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Cobordismes de plongements et produits homotopiques

O. BURLET

Introduction

Soient m et n des entiers positifs. On se propose d’étudier les plongements de
variétés closes de dimension m dans R**™ Nous allons considérer indépendamment
des variétés orientées et non orientées. Si V est orientée, — V' désignera ¥ munie de
’orientation opposée, et si V' est non orientée — V est égale a V.

Deux plongements (V;, f;) (=0, 1) seront équivalents s’il existe une variété W
dont le bord 0 W est la réunion disjointe V,+ (—V;) de V, et — V], et un plongement f
de W dans R"*™ x I qui, restreint & V;, donne le plongement f; suivi de I’inclusion
R"*""=R"""x (i)cR"+™xI (i=0,1). On dit que (W, f) est un cobordisme de
(Vos fo) Vers (Vlafl)

Pour cette relation d’équivalence, la classification des plongements se raméne 2
un probléme d’homotopie. Les classes de cobordismes de plongements de variétés
de dimension m dans R"*™ forment un groupe isomorphe a =,,,(M,), avec M,
= MSO, ou MO, suivant que1’on considére des variétés orientées ounon (R. Thom [9]).

A T’aide du théoréme des immersions de Smale-Hirsch et les propriétés de stabilité
des variétés de Stiefel, Wells donne une interprétation géométrique des groupes d’homo-
topie stables de M,,. Les classes de cobordismes d’immersions de variétés de dimension
m dans R**™ forment un groupe isomorphe a =, ,,(M,). (Wells [10].) Par suspension
de 7, ,.(M,) dans le spectre formé par les espaces M,, n=1, 2,..., on trouve le groupe
7, (M) qui s’interpréte comme le groupe des classes de cobordismes de variétés closes
de dimension m. Les homomorphismes naturels de suspension

0. Ty+m (Mn) - 7tflt+m (Mn)
¥y, . (M,) - =, (M)

s’interprétent géométriquement. o associe a la classe de cobordisme d’un plongement
ce plongement considéré comme immersion et ¥ associe a la classe de cobordisme
d’une immersion (V’, ") la classe de cobordisme de ¥’. Nous voulons calculer ces
groupes et homomorphismes tensorisés par le corps Q des nombres rationnels.
Nous adopterons les notations =, ., (M,, Q) pour =, ., (M,)®Q et 6 pour c®Q.
» désigne un monomorphisme et —» un épimorphisme. Une classe de cohomologie
de M, a coefficients rationnels sera considérée par composition avec ’homomorphisme
d’Hurewicz comme forme linéaire sur n, (M,, Q). Remarquons que 7 (M,, Q) s’iden-
tifie 3 A, (M,, Q) en vertu du théoréme de Serre sur les groupes d’homotopie stables
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des spheres et le théoréme de comparaison de théories d’homologie. Avec cette identi-
fication 64 devient ’homomorphisme d’Hurewicz /q. Les théorémes principaux sont
les suivants:

THEOREME 1. Pour n=2I+1,1>1, MO, a le type d’homotopie rationnel faible
d'un point et MSO,, celui du bouquet de sphéres standards S, de dimensions n+4 |«
avec a=(0y, &y, ..., &), a; entiers positifs, et |a| =Y .- ; i*;.

Un théoréme de Hilton donne alors la description de #, (MSO,, Q) et de I’homo-
morphisme &g [4].

L’homomorphisme ¥y, est injectif et I’annulateur de 1'image est engendré par les
mondmes dans les classes de Pontrjagin divisibles par une classe p; avec i>1.

On se réfere a I’identification de module gradué (7, (M SO, Q)*~Q [p,p,..-0i---]
p; étant de degré 4i (R. Thom [9]).

