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Embeddings of Open Riemann Surfaces?)

REeTO A. RUEDY

1. Embedded Surfaces

1.1. In the final section of his famous thesis Riemann states that in his investi-
gations the branched covering surfaces of the plane could be replaced by smooth
orientable surfaces embedded in Euclidean space. For the metric structure induced
by the surrounding space can be used to define a complex structure in the following
natural way: The admissible local parameters are those which preserve angles and
orientation.

1.2. We will call C*-embedded surfaces classical surfaces if they are viewed as
Riemann surfaces in this way. The existence of the admissible local parameters is
highly non-trivial, it means solving the Beltrami differential equation. This was done
for analytic embeddings by Gauss, for differentiable embeddings by Korn-Lichten-
stein. Because of the fundamental importance of this problem in the theory of quasi-
conformal mappings, it was investigated more thoroughly in recent years. For a most
elegant treatment see [3], for an elementary one see [10].

2. The Embedding Problem

2.1. In his lectures Felix Klein emphasized the concept of viewing classical sur-
faces as Riemann surfaces, i.e., domains of analytic functions and integrals. It was
also he who asked in 1882 if every Riemann surface were conformally equivalent to
a classical surface. [F. Klein, Gesammelte mathematische Abhandlungen, Bd. 3,
(Springer 1923), p. 502 and p. 635.]

2.2. For a long time the only results in this direction were that every compact
Riemann surface of genus zero is conformally equivalent to the sphere, every non-
compact planar (schlichtartig) surface is conformally equivalent to a subregion of the
plane, and a compact Riemann surface of genus 1 is conformally equivalent to a ring
surface provided its modulus is purely imaginary (see [16]).

2.3. The first result beyond these facts was obtained by Teichmiiller in [15], where
he applied his theory of spaces of Riemann surfaces to the embedding problem. He

1) This work was supported by the National Science Foundation under grant NSF-GP-21325,
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could show that not all compact embedded surfaces of genus 1 are conformally
equivalent to ring surfaces. More important than this result was the method by which
he obtained it: He deformed an embedded surface by moving each point along the
normal line and studied the dependence of the modulus of the deformed surface on
the deformation.

2.4. Around 1960 Garsia constructed a surprisingly large class of compact Rie-
mann surfaces whose moduli could be determined ([5], [6]). But he succeeded in an-
swering Klein’s question in the affirmative for all compact Riemann surfaces only
when he abandoned his beautiful models and embarked on Teichmiiller’s road. His
proof in [7] and [8] is an ingenious combination of Teichmiiller’s ideas and results,
constructions inspired by Nash’s isometric embeddings, and Brouwer’s fixed point
theorem.

2.5. We will see in this paper that his methods are even strong enough to prove
this theorem for noncompact surfaces too. Because we will use the modifications
described in [13] we may formulate our theorem as follows:

EMBEDDING THEOREM. Every Riemann surface R is conformally equivalent
to a complete classical surface. A model can be constructed by deforming any topo-
logically equivalent complete classical surface X in the direction of the normals. (See
also 6.12.) X is complete, if X is a closed subset of the Euclidean space.

2.6. A nontrivial corollary (due to R. Osserman) follows, if R is the unit disc and
X=C:
For a suitable real-valued C®-function f the classical surface represented by

(x, ) > (x, 5, f(x,9), x+iyeC,
is hyperbolic.

2.7. Comparing the proofsin this paper and in [14] it is evident that every Riemann
surface is conformally equivalent to an embedded polyhedral surface.

3. Outline of the Proof

3.1. We may assume that R is noncompact because the Embedding Theorem is
known to be true otherwise ([13]).

3.2. The first step is to find a topologically equivalent complete classical surface
X and a topological mappingf’ : R—X. We choose on Raregular exhaustion (see [4]),
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i.e., a sequence {R;} of relatively compact regular subregions, such that R;= < R,,,,
\UR;=R, and 0R,; consists of analytic arcs. It is easy to show that R; can be mapped
by f; topologically onto a classical surface X; such that 0X; consists of circles con-
tained in 0B, where B;={(x,, z)|x*+y*+2z°<i?*}, X;<B;, X;; n B;=X; and
Sivilr,=f f =limf; and X=X, satisfy the above conditions.

