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Cobordismes de plongements et produits homotopiques

O. BURLET

Introduction

Soient m et n des entiers positifs. On se propose d'étudier les plongements de

variétés closes de dimension m dans Rn+m. Nous allons considérer indépendamment
des variétés orientées et non orientées. Si V est orientée, — V désignera V munie de

l'orientation opposée, et si F est non orientée — V est égale à V.

Deux plongements (Ff,/f) (z'=0, 1) seront équivalents s'il existe une variété W
dont le bord d JFest la réunion disjointe Vo + (—Vl) de Vo et — Vi9 et un plongement/
de W dans Rn+m xi qui, restreint à Vh donne le plongement ft suivi de l'inclusion
Rn+m=Rn+wx(f)cR"+mx/ (i=0,l). On dit que (W,f) est un cobordisme de

(Wo) vers (ïWi).
Pour cette relation d'équivalence, la classification des plongements se ramène à

un problème d'homotopie. Les classes de cobordismes de plongements de variétés
de dimension m dans Rn+m forment un groupe isomorphe à nn+m(Mn), avec Mn

MSOn ou MOn suivant que l'on considère des variétés orientées ou non (R. Thom [9]).
A l'aide du théorème des immersions de Smale-Hirsch et les propriétés de stabilité

des variétés de Stiefel, Wells donne une interprétation géométrique des groupes d'homotopie

stables de Mn. Les classes de cobordismes d'immersions de variétés de dimension
m dans Rw+m forment un groupe isomorphe à nsJ+m(Mn). (Wells [10].) Par suspension
de nn+m(Mn) dans le spectre formé par les espacesMn, n 1, 2,..., on trouve le groupe
7tm(M) qui s'interprète comme le groupe des classes de cobordismes de variétés closes

de dimension m. Les homomorphismes naturels de suspension

s'interprètent géométriquement, a associe à la classe de cobordisme d'un plongement
ce plongement considéré comme immersion et W associe à la classe de cobordisme
d'une immersion (V',f) la classe de cobordisme de V'. Nous voulons calculer ces

groupes et homomorphismes tensorisés par le corps Q des nombres rationnels.
Nous adopterons les notations nn+m(Mn, Q) pour 7rrt+m(Mw)®Q et <rQ pour <r®Q.
>-> désigne un monomorphisme et-» un épimorphisme. Une classe de cohomologie

deMn à coefficients rationnels sera considérée par composition avec l'homomorphisme
d'Hurewicz comme forme linéaire sur rc* (Mn, Q). Remarquons que n%(Mn, Q) s'identifie

à jff* (Mn, Q) en vertu du théorème de Serre sur les groupes d'homotopie stables
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des sphères et le théorème de comparaison de théories d'homologie. Avec cette
identification <rQ devient Phomomorphisme d'Hurewicz hQ. Les théorèmes principaux sont
les suivants:

THÉORÈME 1. Pour n =2/4-1, />1, MOn a le type d'homotopie rationnel faible
d'un point et MSOn celui du bouquet de sphères standards Sa de dimensions n+4 |a|

avec a (al5 a2,..., af), at entiers positifs, et |a|=£|=1 raf.
Un théorème de Hilton donne alors la description de tt* (MSOn, Q) et de l'homo-

morphisme hQ [4].
L'homomorphisme WQ est injectif et Fannulateur de l'image est engendré par les

monômes dans les classes de Pontrjagin divisibles par une classe pt avec />/.
On se réfère à l'identification de module gradué {n*(MSO, Q))*«Q [PiPi—Pt—l*

Pi étant de degré Ai (R. Thom [9]).

THÉORÈME 2. Pour n=2l+2, /^0, n*(MSO(n), Q) est la somme directe de

l'espace vectoriel {y0} engendré par la classe d'homotopie y0 de l'inclusion naturelle
Sn c: MSO (n) et l'algèbre de Lie libre engendrée par des éléments ya duaux aux classes

de cohomologie Uma, a^O. On considère ici le crochet défini par le produit de White-
head. ma =p"y .pf, les af sont des entierspositifs, pt désigne la i-ème classe de Pontrjagin
et U la classe de Thom du fibre n-universel. Oq restreint à l'espace vectoriel engendré

par les y0 est injectif et tous les produits de Whitehead sont envoyés sur zéro.

