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Espaces de Riesz, espaces de fonctions et espaces de sections

par CLAUDE PORTENIER

Introduction

Nous nous proposons dans ce travail d’étudier certaines classes d’espaces de Riesz
et de les représenter par des espaces de fonctions ou de sections (continues).

Dans le paragraphe 0 nous rappelons les notions et les résultats dont nous aurons
besoin. Nous les avons tirés en général des livres de H. Schaefer ([15]) et A. Perressini
([13]). Nous utiliserons aussi leur terminologie et leurs notations.

Si E est un espace de Riesz localement convexe, nous montrerons (1.6.) qu’il y a
correspondance biunivoque par polarité entre les voisinages de 0 pour 7(E, E’) qui
sont fermés solides et co-réticulés et les chapeaux du cone positif dual. Cela nous
permet de caractériser un espace de Kakutani comme un espace de Riesz localement
convexe dont le cone positif dual est bien coiffé (1.8.). Remarquons que S. Kakutani
(dans [11]) a déja étudié ces espaces, dans le cadre des espaces de Banach, sous le
nom de «abstract (M)-spaces»; R. G. Kuller ([12]) et G. Jameson ([10]) les appel-
lent respectivement «locally m-convex vector lattices» et «topological M-spaces».
Comme autre conséquence nous montrerons que le cone positif dual est I’enveloppe
fermée convexe de la réunion de ses génératrices extrémales si et sculement s’il existe
une topologie d’espace de Kakutani séparée sur E, moins fine que t(E, E) (1.12.).
Un tel espace de Riesz localement convexe sera dit fonctionnel. A la fin de ce premier
paragraphe nous donnons des conditions suffisantes pour qu'un espace de Riesz
réguliérement ordonné soit un espace de Kakutani pour sa topologie de I’ordre (1.17.).

Dans le paragraphe 2 nous donnons trois réponses différentes & la question suivante:
étant donné un espace de fonctions (2.3.), quand toute forme linéaire réticulante
continue est-elle évaluante? Ceci nous permet de retrouver les théoremes classiques
de S. Kakutani ([11], théoréme 8) et L. Nachbin ([9], p. 170).

Le paragraphe 3 traite de la représentation des espaces de Riesz localement
convexes fonctionnels. On montre que la réunion ¥ des génératrices extrémales du
cOne dual positif est I’espace total d’un fibré principal ¢ — Z de groupe structural R% ,
appelé le spectre de E, et que E s’identifie & un espace de sections du fibré en droite
associé au spectre (3.7.).

Dans [10] (théoréme 6), G. Jameson représente E comme un espace de fonctions
positivement homogeénes sur ¢, en remarquant qu’il n’y a pas de manicre évidente de
choisir un point par génératrice extrémale. Dans le cas normé, S. Kakutani ([11]),
théoréme 1) peut prendre les points qui sont de norme 1, mais I’espace topologique
que I’on obtient peut étre trés pathologique. Il est conduit & prendre son adhérence, ce
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qui introduit les liaisons et pose le probléeme du meilleur quotient ([14], p. 38). Une
nouvelle solution consiste & choisir une section continue du spectre. Nous verrons
(3.23) que cela n’est pas toujours possible globalement. Toutefois il en existe au-dessus
d’un ouvert X dense dans %', ce qui conduit A représenter E comme un espace de
fonctions sur X, ces fonctions ayant un certain comportement sur le bord de X (3.22.).

Dans le paragraphe 4, nous démontrons, en utilisant un résultat de G. Jameson
([10], théoréeme 7), un théoréme de Stone-Weierstrass abstrait, valable dans les
espaces de Kakutani (4.3.). Cela nous permet de retrouver les théorémes classiques,
par exemple celui de S. Kakutani ([11], théoréme 3) et de répondre a une question de
R. C. Buck ([4], p. 101).

Dans le paragraphe 5, nous introduisons une classe d’espaces de Riesz localement
convexes (appelés quasi de Kakutani) intermédiaire entre celle des espaces de Ka-
kutani et celle des espaces de Riesz localement convexes fonctionnels. Cette classe
semble €tre la plus intéressante. On peut en effet démontrer un théoréme de Dini (5.3.)
et caractériser les idéaux fermés (5.5.).

Qu’il me soit permis ici de remercier trés sincérement Monsieur le Professeur
Roger Bader, qui m’a suivi, aidé et conseillé tout au long de ce travail.

§0. Généralités

0.1. Tous les espaces vectoriels que nous considérerons seront définis sur le
corps des réels R. Tous les espaces topologiques seront séparés et tous les espaces
vectoriels topologiques seront localement convexes et séparés, sauf mention expresse
du contraire.

0.2. Si E est un espace vectoriel ordonné nous désignerons toujours par C le
cOne convexe des éléments positifs de E. Une partie 4 de E est dite pleine si I'intervalle
[ /; g] est contenu dans 4 pour tout f, ge 4. Si E est un espace de Riesz, nous dirons
que la partie A est solide si feA et |g|<|f| implique ge A, et co-réticulée si f, ge A
implique sup (f; g) et inf( f, g)e 4. Un sous-espace vectoriel solide de E sera appelé
un idéal.

Rappelons que I’enveloppe convexe d’une partie solide est solide et que I’enveloppe
solide d’une partie co-réticulée symétrique est co-réticulée et convexe. Si F est un
idéal de E, alors E/F est muni canoniquement d’une structure d’espace de Riesz telle
que I’application linéaire canonique soit réticulante (i.e. permute avec sup).

0.3. Si E est un espace de Riesz et un espace localement convexe, nous dirons
que E est un espace de Riesz localement convexe si I'application (f, g)—>sup(f, g)
est uniformément continue. Pour que E soit un espace de Riesz localement convexe, il
faut et il suffit qu’il existe un systéme fondamental de voisinages de 0, qui soient
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fermés convexes et solides. Dans un tel espace I’adhérence d’un ensemble solide est
solide et celle d’un ensemble co-réticulé est co-réticulée.

Soit E un espace de Riesz localement convexe. Nous dirons qu’il est de Kakutani,
§’il existe un systeéme fondamental de voisinages de 0 co-réticulés. Dans un tel espace
il existe un systeme fondamental de voisinages de O fermés solides et co-réticulés. Si
la topologie de E est définie par une norme et si la boule unité est solide, nous dirons
que E est un espace de Riesz normé; si en plus elle est co-réticulée, nous dirons que E
est un espace de Kakutani normé. Si F est un idéal fermé de E, alors E/F est un espace
de Riesz localement convexe pour les structures quotients. Si £ est un espace de Ka-
kutani, il en est de méme de E/F.

0.4. Si (E, F) est un systéme dual et 4 une partie de £ ou F, nous désignerons
par A° le polaire de A et par A° le polaire absolu de A. F sera toujours muni de la
topologie faible o (F, E).

0.5. Si E est un espace vectoriel ordonné, nous noterons C* I’ensemble des
formes linéaires positives sur E, cdne dual (pour (E, E*)) de C, et par E* le sous-
espace vectoriel C*-C* engendré par C*.

Si E est un espace de Riesz, E* est aussi ’ensemble des formes linéaires relative-
ment bornées sur E. Rappelons la formule importante suivante: pour tout feC et
tout ueE*,ona

lul (f) = sup u(k).
ki<s

0.6. Rappelons qu’une forme linéaire u est dite réticulante si ,u(sup( 7 8)
=sup(u(f), u(g)) pour tout f, ge E, ou, ce qui est équivalent, u(| f1)=|u(f)| pour
tout fe E. On a le résultat important suivant:

Soit peE™, u#0. Pour que u soit une forme linéaire réticulante, il faut et il suffit
que u engendre une génératrice extrémale de C*.

Remarquons encore que I’ensemble des formes linéaires réticulantes est fermé
dans E} et que C* est faiblement complet.

0.7. Si E est un espace de Riesz localement convexe, alors E’ (le dual de E) est
un idéal de E*. Réciproquement si {E, E*) est un systéme dual (on dit que E est
réguliérement ordonné) et si E' est un idéal dense de E7,, alors la topologie o (E, E')
de la convergence uniforme sur les intervalles de E’ est la moins fine des topologies
compatibles avec la dualité (E, E'>, qui font de E un espace de Riesz localement
convexe.

0.8. Si E est un espace de Riesz régulierement ordonné, nous noterons  , sa
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topologie de I’ordre, qui est égale & 7(E, E™) et est la plus fine qui en fasse un espace
de Riesz localement convexe. On peut la décrire de la maniére suivante. Soit H une
partie cofinale de C pour le préordre: «il existe A>0 tel que A-f<g» (on dit positive-
ment cofinale). Pour toute application o de H dans R*, nous noterons U, I’enveloppe
convexe de la réunion des « (A1) [ — A, #]. L’ensemble des U, est un systéme fondamen-
tal de voisinages de 0 de 7 ,,.