THEOREME 2. Pour n=2I+2, 120, n,(MSO(n), Q) est la somme directe de
I'espace vectoriel {y,} engendré par la classe d’homotopie v, de I'inclusion naturelle
S"<MSO (n) et I'algébre de Lie libre engendrée par des éléments y, duaux aux classes
de cohomologie Um,, a#0. On consideére ici le crochet défini par le produit de White-
head. m,=p5'...pY, les a, sont des entiers positifs, p; désigne la i-éme classe de Pontrjagin
et U la classe de Thom du fibré n-universel. oq restreint a I'espace vectoriel engendré
par les y, est injectif et tous les produits de Whitehead sont envoyés sur zéro.

L’annulateur du noyau de ¥ est engendré par les formes U m,, r=1 et celui de
I’image par les mondmes dans les classes de Pontrjagin divisibles par un p; avec i>I+1.

Pour n=2/+2, et n,(MO,, Q) est la somme directe de ’espace vectoriel {y,}
engendré par un élément dual 3 UZ et ’algébre de Lie libre engendrée par des éléments
7. duaux aux classes de cohomologie U2 m,, a#0. Uy désigne la classe de Thom
du fibré universel 4 coefficients dans les nombres rationnels tordus par le faisceau
des orientations. oy est formellement le méme homomorphisme que dans le cas
orienté.

Pour n pair 7, (M,; Q) est comme algebre de Lie graduée une extension non
triviale de Q par une algebre de Lie libre.

Conséquences:

a. En général il y a une multitude de plongements non cobordants a 0, qui sont
cobordants & 0 si on les considére comme immersions.
De plus ces plongements sont décrits explicitement par des enlacements.

b. Dans le cas orienté, pour qu’un multiple d’une immersion soit cobordant a un
plongement il suffit que la classe d’Euler du fibre normal & I’immersion soit O.

c. Il résulte des considérations sur I’homotopie rationnelle d’espaces de Thom
orientés que n, (SMSO(n—1), Q) » n, (MSO(n), Q) est surjectif. Cela signifie
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qu’un multiple convenable de tout plongement est cobordant & un plongement
avec champ de vecteur normal non nul.

Dans un premier paragraphe, nous allons étudier ’homotopie rationnelle d’espaces
simplement connexes. L’homomorphisme d’Hurewicz va jouer un role prépondérant.
En effet, de sa surjectivité on pourra déduire immédiatement que ’espace en question a
méme type d’homotopie rationnel faible qu'un bouquet de sphéres. Les démonstrations
s’appuient sur le théoréme de Cartan-Serre qui donne I’homotopie rationnelle d’un
H-espace [ 6], les théorémes de structure d’algébres de Hopf connexes cocommutatives
[6] et la suite spectrale de la fibration des chemins avec origine fixe sur un espace
simplement connexe. Le paragraphe suivant sera consacré au cas particulier des
espaces de Thom. Pour terminer on traitera le probléme des relations entre produits
de Whitehead et on donnera une interprétation géométrique des résultats.

Je tiens & exprimer ma gratitude au professeur A. Haefliger qui m’a suggéré ce
travail, ainsi qu’au professeur J. C. Moore pour ses bons conseils.

Mes remerciements vont aussi au professeur F. P. Peterson.

I. Homotopie rationnelle

Pour un espace simplement connexe X I’espace des lacets QX est un H-groupe
connexe. L’application diagonale induit un morphisme 4: H, (2X, K) - H, (QX, K)®
®H, (X, K) et la multiplication un morphisme ¢:H,(QX, K)®H,(QX, K) —»
—-H, (X, K).

La projection de QX sur le lacet constant induit une augmentation ¢: H, (X, K) -
— K et I'unité n: K —» H, (2X, K) pour ¢ est définie par I'inclusion du lacet constant
dans QX.

H, (QX, K) muni de ¢, 4, &, n est une algébre de Hopf connexe cocommutative
(cf. Milnor-Moore [6]).

Si A est une algébre de Hopf on notera I4 le noyau de I’augmentation. Dans
I’exemple précédent 14 est I’homologie réduite de QX.

A cause de la décomposition 4A=K@IA, la comultiplication fournit une applica-
tion naturelle 14 - I4®IA. Le noyau PA de cette application s’appelle I’espace des
¢léments primitifs.

