si Xo est compact, alors toute forme linéaire réticulante continue est

évaluante.

COROLLAIRE 2. Soit X un espace topologique complètement régulier (resp. avec

point à l'infini). Pour que touteforme linéaire réticulante sur ^b (X) (resp. &Ob (X)) soit
évaluante, ilfaut et il suffit que X (resp. Xo) soit compact.

B est un borné total pour la topologie de l'ordre, car cette topologie peut être

définie par la norme uniforme. &b(X) (resp. VOb(X)) étant isomorphe à <$h(l)
(resp. ^Oh{X% on voit immédiatement que £ n'a qu'un point sur chaque génératrice
extrémale de C*. B° étant faiblement compact, le résultat est alors évident par la

remarque 2.14. ci-dessus.

COROLLAIRE 3. Soit X un espace topologique complètement régulier (resp. avec
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point à l'infini). Pour que toute forme linéaire réticulante sur të(X) (resp. ^°(X)J soit
évaluante, ilfaut et il suffit que X (resp. XQ) soit replet.

Rappelons qu'un espace topologique complètement régulier Y est dit replet s'il
est complet pour la structure uniforme initiale relativement aux/e^(r), ou aussi

relativement aux/e^(y) qui s'annulent en un point de Y.

Dans le premier cas B [ — 1, 1], donc est borné pour la topologie de l'ordre. Dans
le second cas si B n'est pas borné, il existe une forme linéaire positive \i et une suite

(/„) de <<fo(X) telles que 0</n(x)<l pour tout xeX et /*(/„)> 2". La fonction

/=£ 1/2" •/„ appartient à ^° (X) et on a

pour tout N, ce qui est absurde. Pour montrer que B est total, il nous suffit de voir que
toute forme linéaire positive \i nulle sur B est nulle. Pour tout/eC et tout entier

/i^l, on a/^inf(/, n) + l/n-f2, d'où ()<//(/)< l/«-ju(/2), donc /*(/)=0. On
conclut comme précédemment.

3ème. réponse

2.16. DÉFINITION. Si E est un espace de fonctions et si T est un fermé de X,
nous dirons que Tporte \xeE' si feE et/=O sur T implique fi(f)=O. Le plus petit
fermé, S(fi), qui porte fi (s'il existe), sera dit le support de fi et si tout \xeE' possède

un support nous dirons que E est supportable.
Cette notion sera étudiée en détail ultérieurement. Nous verrons qu'elle est en

fait l'une des plus naturelles généralisations au cas topologique de la notion de base

algébrique. On sait que Jf(X) (X localement compact) et &(X) (X replet; cf. [9],
théorème 17, p. 172), munis de leur topologie de l'ordre, sont supportables.

2.17. PROPOSITION. Soit E un espace de fonctions supportable. Alors ju=O est

équivalent à S (fi)=0 et \i a • ex (oc ^ 0) est équivalent àS(fi) {x}.
La première assertion est évidente. Si /x=a-eJC (a7*0), {x} porte \i, et puisque
O, c'est évidemment le plus petit fermé portant \i. Réciproquement soit/eis tel que

et/(x) l; pour tout geE, on a v(g)=fi(f)'g(x), car g -g (x)-f est nul
en x, donc fi=fi(f)-ex.

2.18. PROPOSITION. Un espace defonctions supportable est riche.

Cela résulte immédiatement de S(sx)={x}.

2.19. PROPOSITION. Soient E un espace de fonctions supportable, xeX et pieE'.
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Pour que xeS(fi), ilfaut et il suffit que pour tout voisinage V de x, il existe feE tel que

fi(f)^0etf=0horsde V.

En effet «x$S(fi)>> est équivalent à «il existe un ouvert F contenant x tel que, pour
toutfeE, on ait /i (/) =0 si/=0 hors de V».

2.20 THÉORÈME. Toute forme linéaire réticulante continue sur un espace de

fonctions supportable est évaluante.