Si E posséde une unité e, alors [ —e, e] est la boule unité pour une norme définis-
sant la topologie de I’ordre de E. C’est en outre un espace de Kakutani normé.

Rappelons encore le résultat suivant: un espace de Riesz normable complet est
muni de sa topologie de 'ordre, i.e. E'=E ™.

0.9. Soit E un espace vectoriel. Un point x d’un ensemble convexe A de FE est dit
extrémal s’il n’est contenu dans aucun segment ouvert contenu dans 4. Si E est un
espace localement convexe, on appelle franche de A toute intersection non-vide de 4
avec un demi-espace ouvert affine de E, i.e. un ensemble formé des xeA tels que
f (x)>a, ou f est une forme linéaire continue sur E et @ un nombre réel. Un point de
A est dit extrémal fort s’il possede dans A un systéme fondamental de voisinages
formé de tranches. G. Choquet a montré (cf. [6]) que tout point extrémal d’un en-
semble convexe faiblement complet est un point extrémal fort.

0.10. Soient C un cOne convexe saillant pointé de sommet 0, d une génératrice
ouverte de C et H un hyperplan coupant d en x. d est dite une génératrice extrémale si
tout segment ouvert contenu dans C et coupant d est contenu dans d. Pour que d soit
une génératrice extrémale de C, il faut et il suffit que x soit un point extrémal de Hn C.

On appelle tranche conique de C toute intersection de C avec un demi-espace
homogene ouvert de E, i.e. un ensemble formé des xe C tels que f (x)>0, ol fest une
forme linéaire continue sur E. Une génératrice ouverte de C est dite génératrice extré-
male forte si elle posséde dans C un systéme fondamental de voisinages coniques
formé de tranches coniques. On a aussi que toute génératrice extrémale d’un cOne
convexe saillant faiblement complet est une génératrice extrémale forte. Ce résultat
sera trés important par la suite.

0.11. Quand un cdne convexe fermé est-il I’enveloppe fermée convexe de ses
génératrices extrémales? Pour étudier ce probléme G. Choquet a introduit la notion
suivante (cf. [6]):

Soit C un cdne convexe d’un espace vectoriel topologique. On appelle chapeau de
C toute partie convexe compacte non-vide de C de complémentaire convexe dans C.

On peut montrer (0.13.) que si C est égal a la réunion de ses chapeaux (on dit que
C est bien coiffé), alors C est I’enveloppe fermée convexe de la réunion de ses généra-
trices extrémales.



Espaces de Riesz, espaces de fonctions et espaces de sections 293

Certaines propriétés géométriques d’un chapeau (cf. [1], p. 109 et ss.) sont valables
pour une classe d’ensembles convexes plus grande, celle des tubes, définie ci-apres.

0.12. Soient E un espace vectoriel, C un cone convexe saillant pointé de sommet 0,
A une partie de C convexe contenant 0 et p sa jauge. On suppose encore que 4 est
I’ensemble des x tels que p (x) <1, ce qui est vrai par exemple si 4 est une partie fermée
d’un espace vectoriel topologique.

A sera dit un fube si A est plein (pour I'ordre défini par C) et de complémentaire
convexe dans C. On a le résultat:

Pour que A soit un tube, il faut et il suffit que p soit additive sur C.

Si A ne contient pas de demi-droite et est de complémentaire convexe dans C, on
montre que p est additive sur C, donc que A4 est un tube.

0.13. La proposition suivante est une généralisation immédiate d’une propriété
vraie pour les chapeaux:

Soit A un tube de C. Les points extrémaux de A sont 0 et les points x situés sur les
génératrices extrémales de C et tels que p (x) =1.

0.14. Lerésultat suivant nous sera utile par la suite:
Si E est un espace de Riesz et un espace vectoriel topologique, alors les enveloppes
« fermée solide» et « fermée convexe symétrique» d’un tube de C sont égales.

0.15. Rappelons quelques résultats concernant les fibrations principales (cf. [3]).

Soient ¢ un espace topologique dans lequel le groupe R* des nombres réels >0
opere continfiment, Z un espace topologique et = une application continue de ¥
dans Z. Rappelons que nous supposons toujours les espaces topologiques séparés.
Nous dirons que = est une fibration principale de groupe structural R% si pour tout
xeZ, il existe un voisinage ouvert U de x et un homéomorphisme 6: U x R} —n~1(U)
tels que (0 (u, a))=u et 0 (u, - B) =+ 6 (u, B) pour tout ue U et o, feR%. ¥ s’appelle
Pespace total et £ la base de =.

La relation d’équivalence définie par 7 coincide avec celle définie par R% . 7 étant
ouverte, Z s’identifie 4 I’espace des orbites %/R% muni de la topologie quotient. En
outre R opére proprement et librement.

0.16. Réciproquement soit ¢ un espace topologique dans lequel R% opére contind-
ment, proprement et librement. Nous désignerons par Z I’espace des orbites ¥/R%
muni de la topologie quotient (qui est séparée) et par 7 'application canonique ¥ — Z.

Pour toute partie 4 de & et toute section s de © au-dessus de 4, soit § I'application
bijective (x, «) > a-s(x) de 4 x RY sur z~* (4). Pour que s soit continue, il faut et il
suffit que 6 le soit. Si tel est le cas, 0 est un homéomorphisme de 4 x R% sur =1 (4).
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On en déduit que, pour tout ue ¥, l'application a+> o est un homéomorphisme de
R sur la fibre 7~ (x) au-dessus de x = (1) et que 7 est une fibration principale si et
seulement s’1l existe localement des sections continues.

0.17. Nous désignerons par 5 (%) ’espace de Riesz des fonctions f réelles con-
tinues sur ¢ qui sont positivement homogenes, i.e. telles que f (a-p)=a-f (1) pour
tout e ¥ et tout acR*. Par exemple, si s est une section continue de 7 au-dessus de 4,
alors f, définie par ur—(x, a)—a, appartient & #(n1(4)) et f (1)>0 pour tout
pen~'(4). Réciproquement soit fe# (n~* (4)) satisfaisant cette derniére condition
et désignons par s la section de n au-dessus de A définie par f (s(x))=1. Alors s est
une section continue.

0.18. R% opére continiment et proprement dans ¢ x R. L’application mopr, de
% xR sur & passe au quotient (par R%) en une application continue 7ng: %g— Z.
ng (ou ¥y) est appelé l'espace fibré associé a n de fibre type R. Si’on note (u, a)>u*a
’application de ¥ xR sur @y, on a a-u*xa-a=pu*a et ng(u*xa)=n(u) pour tout
pe%,acRetacRy.

Soient xeZ et ue¥ tel que n(u)=x. L’application ar>pu*a est un homéo-
morphisme de R sur la fibre 71 (x) de ¥y au-dessus de x. Plus généralement si s est
une section continue de m au-dessus de 4, alors (x, a)>s(x)*a est un homéo-
morphisme de A xR sur ng ' (4).

0.19. Si f est une section de mg, pour tout ue¥, il existe un unique élément
o (u)eR tel que f (n (1)) =p* ¢ (1). La fonction réelle sur &: u— ¢ (1) est positivement
homogene. Pour que f soit continue, il faut et il suffit que ¢ le soit. On obtient ainsi
une bijection de 'ensemble & (ng) (resp. € (ng)) de toutes les sections (resp. continues)
de 7g sur I’ensemble des fonctions réelles (resp. continues) positivement homogenes
sur ¢. En général nous ne ferons pas de distinction entre f et ¢.

0.20. La structure d’espace vectoriel ordonné de R étant invariante par R}, on
peut la transporter dans les fibres de mg. Cela nous permet de munir & (ng) d’une
structure d’espace de Riesz. Si f, ge# (ng), on a sup(f, g) (x)=sup(f (x), g(x))
pour tout xe Z'. Si fet g sont continues, il en est de méme de sup (f, g), donc € (ng) est
co-réticulé dans & (mg).

Remarquons que la bijection de € (ng) sur #° (%) est un isomorphisme d’espaces
de Riesz.

§1. Dualité et espaces de Kakutani

1.1. Dans tout ce paragraphe E désignera un espace de Riesz localement con-
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vexe et J sa topologie. Rappelons que E’ est un idéal de E*, donc les génératrices
extrémales de C° sont exactement celles de C* qui sont contenues dans E’. Par suite
une forme linéaire continue #0 est réticulante si et seulement si elle engendre une
génératrice extrémale de C° (0.6.).

