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Konstruktion isoperimetrischer Ungleichungen der mathematischen

Physik aus solchen der Geometrie

CATHERINE BANDLE (Ziirich)

Einleitung

In dieser Arbeit ist von folgenden physikalischen Grossen die Rede:

Elektrischer Widerstand (Modul), Torsionssteifigkeit von Stdben, Energie einer
sich im Gleichgewicht befindenden Membran, die vertikalen Kriften ausgesetzt ist
(Poissonproblem), Grundfrequenz einer schwingenden Membran (Eigenwertproblem).
Alle diese Grossen, sowie ihre Verallgemeinerungen aus § 2, 3.4 lassen sich durch
Extremalprinzipien (Dirichlet- und Rayleighprinzip) kennzeichnen. Es gibt isoperi-
metrische Ungleichungen der mathematischen Physik, welche in enger Beziehung
stehen zu solchen aus der Geometrie. Die beriihmteste geometrische isoperimetrische
Ungleichung der Ebene lautet: Von allen Gebieten gleicher Fliche hat der Kreis den
kleinsten Umfang. Entsprechende Sidtze der mathematischen Physik sind beispielsweise

(a) der Satz von Carleman [5], der von Szeg6 [23] verallgemeinert wurde: Von
allen mehrfach zusammenhdngenden Gebieten mit gegebener Fliche, sowie vorge-
schriebener Fliche der innern Liocher hat der Kreisring den grossten Modul.

(b) die Vermutung von St. Venant, die 1948 von Pdlya [18] bewiesen wurde:
Von allen einfach zusammenhdngenden Gebieten mit gegebener Fliche hat der Kreis die
grosste Torsionssteifigkeit.

(c) die Vermutung von Rayleigh, fiir welche unabhéngig voneinander Faber [7]
und Krahn [13] einen Beweis geliefert haben: Von allen Gebieten mit gegebener Fliche
hat der Kreis den tiefsten Grundton.

Diese und weitere Ungleichungen dhnlicher Art finden sich im Buch ,,Isoperimetric
inequalities in mathematical physics*“ von Pélya-Szegé. Wir mdchten an dieser Stelle
auch auf die wertvolle Zusammenstellung isoperimetrischer Ungleichungen von
Payne [15] hinweisen.

Wir werden die eingangs erwdhnten Grossen fiir Gebiete auf allgemeinen zwei-
dimensionalen Fldchen untersuchen. Mit Hilfe geometrischer isoperimetrischer
Ungleichungen von Alexandrow [1] werden Sitze der Art (a), (b) und (c) aufgestellt.
Die Briicke, die eine Verbindung zwischen der Geometrie und unseren Problemen
herstellt, ist das Lemma 1 (§1, 2.2). Dieses Lemma war schon verschiedenen Autoren
bekannt [7, 13, 14, 16, 19,...]. Diese allgemeineren Betrachtungen erlauben uns,
Schranken fiir das Dirichletintegral der Losungsfunktion des Poissonproblems und
Abschitzungen fiir die Grundfrequenz einer inhomogenen schwingenden Membran
anzugeben. Durch Beniitzung der harmonischen Verpflanzung [10] leiten wir eine
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isoperimetrische Ungleichung fiir die Torsionssteifigkeit mehrfach zusammenhéngen-
der Gebiete her. Ferner seien erwéhnt die Verschiarfung eines Satzes von Peetre [16],
Verallgemeinerungen eines Ergebnisses von Nehari [14, Satz I] und des Satzes von
Gasser-Hersch [8]. Im letzten Abschnitt werden allgemeinere Eigenwertprobleme
diskutiert. Insbesondere leiten wir in Anlehnung an [11] und [17] ein Maximum-
prinzip fiir den ersten Eigenwert her. Es sei hier betont, dass wir uns nicht mit Existenz-
fragen beschiftigen werden, sondern dass wir die Losbarkeit der Probleme stets
voraussetzen werden. Die Anregung zu dieser Arbeit stammt aus einem Satz von
Nehari [14], der lautet: Der erste Eigenwert A, einer inhomogenen Membran mit der
Massendichte o, fiir die Ing subharmonisch ist, geniigt der Ungleichung i,>ji/M
(M=[[ ¢ dx dy: totale Masse, j, =2,4048...).