L'annulateur du noyau de WQ est engendré par les formes U2rma, r^ 1 et celui de

l'image par les monômes dans les classes de Pontrjagin divisibles par un/?f avec />/+1.
Pour h=2/+2, et n*(MOn, Q) est la somme directe de l'espace vectoriel {y0}

engendré par un élément dual à U\ et l'algèbre de Lie libre engendrée par des éléments

ya duaux aux classes de cohomologie Ujma, a#0. UT désigne la classe de Thom
du fibre universel à coefficients dans les nombres rationnels tordus par le faisceau
des orientations. <rQ est formellement le même homomorphisme que dans le cas

orienté.
Pour n pair n*(Mn; Q) est comme algèbre de Lie graduée une extension non

triviale de Q par une algèbre de Lie libre.

Conséquences:

a. En général il y a une multitude de plongements non cobordants à 0, qui sont
cobordants à 0 si on les considère comme immersions.
De plus ces plongements sont décrits explicitement par des enlacements.

b. Dans le cas orienté, pour qu'un multiple d'une immersion soit cobordant à un
plongement il suffit que la classe d'Euler du fibre normal à l'immersion soit 0.

c. Il résulte des considérations sur l'homotopie rationnelle d'espaces de Thom
orientés que n+{SMSO(n-1), Q) -» n+(MSO(n), Q) est surjectif. Cela signifie



Cobordismes de plongéments et produits homotopiques 279

qu'un multiple convenable de tout plongement est cobordant à un plongement
avec champ de vecteur normal non nul.

Dans un premier paragraphe, nous allons étudier l'homotopie rationnelle d'espaces

simplement connexes. L'homomorphisme d'Hurewicz va jouer un rôle prépondérant.
En effet, de sa surjectivité on pourra déduire immédiatement que l'espace en question a

même type d'homotopie rationnel faible qu'un bouquet de sphères. Les démonstrations
s'appuient sur le théorème de Cartan-Serre qui donne l'homotopie rationnelle d'un
//-espace [6], les théorèmes de structure d'algèbres de Hopf connexes cocommutatives

[6] et la suite spectrale de la fibration des chemins avec origine fixe sur un espace
simplement connexe. Le paragraphe suivant sera consacré au cas particulier des

espaces de Thom. Pour terminer on traitera le problème des relations entre produits
de Whitehead et on donnera une interprétation géométrique des résultats.

Je tiens à exprimer ma gratitude au professeur A. Haefliger qui m'a suggéré ce

travail, ainsi qu'au professeur J. C. Moore pour ses bons conseils.

Mes remerciements vont aussi au professeur F. P. Peterson.

I. Homotopie rationnelle

Pour un espace simplement connexe X l'espace des lacets QX est un If-groupe
connexe. L'application diagonale induit un morphisme A :H* (QX, K) -> H* (QX, K)®
®H*(QX, K) et la multiplication un morphisme <p:H*(QX, K)®H*(QX, K) -+

-+H* (QX, K).
La projection de QX sur le lacet constant induit une augmentation e : H* (QX, K) ->

->Kqî l'unité r\:K-*H*(QX, K) pour q> est définie par l'inclusion du lacet constant
dans QX.

H*(QX, K) muni de q>, A, e,rj est une algèbre de Hopf connexe cocommutative

(cf. Milnor-Moore [6]).
Si A est une algèbre de Hopf on notera IA le noyau de l'augmentation. Dans

l'exemple précédent IA est l'homologie réduite de QX.