1.2. PROPOSITION. Si A4 est une partie de E stable pour inf, alors A° N C° est un
tube de C°. Si A est pour t(E, E') un voisinage de 0 stable pour inf, alors A° N C° est un
chapeau de C°.

Désignons par p la jauge de '’ensemble 4° N C°. On vérifie immédiatement que ’on
a p(u)=sup;.4—u(f) pour ueC°. Pour démontrer la premiére assertion, il suffit
de voir que p est additive sur C°, donc que p(u)+p(v)<p(u+v) pour tout u, ve C°.
Soient £>0 et f,geA tels que p(p)—¢/2<—pu(f) et p(v)—¢e/2<—v(g). On a
h=inf( f, g)e 4 etil vient

p(n+v)z —(u+v) ()= —pu(f) —v(ge) Zp(W) + p(V) — ¢,

d’ou le résultat. La seconde assertion est alors évidente.

1.3. PROPOSITION. Soit K un chapeau de C°. Alors K* est pour t(E, E') un
voisinage de O fermé solide et co-réticulé.

K*® est pour t(E, E') un voisinage de 0, puisque K est faiblement compact. En
outre, par le théoréme de Krein-Milman, K est ’enveloppe fermée convexe de ses
points extrémaux, qui se trouvent sur des génératrices extrémales de C°, donc sont des
formes linéaires réticulantes. Ainsi si f, geK*, on a h=sup(f, g)eK*; en effet ceci est
équivalent a |u(h)|<1 pour tout u point extrémal de K, d’ou le résultat car on a
lu(h)| =p(sup (£, &)l =Isup(p(f), u(g))l <sup(lu(f)), ln(g)l)<1. Ainsi K* est co-
réticulé, mais aussi équilibré. On en déduit qu’il est solide, carsifeK®et |g|<| f|,ona
|f1=sup(f,—f)eK et|u(g)l<u(lgl)<u(lf1)<1pourtout puek, doncgeK".

1.4, THEOREME. Soit V une partie de E fermée convexe et solide. V est pour
t(E, E') un voisinage de 0 co-réticulé si et seulement si V°C° est un chapeau de C°.
Onaalors (V°NnC°)*=V.

Soit K une partie de C° fermée convexe pleine et contenant 0. K est un chapeau de
C? si et seulement si K® est pour t(E, E') un voisinage de O co-réticulé. On a alors
K*nC°=K.

Par ce qui précéde les conditions sont nécessaires. Elles sont aussi suffisantes par
le lemme qui suit.

1.5 LEMME. Si A est une partie fermée convexe solide de E et si A°n C° est un
tube de C°, on a (A° n C°)* = A. Si K est un ensemble compact convexe plein et contenant
0de C°, alors K* nC° =K.
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A°, qui est solide, est I’enveloppe solide de 4° N C°, donc est I’enveloppe fermée
convexe symétrique de 4° N C°, cet ensemble étant un tube (0.14.). Le polaire absolu
de A° N C° est égal au polaire de ’enveloppe fermée convexe symétrique de 4°n C°,
donc au bipolaire de 4, qui est égal a 4.

K est 'enveloppe convexe symétrique de K, donc si ue K*nC° on a u=0 et
p=a-v—(1—a)-A,ouaec[0, 1]etv, AcK, d’ou 0<pu<a- v< vet par suite uek.

Le théoreéme 1.4. signifie en fait:

1.6. COROLLAIRE. 1l y a correspondance biunivoque entre les voisinages V de 0,
pour t(E, E"), qui sont fermés solides et co-réticulés et les chapeaux K de C° par
Ve V°nCet K> K*°.

1.7. COROLLAIRE. Les chapeaux de C° forment un ensemble filtrant croissant;
plus précisement si K, et K, sont deux chapeaux de C°, alors 'enveloppe convexe K de
K, UK, estun chapeaude C°.

En effet K est fermé convexe contenant O et est plein par le lemme de décomposition;
en outre K{=K5 n K* est évidemment pour 7 (E, E’) un voisinage de 0 co-réticulé.

1.8. THEOREME. Pour que C° soit bien coiffé, il faut et il suffit qu’il existe sur E
une topologie d’espace de Kakutani compatible avec la dualité.

Il suffit de remarquer que pour peC°, «u appartient & un chapeau K » est équiva-
lent & «K*® est contenu dans I’ensemble V, des f€E tels que |u(f)|<1», et que la
famille des intersections finies de ¥V, (pour ueC°) est un systtme fondamental de
voisinages de 0 pour la topologie faible o (E, E’), car pour u quelconque on a
Vot "Vop-<V,,.

1.9. Remarque. La famille des K“ ou K parcourt celle des chapeaux de C°,
définit toujours une topologie 7, d’espace de Kakutani sur E, mais en général non-
séparée. Elle est évidemment la plus fine parmi celles qui sont moins fines que 7 (E, E’)
et qui font de E un espace de Kakutani (non nécessairement séparé), et elle est com-
patible avec la dualité (donc en particulier séparée) si et seulement si C° est bien
coiffé.

Si E est un espace de Kakutani, C° est bien coiffé¢, donc est égal a I’enveloppe
fermée convexe de la réunion de ses génératrices extrémales. Nous poserons la
définition suivante:

1.10. DEFINITION. Nous dirons qu'un espace de Riesz localement convexe E
est fonctionnel si le cone dual C° est 'enveloppe fermée convexe de la réunion de ses
géneratrices extrémales. De méme un espace de Riesz sera dit fonctionnel si c’est un
espace de Riesz localement convexe fonctionnel pour sa topologie de I’ordre.
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Pour caractériser ces espaces nous aurons besoin du lemme évident suivant:

1.11. LEMME. Soient A une partie, contenant 0, d’un espace vectoriel topologique
et P un cone de sommet 0. Les enveloppes fermées convexes de A+P et AP sont
égales.

1.12. THEOREME. E est un espace de Riesz localement convexe fonctionnel si
et seulement s’il existe une topologie d’espace de Kakutani (séparée) sur E, moins fine
quet(E, E’).

Remarquons que C° est ’enveloppe fermée convexe de la réunion de ses généra-
trices extrémales si et seulement si la réunion des chapeaux K de C° est dense dans C°.

Il nous suffit donc de montrer que les assertions «D_IE'= C’» et « 7 est une topologie
séparée» sont équivalentes. Mais la premiére est équivalente & «C=[")K°». Cette
derniére implique que 7, est séparée, car K°=(Ku —K)°=K°n(—K)°, donc
N K?=Cn(—C)={0}. D’autre part on a K*nC’=K, donc K’ est I’enveloppe
fermée convexe de K?u C, donc est égal par le lemme a ’adhérence de C+K*°. Cet
ensemble étant contenu dans C +2K% ona () K°=(")(C+K*). Par suite «|_JK=C"»
est équivalent a « C est fermé pour 7 ,». Nous venons d’utiliser deux fois (I’'une pour
t(E, E’),autre pour .7 ,) que dans un espace vectoriel topologiqueona 4 = (") (4 + U),
ou U parcourt un systéeme fondamental de voisinages de 0. Ainsi si 7 est séparée, E,
muni de vette topologie, devient un espace de Riesz localement convexe, donc C est
fermé, ce qui termine la démonstration.

1.13. EXEMPLE. Soient X un ensemble et E un espace vectoriel de fonctions
réelles sur X, co-réticulé dans R*. Cette derniére hypothése signifie que pour tout
/,8€E, on a sup(f, g)eE, ou sup(f, g) (x)=sup(f(x), g(x)) pour tout xeX, ou
encore, que les formes linéaires d’évaluation ¢,: fi— f (x) sont réticulantes. Si I'on
munit E d’une topologie d’espace de Riesz localement convexe plus fine que celle de
la convergence simple dans X, i.e. telle que toutes les formes linéaires d’évaluation (sur
X) soient continues, alors E est un espace de Riesz localement convexe fonctionnel, la
topologie de la convergence simple dans X étant manifestement une topologie d’espace
de Kakutani (séparée).

Tout espace de Riesz localement convexe fonctionnel E est en fait de ce type. En
effet prenons pour X la réunion ¢ des génératrices extrémales de C°. Pour tout feE,
désignons par @ (f) la fonction réelle sur ¢:ur>u(f). Il est alors clair, car & est
total dans E_ et formé de formes linéaires réticulantes, que @ est un isomorphisme
(d’espace de Riesz) de E sur un espace vectoriel de fonctions réelles sur &, co-réticulé
dans R®. Cette représentation n’est pas trés intéressante, car ¢ est beaucoup trop
grand. Par la suite (§3) nous reprendrons cette question.
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1.14. EXEMPLE. L’exemple de G. Choquet ([7]) d’un cOne convexe saillant
faiblement complet sans génératrices extrémales nous fournit un exemple d’espace de
Riesz fonctionnel que I’on peut munir d’une topologie d’espace de Riesz localement
convexe pour laquelle il n’est pas fonctionnel.