Einige Resultate wurden in [2] angekiindigt. In [3] und [4] wurden die Ungleichun-
gen (a) und (c) in einer anderen Richtung verallgemeinert.

Ich méchte Herrn Professor J. Hersch herzlich danken. Er hat mich in verstdndnis-
volier Weise in das Gebiet der isoperimetrischen Ungleichungen eingefiihrt und mich
in meiner Arbeit stets geférdert. Mein Dank gilt ebenso Herrn Professor H. Biihl-
mann, bei dem ich Assistentin war, fiir seine grossziigige Unterstiitzung.

Nachtrag bei der Korrektur: In der Arbeit ,,Inequalities for Condensers, Hyperbolic
Capacity, and Extremal Lengths‘‘ von F. W. Gehring, welche demnéchst im Michigan
Mathematical Journal erscheinen wird, finden sich dhnliche Ungleichungen fiir den
Modul wie in § 2,1. Beriicksichtig man dort im Satz 1 (11) die Alexandrowsche
Ungleichung, so erhilt man die gleichen Abschitzungen wie im Satz 2 unserer Arbeit.
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Inhaltsverzeichnis

§ 1. Verallgemeinerung der Schwarzschen Symmetrisierung

1. Einfihrung. . . . . . . . . . . . . . . . . . 184
1.1 Begriffe und Bezeichnungen . . . e . .. .. . 184
1.2 Geometrische isoperimetrische Unglelchungen . . . .« . . 185

2. Symmetrisierungen . . . . . . . . . . . . . . . 187
2.1 Definitionen . . T .7
2.2 Eigenschaften der Symmetnswrung T .7

§ 2. Anwendungen

1. Der Modul eines Ringgebietes . . . . . . . . . . . . 189

2. Poissonproblem . . . . e L) |
2.1 Homogenes Pmssonproblem auf einer Mann1gfa1t1gke1t . )|
2.2 Dasebene inhomogene Poissonproblem . . . . . . . . 193
2.3 Beispiel. . . . . . . .. . . . 196
2.4 Eine Verallgemeinerung der harmomschen Verpﬂanzung ... 197
2.5 Untere Schranken fiir die Torsionssteifigkeit von mehrfach zu-

sammenhingenden Gebieten . . . . . . . . . . . 200

3. Eigenwertprobleme . . . . 203
3.1 Homogene, schwingende Membran auf einer Manmgfaltlgkelt . . 203
3.2 Inhomogene, schwingende MembraninderEbene. . . . . . 206
3.3 Obere Schranken fiir den ersten Eigenwert einer Membran . . . 208
3.4 Allgemeinere Eigenwertprobleme . . . . . . . . . . 209

§ 1. VYERALLGEMEINERUNG DER SCHWARZSCHEN SYMMETRISIERUNG
1. Einfiihrung

1.1 Begriffe und Bezeichnungen

Es sei IN eine zwei-dimensionale Mannigfaltigkeit vom topologischen Typ der
Ebene, dargestellt durch ein Linienelement der Form ds*=g;; dx’ dx’ (i, j=1, 2).
A(G)={[¢ /g dx' dx* [g=Det(g;;)]istdie Flicheeines Bereichs G MM, L(I')=[r ds -
die Linge eines Bogens I' < k. Mit o (G) bezeichnen wir die (totale) Kriimmung und
mit Q(G) die absolute Kriimmung von G. Wenn K;; die Gauss’sche Kriimmung be-
deutet, so gilt w(G)=([cKcd4 und Q(G)=||g |Ks| d4 [dA= /g dx' dx*]. Wir
werden auch Metriken zulassen, bei denen Kj; in isolierten Punkten ein Dirac’sches
Mass ist. Geometrisch bedeutet das, dass )t neben den iiblichen reguldren Flichen
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auch Polyeder umfasst. Die Kriimmung e (P) eines einzelnen Punktes Pist gleich der
Differenz von 2z und dem vollen Winkel des Tangentialkegels in P. Sie ist daher in
den Spitzen der Flache von Null verschieden. Wir werden von nun an voraussetzen,
dass Q(B)<C fiir jeden kompakten Bereich B<JR. Fiihrt man in 9t die Abstands-
funktion ¢ (P, Q)=inf{[ ds} ein, wobei I = I iiber alle Verbindungskurven von P
und Q variiert, so kann )t als Mannigfaltigkeit beschrinkter Kriimmung im Sinn von
A. D. Alexandrow [1] aufgefasst werden. Unter der ,,Kriimmung beziiglich K*
[1, S. 513] (K beliebige reelle Zahl) verstehen wir die Mengenfunktion wg(G)=
@ (G)—KA(G). Es seien g (G)=supgc¢{wk(E)}, wg (G)=supgce{—wg(E)} fir
jede Borelmenge Ec G. Nach dem Jordanschen Zerlegungssatz gilt wg (G)=wg (G)—
—wg (G). Im Fall einer reguliren Metrik ist wg (G)=|fs; max{K;—K, 0} d4 und
wg (G)=[[c max{—Ks+K,0} d4. Es ist Q(G)=w"(G)+w™ (G). Wir werden
folgende Bezeichnungen verwenden: (8/0x')u=u;, V(u, v)=g"up;, wobei g die
kontravarianten Komponenten des metrischen Tensors sind. Tritt ein Index wieder-
holt auf, so ist dariiber zu summieren.