Soit fx une forme linéaire réticulante continue; il nous suffit de montrer que S (fi)
est réduit à un point. Si S (fi) contient deux points distincts x, y, soient V et FF deux
voisinages, respectivement de x et y, disjoints et / g deux fonctions positives de E
telles que jj (/)=/* (g) 1 et/=0 (resp. g=0) hors de V (resp. W). On a sup(/, g)
=f+g, donc fi (/) + [i (g) n (sup (/, g)) sup (fi (/), \i (g)), ce qui est absurde.

§ 3. Représentations des espaces de Riesz localement convexes fonctionnels

3.1. DÉFINITIONS. Soit ^ un espace topologique dans lequel R* opère
continûment, proprement et librement. Nous dirons que n : ^ -» 3£ (0.16.) est unçfibration
principale complètement régulière si, pour tout fi e & et tout ouvert saturé ^contenant fi,
il existe feJf(&) tel que/(//)#0 et/=O hors de V (0.17.). n est évidemment une
fibration principale au sens de 0.15.

Un sous-espace vectoriel co-réticulé E de ^(n^) (0.18. et 0.19.) sera appelé un
espace de sections (associé à n) si, pour tout xe& et tout voisinage V de x, il existe

feE tel que/ (x) ^ 0 et/=O hors de F (axiome de richesse).
Pour tout fie @ (on pose x=n(fi)) et tout fe^^K^), on peut écrire/ (x)=fi*f(fi)

par l'identification de &(nR) avec JF(&) (0.19. et 0.20.). L'application e^fh+f (ji)
de E dans R est évidemment linéaire et réticulante. On dit que c'est une forme linéaire
évaluante sur E (cf. 2.1.). Nous identifierons ^ à son image dans E+ par l'application
injective e.

3.2. En général on munit un espace de sections E d'une topologie d'espace de

Riesz localement convexe plus fine que la topologie de la convergence simple dans #",

égale à la topologie faible a(E, <^>). C'est donc un espace de Riesz localement
convexe fonctionnel.

3.3. PROPOSITION. Soit E un espace de sections. L'application e est un homéo-

morphisme de & dans E'a.

Il nous suffit de montrer que 9 est muni de la topologie initiale relativement aux
feE. Soit fioe&. Il existe feE tel que/(/xo) l. Comme système fondamental de

voisinages de fi0 dans ^, on peut prendre les ensembles AUtô formés des fi tels que
n(fi)e U et | / (fi)-11 <ô, où U est un voisinage assez petit de n (ju0) et 1 > ô >0 (0.17.
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et 0.16.). Par la richesse de E, il existe geE tel que g(fio) l etg=Ohorsde U.
L'intersection des ensembles /"*(]l-ô, l+<5[) et g'^^l-ô, 1 +<5[) est dans AVtâ,
d'où le résultat.

3.4. Soit maintenant E un espace de Riesz localement convexe fonctionnel. Nous
désignerons par ^ la réunion des génératrices extrémales de C°, muni de la topologie
induite par E'a. Il est clair que E est isomorphe à un sous-espace co-réticulé de

l'espace de Riesz 3ff {&) (cf. exemple 1.13.); en outre pour tout /ze^ et tout cône ouvert
F de ^ contenant ju, il existe/eC tel que/ (/i)^0 et/=O hors de F (proposition 2.9.).

3.5. PROPOSITION. R* opère continûment, librement etproprement dans &.
Les deux premières assertions sont évidentes. Soient / un ensemble d'indices, <P un

ultrafiltre (ou simplement un filtre) sur /et it-» (cch /jf) une application de / dans R* x @.

Si /*=lim/^ et v=limaf-jU£ existent (dans ^), soit feE une forme linéaire continue
sur E'a telle que/(/x)^0. On a/(/i)=lim/(^), donc/(^)#0 pour i assez grand;
d'autre part/ (v) =limaf •/ (/^). Par suite a =limaf =/ (v)// (//) existe, d'où le résultat,
car on a bien v=a*\i.