Soit E P’espace de Riesz des fonctions réelles continues sur [0, 1]. On sait que E*
est ’espace des mesures de Radon sur [0, 1], car £ muni de la norme uniforme est un
espace de Riesz normé complet, donc est muni de sa topologie de I’ordre. En outre il
est de Kakutani, donc E est un espace de Riesz fonctionnel. Soit E’ le sous-espace
vectoriel des mesures de Radon u pour lesquelles toutes les fonctions x+|y—a| ™
(ae[0, 1] et 0<a<1) soient | u|-intégrables. Il est évident que E’ est un idéal de E™*
et par conséquent que C° ne posséde pas de génératrices extrémales, celles-ci devant
étre engendrées par les ¢, (x€[0, 1]; cf. 2.15. corollaire 1.). Muni de la topologie
o(E, E") (0.7.), E est un espace de Riesz localement convexe non-fonctionnel, son
dual E’, contenant la mesure de Lebesgue, étant dense dans E_ .

1.15. Soit E un espace de Riesz régulierement ordonné, muni de sa topologie
de l'ordre. On peut décrire la topologie 7, ; (remarque 1.9.) par une méthode
identique a celle utilisée pour la topologie de ’ordre 7, (0.8.).

Soit H une partie positivement cofinale de C. Pour toute application a: H—R*,
on note V¥, ’ensemble des feE tels qu’il existe une partie finie /<= H et que I'on ait

| f1<sup,es (“ (h): h)-

1.16. PROPOSITION. L’ensemble des V, est un systéme fondamental de voisinages
de0de 7, ,.

En effet cet ensemble est un filtre de parties absorbantes, solides et co-réticulées
(et par suite convexes et équilibrées), donc définit une topologie d’espace de Kakutani,
peut-€tre non-séparée, évidemment moins fine que 7, ;. Elle est aussi plus fine, car
si ¥ est un voisinage de 0 de 7, ;, on peut supposé qu’il est solide et co-réticulé, donc
si 'on choisit a (h)>0tel que a (k) -heV,ona V,= V.

Nous savons qu’un espace de Riesz réguliérement ordonné possédant une unité
est un espace de Kakutani pour sa topologie de ’ordre. Plus généralement on a le
théoreme:

1.17. THEOREME. Soit E un espace de Riesz réguliérement ordonné satisfaisant
l'une des deux conditions suivantes:

(i) il existe une suite (h,) positivement cofinale de C.

(i) pour toute suite (h,) de C il existe he C majorant positivement tous les h,.
Alors E muni de sa topologie de I'ordre est un espace de Kakutani.

La suite (h,) étant positivement cofinale & C on peut 'utiliser pour définir 7, et
T o,k Soient U, un voisinage de 0 de J, et B,=a,/2". Nous allons montrer que
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Vyc U, SifeEesttel que | f|<sup;<i<q(Bi*h), ona

n

1<) b= ) soach

1

et ce dernier élément appartient a U,, d’ou (i).

Soit U, un voisinage de 0 de 7, h parcourant C. Montrons que a =lim sup o, >0.
Sia=0, alors lim «), =0, donc pour tout 7 il existe 4, tel que 0<a,<1/n pour tout g
majorant positivement h,. Soit A majorant positivement tous les 4,; on a «, =0, ce
qui est absurde. Ainsi il existe une partie H positivement cofinale de C telle que
a,>a/2 pour tout he H. Sil’on pose ,=a/2 pour tout e H, le voisinage V; de 0 pour
T ,,x est contenu dans U,. En effet si feE est tel que | /| <sup(B;-4;), ou (h;) est une
suite finie de H, on a | f|<a/2-g<a, g pour tout ge H majorant positivement les
h;, donc feU,.

1.18. Remarques. 1) La méme conclusion subsiste s’il existe une partie H posi-
tivement cofinale de C qui soit isomorphe au produit de deux ensembles préordonnés
satisfaisant respectivement (i) et (ii).

2) La partie (i) du théoreme était déja connue de G. Choquet sous une forme plus
générale, mais un peu plus faible.

Si f'e E nous désignerons par ¥, I'ensemble des ue E * tels que |u (/)| <1. L’ensem-
ble des ¥, n C* pour fe C est un systeme fondamental de voisinages de 0 dans C*, car
pour f quelconque on a V,;+ nV,,-<V;. Si f, geC, alors f>g est équivalent a
V,nC*cV,n C*. La condition (i) peut donc s’énoncer sous la forme: 0 possede dans
C* un systéme fondamental dénombrable de voisinages. Le résultat de G. Choquet
(cf. [1], chap. 2, §7, prop. 5, p. 112) affirme qu’alors C* (qui est faiblement complet)
est bien coiffé. Par suite 7, ; est compatible avec la dualité (E, E*) par le théoréme
1.8. Nous avons en fait démontré un peu plus, c’est-3-dire 7, , =t (E, E*)=7,,.

1.19. EXEMPLES. Soient X un espace topologique localement compact et
E=2"(X) I’espace de Riesz des fonctions réelles continues & support compact sur X,
muni de sa topologie limite inductive habituelle, qui est sa topologie de I’ordre (cf. [2],
chap. 3). Soit ¢ une famille exhaustive de compacts de X et pour tout Ke#" choisis-
sons fge A" (X) telle que 6, >0 et 8 >1 sur K. L’ensemble de ces 0y est une partie
positivement cofinale de C. Du théoréme 1.17. découle le résultat suivant:

Si X est dénombrable a linfini ou si pour toute suite (K,) de compacts de X la réunion
\UK, est relativement compacte, alors " (X ) est un espace de Kakutani.

Par exemple un espace d’ordinaux @, (cf. [8], 5.11., p. 72), i.e. '’ensemble de tous
les ordinaux strictement plus petit qu’un certain ordinal &, muni de la topologie des
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intervalles ouverts, qui en fait un espace topologique localement compact, jouit tou-
jours de 'une ou I’autre des propriétés ci-dessus.

Dans la planche de Tychonoff (cf. [8], 8.20., p. 123), i.e. I’espace topologique
localement compact

[0, wo] % [0, (] — {(wo, ®;)},

la famille (K, ,), n<w, et a<w,, K, , désignant I’ensemble des (j, B) tels que j<n ou
p<a, est une famille exhaustive de compacts vérifiant la condition de la remarque 1)
ci-dessus. " (X) est donc aussi un espace de Kakutani.

Si X est un espace discret, # (X)) s’identifie & la somme directe R® et E* a4 R¥.
Si X est non-dénombrable, alors ¢ (X) n’est pas un espace de Kakutani, car C*=R%
n’est pas bien coiffé (cf. [1], chap. 2, §7, Ex. 28, p. 158).

§2. Espaces de fonctions et formes linéaires évaluantes

2.1. Soient X un ensemble et £ un espace vectoriel de fonctions réelles sur X,
co-réticulé dans R*, muni d’une topologie J~ d’espace de Riesz localement convexe
plus fine que celle de 1a convergence simple dans X.

Les formes linéaires d’évaluation vont jouer un role central dans I’étude de ces es-
paces. Plus généralement nous dirons qu’une forme linéaire sur E est évaluante si elle
est de la forme a-¢e, pour un xeX et «=0. Si F est un sous-espace vectoriel de E,
a, f=0 et x, yeX, les relations «a- e, =f ¢, sur F» et «a-f (x)=p-f(y) pour tout
feF» sont équivalentes. Si tel est le cas nous dirons que (x, y; «, B) est une ligison de
Fsur X. Les liaisons (x, x; «, «) et (x, y; 0, 0) sont dites triviales.

La question qui va maintenant nous intéresser est la suivante:

Sous quelles conditions (portant sur X, E et 7)) toutes les formes linéaires réticu-
lantes continues sont-elles €valuantes, ou plus généralement, comment peut-on
décrire les formes linéaires réticulantes continues a ’aide des formes linéaires éva-
luantes? Nous répondrons de trois manieres différentes a cette question.