Die j-te Komponente von gradu ist (gradu)’=g"u,=u’. gradu steht in der
Metrik g;; senkrecht auf den Niveaulinien von .

1 0 _ .. 0
A === H s
/g 0x; <\/g 8 6x’>
stellt den zweiten Differentialoperator von Beltrami (verallgemeinerter Laplaceope-
rator) dar. D(f)=([[ V(£ f) /& dx' dx” ist das (verallgemeinerte) Dirichletintegral.

1.2 Geometrische isoperimetrische Ungleichungen

Die folgenden Ungleichungen stammen von A. D. Alexandrow [1, S. 509, 514].
Es sei D= IR ein Jordangebiet mit dem Rand I', 4(D)=A4 und L(I')= L. Wir werden
stets voraussetzen, dass die absolute Kriimmung beschrinkt sei.

(a) Es gilt

I>202n-w* (D)4 fir o*(D)<2x. (1)
Das Gleichheitszeichen steht genau dann, wenn D der Mantelfliche eines geraden
Kreiskegels mit der Kriimmung w* (D) in der Spitze isometrisch ist!). (Wickelt man
den Kegel auf die Ebene ab, und bezeichnet f den Zentriwinkel des Sektors, so stellt

o' (D)=2n— B die Kriimmung der Kegelspitze dar).
(b) Ist w(B)< KA (B)fiir jedes beliebige Gebiet B< D, so gilt:

I? > A(4n — KA). 2

1) Diese Ungleichung wurde auch von A. Huber [12] mit rein potentialtheoretischen Mitteln
hergeleitet.
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Das Gleichheitszeichen tritt bis auf Isometrie nur bei den geodétischen Abstands-
kreisen auf einer Fliche konstanter Gauss’scher Kriimmung ein.

Die nichste Ungleichung enthilt (a) und (b) als Spezialfille und lautet :

(¢) Falls wg (D)<2n, folgt:

I? > A(4n — 2w (D) — KA). (3)

Das Gleichheitszeichen steht genau dann, wenn D der Mantelfliche eines geraden
Kreiskegels in einem Raum konstanter Kriimmung K mit der Kriimmung wg (D) in
der Spitze isometrisch ist.

Ein Modell eines solchen Kegels ist der Kreissektor auf einer Fliche konstanter
Gauss’scher Kriimmung K mit dem Zentriwinkel 2n—wg (D), bei dem die beiden
Grenzradien identifiziert werden.

1. BEHAUPTUNG: wg (D)ist eine nicht zunehmende Funktion von K.
Denn es ist wg, (B) = wg, (B) fiir K; <K,.

2. BEHAUPTUNG: Im Falle einer Gauss’schen Metrik hat die Funktion
H(K)=4n—2wg (D)— KA bei gegebenem Bereich D genau ein Maximum H (K,). K,
wird bestimmt durch die Gleichung

2 ff (Kg — Ko)* dA = A(D), (*)
wobei ’

* ={1 fiir x>0‘}

0 sonst

Beweis: Aus H(K)=4n—2 [k (K¢— K) d4— KA ergibt sich

d
H'(K)=—H(K)=2 dA — A.
0= e 1 E=2 |
K=K
H'(K) ist eine nicht zunehmende Funktion von K. Folglich ist H(K) konkav und
nimmt an der Stelle K, mit H’ (K,)=0ihr Maximum an.