3.3. We may. assume that R, is a disc. Let peR; and gedR, be distinguished
points and put p'=f'(p), ¢'=f"(¢q) and f'(R;)=X;. If R is simply connected, we
introduce four distinguished points.

3.4. We will deform X in successive steps such that the i-th deformation (i>2)
takes place on X;— X;_, only, and we will denote the resulting surface by X’. Let
X; be the part of X’ corresponding to X;. We will show that R; can be mapped
conformally onto X; by a mapping f; with the additional properties f;(p)=p’,
fi(g9)=q', i=1. The existence of f; follows by Riemann’s mapping theorem, the ex-
istence of f;, i>2, will be proved by induction.

3.5. If this is accomplished, our theorem is implied by the following

LEMMA 1. Let {R;} and {X;} be exhaustions of the noncompact Riemann sur-
faces R and X, and let p and q be fixed points in R, p’ and q' be fixed points in X. If
the mappings f;: R,—X; are conformal and if f;(p)=p', f;(q)=¢q', i=i,, then R and X
are conformally equivalent.

3.6. This is a generalization of a theorem which is well-known, if R and X are
planar surfaces (see e.g. [11], p. 76). In order to reduce it to this case, we look at the
(standard) universal coverings of R and X. Their elements are homotopy classes [y]
of arcs y whose initial points are p and p’ respectively. We define

R; = {[v] l Iy, e[y] with |y = R}

where |y| denotes the point set corresponding to y. X; is defined in the same way.
R and X are conformally equivalent to subregions Uz and Uy of the plane, and R;
and X, may be viewed as subregions of U and Uy. The functions f;: R;,— X, defined
by f;([y]) = [f;-7] are conformal liftings of f; and form a normal family, because the
distances between f;(§) =’ and the points f;(§) on Uy are bounded away from zero.
Therefore a suitable subsequence converges uniformly on compact sets to a conformal
mapping f : Ug— Uy and so do their projections f;. The limit function f : R— X is onto
because f is and it is univalent because of the uniform convergence of the f; on com-
pact subsets and the fact that each f; is univalent. Our lemma is proved.
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4. Teichmiiller Spaces of Bordered Riemann Surfaces

4.1. In this section we recall the results about Teichmiiller spaces which are neces-
sary for the construction of the deformed surfaces X;. For details and proofs see [1],
[2] and [8].

4.2. Let S be a bordered Riemann surface with two distinguished points p and ¢
(four if S is simply connected) and a finite number of handles and a positive finite
number of boundary curves. Double the surface with respect to all boundary curves
and finally go over to the two-sheeted covering surface S* of this double with branch
points at the distinguished points and their doubles.

4.3. S* is a compact Riemann surface whose universal covering surface is the
upper halfplane H. The group G of decktransformations with respect to S* is a sub-
group of index 2 of the group I' of decktransformations with respect to the double
of S. Denote by j: H— H an anticonformal involution whose projection on S* maps
each point onto its double. y—joyoj is an automorphism of both G and I.

4.4, A quasiconformal mapping f:S—S; can be extended in an obvious way to a
mapping f *:S*— S and lifted to H in such a way that the lifting f: H— H satisfies

ij =j1 Of (1)
and such that
foy=1v507 )

defines isomorphisms 0, (y) =y, of G onto G, and I' onto I'.

4.5. For the complex dilatation u=f;/f, the above equations imply that

WiE) % = i) ©
and
D) wer. @)
u(r( ))y,(z) p(z) Vyerl

In particular u is a Beltrami differential with respect to G (i.e., on S*).

4.6. Conversely if f is a global solution of the Beltrami differential equation
w, =pw, mapping H onto itself and if u satisfies (3) and (4), then f satisfies (1) and
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(2) for suitable groups G, and I'; and induces a quasiconformal mapping f [u] of S
onto a bordered Riemann surface S;.

4.7. DEFINITION. The Teichmiiller space T(S) is the set of equivalence classes
[f]1 of quasiconformal orientation-preserving mappings f:S— f (S) with respect to the
following equivalence relation: f,~f, if and only if f;*o fi* 1 is homotopic to a con-

formal mapping g* of fi* (S*) onto f5' (S*).
Remark. g* automatlcally induces a conformal mapping g:f; (S)— /> (S) which is

homotopic to f50f; ' and maps f; (p) onto f, (p) and £, (¢) onto f, (q).