Autrement dit un élément x est primitif s’il est de degré positif et si Ax=x@1+
+1®x ou 4 est la comultiplication.

De fagon duale la multiplication donne par restriction une application JAQIA4 —
— I4 dont le conoyau QA s’appelle I’espace des éléments indécomposables. Si A4 est
connexe cocommutative I’application composée PAcIA4 — QA est surjective.

THEOREME 1. Soit X un espace simplement connexe. Alors la suspension homo-
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logique sQ:ﬁ,|= (X, Q) > H,.,(X, Q) se factorise par la projection canonique
H,(2X, Q) » QH,(QX, Q) sur les éléments indécomposables.

Démonstration du Théoréme 1

Soit X un espace simplement connexe et EX — X la fibration des chemins d’origine
fixe avec fibre I’espace des lacets QX. Nous pouvons considérer QX comme fibré sur
un point.

Soit E’={E,’,} la suite spectrale de ce fibré trivial et soit E= {E] } la suite spectrale
de la fibration EX - X.

L’action naturelle de QX sur EX induit alors pour tout »>2 un homomorphisme
ViES QE,,~ EJ s+ avec d (xvy)=(—1)*"xvd"y qui donne le produit de
Pontrjagin habituel par restriction a la fibre c’est-a-dire de Eg% ®Eg, dans E} , ..

Pour démontrer le théoréme il suffit de voir que la supension homologique s’annule
sur les produits de Pontrjagin de classes de dimensions positives.

Ecrivons la décomposition de ’homomorphisme de suspension pour g=1 en
tenant compte du fait que E5=0, (s, 1)#(0, 0). H,4, (X, Q)~E2, | ¢2-+> E¥l],
£ E§) « -« Ej ,~H (QX, Q) Soit (xvy)eE ., xeE} ., yeES ,_, 0<r<g
yeE; .-, estunbord dans E} . pour j<g—r+1. Ilexiste donc weEJ ,_,_;, avec
di(xvw)=+(xvy).

Comme j<g cela implique que (x v y) est envoyé sur zéro dans E%'] c’est-a-dire
(x v y) est dans le noyau de s

PROPOSITION 1. Si sq est surjectif, X a méme type d’homotopie rationnel faible
qu’un bouquet de sphéres.

L’algébre de Hopf H, (QX, Q) étant connexe cocommutative, 1’application na-
turelle PH, (X, Q) - QH, (2X, Q) est surjective. En vertu du théoréme 1, il en est
de méme pour le composé de I'inclusion de PH, (QX, Q) dans H, (QX, Q) suivi de la
suspension.

A, (92X, Q) > Hei1 (X, Q)
1 The
PH, (2X, Q) ~ m, (X, Q) ® my+; (X, Q)

La commutativité de ce diagramme nous assure la surjectivité de sg. L’isomorphisme
PH, (2X, Q)~n, (2X, Q) est garanti par le théoréme de Cartan-Serre [6].
Choisissons une base (x,) de 4, (X, Q). Pour chaque x, on peut trouver une sphére
orientée S, et une application S, — X qui envoie la classe fondamentale de S, sur x,.
Le wedge de ces applications fournit une application de /.S, - X qui induit un iso-
morphisme de Hy (VS,, Q) sur H, (X, Q). Par le théoréme de Whitehead généralisé
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I’application dont il est question induit aussi un isomorphisme de m, (VS,, Q) sur
. (X, Q).

En particulier toute suspension a le type d’homotopie rationnel faible d’un bou-
quet de sphéres. Soit X=.SY, on a une inclusion naturelle ¥ — QSY et le diagramme
suivant commute.

A, (Y)-> 0,(QSY)
N\
= \ 18
Hyy 1 (SY)

L’isomorphisme est donné par la suite exacte réduite du cdne sur ¥ modulo la base.

Désignons par D" le disque standard dans R” et par S"~ ! =0D" son bord.

Pour des entiers positifs #, p, ¢ quelconques nous allons choisir une fois pour
toutes des identifications de D"/S"~! avec S” et de S+~ avec 9(DP x DY).