A cause de la décomposition A K®IA, la comultiplication fournit une application

naturelle IA -+IA(g)IA. Le noyau PA de cette application s'appelle l'espace des

éléments primitifs.
Autrement dit un élément x est primitif s'il est de degré positif et si Ax x® 1 +

+1 (g)x où A est la comultiplication.
De façon duale la multiplication donne par restriction une application IA®IA~*

-+IA dont le conoyau QA s'appelle l'espace des éléments indécomposables. Si A est

connexe cocommutative l'application composée PAczIA -» QA est surjective.

THÉORÈME 1. Soit X un espace simplement connexe. Alors la suspension homo-
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logique sQ:B^(QX, Q) -» É#+i(X, Q) se factorise par la projection canonique
H*(QX, Q) -> QH*(QX, Q) sur les éléments indécomposables.

Démonstration du Théorème 1

Soit Xun espace simplement connexe et EX -> Zla fibration des chemins d'origine
fixe avec fibre l'espace des lacets QX. Nous pouvons considérer QX comme fibre sur
un point.

Soit E' {Eprtq} la suite spectrale de ce fibre trivial et soit E= {Erp> J la suite spectrale
de la fibration EX^X.

L'action naturelle de QX sur EX induit alors pour tout r^2 un homomorphisme
V:£s'%'®£5%-> E£+s>r+t avec dr(xvy) (-iy+t'xvdry qui donne le produit de

Pontrjagin habituel par restriction à la fibre c'est-à-dire de E^r®EQtt dans Eltt>+t.
Pour démontrer le théorème il suffit de voir que la supension homologique s'annule

sur les produits de Pontrjagin de classes de dimensions positives.
Ecrivons la décomposition de l'homomorphisme de suspension pour ^1 en

tenant compte du fait que E£=0, (s, t)^(0, 0). Hq+1(X, Q)«£*+i,0=>-=> E\X\#
££ E%+ql <*-...«-E2OtqKHq(QX,Q) Soit (xvy)eElt9.9xeEltr,9yeElq-r 0<r<q
yeEltq_r est un bord dans EJOtq_T pomj^q-r+l. Il existe donc weEJjtq-r-J+1 avec

dJ(xvw)= -h (xvy).
Comme j^q cela implique que (xvy) est envoyé sur zéro dans Eq^q c'est-à-dire

(xvy) est dans le noyau de Sq.

PROPOSITION 1. Si sQ est surjectif, X a même type d'homotopie rationnel faible
qu'un bouquet de sphères.

L'algèbre de Hopf H* (QX, Q) étant connexe cocommutative, l'application
naturelle PH*(QX, Q) -* QH*(QX, Q) est surjective. En vertu du théorème 1, il en est

de même pour le composé de l'inclusion de PH+ (QX, Q) dans B+ (QX, Q) suivi de la
suspension.

Ë* (QX, Q) 5 > ff^ + 1 (X, Q)
î Î*Q

PH* (QX, Q) « n* (QX, Q) « n* + 1 (X, Q)

La commutativité de ce diagramme nous assure la surjectivité de hQ. L'isomorphisme
PH*(QX, Q)&n*(QX, Q) est garanti par le théorème de Cartan-Serre [6],

Choisissons une base (xa) de B+ (X, Q). Pour chaque xa on peut trouver une sphère

orientée Sa et une application Sa -> X qui envoie la classe fondamentale de Sa sur xa.

Le wedge de ces applications fournit une application de \/Sa -? X qui induit un iso-

morphisme de H+fySg, Q) sur H+(X, Q). Par le théorème de Whitehead généralisé
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l'application dont il est question induit aussi un isomorphisme de ^(V^, Q) sur

En particulier toute suspension a le type d'homotopie rationnel faible d'un bouquet

de sphères. Soit X=SY, on a une inclusion naturelle 7-> QSYqî le diagramme
suivant commute.

L'isomorphisme est donné par la suite exacte réduite du cône sur Y modulo la base.