3.6. DÉFINITION. Nous dirons que n: &-+& est le spectre de l'espace de Riesz
localement convexe fonctionnel £".

Par ce qui précède nous pouvons énoncer :

3.7. THÉORÈME. Tout espace de Riesz localement convexe fonctionnel est

isomorphe à un espace de sections associé à son spectre. Ce spectre est une fibration
principale complètement régulière.

3.8. Remarque. L'ouvert de #*, où/e^(7tr) est >0, est appelé l'ouvert de positivité
de/. La richesse de E implique que les ouverts de positivité des/eC forment une base

de la topologie de 9£.

3.9. Soit n une fibration principale complètement régulière et E un espace de

sections associé à n. Désignons par ^0 l'enemble ^ u {0} muni de la structure
uniforme induite par E'a. @, comme sous-espace dense de ^0, est muni d'un point à

l'infini (cf. définition 2.3.). Nous noterons par ^°(^) l'espace de Riesz des fonctions
réelles continues positivement homogènes qui tendent vers zéro à l'infini sur ^. Pour

que heJ#>(@) appartienne à ^°(^), il faut et il suffit qu'il existe feC tel que \h\ ^/.
En notant par ^°{n^) l'image de ^°(^) dans ^(7rR), on voit que E est cofinal dans

3.10. PROPOSITION. Soit E un espace de sections associé à n, muni de sa topologie
de l'ordre. Pour que n soit le spectre de E, ilfaut et il suffit que @0 soit complet.
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II est clair que ^ s'identifie à une partie dense de l'espace total du spectre de E
(propositions 3.3 et 2.9.). La proposition est alors évidente, puisque C* est faiblement
complet.

3.11. LEMME. Tout f'efê0(nR) est l'enveloppe supérieure (resp. inférieure) des

geE tels que g^f (resp. g^f
Supposons tout d'abord que/>0. Soient xe& et aen^ x(x) tels que a<f(x). Il

nous suffit de montrer qu'il existe geE tel queg^/et g(x)^a. Soit heE tel que

a^h(x)<f(x) et désignons par F l'ouvert de positivité de/— h. Par la richesse de E,

il existe h'eEtel que h'(x)=h(x) et h' =0 hors de F. La section g =inf(/î, h') répond
à la question. Le lemme est alors évident; il suffit de constater qu'il existe geE tel que

g^ | /1 et d'appliquer ce qui précède à g +/et g—f

3.12. DÉFINITION. Soit E un espace de sections associé à n. Nous dirons

qu'une forme linéaire positive fi sur E à la propriété de Daniell (sur 2C) si, pour
toute famille filtrante croissante (/f) de E d'enveloppe supérieure feE, on a

Nous définirons plus loin (définition 5.1.) une classe d'espaces de Riesz localement

convexes fonctionnels, contenant les espaces de Kakutani, telle que toutes les formes
linéaires positives continues sur l'un de ces espaces aient la propriété de Daniell
(théorème 5.3.).

3.13. THÉORÈME. Soit E un espace de sections associé an. Il existe une topologie
d'espace de Riesz localement convexe sur tf0 (nR) induisant celle de E telle que chaque

forme linéaire positive continue sur E, ayant la propriété de Daniell, se prolonge de

manière unique en une forme linéaire positive continue sur tf0 (ttr).
Si F parcourt un système fondamental de voisinages de 0 convexes et solides de E,

alors les enveloppes solides F dans ^°{n^) (F est l'ensemble des/e<^°(7rR) tels qu'il
existe geV et que l'on ait |/|^|g|) définissent une topologie d'espace de Riesz

localement convexe sur ^° (7rR) induisant celle de E. En effet l'ensemble des V est un
filtre de parties convexes solides et absorbantes, et on a Vn E= V; en outre pour tout
/e#°(7rR),/V0, il existe geC, g^O, tel que g <|/| (lemme 3.11.), donc si Ton choisit
F tel que g$ F, on a/£ F, ce qui prouve que cette topologie est séparée.