Comme S" est alors pointé de maniere naturelle on modifiera éventuellement la
seconde identification de sorte que par recollement des applications canoniques

D?x S ' > D?>SP et SP7' x DT> D? - §?
on obtienne une application pointée bien déterminée

St lxpPx 57t | SPTIx DI SPyv S
Sa-1x8a—-1
S?v S?est le bouquet ou wedge des sphéres S? et S? c’est-a-dire leur réunion disjointe
dans laquelle on a identifié¢ les points bases.

DEFINITION. Si aen,(X, x,) et fen,(X, x,) on appelle produit de Whitehead de
« et B la classe d’homotopie [a, B] de I'application composée SP*1™ ! — SPv §1 T x
oil & et  sont des représentants de a et p [3].

II. Homotopie rationnelle des espaces de Thom

Rappelons que I’anneau de cohomologie rationnelle de BSO (n) est isomorphe a
Palgebre de polyndmes Q[ p;...pp-1y21%-] dans les classes de Pontrjagin et d’Euler
P1---Ppin—1)/21 €t X» du fibré n-universel orienté avec la relation yx,=0 pour n impair.
U désignera la classe de Thom de ce fibre. Comme d’habitude [(n—1)/2] est la partie
entiére de (n—1)/2 [9].

L’isomorphisme de Thom dit que H* (MSO(n), Q) est engendré librement par U
comme module sur I’anneau de cohomologie rationnelle de BSO(n). En outre la
structure multiplicative de H* (MSO(n, Q) est donnée par Uav Ud'=U(yvauva’)
ou x, et a, a’ sont des classes de cohomologie de BSO (n).
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PROPOSITION (1.2). Pour n=2I+1 la suspension homologique sQ:ﬁ* (2MSO x
x(n), Q)= H, . (MSO(n), Q) est surjective. En effet Iapplication de suspension
@:SMSO(n—1)—> MSO(n) induit un monomorphisme @*:H*(MSO(n), Q)— H* x
X (SMSO(n—1), Q) puisque les éléments de base U;'p%:...p;" sont envoyés sur les
éléments Uy, ...p[L X33, Par passage au dual @ induit un épimorphisme en homologie
rationnelle.

Considérons alors le diagramme commutatif suivant:

A,(2SMSO (n — 1), Q)3 A, ,(SMS0 (n — 1), Q)
1 (20 Lo
a, (@MSO0 (n), Q) Tﬁ*ﬂ (MsO0 (n), Q)

On voit tout de suite que s, est surjectif.

En vertu de la proposition (1.1), M.SO (n) a donc méme type d’homotopie rationnel
faible qu’un bouquet de sphéres. Chaque sphére de ce bouquet représente une classe
d’homologie y, duale a2 Um, avec m,=p}'...p;" les a; étant des entiers positifs.

La suite exacte de Gysin du revétement a deux feuillets BSO (n) — BO (n) et 'iso-
morphisme de Thom montrent que H, (MO (n), Q)=0 pour n=2I/+1. Pour n=2/+2,
H*(MO((n), Q) est l'algtbre libre engendrée par les classes Uzm, avec les relations
Uim, @Uim,,=U;®Uimgy, 1., ob Uy désigne la classe de Thom du fibré universel
non orienté avec coefficients dans les nombres rationnels tordus par le faisceau des
orientations.

Pour achever la démonstration du théoréme 1, il nous reste & étudier ’homomor-
phisme ¥, dans le cas n impair. En effet le théoréme de Whitehead généralisé nous
assure que MO (2/+1) a méme type d’homotopie rationnel faible qu’un point.

Par définition ¥, est le composé des applications suivantes:

ny (MSO (n),Q)~ H, (MSO (n),Q)~ A, ,,(SMSO (n),Q)—» A, ,,(MSO (n+r1),Q)

ce dernier groupe étant isomorphe a =, _,(MSO, Q) pour r assez grand.