Désignons par Dn le disque standard dans Rn et par Sn~1=ôDn son bord.
Pour des entiers positifs n, p, q quelconques nous allons choisir une fois pour

toutes des identifications de Dn/Sn~x avec S" et de Sp+q~1 avec d(DpxDq).
Comme Sn est alors pointé de manière naturelle on modifiera éventuellement la

seconde identification de sorte que par recollement des applications canoniques

Dp x Sq~i-*DP-^SP et Sp~l x D«->£«-> S*

on obtienne une application pointée bien déterminée

Sp+q~1&DpxSq~1 U S1*"1 xDq->Spv Sq

Sp v Sq est le bouquet ou wedge des sphères Sp et Sq c'est-à-dire leur réunion disjointe
dans laquelle on a identifié les points bases.

DÉFINITION. Si ocenp(X, x0) et Penq(X9 x0) on appelle produit de Whitehead de

a et p la classe d'homotopie [a, /?] de l'application composée Sp+q~1 -> Sp v Sq *-+ X
où & et fi sont des représentants de a et P [3].

II. Homotopie rationnelle des espaces de Thom

Rappelons que l'anneau de cohomologie rationnelle de BSO(n) est isomorphe à

l'algèbre de polynômes Q[/?i.../?[(w-d/2]Z«] dans les classes de Pontrjagin et d'Euler

Pi--Pi(n-i)/2-\ et Xn du fibre «-universel orienté avec la relation xrt=0 pour n impair.
U désignera la classe de Thom de ce fibre. Comme d'habitude [(»—1)/2] est la partie
entière de (n-l)/2 [9].

L'isomorphisme de Thom dit que Ë*(MSO(ri), Q) est engendré librement par U
comme module sur l'anneau de cohomologie rationnelle de BSO(ri). En outre la
structure multiplicative de H*(MSO(n, Q) est donnée par UauUa' U(xvava')
où Xn et ci, a' sont des classes de cohomologie de BSO (n).
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PROPOSITION (1.2). Pourn 21+1 la suspension homologique sQ:H*(QMSO x
x(«)> Q)-+ff* + i(MSO(ri)i Q) est surjective. En effet Vapplication de suspension

ç:SMSO(n-l)-^MSO(n) induit un monomorphisme q>*:H*(MSO(n)9 Q)-+H* x
x(SMSO(n— 1), Q) puisque les éléments de base U^p^'-PV sont envoyés sur les

éléments U^-.-pV-iX2^1- Par passage au dual (p induit un épimorphisme en homologie
rationnelle.

Considérons alors le diagramme commutatif suivant:

H* (QSMSO (n - 1), Q) "3 ff+ +1 (SMSO (n - 1), Q)

#* (QMSO (n), Q) ——> B+ + x (MSO (n), Q)

On voit tout de suite que sQ est surjectif.
En vertu de la proposition (1.1), MSO(n) a donc même type d'homotopie rationnel

faible qu'un bouquet de sphères. Chaque sphère de ce bouquet représente une classe

d'homologie ya duale à Uma avec Ma^PV-'-P*1 les af étant des entiers positifs.
La suite exacte de Gysin du revêtement à deux feuillets BSO (n) -> BO (n) et l'iso-

morphisme de Thom montrent que Ê* (MO (n), Q) 0 pour n 21+1. Pour n 2l+2,
H* (MO(ri), Q) est l'algèbre libre engendrée par les classes Ujma avec les relations

^Tmai® ^Tm*2~ Ut® ^rm(ai+a2) ou ^T désigne la classe de Thom du fibre universel

non orienté avec coefficients dans les nombres rationnels tordus par le faisceau des

orientations.
Pour achever la démonstration du théorème 1, il nous reste à étudier l'homomor-

phisme WQ dans le cas n impair. En effet le théorème de Whitehead généralisé nous
assure que MO(2/+1) a même type d'homotopie rationnel faible qu'un point.

Par définition WQ est le composé des applications suivantes :

<< (MSO (/0, Q) « #* (MSO (h), Q) ^
ce dernier groupe étant isomorphe à n*-n(MSO9 Q) pour r assez grand.