2.2. Pour commencer il nous faut introduire une topologie, voire une structure
uniforme, sur X.

Plongeons X dans E, par &: x> ¢,. Cette application identifie les points x, ye X
tels que f (x) =f (y) pour tout f € E. Toute fonction fe E est égale a la composition de
¢ et de la forme linéaire sur E': ur>pu( f) associée a f. Sachant que la structure uni-
forme de E, est la structure uniforme initiale relativement aux formes linéaires
ur—u(f) pour feE, on voit qu’elle induit sur X (par ¢) la structure uniforme initiale
relativement aux fonctions fe E. En outre I’espace topologique séparé associé¢ a X
s’identifie & £(X). Au besoin en remplagant X par ¢(X)—{0} et E par I'’ensemble des
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restrictions a &(X)— {0} des formes linéaires ur>u(f) pour f€E, nous pouvons
supposer que nous sommes dans la situation suivante:

2.3. DEFINITION. Soient X, un espace topologique et X un sous-espace dense de
X, dont le complémentaire est vide (resp. réduit & un point, le point a linfini). Par abus
nous dirons dans le second cas que X est un espace topologique avec point a I'infini.

Nous dirons que E est un espace de fonctions (sur X) si E est un espace vectoriel,
co-réticulé dans R*, de fonctions réelles continues sur X (resp. et tendant vers zéro a
I’infini, i.e. suivant le filtre trace sur X du filtre des voisinages du point a I'infini dans
X,), tel que la topologie initiale relativement aux feFE soit celle de X (resp. X,) et
que pour tout x€ X il existe f € E tel que f (x)#0.

Si E est muni d’une topologie nous supposerons qu’elle en fait un espace de Riesz
localement convexe et qu’elle est plus fine que celle de la convergence simple dans X.
Nous munirons toujours X de la structure uniforme initiale relativement aux fekE.
X s’identifie par ¢ avec son image dans E,, le point a l'infini s’identifiant avec 0
lorsqu’il existe, c’est-a-dire lorsque 0 est adhérent & X

On peut aussi considérer X comme plongé dans E", puisque la structure uniforme
faible o (E*, E) induit la structure uniforme faible ¢ (E*, E). L’adhérence X, de X,
dans C*, qui est faiblement complet, s’identifie au complété de X. X =X, — {0} étant
un ensemble de formes linéaires réticulantes, on peut considérer £ comme un espace de
fonctions sur X,

2.4. Remarque. Soient X un espace topologique (resp. avec point & l'infini) et £
un espace vectoriel, co-réticulé dans R*, de fonctions réelles continues sur X (resp.
et tendant vers zéro a I’infini).

Si X (resp. X,) est compact, E est un espace de fonctions si et seulement si E
sépare les points de X1) et si, pour tout x€X, il existe f e E tel que f (x)#0.

Si, pour tout xe X et tout voisinage V de x, il existe feE tel que f (x)#0 et f=0
hors de V, alors E est un espace de fonctions. Dans ce cas nous dirons qu’il est riche.

2.5 EXEMPLE. Si X est un espace topologique complétement régulier, nous
désignerons par % (X) (resp. ¢°(X)) I’espace de Riesz des fonctions réelles continues
sur X (resp. et bornées). Si X a un point 2 I'infini nous désignerons par %°(X) (resp.
%% (X)) ’espace de Riesz des fonctions réelles continues sur X tendant vers zéro 3
I'infini (resp. et bornées) et par " (X) (resp. #™” (X)) I'espace de Riesz des fonctions
réelles continues sur X nulles sur un voisinage du point A I'infini (resp. et bornées).
Tous ces espaces de fonctions sont riches.

Remarquons qu’un espace topologique localement compact, non-compact, est

1) i.e. pour tout x, ye X, x # y, il existe f e E tel que f (x) # £ (¥).



302 CLAUDE PORTENIER

muni canoniquement d’un point & l'infini en le plongeant dans son compactifié
d’Alexandroff.

2.6. EXEMPLE. Soit X lintervalle [0, 1] et E I’espace de Riesz des fonctions f
réelles continues sur [0, 1] telles que £ (0)=%f(1). (0, 1; 1, %) est une liaison (et la
seule) de E sur X. E n’est pas riche.

2.7. EXEMPLE. Soit X lintervalle ]0, 1] et E ’espace de Riesz des fonctions f
réelles continues sur ]0, 1] telles que lim,_, ¢ f (x)/x existe. La forme linéaire réticu-
lante: fi— limy_ f(x)/x n’est pas évaluante et n’est pas continue pour la topologie
de la convergence uniforme. E posséde une unité, la fonction e(x)=x, et, muni
de la norme canonique associée, c’est un espace de Kakutani normé complet (M-
espace). On voit immédiatement que X, s’identifie a [0, 1].

lére. réponse

2.8. Soit E un espace de Riesz localement convexe. Nous désignerons par ¥ la
réunion des génératrices extrémales de C° (i.e. I’ensemble des formes linéaires ré-
ticulantes continues), muni de la topologie induite par ¢ (E’, E), par T un sous-cone

de ¥ et par {T") le sous-espace vectoriel fermé engendré par 7. Nous noterons in-
différemment par une barre ’adhérence dans E, ou dans 9.

2.9. PROPOSITION. On a <_T_>n 4 =T, ou encore, pour tout ue%, u¢T, il existe
feCtelquep (f)>0etv (f)=0pour tout veT.

Le cone C* étant faiblement complet, toutes ses génératrices extrémales sont
fortes. Il en est donc de méme de celles de C°. Il existe donc feE tel que u(f)>0
et v(f)<O0 pour tout veT. On vérifie immédiatement que f * répond a la question.

2.10. THEOREME. Soit E un espace de fonctions sur X. Toute forme linéaire
réticulante continue est limite faible de formes linéaires évaluantes.

X étant total dans E,, il est clair par la proposition précédente que le cOne engendré
par X, ensemble des formes linéaires évaluantes, est dense dans %.

2.11. Remarques. 1) Nous montrerons plus tard, lorsque E est riche (théoreme
3.22), que pour toute forme linéaire réticulante continue y, il existe ge E et un filtre
@ sur X tels que p=lime, /g (x),i.e. u(f)=Ilim f (x)/o (x) pour tout f€ E.

2) Dans I’exemple 2.7., X est fermé dans . Ceci n’est donc pas une condition
suffisante pour que toutes les formes linéaires réticulantes continues soient évalu-
antes.
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2éme. réponse

2.12. THEOREME. Soit E un espace de fonctions. Si 'ensemble B des feE tels
que | f (x)| <1 pour tout xeX est un borné total de E et si X, est complet, alors toute
forme linéaire réticulante continue est évaluante.

B est une partie solide et co-réticulée et on a X°=B+C. On en déduit que
X*°=(B+C)°=B°nC° par le lemme 1.11., donc que B°nC° est I'enveloppe
fermée convexe de XU {0}. Remarquons maintenant que B°N C°=B*nC*nE’, en
désignant par B* le polaire de B pour la dualité <E, E*). Comme B* C* (resp.
B° N C°) est un tube de C* (resp. C°), tout point extrémal de B°n C° est un point
extrémal de I’ensemble convexe faiblement complet B* n C*, donc est un point ex-
trémal fort; par suite X contient tous les points extrémaux #0 de B°n C°. 1l faut
remarquer que cela n’implique pas en général ’existence d’un tel point, car il se
trouverait sur une génératrice extrémele de C° coupant B° et non-contenue dans B°.
La conclusion est alors immédiate par le lemme évident suivant.

2.13. LEMME. B est borné (resp. total) pour 6 (E, {%)) si et seulement si B° 1 C°
absorbe les points de 9 (resp. ne contient pas de génératrices extrémales de C°).

2.14. Remarque. On a en fait montrer que « X, est fermé» est une condition suffi-
sante pour que toute forme linéaire réticulante continue soit évaluante. Cette condition
est nécessaire si X n’a qu’un point dans chaque génératrice extrémale de C°.

2.15. Ce théoréme nous fournit une démonstration «analyse fonctionnelle» des
résultats classiques suivants:

COROLLAIRE 1. Soit E un espace de fontions bornées sur X, muni de la norme
uniforme. Si X, est compact, alors toute forme linéaire réticulante continue est
évaluante.

COROLLAIRE 2. Soit X un espace topologique complétement régulier (resp. avec
point a l'infini). Pour que toute forme linéaire réticulante sur €°(X) (resp. €°* (X)) soit
évaluante, il faut et il suffit que X (resp. X,) soit compact.

B est un borné total pour la topologie de 'ordre, car cette topologie peut €tre
définie par la norme uniforme. %°(X) (resp. ¥°°(X)) étant isomorphe & €*(X)
(resp. °°(X)), on voit immédiatement que X n’a qu’un point sur chaque génératrice
extrémale de C*. B° étant faiblement compact, le résultat est alors évident par la
remarque 2.14. ci-dessus.

COROLLAIRE 3. Soit X un espace topologique complétement régulier (resp. avec
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point a l'infini). Pour que toute forme lineaire réticulante sur € (X) (resp. €° (X)) soit
évaluante, il faut et il suffit que X (resp. X,) soit replet.