4.8. T(S) is a metric space with respect to the Teichmiiller distance d defined by

d([fi). [f2D) = inf  (supDy(2),
gxfa*e f1*1
|8 (2)I + 1&: (2)I
|8 () — 182 (2)]
and at the same time it is a manifold. Local parameters may be defined using the

spaces of Beltrami differentials B(S) and holomorphic quadratic differentials Q (S).
But in order to do so, some preparations are necessary.

(= dilatation of g at z),

D,(z) =

4.9. We introduce the following notations where ¢ represents holomorphic and u
measurable and essentially bounded functions in H:

(8" ={o|(p-7) () =¢ VyeG},

B(S*)={u|(uoy)'¥/¥ =1 VyeG},

N (S*) = {ueB(S*)| ”u(z)q;(z) dxdy =0 VoeQ(S*)}.
H/G

The elements of N(S*) are called trivial Beltrami differentials. Analoguously we
define

Q(S)={o| (@) ) =0 Vyel, (¢9-)(j:)* =},
B(S)={u| (o) ¥l =n Vyel, (uoj)-j:liz= i},
N(S) = B(S) n N(S*).

4.10. The mapping
*:B(S*)/N(S*) - Q(S¥)
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ﬂ _— c))“ endi=e()

defined by

is an R-linear isomorphism, its inverse is given by
pr>— ¢+ (Imz)*.
4.11. LEMMA 2. A* induces an isomorphism
A:B(S)/N(S)—-Q(S).

4.12. Proof. If peB(S) and ¢ =A* (), then

_ u(z)dZ/\dz i2(j(2))dj A dj
(P(] (Q)) J:[ ] (C)) i Jf (j (Z) —](C))4 ’

because j is an anticonformal mapping of H onto itself. Applying the identity

(y(z1) = (22))2 = (21— 22)* 7' (21) 7' (22)

to the Mobius transformation y = — j, we obtain

(1 (2)Jelis) (= Jajzdz A dZ) _ —— .,
o(i ()= Lf Ty TGO

o(1(2) 7 (=) =(2) Vyel

is proved by similar computations.

4.13. If e Q(S) and u=A*""(p), then
u(i (@) =— a3 () Amj(2))* = — @ (2)-; >+ (Imz)* j+jz = £ (2) Jzjz |
and

w (@) =p@E)y @ (@)

by a similar computation, and Lemma 2 is an immediate consequence.

219

4.14. Now we are ready to define local parameters in T(S ). Let uy,...,uy be a

basis of B(S)/N(S). The mapping defined by

(g mes ty) = [f [ﬁa t‘”‘”
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maps a ball in RY topologically onto a neighborhood of [f,=id] in T(S), and
(t4,---, ty) shall be our local parameters (see [2], pp. 137-145).

4.15. LEMMA 3. If ueB(S) and ¢eQ(S) then (u, )= ff ue dx dy is real.
H

Proof.
. dz ANdZ dz A dzZ ) ) dz A dj
(@)= U Ho —-—= ﬂ Ho —— = - H 1(j(2)) 0 (j(2) 5;
H/G J(H)/G H/G
—dzndz ——
= J‘J‘ I‘l‘ (Z) (P (Z)Jz ]z.]z (“9 q)) qed
H/G

4.16. Let U be any parametric disc in S with p¢ U, g¢ U, and denote by U* the
corresponding open set in S* which consists of four discs. Using Lemma 3 and the
definition of N(S), we obtain easily the following

COROLLARY. There is a basis {u;} of B(S)/N(S), where the u; are C*-functions
whose support is contained in U*.

4.17. Proof. We have to find a basis {¢;} of Q(S) and {u;} as above such that
(us» @;)=0;; for i< j, which can easily be done by induction. The construction of a
similar basis was described more closely by T. Klotz in [9].

4.18. Good estimates for the distance of two points in 7°(S) will be crucial. The
following lemma which serves these purposes is due to Garsia. In order to formulate
it, we have to fix in H a fundamental domain Dg for the group generated by I" and j.
Denote the restriction of the projection to Dg by mg. Assume that (,,..., ty) =t are
local parameters for a neighborhood of [id] in 7'(S') provided

N
(LA =\/Z < 2r
i=1

Let B, be the set of elements in T(S') corresponding to ||z|| <r and write ¢ [ f]=¢, if
[f] corresponds to ¢.