Toute forme linéaire positive continue sur E se prolonge évidemment à #° (nR) en

une forme linéaire positive et on vérfie immédiatement qu'elle est continue. L'unicité
découle de l'unicité du prolongement d'une forme linéaire positive ([1], proposition 1,

chap. II, §3, n° 1, p. 63), car on a

pour tout/e ^° (tir), par le lemme 3.11. et la propriété de Daniell.
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3.14. Remarque. Nous munirons toujours ^(ttr) de la topologie d'espace de

Riesz localement convexe définie au début de cette démonstration. C'est la plus fine
des topologies d'espace de Riesz localement convexe qui induisent celle de E, car si W

est un ensemble solide de <^°(7rR), on a WnEcz W. En particulier si E est muni de sa

topologie de l'ordre, alors ^° (;rR) est aussi muni de sa topologie de l'ordre.

3.15. COROLLAIRE. E et ^° (7rR) ont même spectre.
C'est évident puisque les s^ ont la propriété de Daniell.

3.16. COROLLAIRE. Si E est un espace quasi de Kakutani (cf. définition 51.),
alors E est dense dans <&° (7rR).

Cela est immédiat, en tenant compte du théorème 5.3., car E et ^° (nR) ont même
dual.

3.17. Soient E un espace de Riesz localement convexe fonctionnel et n son

spectre. On peut obtenir d'autres isomorphismes, moins maniables, mais avec des

espaces de fonctions, en procédant de la manière suivante. Nous avons vu (3.4.) que E
s'identifie à un sous-espace co-réticulé de J#*(@). Il nous suffit de considérer une
partie de 9 n'ayant qu'un point par génératrice extrémale, i.e. une section de n, mais

un choix arbitraire n'est évidemment pas intéressant. Celui d'une section continue
semble dans ce cadre être le plus naturel, toutefois nous verrons par un exemple

(3.23) que 2£ peut être non-régulier, ce qui exclut l'existence de section continue

globale.

3.18. PROPOSITION. // existe une section continue de n au-dessus d'un ouvert
dense de 9£.

Cela découle immédiatement du lemme de Zorn.
Soient X une partie dense de $£ et s une section de n au-dessus de X. E s'identifie à

un espace de fonctions sur s (X) muni de la topologie induite par E'a.

3.19. PROPOSITION, s est continue si et seulement si E, comme espace de fonctions
sur s (X), est riche.

En effet s est continue si et seulement si n~1n(F) est fermé dans n~1(X) pour tout
fermé F de s(X), c'est-à-dire si et seulement si {F} ns(X)=F pour tout fermé F de

s(X) (proposition 2.9.). Cette dernière assertion est évidemment équivalente à la
richesse de l'espace de fonctions E.

3.20. Remarques. 1) Si s est continue, alors X et s(X) sont homéomorphes, ce qui
permet d'identifier E à un espace de fonctions riche sur X.

2) Réciproquement soit E un espace de fonctions riche sur X. Il est clair que X
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plongé dans E'a définit une section continue du spectre de E au-dessus d'une partie
dense (homéomorphe à X) de la base.