Rappelons qu’un espace topologique complétement régulier Y est dit replet s’il
est complet pour la structure uniforme initiale relativement aux fe%(Y), ou aussi
relativement aux fe€ % (Y) qui s’annulent en un point de Y.

Dans le premier cas B=[ —1, 1], donc est borné pour la topologie de I'ordre. Dans
le second cas si B n’est pas borné, il existe une forme linéaire positive u et une suite
(f,) de €°(X) telles que 0<f,(x)<1 pour tout xeX et u(f,)=2" La fonction
f=Y1/2"-f, appartientd €°(X)etona

N

Mﬂ>zgmm>N

1

pour tout N, ce qui est absurde. Pour montrer que B est total, il nous suffit de voir que
toute forme linéaire positive u nulle sur B est nulle. Pour tout feC et tout entier
n>1, on a f<inf(f,n)+1/n-f3, dov 0<u(f)<l/n-u(f?), donc u(f)=0. On
conclut comme précédemment.

3éme. réponse

2.16. DEFINITION. Si E est un espace de fonctions et si T est un fermé de X,
nous dirons que 7 porte ueE’ si feE et f=0 sur T implique u(f)=0. Le plus petit
fermé, S(u), qui porte u (s’il existe), sera dit le support de u et si tout ue E’ posséde
un support nous dirons que E est supportable.

Cette notion sera étudiée en détail ultérieurement. Nous verrons qu’elle est en
fait I'une des plus naturelles généralisations au cas topologique de la notion de base
algébrique. On sait que ¢ (X) (X localement compact) et € (X) (X replet; cf. [9],
théoréme 17, p. 172), munis de leur topologie de I’ordre, sont supportables.

2.17. PROPOSITION. Soit E un espace de fonctions supportable. Alors u=0 est
équivalent a S (1) =0 et u=o-¢, (o #0) est équivalent a S (p) ={x}.

La premiére assertion est évidente. Si u=a-¢, (x#0), {x} porte p, et puisque
u#0, c’est évidemment le plus petit fermé portant u. Réciproquement soit f€ E tel que

u(f)#0 et f(x)=1; pour tout geE, on a u(g)=n(f) g(x), car g—g(x)-f est nul
enx,doncu=pu(f)e,.

2.18. PROPOSITION. Un espace de fonctions supportable est riche.
Cela résulte immédiatement de S (¢,) ={x}.

2.19. PROPOSITION. Soient E un espace de fonctions supportable, xeX et ueE’.
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Pour que xeS(u), il faut et il suffit que pour tout voisinage V de x, il existe fe E tel que
p(f)#0etf=0horsde V.

En effet «x¢.S(u)» est équivalent & «il existe un ouvert ¥ contenant x tel que, pour
tout fe E, on ait u(f)=0si f=0hors de V».

2.20 THEOREME. Toute forme linéaire réticulante continue sur un espace de
fonctions supportable est évaluante.

Soit 4 une forme linéaire réticulante continue; il nous suffit de montrer que S'(u)
est réduit a un point. Si S(u) contient deux points distincts x, y, soient ¥ et W deux
voisinages, respectivement de x et y, disjoints et f, g deux fonctions positives de E
telles que u(f)=u(g)=1 et f=0 (resp. g=0) hors de ¥ (resp. W). On a sup(f, g)
=f+g,donc u(f) + p(g) = pu(sup(f, g)) = sup(u(f), u(g)), ce qui est absurde.

§3. Représentations des espaces de Riesz localement convexes fonctionnels

3.1. DEFINITIONS. Soit ¢ un espace topologique dans lequel R* opére con-
tinlment, proprement et librement. Nous dirons que 7n: % — Z (0.16.) est une fibration
principale complétement réguliére si, pour tout ue ¥ et tout ouvert saturé ¥ contenant y,
il existe fe# (9) tel que f ()0 et f=0 hors de ¥ (0.17.). = est évidemment une
fibration principale au sens de 0.15.

Un sous-espace vectoriel co-réticulé E de % (wg) (0.18. et 0.19.) sera appelé un
espace de sections (associé a ) si, pour tout xeZ et tout voisinage V de x, il existe
feEtelquef (x)#0etf=0 hors de V' (axiome de richesse).

Pour tout ue % (on pose x =mn(u)) et tout fe € (ng), on peut écrire f (x)=px*f(u)
par I'identification de % (ng) avec # (%) (0.19. et 0.20.). L’application ¢,:fi—>f (1)
de E dans R est évidemment linéaire et réticulante. On dit que c’est une forme linéaire
évaluante sur E (cf. 2.1.). Nous identifierons ¢ a son image dans E* par l’application
injective &.

3.2. En général on munit un espace de sections E d’une topologie d’espace de
Riesz localement convexe plus fine que la topologie de la convergence simple dans %,
égale a la topologie faible o (E, {(¥)). C’est donc un espace de Riesz localement
convexe fonctionnel.

3.3. PROPOSITION. Soit E un espace de sections. L’application & est un homéo-
morphisme de ¥ dans E,.

Il nous suffit de montrer que ¢ est muni de la topologie initiale relativement aux
SeE. Soit poe%. 1l existe feE tel que f (uo)=1. Comme systéme fondamental de
voisinages de u, dans ¢, on peut prendre les ensembles 4y ; formés des u tels que
n(u)eUet | f (u)—1|<8, ol U est un voisinage assez petit de m (o) et 1>5>0 (0.17.
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et 0.16.). Par la richesse de E, il existe ge E tel que g(uo)=1 et g=0 hors de U. L’in-
tersection des ensembles f~!(J1—8,1+8[) et g7 ' (]1 =5, 1+6[) est dans Ay ,,
d’ot le résultat.

3.4. Soit maintenant £ un espace de Riesz localement convexe fonctionnel. Nous
désignerons par ¢ la réunion des génératrices extrémales de C°, muni de la topologie
induite par E,. Il est clair que E est isomorphe 4 un sous-espace co-réticulé de I’es-
pace de Riesz 5 (¥) (cf. exemple 1.13.); en outre pour tout ue¥ et tout céne ouvert
V de ¢ contenant p, il existe feC tel que f (u)#0 et f=0 hors de ¥ (proposition 2.9.).

3.5. PROPOSITION. R* opére continiiment, librement et proprement dans %.

Les deux premieres assertions sont évidentes. Soient / un ensemble d’indices, @ un
ultrafiltre (ou simplement un filtre) sur I et i (a;, ;) une application de I dans R% x &,
Si p=limy; et v=Ilima;- y; existent (dans ¥), soit fe E une forme linéaire continue
sur E, telle que £ (u)#0. On a f (u)=limf (y;), donc f (x;)#0 pour i assez grand;
d’autre part f (v) =lima;"f (1;). Par suite a =lima; =f (v)/f (1) existe, d’ou le résultat,
caronabienv=a-pu.

3.6. DEFINITION. Nous dirons que n: % — & est le spectre de ’espace de Riesz
localement convexe fonctionnel E.
Par ce qui précéde nous pouvons énoncer:

3.7. THEOREME. Tout espace de Riesz localement convexe fonctionnel est
isomorphe a un espace de sections associé a son spectre. Ce spectre est une fibration
principale complétement réguliére.

3.8. Remarque. L’ouvert de &, ou fe % (ng) est >0, est appelé l'ouvert de positivité
de f. La richesse de E implique que les ouverts de positivité des feC forment une base
de la topologie de %'

3.9. Soit # une fibration principale complétement réguliére et £ un espace de
sections associé & n. Désignons par ¥, ’enemble ¥ U {0} muni de la structure uni-
forme induite par E;. ¥, comme sous-espace dense de %, est muni d’un point a
I'infini (cf. définition 2.3.). Nous noterons par 5#° (%) I’espace de Riesz des fonctions
réelles continues positivement homogenes qui tendent vers zéro a I'infini sur 4. Pour
que heH# (%) appartienne & H#°(%), il faut et il suffit qu’il existe fe C tel que |h| < f.
En notant par ¥°(ng) I'image de #° (%) dans € (ng), on voit que E est cofinal dans
€° (ng).

3.10. PROPOSITION. Soit E un espace de sections associé a n, muni de sa topologie
de l'ordre. Pour que T soit le spectre de E, il faut et il suffit que 9, soit complet.
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Il est clair que ¢ s’identifie 4 une partie dense de ’espace total du spectre de E
(propositions 3.3 et 2.9.). La proposition est alors évidente, puisque C* est faiblement
complet.