La naturalit¢ de I’isomorphisme de Thom montre I’équivalence entre ¥, et
I’homomorphisme. H,_,(BSO(n), Q) — H,_,(BSO(n+r), Q) induit par la suspen-
sion BSO(n)— BSO(n+r).

On sait que cette suspension donne un épimorphisme en cohomologie rationnelle
pour nimpair. Il s’en suit par dualité que ¥, est injectif. L’image de ¥, est déterminée
de maniére analogue.

Le théoréme de Hilton sur I’homotopie d’un bouquet de sphéres [4] donne alors
les groupes de cobordismes de plongements en codimension impaire tensorisés par les
nombres rationnels. On verra une méthode pour construire une base.

La suspension BSO(2[+2)—BSO(2/’+2) induit en cohomologie rationnelle

I’homomorphisme Q[p;...py X2104+2] = Q[P1---PiX21+2] qui envoie p; sur p; pour i<,
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Pi+1 SUT X314, et les variables d’indice plus grand que /+1 sur zéro. Par dualité et
identification canonique on en déduit que ’annulateur de I'image de ¥, est engendré
par les mondmes dans les classes de Pontrjagin divisibles par un p; avec i>I/+1 et
I’annulateur du noyau est engendré par les classes U?'m,, ¢ entier >0.

Pour calculer I’homotopie rationnelle des espaces de Thom MSO(2/+2) et
MO(21+2) nous allons utiliser les fibrations principales associées 3 U et UZ. Les
conclusions du théoréme 2 résultant alors essentiellement de la proposition 1.

On peut faire correspondre 2 la classe entiere Ue H**2(MSO(21+2), Q) une
application fy;, définie & homotopie pres, de MSO (2/+2) dans I’espace d’Eilenberg-
MacLane K(Z, 2/+2).

Soit w: Ey; — MSO (21+2) le fibré induit par f; de la fibration des chemins avec
origine fixe dans K(Z, 2[+2). E;~ MSO(2/+2) s’appelle la fibration principale
associée & U. La fibre est un espace d’Eilenberg-MacLane K(Z, 2/+ 1) donc une sphére
d’homologie rationnelle.

La suite exacte de Gysin se scinde en suites exactes courtes 0 — H'~ 21 (MSO x
x (2+2), Q)5 H'* 1 (MSOQ2I+2), Q)= H'*' (Ey, Q)—0 de sorte que H*(Ey, Q)
admet pour base les classes Um,, a#0 (il faudrait écrire n* (Um,)), et le produit de
deux classes quelconques est zéro.

L’application ¢:SMSO (2/4+1)— MSO(2]+2) induit un homomorphisme en co-
homologie rationnelle qui envoie Um, sur U'm,, U’ étant la suspension de la classe
de Thom dans la cohomologie de MSO(2/+1). D’autre part SMSO (2/+1) est
rationnellement un bouquet de sphéres c’est-a-dire pour tout « il existe une applica-
tion y,:S,— SMSO (214 1) envoyant U’m, sur un générateur de H*(S,) et telle que
VVa:VeS;— SMSO (21+ 1) induise un isomorphisme en cohomologie rationnelle. On
a[@ ( Varo 72)]*(U)=0 de sorte que par construction on peut relever @ (V0 V4)
dans E,,.

Ey
4

o

«#0 Ya— @
V §,——SMS0 (2]l + 1)> MSO (21 + 2)

a#0
On remarque que ¢ induit un isomorphisme en cohomologie rationnelle.

Par suite E;; a méme type d’homotopie rationnel faible qu’un bouquet de spheres,
chaque sphére représentant une classe d’homologie y, duale & Um, a est un l-uple
d’entiers positifs non nuls. Pour simplifier les notations y, désignera également la
classe d’homotopie de I’inclusion de la sphére correspondante dans le bouquet.

La suite exacte d’homotopie de Ey= (MSO(2/+2)) se scinde en suites exactes
courtes 0 — m;(Ey, Q)= 7, (MSO(21+2), Q)> ;1 (K(Z, 21+1), Q)—0de fagon que
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n;(Ey, Q)gni (MSO(21+2), Q) pour i#2/+2. En dimension 2/+2 la classe d’homo-

topie 7y, de I'inclusion naturelle de S2** 2 dans MSO (2/+2) correspond par I’opéra-
teur bord & un générateur de n,,,, (K(Z, 21+1)).