Aus (c) und der Behauptung 2 folgt
(c") Ist K, gemiss (*) bestimmt und wg, (D) <2z, so gilt

> A(47t -2 J.J KGdA) > A(4n — 2w (D) — KA) 4)

Kc =Ko

fiir alle X.
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2, Symmetrisierungen

2.1 Definitionen

Es sei G ein beliebiges Gebiet das mit samt seinem Rand I' in einem Jordangebiet
D < I liegt. f sei eine auf GuI definierte, positive Funktion, die stiickweise stetig
differenzierbar ist, und welche auf dem Rand I" verschwindet, O.B.d.A. kdnnen wir

annehmen, dass 0< /<1 ist.
Wir setzen G,={PeG; f(P)>A}; I';={PeG; f(P)=4}ist der Rand von G.

DEFINITION: In einem Raum mit konstanter Kriimmung K bezeichnet T, . (G)
die Mantelfliche eines geraden Kreiskegels mit der Kriimmung wg (<2r) in der Spitze
und der Fliche A(T,+, (G)) gleich A(G).

Wenn K> 0, existiert T,,+  (G) nur, falls 4 (G) < (4n —2wg )/K ist.

Spezialfille: T, . (G) stellt die Mantelfliche eines gewdhnlichen, geraden Dreh-
kegels im euklidischen Raum dar. Ist wg =0, so bedeutet T,,+, (G) einen Kreis auf
einer Flache konstanter Gauss’scher Kriimmung K.

DEFINITION: Der gegebenen Funktion f auf G wird eine Funktion T, f auf T,(G)
(s=wg) zugeordnet, deren Niveaulinien Abstandskreise mit dem Mittelpunkt in der
Spitze des Kegels sind, und die auf dem Rand von T,(G,) den Wert A annimmt.

T, fist eine nicht zunehmende Funktion des Abstandes der Punkte auf T,(G) von
der Spitze des Kegels. T, f ist durch f eindeutig bestimmt. Ferner ist T,/ wegen der
Monotonie fast iiberall differenzierbar. Die Transformation G — T,(G) kann als
Verallgemeinerung der Schwarzschen Symmetrisierung eines Gebietes G und /- T, f
als Verallgemeinerung der Schwarzschen Symmetrisierung einer Funktion f aufgefasst
werden.

Spezialfille: (a) Ist ™ =0 und K=0, so stellt f— T, f die Schwarzsche Symmetri-
sierung dar. Sie istin [19, S. 189ff.] beschrieben.

(b) T,+f (K=0) stimmt im wesentlichen mit der Symmetrisierung von Peetre [16]
iiberein.

2.2 Eigenschaften der Symmetrisierung
Wie unmittelbar aus der Definition hervorgeht, gilt fiir eine beliebige in [0, 1]

integrierbare Funktion H(¢)

” H(f)dA = ” H(T,: f)dA. (5)

G Tw* x(G)

Nach den in §1, 2.1 getroffenen Definitionen und Voraussetzungen gilt ein zu [19,
S. 190 ...]analoger
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SATZ 1: Wenn wg (D)=s<2n ist, so gilt fiir das Dirichletintegral der Funktionen
Sfund T, fdie Ungleichung

DG(f) = DT,(G) ('I;f) (6)

d.h. bei einer Symmetrisierung verkleinert sich das Dirichletintegral.

Beweis: Wir werden in Zukunft die Kurzformen 4 (1)=A4(G,) und L(A)=L(T,)
verwenden. Der Beweis beruht wesentlich auf dem nachstehenden Lemma. Dieses
geht auf [7, 13, 19,...] zuriick. Der Vollstandigkeit halber werden wir den Beweis
wiederholen.

LEMMA 1:
[ 20
DG(f)ZJA——ATTI) da, (7

wobei A'(A)=(d/dA) A(X). Das Gleichheitszeichen steht genau dann, wenn dffon lings
allen Niveaulinien konstant ist.
n bedeutet die Normale an I'; beziiglich der Metrik g;;, welche ins Innere von G,

weist.