3.11. LEMME. Tout fe¥°(ny) est I'enveloppe supérieure (resp. inférieure) des
geEtelsqueg< f(resp.g=f).

Supposons tout d’abord que f>0. Soient xeZ et aeng1(x) tels que a< f (x). Il
nous suffit de montrer qu’il existe ge E tel que g< f et g(x)>a. Soit heE tel que
a<h(x)<f (x) et désignons par V I’ouvert de positivité de f—h. Par la richesse de E,
il existe A’ €E tel que A’ (x)=h(x) et A’ =0 hors de V. La section g =inf(h, 4") répond
a la question. Le lemme est alors évident; il suffit de constater qu’il existe ge E tel que
g=|f|etd’appliquer ce qui précedea g+ fetg— f.

3.12. DEFINITION. Soit E un espace de sections associé & n. Nous dirons
qu'une forme linéaire positive p sur E 2 la propriété de Daniell (sur &) si, pour
toute famille filtrante croissante (f;) de E d’enveloppe supérieure feE, on a
u(f)=sapu(f).

Nous définirons plus loin (définition 5.1.) une classe d’espaces de Riesz localement
convexes fonctionnels, contenant les espaces de Kakutani, telle que toutes les formes
linéaires positives continues sur I'un de ces espaces aient la propriété de Daniell
(théoreme 5.3.).

3.13. THEOREME. Soit E un espace de sections associé & n. Il existe une topologie
d’espace de Riesz localement convexe sur €° (ny) induisant celle de E telle que chaque
forme linéaire positive continue sur E, ayant la propriété de Daniell, se prolonge de
maniére unique en une forme linéaire positive continue sur € 0 (mg)-

Si V parcourt un systéme fondamental de voisinages de 0 convexes et solides de E,
alors les enveloppes solides ¥ dans #° (ng) (¥ est 'ensemble des fe €° (ng) tels qu’il
existe geV et que l'on ait | f|<|g|) définissent une topologie d’espace de Riesz
localement convexe sur #° (ng) induisant celle de E. En effet 'ensemble des ¥ est un
filtre de parties convexes solides et absorbantes, et on a ¥’ E=V; en outre pour tout
fe€° (ng),f#0, il existe geC, g#0, tel que g <| f| (lemme 3.11.), donc si I'on choisit
Vtel que g¢ V, on a f¢V, ce qui prouve que cette topologie est séparée.

Toute forme linéaire positive continue sur E se prolonge évidemment & €° (ng) en
une forme linéaire positive et on vérfie immédiatement qu’elle est continue. L’unicité
découle de I'unicité du prolongement d’une forme linéaire positive ([1], proposition 1,
chap.1I, §3,n° 1, p. 63),carona

SUPgek,g<r H(8) =infg g o>, H(8),
pour tout fe ¥°(nyg), par le lemme 3.11. et la propriété de Daniell.
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3.14. Remarque. Nous munirons toujours %°(ng) de la topologie d’espace de
Riesz localement convexe définie au début de cette démonstration. C’est la plus fine
des topologies d’espace de Riesz localement convexe qui induisent celle de E, car si W

est un ensemble solide de ¥° (ng), on a W Ec W. En particulier si E est muni de sa
topologie de I’ordre, alors ° () est aussi muni de sa topologie de I’ordre.

3.15. COROLLAIRE. E et €° (ng) ont méme spectre.
C’est évident puisque les ¢, ont 1a propriété de Daniell.

3.16. COROLLAIRE. Si E est un espace quasi de Kakutani (cf. définition 5.1.),

alors E est dense dans €° (ng).
Cela est immédiat, en tenant compte du théoréme 5.3., car E et €°(ng) ont méme

dual.

3.17. Soient E un espace de Riesz localement convexe fonctionnel et 7= son
spectre. On peut obtenir d’autres isomorphismes, moins maniables, mais avec des
espaces de fonctions, en procédant de la maniére suivante. Nous avons vu (3.4.) que E
s’identifie & un sous-espace co-réticulé de o (%). Il nous suffit de considérer une
partie de ¢ n’ayant qu’'un point par génératrice extrémale, i.e. une section de n, mais
un choix arbitraire n’est évidemment pas intéressant. Celui d’une section continue
semble dans ce cadre €tre le plus naturel, toutefois nous verrons par un exemple
(3.23) que Z peut étre non-régulier, ce qui exclut ’existence de section continue
globale.

3.18. PROPOSITION. I existe une section continue de m au-dessus d’un ouvert

dense de Z.

Cela découle immédiatement du lemme de Zorn.

Soient X une partie dense de Z et s une section de 7 au-dessus de X. E s’identifie &
un espace de fonctions sur s (X') muni de la topologie induite par E,.

3.19. PROPOSITION. s est continue si et seulement si E, comme espace de fonctions
sur s (X), est riche.

En effet s est continue si et seulement si 7~ !x (F) est fermé dans n~* (X) pour tout
fermé F de s(X), c’est-a-dire si et seulement si (Fy ns(X)=F pour tout fermé F de
s(X) (proposition 2.9.). Cette derniére assertion est évidemment équivalente a la
richesse de ’espace de fonctions E.

3.20. Remarques. 1) Si s est continue, alors X et s(X) sont homéomorphes, ce qui
permet d’identifier £ a un espace de fonctions riche sur X.
2) Réciproquement soit E un espace de fonctions riche sur X. Il est clair que X
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plongé dans E_ définit une section continue du spectre de E au-dessus d’une partie
dense (homéomorphe & X') de la base.

3.21. Soient E un espace de fonctions riche sur X, n son spectre, ye % — X, @ un
filtre sur X convergent vers y, uen~!(y) et geC tel que p(g)=1. Désignons par s la
section continue définie par X et par ¢ la section continie associée 4 g, définie au
voisinage de y. On a s(x)=¢(x)-t(x) pour les xeX proches de y, donc f (x)/o(x)
=f(t(x)) pour tout feE. Comme #(x) tend vers u suivant &, on voit que u(f)
=limf (x)/e(x). On peut donc énoncer:

3.22. THEOREME. Tout espace de Riesz localement convexe fonctionnel est
isomorphe a un espace de fonctions riche, défini sur une partie (ouverte) dense X de la
base de son spectre. En outre il existe une famille de couples (®, @), ou D est un ultrafiltre
non-trivial sur X et e C, telle que lim f(x)/o (x) existe pour tout f e E. En désignant par
1(f) ce nombre, u est une forme linéaire réticulante continue et toute forme linéaire
réticulante continue non-évaluante est multiple d’un de ces y.

3.23. EXEMPLE. Soit X le sous-espace de [0, 1] formé des points différents de
1/n, n entier >1. Notons g, la fonction continue sur X:x— |x—1/n| 1. L’espace de
Riesz E de toutes les fonctions réelles continues f sur X, telles que, pour tout n,
ta(f) =limf(x)/g,(x) existe lorsque x — 1/n, muni de la topologie de I’ordre, est un
espace de fonctions sur X. Il est riche, car toute fonction continue bornée sur X
appartient & E. Les u, sont évidlemment des formes linéaires réticulantes non-
évaluantes.

Nous allons voir que & s’identifie en tant qu’ensemble a [0, 1]. Soit 1 une forme
linéaire réticulante non-évaluante, définie par geC et @ un ultrafiltre non-trivial sur
X. & est une base d’ultrafiltre sur [0, 1], donc est convergent vers un point de la forme
1/n. Pour tout feE,ona

#(f)=1lim f (x)/e(x) = lim (f (x)/es (%)) (en (¥)/e (%)) = pta (f ) 1 (€n)

ie.u=u(o,) tp

Pour tout fe E, on a p, (f) =0 pour tout », sauf un nombre fini. En effet u,(f)#0
implique que f est non-bornée au voisiange de 1/n, donc, si cela avait lieu pour une
infinité de n, f ne pourrait étre continue en 0. L’ouvert de positivité de f est donc un
ouvert de [0, 1] privé de tous les points 1/n, sauf un nombre fini. Par exemple si f'est la
constante 1, il est égal 4 X. Il n’est alors pas difficile de voir que les ouverts de £ sont
les ensembles U— 4, ou U est un ouvert de [0, 1] et 4 un ensemble quelconque de
points 1/n.

Z n’est pas régulier, donc il n’existe pas de section continue globale du spectre de E.
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3.24. EXEMPLE. Soit X un espace topologique compleétement régulier (resp.
avec point a 'infini). Le spectre de % (X) (resp. €° (X)), muni de sa topologie de 'ordre
et lorsque X (resp. X,) est replet, est trivial de base X. Il en est de méme pour ¢ (X),
lorsque X est localement compact.

3.25. THEOREME. Soit E un espace de Riesz réguliérement ordonné, muni de sa
topologie de I'ordre. Pour que E posséde une unité, il faut et il suffit que E soit fonctionnel
et que la base de son spectre soit compacte. Si tel est le cas, E est isomorphe a un espace
de fonctions riche sur la base.