4.19. DEFORMATION LEMMA. If [f]eB, and if there is a quasiconformal
mapping

1:f(S)~g(S), x*=~g*.-*1,



Embeddings of Open Riemann Surfaces 221

whose dilatation D, satisfies
1) D,<K,,
2) D,<1+36 except on Acf(S),
3) |ns Lo fTH(A)I<n

(|...| denotes the areal measure), then

lolg]l = o[f]1ll < b(Ko, 6, 1),

where b(K,, 8, n)—0 if K, is bounded while (8, n)—(0, 0). The proof is given in [8],
pp. 100-102.

5. The Existence of the Functions f;

5.1. Let {R;} be the exhaustion of R, {X;} the corresponding exhaustion of X,
mentioned in the outline, and let us assume that X;_; is deformed into a surface
X;_, such that a conformal mappingf;_,:R;_;—X;_, with f;_, (p)=p" and f;_, (¢) =
q' exists. We are going to construct X; and f;.

5.2. Fix global uniformizing parameters for R; and X; =(X;—X;_,;) v X{_, as
in the deformation lemma. We extend f;_; to R; such that the extended mapping
g:R;—~ X is K-quasiconformal for a suitable K, C® except perhaps on dR;_, and
such that

i

gf/gz =§

on a disc U in R;— R;_,. Such an extension is certainly possible (see [11], p. 89).

5.3. We identify X;" and R, (as topological surfaces) by g, in order to use the
same parameter ze D . We may also define on X}’ the conformal structure for which
z is admissible. While the natural structure of X/ is induced by the metric (dX;')* =

|dg|* =A% |dz + uizlz the second structure may be viewed as induced by the metric
ds3 =12|dz|*. Therefore we denote X" together with the second structure by X' (ds3).

5.4, It is clear that g:R;—X; (dsZ) is conformal. On the other hand, for the
natural structure we have

K-1
K+1°

Here of course, we identified Dg, and R,;.

on U.

1
lul < p=0 on Ry, n=s

5.5. As in the corollary, we choose a basis {i}r-; of B(R;)/N(R;), where p is
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C® and p, =0 outside U* for all k. Finally we determine a ball B,,=RY such that
¢ 'it—[id,0g: R; = X/ (ds?)]

is a topological mapping of B,, into T(R;). Here

dz + (ﬁ:l t (z)) dz

and id, represents the identity projection.

2

dst = A% (z)

5.6. In the next section we will construct real-valued C ®-functions 4, with support
in X;— X;_, such that the deformed surfaces X, described by

X, (z)=g(2)+ h(2)'N(z), zeDy,,

where N(z) is the positive unit normal vector of X;' at g(z), satisfy the following
conditions: If we view X,=X,(z) as a mapping defined on R;, then

a) t— ¢[X,]iscontinuousin B,,
b) le[X]—elid.gll<r VteB,.

In addition, the functions A, will be so small, that all the surfaces X, are embedded
surfaces.

5.7. Brouwer’s fixed point theorem applied to the mapping t—¢—¢ [X,]=
o [id,og]— ¢ [X,] implies that there exists a point tyeB, such that t,=¢,—¢ [X, ],
i.e., ¢ [X, ]=0, which means that the embedded surface X; =X, can be mapped
conformally onto R; by a mapping f; which is homotopic to g and satisfies the con-
ditions f;(p)=p’, f;(¢) =¢' (see the Remark in 4.7.).

6. The Construction of the Family X,

6.1. Garsia’s Deformation Lemma implies that the family X, satisfies condition
a), if the coefficients of (dX,)* depend continuously on (z, t)e R; X B,. That this con-
dition is satisfied can be seen by direct inspection, as soon as we have written down
an explicit formula for the functions 4,.

6.2. In order to check condition b), we will again apply the Deformation Lemma
4.19 putting y =id,.go. X,” . Its dilatation D, satisfies

dx? _dXx}?
D} = sup . > /inf —6—1——;— (sup and inf taken over all directions).
St St
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6.3. We have
dx} = (dX{)’ + (dh)* + O (|h,|-|dzI?)