Par fonctorialité du produit de Whitehead =, (Ey, Q) est une sous-algébre de Lie
de 7, (MSO(2I+2), Q) et y, engendre additivement un espace complémentaire {y,}.
En utilisant le théoréme de Hilton on peut ainsi donner une base de r,, (M SO (2/+2, Q).
On vérifie que {y,} est aussi une sous-algebre de Lie parce que [y,, 7o]=0.

Malheureusement 7, (MSO(2/+2), Q) n’est pas isomorphe en tant qu’algébre
de Lie au produit direct de 7, (Ey, Q) et de {y,}.

En effet [yo, 7,] est en général un élément non nul dans 7, (Ey, Q).

Pour le voir, remarquons qu’a toute classe Um,e H****| (MSO(n), Z), n=21+2,
correspond une application f, de MSO (n) dans K(Z, n+4|«|). Leur produit donne
une application f'de MSO (n) dans le produit correspondant ¥ d’espaces d’Eilenberg-
MacLane. f induit un isomorphisme en cohomologie rationnelle jusqu’en dimension
2n+7 de sorte que par dualité et le théoréme de Whitehead généralisé il en est de
méme jusqu’en dimension 2r+ 6 pour ’homomorphisme induit en homotopie ration-
nelle. Cela implique la nullité des produits de Whitehead [y,, yo] €t [0, 71]-

Montrons que [y, ¥, ] n’est pas zéro. En dimension inférieure a 2n+ 12, le noyau
de f* se réduit au sous-espace engendré par v=Up, ® Up, — UQ Up3.

Soit E, — Y le fibré principal associé a v. La fibre est un espace d’Eilenberg-Mac-
Lane K(Z, 2n+7). Par construction f se reléve en une application f: MSO (n)— E,
qui induit un isomorphisme en homotopie rationnelle jusqu’en dimension 2n+ 10.

En désignant par g, le composé de y, et f, on a le diagramme commutatif suivant:

go Vv 82

styste Y L R(Z,2n+7)

n j
Sn % Sn+8 8o X g2 Y
ou les indices 0 et 2 sont les /~uples (0, 0,..., 0) et (2, 0, 0, 0).
La classe (go X g,)*(v) provient d’une classe de cohomologie relative qui repré-
sente I’obstruction & étendre le relévement g, v g, de go Xg, | S"v S"*8 4 S"x §"*8,

Cette obstruction s’interpréte comme homomorphisme
@ Hyprg(S" % S"*8, 8" v S" %, Z) > m3p 11 (K(Z, 20 + 7))

Le groupe H,,,5(S"xS"*8, S"v §"*8, Z) est isomorphe & Z et I'image d’un
génerateur par I’application composée i, * w coincide au signe pres, avec le produit de
Whitehead [g,, g,]. Comme o est non nul et que i, est injectif on a [g,, g,]#0.

Par identification de rang [y,, 7, ] doit &tre un multiple de [y,, 7, ]. Un calcul de
F. P. Peterson montre la relation [y¢, 2]=2[71, 71]-



Cobordismes de plongéments et produits homotopiques 285

[y0> 7.] sera toujours une combinaison linéaire des produits [y, 7,] avec
o' +a" =0, o' et a” #0. mais il semble assez difficile de déterminer les coefficients en
toute généralité.

Remarquons que tous les raisonnements faits pour MSO (2/+2) s’appliquent
directement & MO (2/+2) dés que I’on a montré que Ey_» a méme type d’homotopie
rationnelle qu'un bouquet de spheres.

LEMME 1. L’application naturelle e: MSO (21+2) — MO (21+2) qui oublie’orien-
tation induit en cohomologie rationnelle un homomorphisme ¢* qui envoie Uzm, sur
Um,.