3.21. Soient E un espace de fonctions riche sur X, n son spectre, ye3C—X, # un
filtre sur X convergent vers y, iien~i(y) et qgC tel que ^(g) l. Désignons par s la
section continue définie par X et par t la section continie associée à q, définie au
voisinage de y. On a s(x)=Q(x)-t(x) pour les xeX proches de y, donc/(x)/q(x)
=f(t(x)) pour toutfeE. Comme t(x) tend vers fi suivant <P, on voit que pi(f)
=lim/ (x)/q(x). On peut donc énoncer:

3.22. THÉORÈME. Tout espace de Riesz localement convexe fonctionnel est

isomorphe à un espace de fonctions riche, défini sur une partie (ouverte) dense X de la
base de son spectre. En outre il existe unefamille de couples (<P, q), où 4> est un ultrafiltre
non-trivial sur X et qeC, telle que \\mf{x)lQ (x) existe pour toutfeE. En désignant par
fi(f) ce nombre, pi est une forme linéaire réticulante continue et toute forme linéaire
réticulante continue non-évaluante est multiple d'un de ces fi.

3.23. EXEMPLE. Soit X le sous-espace de [0, 1] formé des points différents de

l/«, n entier ^1. Notons Qn la fonction continue sur X:x\->\x— \jn\~1. L'espace de

Riesz E de toutes les fonctions réelles continues / sur X, telles que, pour tout n,
Hn(f) =\imf(x)/Qn(x) existe lorsque x-*l/n, muni de la topologie de l'ordre, est un
espace de fonctions sur X. Il est riche, car toute fonction continue bornée sur X
appartient à E. Les \in sont évidemment des formes linéaires réticulantes non-
évaluantes.

Nous allons voir que X s'identifie en tant qu'ensemble à [0,1]. Soit fi une forme
linéaire réticulante non-évaluante, définie par geC et $ un ultrafiltre non-trivial sur
X. 0 est une base d'ultrafiltre sur [0, l], donc est convergent vers un point de la forme
l/«. Pour toutfeE, on a

li{f) lim/ (x)Iq(x) lim(/ (x)lQn(x))iQn(x)/Q(x)) /<„(/)•/; G?rt),

Pour toutfeE, on a //„(/) =0 pour tout n, sauf un nombre fini. En effet \in(/ # 0

implique que/est non-bornée au voisiange de \\n, donc, si cela avait lieu pour une
infinité de «,/ne pourrait être continue en 0. L'ouvert de positivité de/est donc un
ouvert de [0, 1] privé de tous les points \\n, sauf un nombre fini. Par exemple si/est la
constante 1, il est égal à X. Il n'est alors pas difficile de voir que les ouverts de X sont
les ensembles U—A, où £7 est un ouvert de [0, 1] et A un ensemble quelconque de

points 1/n.
3C n'est pas régulier, donc il n'existe pas de section continue globale du spectre de E.
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3.24. EXEMPLE. Soit X un espace topologique complètement régulier (resp.

avec point à l'infini). Le spectre de % (X) (resp. ^° (Ar)), muni de sa topologie de l'ordre
et lorsque X (resp. Xo) est replet, est trivial de base X. Il en est de même pour Jf(Z),
lorsque Xest localement compact.

3.25. THÉORÈME. Soit E un espace de Riesz régulièrement ordonné, muni de sa

topologie de Vordre. Pour que Epossède une unité, ilfaut et il suffit que E soitfonctionnel
et que la base de son spectre soit compacte. Si tel est le cas, E est isomorphe à un espace
defonctions riche sur la base.

Si E possède une unité, alors E est un espace de Kakutani norme, donc
fonctionnel. La section continue du spectre de E, associée à cette unité, est globale. Comme

l'image de cette section est fermée et dans la boule unité duale, on en déduit que la
base du spectre est compacte.

Réciproquement en considérant E comme un espace de sections, des arguments de

compacité montre qu'il existe une unité.

§4. Théorème de Stone-Weierstrass

Démontrons tout d'abord un résultat dû à G. Jameson ([10], théorème 7). On

a tout d'abord le lemme classique suivant :

4.1. LEMME. Soient X un espace topologique compact et A un ensemble co-

réticulé (dans Rx) de fonctions réelles continues sur X. Si, pour tout x, yeX, il existe

feA tel que f {x)<\ et f(y)> — 1, alors il existe geA tel que \g(x)\<\ pour tout

xeX.