La naturalité de l'isomorphisme de Thom montre l'équivalence entre WQ et

l'homomorphisme. H*-n(BSO(ri)9 Q)-*H*-n(BSO(n + r), Q) induit par la suspension

BSO(ri)-+ BSO(n+r).
On sait que cette suspension donne un épimorphisme en cohomologie rationnelle

pour «impair. Il s'en suit par dualité que WQ est injectif. L'image de WQ est déterminée
de manière analogue.

Le théorème de Hilton sur l'homotopie d'un bouquet de sphères [4] donne alors
les groupes de cobordismes de plongements en codimension impaire tensorisés par les

nombres rationnels. On verra une méthode pour construire une base.

La suspension BSO (21+2)-+BSO (21'+2) induit en cohomologie rationnelle
l'homomorphisme Q [px.. .pv %1V+2] -? Q [pt.. .pai i+2] <ïui envoie pt sur p{ pour / < /,
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pl+l sur xli+2 et les variables d'indice plus grand que /+1 sur zéro. Par dualité et
identification canonique on en déduit que l'annulateur de l'image de WQ est engendré

par les monômes dans les classes de Pontrjagin divisibles par un/?f avec i>l+l et
l'annulateur du noyau est engendré par les classes U2tma, t entier >0.

Pour calculer l'homotopie rationnelle des espaces de Thom MSO(2l+2) et
MO (21+2) nous allons utiliser les fibrations principales associées à U et U2. Les
conclusions du théorème 2 résultant alors essentiellement de la proposition 1.

On peut faire correspondre à la classe entière U eH2l+ 2 (MSO(2l+2), Q) une
application/^ définie à homotopie près, de MSO(2l+2) dans l'espace d'Eilenberg-
MacLane#(Z,2/+2).

Soit n:Eu-+MSO(2l+2) le fibre induit par/y de la fibration des chemins avec

origine fixe dans K(Z92l+2). Ev-^MSO(2l+2) s'appelle la fibration principale
associée à U. La fibre est un espace d'Eilenberg-MacLane K(Z, 2/+1) donc une sphère

d'homologie rationnelle.
La suite exacte de Gysin se scinde en suites exactes courtes 0 -? i/'" 2l~1(MSO x

x(2/+2), Q)^ Hi+1 (MSO(2l+2), Q)n+ Hi+1(EV, Q)^0 de sorte que Ë*(EV, Q)
admet pour base les classes Um^ a^O (il faudrait écrire tt* (Uma)), et le produit de

deux classes quelconques est zéro.

L'application (p:SMSO(2l+l)^>MSO(2l+2) induit un homomorphisme en co-
homologie rationnelle qui envoie Uma sur U'mx, U' étant la suspension de la classe

de Thom dans la cohomologie de MS0(2l+l). D'autre part SMS0(2l+l) est
rationnellement un bouquet de sphères c'est-à-dire pour tout a il existe une application

ya:Sa->SMSO(2/4-1)envoyant U'ma sur un générateur de ff*(Sa) et telle que
V« ya • Va Sa -> SMSO (21+1 induise un isomorphisme en cohomologie rationnelle. On
a L<P'( Va^o 7a)]*(t/) 0 de sorte que par construction on peut relever <p-(V«*o 7«)

dans Ev,

V

V sa
**° 7a

SMSO (21 + 1) ^ MSO (21 + 2)

On remarque que q induit un isomorphisme en cohomologie rationnelle.
Par suite Ev a même type d'homotopie rationnel faible qu'un bouquet de sphères,

chaque sphère représentant une classe d'homologie ya duale à Um^oc est un /-uple
d'entiers positifs non nuls. Pour simplifier les notations ya désignera également la
classe d'homotopie de l'inclusion de la sphère correspondante dans le bouquet.

