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Character Modules

by D. J. Fieldhouse (University of Guelph, Guelph, Ontario, Canada)

1. Introduction

In this paper we use the Bourbaki [2] conventions for rings and modules: ail
rings are associative but not necessarily commutative and hâve a 1 ; ail modules are
unital.

For any ^-module M let M* Hom2 [M, g/Z] [M, g/Z]2 [M, g/Z] dénote
the character module, where g rationals and Z=integers. Then * is an exact
contravariant zéro reflecting functor from A to Aopp where A is the category of left
(or right) ^-modules. Détails may be found in Lambek [7], who has shown [6] that
M is flat iff M* is injective. Hère we extend this resuit by showing that wd M=injd M *

where wd weak dimension and injd injective dimension. For cohérent rings we
show that wdM*<injdM with equality iff the ring is noetherian. Finally we give a

new characterization of rings for which pure submodules are always direct summands.

2. The Dimension Theorems

THEOREM 2.1. For ail M we hâve wdM=injdM*
Proof. Since g/Z is Z-injective, we hâve Extn(N, M*) s (Torn(N, M))* for ail N

and ail w^O. (See Cartan-Eilenberg [3] p. 120.) Then

wdM^n <*>Torn+x (N, M) 0 for ail N

o(Tor"+1 (N, M))* 0 for ail N
<4>ExtB+1 (N, M*) 0 for ail N
oinjd M* < n

We recall that A is left cohérent iff every finitely presented left >4-module is

cohérent, which means that ail finitely generated submodules are finitely presented.
For détails see Bourbaki [2] p. 62-3).

LEMMA. If A is left cohérent then every finitely presented left A-module has a
resolution by finitely generatedfree modules,

Proof. Clearly it suffices to show that if 0-+K-+F-+M-+0 is exact with F
finitely generated free and M finitely presented then K is finitely presented. Since M
is finitely presented and F is finitely generated we hâve K finitely generated. But F
is finitely presented and hence so is K.
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THEOREM 2.2, Let A be left cohérent. Then wdM*^injdM for ail left
A-modules M. Equality holds for ail M ijf A is left noetherian.

Proof Since A is left cohérent we hâve, by Cartan-Eilenberg [3] p. 120-1),
Torw(M*, N) s (Extn(N, M))* for ail M and ail finitely presented N. Then

injd M < n oExtn+1 (iV, M) 0 for ail N
<s>(Extn+1 (N, M))* 0 for ail N
=>Torn+l (M*, N) 0 for ail finitely presented JV

owd M* < n

whence wdM*^injdM.
Suppose equality holds. If M= ®jMt over any index set / then it is easy to see

that M* nTM*. If each Mt is injective then each Mfis flat and nM* is flat since A
is cohérent. Since we hâve equality M is injective and hence A is noetherian by a
criterion of Bass [1]. If A is left noetherian the first isomorphism holds for ail finitely
generated N. Hence:

wdM*<n=> Extn+1 (A/I, M) 0 for ail left ideals I of A

=> injd M < n

and we hâve equality.

3. Purity

A short exact séquence of left ^4-modules E: O -? Et -? E2 -> E3 -> O is pure exact
in the sensé of Cohn [4] iff for ail (or equivalently for ail finitely presented) right
.4-modules M we hâve O -> M®Et -* M®E2 -> M®E$ -? O exact. We hâve shown in
(5) that this is équivalent to [iV, j£2] -> [N, E3] being epic for ail finitely presented left
^-modules N.

THEOREM 3.1. For any short exact séquence E:O-*E1-*E2->ES->O let E*
dénote the corresponding character séquence: O ?- E* «- E* <- E* 4- O. Then thefollow-
ing are équivalent for any such E.

(1) E is pure exact.

(2) E* is split exact.

(3) E* is pure exact.

Proof (1)=>(2). From Theorem 2.1 we hâve for «=0: [TV, M*] s (N®M)*.
Since £ is pure exact we hâve E*®El-±E1*®E2 monic

whence (JE?®^)* <- (£*®£2)* epic
i.e. [£?, Ef] ^- [£*, £*] epic and J^* splits.

(2)=>(3) since every split exact séquence is pure exact. (3)=>(1) For ail finitely
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presented N we hâve, by Bourbaki ([2] p. 63 Ex. 14) M*®N^ [iV, M]* for ail M
and hence

E* pure exact

=> : E\ ® JV <- £* (g) iV monic

=> : [N, £2]* *- [iV, £3]* monic

and 2? is pure exact.

COROLLARY 1. E is pure exact iffE* is split exact.

COROLLARY 2. A is a ring for which ail pure submodules are direct summands

iffE split exactoE* split exact.
Remark: Such rings are called PDS rings, and hâve been studied in [5].
Recall that a module M is pure simple (resp. indécomposable) iff there are no

pure submodules (resp. direct summands) other than O and M.

COROLLARY 3. A module M is pure simple iff M* is indécomposable.
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