4.2. THÉORÈME. Soient A une partie fermée convexe co-réticulée d'un espace de

Kakutani etf$A. Il existe deuxformes linéaires réticulantes continues /x, v telles que

On peut supposer que/=0. Soit U un voisinage de 0 fermé solide et co-réticulé

disjoint de A. Désignons par X l'adhérence de l'ensemble des points extrémaux du

chapeau K= U°nC°. X est un ensemble faiblement compact formé de formes linéaires

réticulantes continues. Puisque K°=X° U, pour tout geA, il existe \ieX tel que

\fi(g)\>l. Par le lemme, il existe jll, veX tels que pour tout geA on ait fi(g)>l ou

v(g)< — l. L'application g*-*(n(g), ~v(g)) de A dans R2 est affine, donc son

image B est convexe et 0 n'appartient pas à l'adhérence de i?+R+. Il existe donc par
Hahn-Banach une forme linéaire x sur R2 telle que 0<inf#(2?). Si l'on écrit x(#, b)
=a*0+j8-6, on voit que a et /? sont ^Oet il vient inf (a-ju—/?• v) (A)>0.

De ce théorème on déduit une version abstraite du théorème de Stone-Weierstrass.
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4.3. THÉORÈME. Soit F un sous-espace co-réticulé d'un espace de Kakutani E.

Pour que F soit dense dans E, il faut et il suffit que deux formes linéaires réticulantes
continues égales sur Fsoient égales.

4.4. COROLLAIRE. Soit E un espace de fonctions. On suppose que E est un

espace de Kakutani et que toute forme linéaire réticulante continue est évaluante. Pour
qu'un sous-espace vectoriel co-réticulé F de E soit dense, il faut et il suffit que F n'ait

pasplus de liaisons que E.
Grâce aux critères 2.12. et suivants, on retrouve tous les théorèmes de Stone-

Weierstrass faisant intervenir des conditions de séparation ponctuelle, en particulier
celui de S. Kakutani ([11], théorème 3).

4.5. PROPOSITION. Soient E un espace de fonctions sur X et F un sous-espace
vectoriel. On suppose que X contient au moins deux points. Pour que F n'ait que des

liaisons triviales, il faut et il suffit que, pour tout x, yeX, x^y, il existe feF tel que

f(x)*0etf(y)=0.
La démonstration est du même type que celle du théorème 4.8. qui suit.

4.6. Application. Soit X un espace topologique localement compact. L'espace
muni de la topologie stricte (cf. [4]), définie par les semi-normes

f^supxeX\6(xyf(x)\ pour OeV°(X),

est évidemment un espace de Kakutani. Son dual étant l'ensemble des mesures
bornées sur X, cet espace est supportable, donc toutes les formes linéaires réticulantes

continues sont évaluantes (théorème 2.20.). Le théorème de Stone-Weierstrass

que l'on obtient ici généralise le théorème 3 de R. C. Buck et répond à la question
qu'il pose p. 101.

4.7. Application. Soit X un espace localement compact dénombrable à l'infini ou
tel que la réunion de toute suite de compacts soit relativement compacte. L'espace

ff{X\ muni de sa topologie limite inductive habituelle, est un espace de Kakutani
(exemple 1.19.). Il est supportable, donc toutes les formes linéaires réticulantes
(continues) sont évaluantes (théorème 2.20.). Ceci fournit un nouveau théorème de Stone-
Weierstrass.