La suite exacte de Gysin du revétement BSO (21+2)-5 BO (21+2) se scinde et p*
envoie yrm, sur ym,. Par naturalité de I'isomorphisme de Thom on a le résultat.

LEMME 2. La complexification A: MSO (21+2)— MU(21+2) induit en cohomo-
logie rationnelle ' homomorphisme A* qui envoie Ucy'...c5t sur Up5t.. pit. Soit 21+ 2=n.
Ona
éc
!
BSO,— BU,
Ao

et par définition

I§§§=6n®C. Soit A, !’application induite par A, entre les thomifiés des fibrés
ES et £,®C.

En particulier J§Ucc%...c5=Up3...p}" on U est la classe de Thom du complexifié £,®C
du fibré n-universel. D’autre part on a le diagramme commutatif suivant :

646 @Che xe,

} l l
BSO,— BSO, — BSO, x BSO,

ou A est I'application diagonale et ¢ choisi de sorte que le composé des fléches supérieures
soit I'application diagonale.
Si T(¢,®C) désigne le thomifié de &,QC on a le diagramme commutatif suivant :

MSo, MSO0, A MSO,

N oA
T(®C)
Par définition du cup-produit d* (Um, ® Um,,) = U*m,, .,,. Par naturalité de Iiso-
morphisme de Thom A*(Um, ®Um, )=0m,, ,,,. Par commutativité ¢*Om,,,,,

=Um,, 1o, mais A=1y 0= A*¥Uccs...ci=U%p%..p"  (c.q.fd).
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Considérons le diagramme commutatif

M5S0, —— MU,
AN /
2N\ 4
Mo,

On voit que A* va sur I'image de ¢* et comme &* est monomorphe on conclut que f*
est surjectif. Plus précisément f*(Ucc'...c5)= UZp%...p¢. Soit Eyo— MU, la fibration
principale associée a U.

LEMME 3. Ey_ a méme type d’ homotopie rationnel faible qu'un wedge de sphéres.
Sia=(oy...0,_1) S?MU,_1 =4V ,S, avec S, une sphére de dimension 2n+2 Yool

Ey,

/1
V S,»MU,

a¥0

I'application de suspension S*MU,_, — MU, restreinte @ \/ 5+, S, se reléve dans Ey c
et la suite exacte de Gysin en cohomologie rationnelle pour la fibration principale montre
que ce relévement induit un isomorphisme en cohomologie rationnelle donc aussi en
homotopie rationnelle.

PROPOSITION. L’espace total Ey, . de la fibration principale sur MO (21+2) associée
a UZ a méme type d’homotopie rationnel faible qu’un wedge de sphéres.

Soit n=2Il+2. Par construction des fibrations principales on a le diagramme com-
mutatif

7
EUTz R EUC

]

MO,— MU,

La surjectivité de f* et n* implique celle de f*. f induit un homomorphisme de la suite
spectrale d’Eilenberg-Moore de Ey_ dans celle de EUZ. Cet homomorphisme sera sur-
Jectif dans les termes E* parce que H*(Ey,; Q) et H*(Ey,2; Q) ont des structures
d’anneaux triviales. (Les cup-produits d’éléments de degré positifs sont nuls.)

Or Ey est rationnellement un bouquet de sphéres donc toutes les différentielles dans
la suite spectrale d’Eilenberg-Moore associée a Ey  sont zéros.

On en déduit que la suite spectrale d’Eilenberg-Moore de Ey. . est triviale et que par
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conséquent Ey, . a méme type d’homotopie rationnel faible qu'un wedge de sphéres. [3].
Ces considérations achévent la démonstration du théoréme 2. D’aprés le lemme 1,
’homomorphisme ¢*, envoie Uzm, sur U*m
C’est donc un monomorphisme.
Par dualité e, : H, (MSO(n); Q) — H,(MO(n); Q) est surjectif. On peut donc dire
que tout plongement stable provient par chirurgie d’'une immersion orientée.
Un plongement est stable si la classe d’homotopie rationnelle qu’il détermine dans
I’espace de Thom correspondant n’est pas annulée par ’homomorphisme d’Hurewicz.