La suite exacte d'homotopie de E^ (MSO (21+2)) se scinde en suites exactes

courtesO-^i^, Q)^Kt(MSO(2l+2)9 Q)^ni^i(K(Z, 2/+1), Q)-»0defaçon que
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nt(EU9 Q)&ni(MSO(2l+2), Q) pour i^2l+2. En dimension 2/+2 la classed'homo-

topie yo de l'inclusion naturelle de S2l+ 2 dans MSO(2l+2) correspond par l'opérateur

bord à un générateur de n2l+1 (K(Z, 21+1)).
Par fonctorialité du produit de Whitehead n* (EUf Q) est une sous-algèbre de Lie

de n#(MSO(2l+2), Q) et y0 engendre additivement un espace complémentaire {y0}.
En utilisant le théorème de Hilton on peut ainsi donner une base de n* (MSO (21+2, g).
On vérifie que {y0} est aussi une sous-algèbre de Lie parce que [y0, yo]=O.

Malheureusement n*(MSO(2l+2), Q) n'est pas isomorphe en tant qu'algèbre
de Lie au produit direct de n* (EU9 Q) et de {y0}.

En effet [y0, ya] est en général un élément non nul dans n* (Ev, Q).
Pour le voir, remarquons qu'à toute classe £/mae#n+4|a| (MS0(n), Z), n 2l+2,

correspond une application fa de MS0(n) dans K(Z, « + 4|aQ. Leur produit donne

une application/de MS0(n) dans le produit correspondant F d'espaces d'Eilenberg-
MacLane. / induit un isomorphisme en cohomologie rationnelle jusqu'en dimension
2n + l de sorte que par dualité et le théorème de Whitehead généralisé il en est de

même jusqu'en dimension 2n + 6 pour l'homomorphisme induit en homotopie rationnelle.

Cela implique la nullité des produits de Whitehead \_y0, y0] et [y0, yj.
Montrons que [y0, y2] n'est pas zéro. En dimension inférieure à 2n+12, le noyau

de/* se réduit au sous-espace engendré par v Upx® Up1 — l/(g)Up\.
Soit Ev -* Y le fibre principal associé à v. La fibre est un espace d'Eilenberg-Mac-

Lane K(Z, 2n + l). Par construction/se relève en une application/: MS0(n)-+Ev
qui induit un isomorphisme en homotopie rationnelle jusqu'en dimension 2«+10.

En désignant par ga le composé de ya etfa on a le diagramme commutatif suivant:

Sn v Sn+8^^EV 4—î—K(Z, 2n + 7)
I

n

où les indices 0 et 2 sont les /-uples (0, 0,..., 0) et (2, 0, 0, 0).
La classe (g0 xg2)*(v) provient d'une classe de cohomologie relative qui représente

l'obstruction à étendre le relèvement govg2 de g0 xg2 | SnvSn+8 kSnxSn+8.
Cette obstruction s'interprète comme homomorphisme

œ:H2n+s(Sn x Sn+\ Sn v Sn+\ Z)-+n2n+7(K(Z9 2n + 7))

Legroupe#2n+8(SnxSn+8, Snv£rt+8,Z) est isomorphe à Z et l'image d'un
générateur par l'application composée /* * co coïncide au signe près, avec le produit de

Whitehead [g0, g2~]. Comme co est non nul et que i* est injectif on a [g0, g2] ^0-
Par identification de rang [y0, y2~\ doit être un multiple de [yl9 yj. Un calcul de

F. P. Peterson montre la relation [y0, y2~\=2[yu yj.



Cobordismes de plongéments et produits homotopiques 285

[jo> 7a] sera toujours une combinaison linéaire des produits [ya,, ya»~\ avec
a' + a" a, a' et a'VO. mais il semble assez difficile de déterminer les coefficients en
toute généralité.

Remarquons que tous les raisonnements faits pour MSO(2l+2) s'appliquent
directement à MO(21+2) dès que l'on a montré que EUti a même type d'homotopie
rationnelle qu'un bouquet de sphères.