Beweis des Lemmas: |gradf|=(g;; f'f?)"/?; die Fliche zwischen I'; und I';,4;
betrédgt é,, dn ds, wenn s die Bogenlénge auf I'; ist und dn=dn (s, ) die Breite des
Streifens zwischen I', und I, , 4, an der Stelle s darstellt. Es gilt (vgl. §1, 1.1)

2 1 Iafz 1

DG(f)=ff|gradf] dA = f § o dnds=J‘d/1§
|

G A=0T, 0 I,

Auf Grund der Schwarzschen Ungleichung

(§ ) rm) > ($)

I, A

of
on ds ®)

und (8) schliesst man auf die Behauptung des Lemmas.
Setzt man in (7) die Ungleichung (3) ein, so folgt
1

A(4n — 207 (D) — KA)
R

0

mit dem Gleichheitszeichen bei T,, + .(p) /-
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§ 2. ANWENDUNGEN
1. Der Modul eines Ringgebietes

Es sei D ein Jordangebiet auf einer Mannigfaltigkeit M (vgl. §1, 1.1). G= D sei
ein Gebiet, das von endlich vielen Jordankurven berandet wird. Diese Randkurven
seien in zwei Klassen eingeteilt: {I'’ | i=1,..., m} und {I'Y’ | j=1,..., n}, wobei die
,,dussere” Randkurve der ersten Klasse zugeteilt wird. Wir setzen I'y= | ; I’ und
Iy=\J}-, I'Y und betrachten das folgende Dirichletproblem fiir dieses ,, Ringgebiet
(F 0> r 1)“:

Problem 1.

Ah =0 in G (h ist eine ,,harmonische” Funktion in G)
h=0auf
h=1aufrl,

Die Grésse ur,r, = 1/Dg (h) beisst Modul des Ringgebietes (I'y, I'y).
Das Dirichletprinzip besagt:
p~t= Min Dg(v), ©

v=0auf I'g
v=1aufI'y

wobei v stiickweise stetig differenzierbar ist.

Setzt man in (9) Funktionen ein mit vorgeschriebenen Niveaulinien, so erhilt
man #hnliche Abschitzungen wie in [19, S. 46]. Es sei ¥ (P)=A(PeG) ein zuldssiges
System von Niveaulinien und v=v (¥ (P)), dann gilt

1 1
oyl? 0
p~'< Min v'2(4) ad dnds= | v'*(1)dA ki
v=0auf I'y an’ on
0 I

v=1aufl'y A=0 I,

ds (10)

wobei I, die Niveaulinie ¥ =4 bedeutet. Es wurde A,;,=0 und A, =1 gesetzt. Wir
schreiben T(1)=§, |0¥/0n| ds. Die Schwarzsche Ungleichung liefert

1

[or@ o= {f v'(2) di}z {f [T ()] da}'l - {f (T3] dl}—l

(11)
mit dem Gleichheitszeichen fiir v’ (A)=[ T (1)]1™Y/f6 [ T(2)] 1 dA.
(10) und (11) ergeben mit dieser speziellen Funktion v (1)
1

di

U=
§0¢ s (12)

on

0
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Wir definieren
1 oy ds
du(D) t==@l—lds=¢ |—
k() d,zfﬁ n|® 35 dn (13)
Fa I
Somit lautet (12)
1
u >Jdu(l). (14)
0

Das Gleichheitszeichen in (14) tritt genau dann ein, wenn die Niveaulinien I*;, mit

denjenigen von A zusammenfallen.
Wir bezeichen mit G, die Vereinigung aller Gebiete innerhalb I'? j=1,2, ..., n; 4,
sei die Flache von G,, 4 diejenige von G.

SATZ 2: Wenn w;} (D)< 2, gilt:

3 1 1 A+ A4, 1 A4,
S n — In .
S o@n—wifD))] 4n—20;(D)—K(A+4,)  4n- 207 (D)— KA,

Das Gleichheitszeichen steht genau dann, wenn G dem Gebiet G="T,+ 5, (GU G\

T+ wpy (Gy) isometrisch ist.
Beweis: Es sei fi der Modul des Extremalgebietes G. h ist die Lésung des Problems I
fiir das Gebiet G und  diejenige fiir das Gebiet G. Wir setzen H= {]11 :E g :
1

Wegen des Dirichletprinzips (9) und Satz 1 gilt
A7 < Dgryguey (TH) < Dg(h) = pu™".