III. Interprétation geométrique des resultats

PROPOSITION 3.1. L ’image de I’application naturelle ¢:MSO (n)— MO (n) en homo-
topie rationelle est contenue dans le noyau de hy,.
Y.E7x (MSO (n), Q) est dual @ Um, de sorte que

<UTm;’ Ex (ya)> = <8*UTma” Ya> = <U2ma" 'Yzz> =0
pour tout o, Il en résulte hy- &, (y,) =0.

L’homomorphisme hq - &, est alors zéro parce que I’ homotopie rationnelle de M SO (n)
est engendrée par les produits de Whitehead itérés des vy, et que &, est multiplicatif.

COROLLAIRE. Pour tout plongement (V, f) représentant un élément stable non
nul de m,(MO(n), Q) la variété V est nécessairement non orientable. Comme nous
I"avons déja remarqué, les plongements qui représentent des éléments stables de
T (MO (n), Q) proviennent par une chirurgie nonorienté d’une immersion orientée. On
peut montrer, par exemple que l’immersion standard de S*' dans R*' avec un point
double est cobordante comme immersion non orientée a un plongement de la bouteille
de Klein généralisée. Cette bouteille de Klein est obtenue en recollant les extremités,
S* 1x0et S2'71x 1, de S* [ %0, 1] a I’aide d’un difféomorphisme de degré —1.

Soient (f1, V) et (f3, V,) des plongements représentant des classes d’homotopie o, et
o, de M, m, =dimV,, m,=dimV,. Les applications id x f,: S"*™ ! x V, —» 8" "™~ 1 x
x D" op £ xid: V, x 8" ™1 fournissent un plongement de S"*™ 1 x V,+V, x
X S"tm=l gapg §Artmitme=1_ gnimi=1y prtm primiggritme=l gy représente le
produit de Whitehead [a,, o, ].

Cela découle directement des définitions et de la construction de Thom-Pontrjagin.

L’itération convenable de ces enlacements nous fournira une base des groupes de
cobordismes de plongements tensorisés par Q. En effet, les produits de Whitehead
basiques, des classes d’homotopie représentées par les inclusions y,:S,< \/ S,, con-
stituent une base de ’homotopie rationnelle de V S,.

a

PROPOSITION 3.2. La suspension ¢: SMSO (n—1)— MSO (n) induit un épimor-
Pphisme en homotopie rationnelle.
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On distingue les deux cas n=21+2, 2/+1

a) n=2Il+1 I’homomorphisme induit par ¢ en homologie rationnel est surjectif et les
deux espaces sont rationnellement des bouquets de sphéres

b) n=21+2 7, (MSOQI+2), Q)= n.(Ey, Q)® {yo). De plus en homotopie
rationnelle I'application composée \/ S, Dy sMso (21+1)5 MSO (21+2) envoie
Tx (Vaz0 Sa Q) isomorphisquement sur my (Ey, Q) et w, (S, Q) surjectivement
sur {o} (cf. calcul de I'homotopie rationnelle de MSO (21+2)).

COROLLAIRE. Un multiple convenable de tout plongement orienté est cobordant
a un plongement avec champ de vecteur normal non nul.

Pour tout plongement orienté f:V* > R"** n=2I+1, Boéchat et Haefliger [1] ont
introduit une classe w,e H"~*(V*, Z) telle que Wm,(V, )= (W, f*m,) [V] définisse
un homomorphisme Wm,: =, ., (MSO(n) - Z, m, étant un monéme quelconque dans les
classes de Pontrjagin p,...p;.

On observe que Wm, ne s’annule pas sur [y,, v,] et que tous les autres produits de
Whitehead ainsi que les éléments stables se trouvent sans son noyau. Les homomorphismes
Wm, fournissent ainsi les premiers exemples d’invariants non stables pour les cobordismes
de plongements. 1l serait intéressant d’exhiber, du moins rationnellement un systéme
complet de tels invariants.
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