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Character Modules

by D. J. FIELDHOUSE (University of Guelph, Guelph, Ontario, Canada)

1. Introduction

In this paper we use the Bourbaki [2] conventions for rings and modules: all
rings are associative but not necessarily commutative and have a 1; all modules are
unital.

For any A-module M let M*=Hom, [M, Q/Z]=[M, Q/|Z],=[M, Q/Z] denote
the character module, where Q=rationals and Z=integers. Then * is an exact
contravariant zero reflecting functor from A to A°? where A is the category of left
(or right) A-modules. Details may be found in Lambek [7], who has shown [6] that
M is flat iff M * is injective. Here we extend this result by showing that wd M =injd M *
where wd =weak dimension and injd =injective dimension. For coherent rings we
show that wd M * <injd M with equality iff the ring is noetherian. Finally we give a
new characterization of rings for which pure submodules are always direct summands.

2. The Dimension Theorems

THEOREM 2.1. For all M we have wd M =injd M’ *
Proqf. Since Q/Z is Z-injective, we have Ext"(N, M*) = (Tor" (N, M))* for all N
and all n>0. (See Cartan-Eilenberg [3] p. 120.) Then

wd M < n<Tor"*! (N, M) =0 for all N
<>(Tor"*! (N, M))* =0forall N
<> Ext"*! (N, M*) =0for all N
<injd M* < n

We recall that 4 is left coherent iff every finitely presented left A-module is
coherent, which means that all finitely generated submodules are finitely presented.
For details see Bourbaki ( [2] p. 62-3).

LEMMA. If A is left coherent then every finitely presented left A-module has a
resolution by finitely generated free modules.

Proof. Clearly it suffices to show that if 0> K—F—- M — O is exact with F
finitely generated free and M finitely presented then K is finitely presented. Since M
is finitely presented and F is finitely generated we have K finitely generated. But F
is finitely presented and hence so is K.



Character Modules 275

THEOREM 2.2, Let A be left coherent. Then wdM*<injdM for all left
A-modules M. Equality holds for all M iff A is left noetherian.

Proof. Since A is left coherent we have, by Cartan-Eilenberg ([3] p. 120-1),
Tor"(M*, N) = (Ext"(N, M))* for all M and all finitely presented N. Then

injd M < n<Ext"*! (N, M) =0forall N
<> (Ext"*1 (N, M))* =0for all N
=Tor"*! (M*, N) = 0 for all finitely presented N
<s>wd M*<n

whence wd M * <injd M.

Suppose equality holds. If M= @®; M; over any index set [ then it is easy to see
that M*=n, M*. If each M, is injective then each M is flat and nM;* is flat since 4
is coherent. Since we have equality M is injective and hence A4 is noetherian by a
criterion of Bass [1]. If 4 is left noetherian the first isomorphism holds for all finitely
generated N. Hence:

wd M* < n=Ext""! (4/I, M)=0 for all left ideals I of 4
=injld M <n

and we have equality.
3. Purity

A short exact sequence of left A-modules E:O — E,; - E, - E; — O is pure exact
in the sense of Cohn [4] iff for all (or equivalently for all finitely presented) right
A-modules M we have O > MQE, > M E, > MQ E; — O exact. We have shown in
(5) that this is equivalent to [N, E,]— [N, E;] being epic for all finitely presented left
A-modules N.

THEOREM 3.1. For any short exact sequence E:O - E; —»E,—>E;— O let E*
denote the corresponding character sequence: O «— E} « E} « E} « O. Then the follow-
ing are equivalent for any such E.

(1) E is pure exact.
(2) E* is split exact.
(3) E* is pure exact.

Proof. (1)=>(2). From Theorem 2.1 we have for n=0: [N, M*] =~ (NQM)*.
Since E is pure exact we have Ef®E,; —» E;*®E, monic

whence (EfQE,)* « (Ef®E,)* epic

ie. [Ey, Ef]«<[ET, EY] epicand E* splits.

(2)=(3) since every split exact sequence is pure exact. (3)=>(1) For all finitely
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presented N we have, by Bourbaki ([2] p. 63 Ex.14) M*QN =[N, M]* for all M
and hence

E* pure exact
=:E*® N « E} ® N monic
=:[N, E,]* « [N, E;]* monic
=:[N, E,] - [N, E;] epic

and E is pure exact.
COROLLARY 1. E is pure exact iff E* is split exact.

COROLLARY 2. A4 is a ring for which all pure submodules are direct summands
iff E split exact<>E* split exact.

Remark: Such rings are called PDS rings, and have been studied in [5].

Recall that a module M is pure simple (resp. indecomposable) iff there are no
pure submodules (resp. direct summands) other than O and M.

COROLLARY 3. 4 module M is pure simple iff M* is indecomposable.
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