Nun lésst sich 4 explizit berechnen.
Die Niveaulinien I, von /i sind konzentrische Kreise. Folglich ist

1 dn dnL(Fl)_ A'(A)dA
ks =§ds=v<m “TEd)

ds

9]

A A
| Y ra

n

wobei 4 (1)=A4(G,). Wegen (c)in §1, 1.2 folgt

— A'(A) dA
A(A) (47 — 207 (D) —~ KA(A))

ap(i) =
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und auf Grund von (14)

1
' _ AI

= di

A J A(4n — 2wg (D) — KA)

y (15)
[ -1 A KA’

= T i - di.
0

Daraus ergibt sich die Behauptung.
Dieser Satz stellt eine Erweiterung des Satzes von Carleman [5] und Szegé [23] dar.
Setzt man K=0, so erhilt man das

KOROLLAR 1: Wenn o™ (D)<2r(K=0)ist, folgt

3 1 A+ 4,
< n .
So@n-w (D) 4,

Das Gleichheitszeichen steht dann und nur dann, wenn G einem Kreisring auf einem
geraden Kreiskegel isometrisch ist.
Existiert in D die Gauss’sche Kriimmung K, so gilt

wx(B) = ff K;dA — KA(B) firalle BcD.
B

KOROLLAR 2: Falls Ko< KinD, ist

1 A+ A, A
U< —+In —1In .
dn | 4n— K(A + 4,) 4n — KA,

Das Gleichheitszeichen tritt genau dann ein, wenn G einem Kreisring auf einer Fliche
konstanter Gauss’scher Kriimmung K isometrisch ist.

Pélya und Szegd haben dieses Ergebnis fiir den Fall bewiesen, dass sich G auf
einer Kugeloberfliche befindet [19, S. 220].

2. Poissonproblem

2.1 Homogenes Poissonproblem auf einer Mannigfaltigkeit
Wir betrachten das Problem
Problem 11

Au=—1 in G
u=0 auf I.
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Uber G treffen wir die gleichen Annahmen wie in §1, 2.1. Das Dirichletprinzip
lautet in diesem Fall

D(u)= Max {2 f f vdA—-D(v)} (16)

v=0auf I'

oder in einer dquivalenten Form

D(u)= Max ( f f vdA)z/D(v). (17)

v=0aufI'

Fiir v sind in beiden Fillen stiickweise stetig differenzierbare Funktionen zugelassen.
Die Maxima werden von der Losung u von II geliefert. Ist G ein einfach zusammen-
héngendes Gebiet der Ebene, so gilt D(u)=P/4, wobei P die Torsionssteifigkeit
eines Stabes bedeutet [19, S. 87].

SATZ 3: Falls oy (D) <2n ist, gilt

n — 205 (D) 4r — 2w (D) A

4
D(u) < 4
() K an— 207 (D)—KA K

In

wobei wir Gleichheit beim Gebiet T+ . py (G) haben.

Beweis: Es sei i die Losung des Problems II im Extremalgebiet G=T,+ . p)(G)
Wir wenden das Dirichletprinzip (17) auf D¢ (i) an. Als Vergleichsfunktion wéhlen
wir Ty, + . (pyu und erhalten

([ nimets)”~ ([ oia)

2

D¢ () > = = D¢ (u).

DG (Tw+x(D) u) DG(u) @

Die letzte Ungleichung ist eine Folgerung aus (5) und Satz 1. Um D¢ (i) zu berechnen,
gehen wir wie folgt vor:

Aus Symmetriegriinden sind die Niveaulinien I’; von # konzentrische Kreise um
die Spitze des Kegels. Wir setzen #i=ii(a), wobei a die Fliche von G, (Gebiet inner-
halb I';) ist. D¢ () ist durch (16) gekennzeichnet, also

D¢(@) = Max {2 J{ v(a)da — j{ a(4n — 2wg (D) — Ka) v'*(a) da}. (18)

v(A)=0

Die zum Variationsproblem gehorige Euler’sche Gleichung lautet:

1+ ‘—;‘—1 [a(4n — 2wg (D) — Ka) @'(a)] = 0. 19)
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Die Randbedingungen sind: #(4)=0, #(0) < 0. Durch Integration erhélt man

4Tt —2wg (D) — Ka
K Nam - 20g (D) — KA’

i(a) = (20)