0 0
= lzldz +u dz'rl2 +((=— h)dz+|—=h,|dZ] + O(Ih,l-ldzlz),
0z 0z
and

N
dst =22\dz + p,dz)> =22dz + Yty dzf*, teB
i=1

re

6.4. Assume that r is taken so small that |u,| <% if e B,. Then there is also a posi-
tive number ¢* <1 such that

Hb— K
1 — i

Finally put K,=4(1—g*)™? and choose §,>0 and 5,>0 such that in the Defor-
mation Lemma b (K, 8¢, 10) <.

|lul < sup <o*.

6.5. For the definition of A, we have to solve the equation
|dz + p, dz|* = ¢,(|dz + p dz|* + (a, dz + a, dZ)?).

The explicit solutions are

o L= mdl’
A= u?)?

4= 10 111 + Re [y, 1] (1 Lo Q=@ Iml, 4] )
t \/E(l ~ [t £]1) |[tte> ]l + Re [y, u] ’

(1 = 1L p1)?,

where
Hh— U
1 —ppn

[ﬂu .u] =

The following regularity properties and estimates will be essential: a, and c, are
continuous in B, x Dy, ¢, is C® in Dy for all te B, and a, is C® in Dy for all te B, at
least if p=i/2, Ima,<0 if u=i/2, |a]<4(1—0*)"%, (1—g*)*<lc|<16(1—g*?)"2.
In addition, we have u,=0 outside U and ¢,=1 and ¢,=01in R,_;. ‘

6.6. In U we may multiply the differential w=d, dz +d, dz by a positive function
@ <1 which is continuous in Ux B, and C* in U for all e B, (see [13], pp. 435-436)
such that ¢-w is exact. Then gw =dk (z, t), where k is again continuous in U x B, and
C®in U. '
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6.7. Triangulate the bordered surface R;—R;_, — U in such a way that in each
triangle 4;

lat(zl)—at(ZZ)l <é if Zy,s ZZEAj’ tEBra

where £>0 is to be determined later. Choose in each 4; a point z;, put L=\ 04;,
and denote by v, a non-negative C *-function which vanishes in a neighborhood of
LU R;_;andisequalto 1 on R;—R;_,—A,, where |4,| <n,/2.

6.8. We extend the functions k and ¢ defined on U in the following way

k= 2 Re[za,(z;)] if zed;
0 if zeLuUR,_;

=1 in R,—U.
6.9. Finally denote by s, a saw-shaped C “-function defined on R with the follow-

ing properties:
ds,

= — < 1’
‘dx

S;(x +2)==5,(x), s,(x)=x if [x]<1—n.

—-1<s,(x)<1, |[§,

6.10. Now we define 4, by

1 1
— — 85, (Mk(z, t)),
where M is a natural number. For each M, A, is continuous in R;x B, and is C* in
R;, and we have

h(z M) = 4(2) v, (2)

1 1
(dh,)? = sz,f g sf (Mk)- (dk)2 + 0 (— Idzlz).
0 M
Except on a small part 4, U A, of Dy, this reduces to
1
(dh,)? = A*(a, dz + d,dZ)* + O ((8 + 1T4> Idzlz).

We have |A4,| <ny/2 and therefore |4, U A4,|<n,, if 5 is sufficiently small and M
sufficiently large (see [13] p. 437 for details).

6.11. Now it is easy to check that the dilatations D, satisfy all the conditions in
the assumption of the Deformation Lemma, as soon as we have chosen ¢ sufficiently
small and then M sufficiently large. Therefore we can conclude that the family X,
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satisfies conditions a) and b) which completes the proof of the Embedding Theorem.

6.12. Incidentally we proved a result which is somewhat stronger than what is
actually needed for the Embedding Theorem. Therefore we will state it as a corollary.

Let S, be a classical properly embedded surface, X,:S,—R? an embedding func-
tion (C*) and Ny (p) the positive unit normal vector of S, at peS,. If ~:S,—R is a
sufficiently small differentiable function, then x, defined by

() = Xo (p) + K (p) No (P),

maps S, onto an embedded surface. Denote by S, the corresponding classical surface.

COROLLARY. To any positive continuous function ¢:S,—R and any topological
orientation-preserving mapping f of S, onto a Riemann surface S, there is a differenti-
able function h:S,—R, |h| <e, such that m,. f ~* is homotopic to a conformal mapping
of S onto S,
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