Si E posséde une unité, alors E est un espace de Kakutani normé, donc fonc-
tionnel. La section continue du spectre de E, associée a cette unité, est globale. Comme
I’image de cette section est fermée et dans la boule unité duale, on en déduit que la
base du spectre est compacte.

Réciproquement en considérant E comme un espace de sections, des arguments de
compacité montre qu’il existe une unité.

§4. Théoré¢me de Stone-Weierstrass

Démontrons tout d’abord un résultat di & G. Jameson ([10], théoréme 7). On
a tout d’abord le lemme classique suivant:

4.1. LEMME. Soient X un espace topologique compact et A un ensemble co-
réticulé (dans RX) de fonctions réelles continues sur X. Si, pour tout x, yeX, il existe
feA tel que f (x)<1 et f(y)> —1, alors il existe geA tel que |g(x)| <1 pour tout
xeX.

4.2. THEOREME. Soient A une partie fermée convexe co-réticulée d’un espace de
Kakutani et f ¢ A. Il existe deux formes linéaires réticulantes continues y, v telles que

inf(p — v) (4) > (1 —v) (f).

On peut supposer que f=0. Soit U un voisinage de 0 fermé solide et co-réticulé
disjoint de A. Désignons par X I'adhérence de ’ensemble des points extrémaux du
chapeau K=U’NC". X est un ensemble faiblement compact formé de formes lin€aires
réticulantes continues. Puisque K°=X°=U, pour tout ge4, il existe ueX tel que
|u(g)l>1. Par le lemme, il existe u, ve X tels que pour tout g4 on ait u(g)>1 ou
v(g)< —1. Lapplication g—(u(g), —v(g)) de 4 dans R? est affine, donc son
image B est convexe et 0 n’appartient pas a 'adhérence de B+R?. 1l existe donc par
Hahn-Banach une forme linéaire y sur R? telle que 0 <infy(B). Si 'on écrit x(a, b)
=a-a+f-b, on voit que a et f sont >0 et il vientinf (- u—f-v) (4)>0.

De ce théoréme on déduit une version abstraite du théoréme de Stone-Weierstrass.
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4.3. THEOREME. Soit F un sous-espace co-réticulé d’un espace de Kakutani E.
Pour que F soit dense dans E, il faut et il suffit que deux formes linéaires réticulantes
continues égales sur F soient égales.

4.4, COROLLAIRE. Soit E un espace de fonctions. On suppose que E est un
espace de Kakutani et que toute forme linéaire réticulante continue est évaluante. Pour
qu’un sous-espace vectoriel co-réticulé F de E soit dense, il faut et il suffit que F n’ait
pas plus de liaisons que E.

Grace aux critéres 2.12. et suivants, on retrouve tous les théorémes de Stone-
Weierstrass faisant intervenir des conditions de séparation ponctuelle, en particulier
celui de S. Kakutani ([11], théoréme 3).

4.5. PROPOSITION. Soient E un espace de fonctions sur X et F un sous-espace
vectoriel. On suppose que X contient au moins deux points. Pour que F n’ait que des
liaisons triviales, il faut et il suffit que, pour tout x, ye X, x#y, il existe feF tel que

f(x)#0etf (y)=0.

La démonstration est du méme type que celle du théoréme 4.8. qui suit.

4.6. Application. Soit X un espace topologique localement compact. L’espace
%°(X), muni de la topologie stricte (cf. [4]), définie par les semi-normes

Jrsup,xl0(x) f(x)] pour fe%°(X),

est évidemment un espace de Kakutani. Son dual étant ’ensemble des mesures
bornées sur X, cet espace est supportable, donc toutes les formes linéaires réticul-
antes continues sont évaluantes (théoréme 2.20.). Le théoreme de Stone-Weierstrass
que I’on obtient ici généralise le théoréme 3 de R. C. Buck et répond a la question
qu’il pose p. 101.

4.7. Application. Soit X un espace localement compact dénombrable & I'infini ou
tel que la réunion de toute suite de compacts soit relativement compacte. L’espace
A" (X), muni de sa topologie limite inductive habituelle, est un espace de Kakutani
(exemple 1.19.). Il est supportable, donc toutes les formes linéaires réticulantes (con-
tinues) sont évaluantes (théoréme 2.20.). Ceci fournit un nouveau théoréme de Stone-
Weierstrass.

4.8. THEOREME. Soit E un espace de sections associé & son spectre. On suppose
que E est un espace de Kakutani et que Z contient au moins deux points. Pour qu'un
sous-espace vectoriel co-réticulé F de E soit dense, il faut et il suffit que, pour tout
X, yeZ,x+#y, il existe fe F tel que f (x)#0 et f () =0.

Puisque toute forme linéaire réticulante continue est évaluante, on vérifie immé-
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diatement que la condition est suffisante par le théoréme 4.3. Réciproquement choisis-
sons geF tel que g(x)#0, pen™'(x) tel que ¢,(g)=1, ven~'(y) et heF tel que
e, (h)#¢,(h). Si e,(h) =0, h répond a la question. Si &,(h)#0, posons f=g—(e,(g)/
&,(g)) hy on a e,(f)=0 et g,(f)=1—¢,(h)/e,(h) #O0.

§5. Théoréme de Dini et caractérisation des idéaux fermés

5.1. DEFINITION. Un espace de Riesz localement convexe E sera dit quasi de
Kakutani si la bande de E’ engendrée par la réunion des chapeaux de C° est égale 4 E'.
Cela signifie que pour tout ue C?, il existe une famille (y;), chaque u; appartenant
a un chapeau de C°, telle que u=supy;. Nous dirons aussi que C° est presque bien

coiffé.

Il est clair qu’un tel espace est fonctionnel.

5.2. EXEMPLES. 1) Tout espace de Kakutani est évidlemment quasi de
Kakutani.

2) Si X est un espace topologique localement compact, alors 2" (X) est quasi de
Kakutani.

Puisque, pour toute mesure >0 sur X, on a u=sup0-pu, 0 parcourant ’ensemble
filtrant croissant des fonctions de " (X) telles que 0<0<1, il suffit de montrer que
0-u appartient & un chapeau, i.e. au polaire d’un voisinage de 0 solide et co-réticulé.
I1 suffit de prendre celui des fe " (X ) tels que | f]<1/u(6).

Voici tout d’abord un théoréme de Dini.

5.3. THEOREME. Soit E un espace de sections associé a son spectre. On suppose
que E est un espace quasi de Kakutani. Si (f;) est une famille filtrante croissante de
sections de E d’enveloppe supérieure feE, alors ( f;) converge vers f (pour la topolo-
giede E).

Par le théoréme 4.3., p. 223 de [15], il nous suffit de montrer que u( f;) tend vers
u(f) quel que soit ueC?, i.e. que chaque ueC* a la propriété de Daniell. Il est clair
qu’il suffit de le démontrer pour un u appartenant a un chapeau K de C°. Désignons
par X ’adhérence de I’ensemble des points extrémaux de K, qui est un ensemble
faiblement compact de formes linéaires réticulantes continues. Les fonctions con-
tinues sur X: vi— v( f;) forment une famille filtrante croissante d’enveloppe supérieure
vi—=>v(f). On conclut par le théoréme de Dini classique et le théoréme de Krein-
Milman.

5.4. PROPOSITION. Soit E un espace quasi de Kakutani. Pour tout idéal I de E,
le cone I° N C° est I'enveloppe fermée convexe de la réunion de ses génératrices extré-
males.



Espaces de Riesz, espaces de fonctions et espaces de sections 313

Remarquons tout d’abord que si I est fermé dans E, alors I est fermé pour 7,
(cf. 1.9.). I° s’identifie au dual de E/I et la topologie .7, passe au quotient en une
topologie d’espace de Kakutani séparée; on a donc le résultat par le théoréme 1.12.

5.5. THEOREME. Soit E un espace de sections associé a son spectre. On suppose
gue E est un espace quasi de Kakutani. Il y a correspondance biunivoque entre les
idéaux fermés I de E et les fermés T de X par It+— Ty et T+ Iy, ot T, est I'ensemble des
xeX tels que f (x)=0 pour tout fel et I est 'ensemble des fe E tels que f (x)=0 pour
tout xeT.

I°~ C° est un tube (proposition 1.2.), donc I=(I°nC°)* (lemme 1.5.). T; est
fermé, car égal a I'image par 7 de la réunion des génératrices extrémales de I° N C°.
Par la proposition précédente, on voit que I est I’ensemble des fe E qui s’annulent
sur T;.

Réciproquement si 7" est un fermé de Z, I est un idéal fermé de E et, puisque E
est riche, si xeZ est tel que f(x) =0 pour tout f €I, on a nécessairement xeT.
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