LEMME 1. L'application naturelle s : MSO (21+ 2) -> MO (21+ 2) qui oublie l'orientation

induit en cohomologie rationnelle un homomorphisme e* qui envoie Ujma sur

La suite exacte de Gysin du revêtement BSO (21+2)-^ BO (21+2) se scinde et p*
envoie xTma sur xma. Par naturalité de Visomorphisme de Thom on a le résultat.

LEMME 2. La complexification X:MSO(21+2)-*MU(21+2) induit en cohomologie

rationnelle Vhomomorphisme X* qui envoie Ucc^1 ...c^] sur U2p\1 ...p"1. Soit 2l+2 n.

On a

ï

et par définition

BSOn->BUn
Ào

Soit Io l'application induite par Xo entre les thomifiés des fibres

En particulier 1% Uc<%... ca2\ Ûp\' ...p*1 où 0 est la classe de Thom du complexifié £n®C
du fibre n-universel D'autre part on a le diagramme commutatif suivant :

i 4 I
BSOn-> BSOn-7BSOnxBSOn

où À est l'application diagonale et q choisi de sorte que le composé desflèches supérieures

soit l'application diagonale.
Si ?X£n®C) désigne le thomifié de £,n®C on a le diagramme commutatif suivant :

MSOn > MSOn a MSOn

•\
Par définition du cup-produit d*(Umai®Uma2)= U2mai+(X2. Par naturalité de

Visomorphisme de Thom Â*(Um(Xi®Uma2)=Ûm<Xl+<X2. Par commutativité Q*Ûmai+(K2

U2mmi+a2 mais X l0 • g=> A*U<&.. .c*2\ U2pai -fi1 (cq.f.d).
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Considérons le diagramme commutatif

MSOH -î-> MUn

MOn

On voit que X* va sur l'image de e* et comme e* est monomorphe on conclut que f*
est surjectif Plus précisémentf*(Uccl\.xa£)=Ulp\\..p<xll. SoitEUc->MUn lafibration
principale associée à Uc.

LEMME 3. EUc a même type d'homotopie rationnelfaible qu'un wedge de sphères.

Sia=*((xl...cin_1)S2MUn-.1ttQ\/aSa avec Sa une sphère de dimension 2n + 2 Yj=1 *a*

/ î
V S

l'application de suspension S2MUn-1->MUn restreinte à V«*o $a se relève dans EUc

et la suite exacte de Gysin en cohomologie rationnelle pour la fibration principale montre

que ce relèvement induit un isomorphisme en cohomologie rationnelle donc aussi en

homotopie rationnelle.

PROPOSITION. L'espace total EUt2 de lafibration principale sur MO (21+2) associée

à 11% a même type d'homotopie rationnel faible qu'un wedge de sphères.

Soit « 2/+2. Par construction des fibrations principales on a le diagramme
commutatif

EUr2 >EUc

"I
MOn >MUn

La surjectivité def* et tt* implique celle de f*.f induit un homomorphisme de la suite

spectrale d'Eilenberg-Moore de Ev dans celle de EJj\. Cet homomorphisme sera sur-

jectif dans les termes E2 parce que H*(EUc; Q) et H*(EUt2; Q) ont des structures
d'anneaux triviales. (Les cup-produits d'éléments de degré positifs sont nuls.)

Or EUc est rationnellement un bouquet de sphères donc toutes les différentielles dans

la suite spectrale d'Eilenberg-Moore associée à EUc sont zéros.

On en déduit que la suite spectrale d'Eilenberg-Moore de EUt2 est triviale et que par
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conséquent EUti a même type d'homotopie rationnelfaible qu'un wedge de sphères. [3].
Ces considérations achèvent la démonstration du théorème 2. D'après le lemme 1,

Phomomorphisme e*, envoie V\ma sur U2ma.
C'est donc un monomorphisme.

Par dualité e*:H*(MSO(n); Q)-+H*(MO(n); Q) est surjectif. On peut donc dire
que tout plongement stable provient par chirurgie d'une immersion orientée.