4.8. THÉORÈME. Soit E un espace de sections associé à son spectre. On suppose

que E est un espace de Kakutani et que 2£ contient au moins deux points. Pour qu'un

sous-espace vectoriel co-réticulé F de E soit dense, il faut et il suffit que, pour tout

x,ye&9xïy, il existefeF tel quef (x)#0 etf (y) =0.
Puisque toute forme linéaire réticulante continue est évaluante, on vérifie immé-
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diatementque la condition est suffisante par le théorème 4.3. Réciproquement choisissons

geF tel que g(x)#0, iien~1(x) tel que e/i(g) l, ven~1(y) et heF tel queq g() i() q /i(g) (y) q
Si ev(A)=0, A répond à la question. Si av(/z)#O, posons f=g— (sv(g)/

on a ev(/)=0 et

§ 5. Théorème de DM et caractérisation des idéaux fermés

5.1. DÉFINITION. Un espace de Riesz localement convexe E sera dit quasi de

Kakutani si la bande de E' engendrée par la réunion des chapeaux de C° est égale à E'.
Cela signifie que pour tout fieC0, il existe une famille (jut), chaque \ix appartenant

à un chapeau de C°, telle que /z sup/v Nous dirons aussi que C° est presque bien

coiffé.

Il est clair qu'un tel espace est fonctionnel.

5.2. EXEMPLES. 1) Tout espace de Kakutani est évidemment quasi de

Kakutani.
2) Si X est un espace topologique localement compact, alors Jf(X) est quasi de

Kakutani.
Puisque, pour toute mesure fi^O sur X, on a ^=sup#- ju, 9 parcourant l'ensemble

filtrant croissant des fonctions de Jf(X) telles que 0^0^ 1, il suffit de montrer que
O'fi appartient à un chapeau, î.e. au polaire d'un voisinage de 0 solide et co-réticulé.

Il suffit de prendre celui des/eX (X) tels que | /1 < 1 \\i (0).
Voici tout d'abord un théorème de Dini.

5.3. THÉORÈME. Soit E un espace de sections associé à son spectre. On suppose

que E est un espace quasi de Kakutani. Si (f) est une famille filtrante croissante de

sections de E d'enveloppe supérieure feE, alors (f) converge vers f (pour la topolo-

giedeE).
Par le théorème 4.3., p. 223 de [15], il nous suffit de montrer que n(f) tend vers

ix (/) quel que soit jneC0, î.e. que chaque fieC° a la propriété de Daniell II est clair
qu'il suffit de le démontrer pour un fi appartenant à un chapeau K de C°. Désignons

par X l'adhérence de l'ensemble des points extrémaux de K, qui est un ensemble

faiblement compact de formes linéaires réticulantes continues. Les fonctions
continues sur X: vh» v (/,) forment une famille filtrante croissante d'enveloppe supérieure

vh->v(/). On conclut par le théorème de Dini classique et le théorème de Krein-
Milman.

5.4. PROPOSITION. Soit E un espace quasi de Kakutani. Pour tout idéal I de E,
le cône 1° c\C° est Venveloppe fermée convexe de la réunion de ses génératrices extré-
males.
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Remarquons tout d'abord que si / est fermé dans E9 alors / est fermé pour &~k

(cf. 1.9.). 1° s'identifie au dual de EU et la topologie $~k passe au quotient en une
topologie d'espace de Kakutani séparée; on a donc le résultat par le théorème 1.12.

5.5. THÉORÈME. Soit E un espace de sections associé à son spectre. On suppose

que E est un espace quasi de Kakutani. Il y a correspondance biunivoque entre les

idéaux fermés I de E et les fermés T de & par /h-> Tj et 7V>/r, où Tj est l'ensemble des

xe& tels quef (x) =0pour toutfel et IT est l'ensemble desfeE tels quef{x) =0 pour
toutxeT.

I°nC° est un tube (proposition 1.2.), donc 7=(/°nC°)fl (lemme 1.5.). T, est

fermé, car égal à l'image par n de la réunion des génératrices extrémales de 1° r\C°.
Par la proposition précédente, on voit que / est l'ensemble desfeE qui s'annulent

sur Tj.
Réciproquement si T est un fermé de 9C, IT est un idéal fermé de E et, puisque E

est riche, si xe9£ est tel que/(x) =0 pour tout/e/T, on a nécessairement xeT.
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