Un plongement est stable si la classe d'homotopie rationnelle qu'il détermine dans
l'espace de Thom correspondant n'est pas annulée par l'homomorphisme d'Hurewicz.

III. Interprétation géométrique des résultats

PROPOSITION 3.1. L'image de l'application naturelle e:MSO(n)->MO(n) en homo-

topie rationelle est contenue dans le noyau de /*Q.

yaG7r* (MSO («), Q) est dual à Um^ de sorte que

(UTm'ay e* (y.)> <8*l/rma,, ya> <l/2ma,, ya> 0

pour tout et!. Il en résulte /*Q*e*(ya)=0.
L'homomorphisme hQ • s* est alors zéro parce que l'homotopie rationnelle de MSO(n)

est engendrée par les produits de Whitehead itérés des ya et que e* est multiplicatif.

COROLLAIRE. Pour tout plongement (V,f) représentant un élément stable non
nul de n*(MO(n),Q) la variété V est nécessairement non orientable. Comme nous
l'avons déjà remarqué, les plongéments qui représentent des éléments stables de

n*(MO(n), Q) proviennent par une chirurgie nonorienté d'une immersion orientée. On

peut montrer, par exemple que l'immersion standard de S21 dans R4' avec un point
double est cobordante comme immersion non orientée à un plongement de la bouteille
de Klein généralisée. Cette bouteille de Klein est obtenue en recollant les extrémités,
S^-^Oet S21'^!, de S^-^xQ, 1] à l'aide d'un difféomorphisme de degré -1.

Soient (flf V1)et(f2, V2) desplongéments représentant des classes d'homotopie oci et

a2deM^m^dimV^ m2 dimV2. Les applications id xf2:Sn+m~l x V2t-^Sn+mi~1 x
xDn+nt2~l et /i x id : Vt x sn+nt2~ * fournissent un plongement de Sn+m ~i x V2 + Vx x

produit de Whitehead [ocl9 a2].
Cela découle directement des définitions et de la construction de Thom-Pontrjagin.
L'itération convenable de ces enlacements nous fournira une base des groupes de

cobordismes de plongéments tensorisés par Q. En effet, les produits de Whitehead
basiques, des classes d'homotopie représentées par les inclusions yB:5ac:V Sai

constituent une base de l'homotopie rationnelle de V £«•
a

ce

PROPOSITION 3.2. La suspension <p : SMSO (n -1 -> MSO (n) induit un épimor-
phisme en homotopie rationnelle.
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On distingue les deux cas « 2/4-2, 2/+1
a) « 2/+1 Vhomomorphisme induit par cp en homologie rationnel est surjectifet les

deux espaces sont rationnellement des bouquets de sphères

b)n=2l + 2 n*(MSO(2l + 2)9 Q)^n^(Eu, Q)0{yo)- De P^s en homotopie

rationnelle l'application composée \JaS^SMS0(2l+ \)^->MSO(2l+2)envoie
n* (V«*o £«> Q) isomorphisquement sur n* (Ev, Q) et n* (So, Q) surjectivement
sur {y0} {cf. calcul de Vhomotopie rationnelle de MSO(2l+2)).

COROLLAIRE. Un multiple convenable de tout plongement orienté est cobordant
à un plongement avec champ de vecteur normal non nul

Pour tout plongement orienté/: Vk->Rn+k, n 2l+l, Boéchat et Haefliger [1] ont
introduit une classe w/e^-1(Ffc, Z) telle que Wma(V,f) (Wf'f*ma) [F] définisse

un homomorphisme Wma:nn+k(MSO(n)-»Z, ma étant un monôme quelconque dans les

classes de PontrjaginP\>..pi>
On observe que Wma ne s'annule pas sur [y0, yj et que tous les autres produits de

Whiteheadainsi que les éléments stables se trouvent sans son noyau. Les homomorphismes

Wmafournissent ainsi lespremiers exemples d'invariants non stablespour les cobordismes
de plongements. Il serait intéressant d'exhiber, du moins rationnellement un système
complet de tels invariants.
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