Wegen der Greenschen Identitit ist
ou
—'”ﬂdﬁdA+§ﬁ~ds
on
& r
und somit

-2 D 4n — 205 (D A
Dy(d)= aZ)K( )jy _45=20i() 4

Dieses Ergebnis erweitert einen Satz von Pdlya-Szegé [18, 19, S. 191] iiber die
Torsionssteifigkeit. Als Spezialfille seien erwahnt (vgl. Korollar 1, 2):

KOROLLAR 3: Fallsw* (D)<2r(K=0)ist, gilt

2D

<
4227 — o* (D))

Das Gleichheitszeichen steht bei Gebieten, die der Mantelfliche eines geraden Kreis-
kegels isometrisch sind.
Beweis: Das Korollar 3 folgt aus dem Satz 3, wenn man K gegen Null streben lisst.

lim
K-0

4n — 2w (D) n 4n — 2wz (D) A A?
K? 4n — 205 (D)—KA Kf 42z —o* (D)

Dies kann auch direkt aus (19) gewonnen werden, indem man dort K=0 setzt und
integriert.

KOROLLAR 4: Im Falle Ko <K in D gilt

4n 4z A
De(u) S In ——— — —.
WS T TRA T
Das Gleichheitszeichen steht fiir ein Gebiet G, das einem Kreis auf einer Fliche von kon-
Stanter Kriimmung K isometrisch ist.

2.2 Das ebene, inhomogene Poissonproblem
D sei ein kreishomdomorphes Gebiet der (x, y)-Ebene mit der Metrik ds?> =g (x, y) x
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x (dx* 4+ dy?). Der Beltramioperator hat dann die Form

4 ! A + il (22)
“o\ox?  8y?)
Die Gauss’sche Kriimmung betriagt
*lng &*lng
K.=— 20. 23
G ( axz + ayz )/ Q ( )

Ein bekannter Satz besagt [siehe beispielsweise [6, S. 2491]: Wenn Kgo (x, y)=
w (x, y) Holder stetig ist, gilt fiir Ing der Ausdruck (24). Dieses Ergebnis wurde von
Riesz [22] verallgemeinert: Es bezeichne P der laufende Punkt in D und A (P) eine
harmonische Funktion in D. Ist Ing die Differenz zweier subharmonischer Funktionen
in D, so gibt es ein Radonsches Mass @ mit

Ing(P)=-— ;11: f f In|P — Q] w(dAy) + h(P) (dA,: Flichenelement). (24)

Das Integral ist im Sinn von Lebesgue-Radon aufzufassen.
Es gilt

? 9
—2w=(5;-2—+672—)1ng, (25)

wo die Ableitungen im Sinn der Distributionen verstanden werden. Geméss Resultaten
von Reschetnjak 2) und A. Huber ist w (d4,) die Kriimmung im Sinn von Alexandrow
(vgl. §1, 1.1).

Wir betrachten das

Problem I11:

uxx+uyy=_g(x’ y) inG
u=20 auf I'.

Wir nehmen der Einfachheit halber an, G sei ein Jordangebiet in der (x, y)-Ebene mit
dem Rand I'. Weiter setzen wir voraus, dass Ing die Differenz zweier subharmonischer
Funktionen sei. Es gilt deshalb die Darstellung (24).

Mit Hilfe des zugehorigen Masses w definieren wir wiein §1, 1.1

w0g(B) = o(B) — KM(B), M(B) = f f o dx dy

2) Eine kurze Zusammenfassung des Satzes von Reschetnjak findet sich in [1, S. 504].
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fiir jedes Gebiet BSG. wx=wg —wg bedeute wiederum die Jordansche Zerlegung

(vel.§1, 1.1).
Die Ubertragung von Satz 3 auf das Problem III ergibt

SATZ 4: Fiir die Losung u des Problems 111 geniigt das Dirichletintegral D (u)=
{6 (2 +u2) dx dy im Falle wg (G)<2n der Ungleichung

D(u)<4n—2wg(G) - 4n — 205 (G) M (M =”de dy)

K> 4n — 2w (G)— KM K
Das Gleichheitszeichen steht beispielsweise fiir den Kreis um den Ursprung mit

R*(2 — wg (G)[n)? |z| ~ox"(@=

e -2
[z ooz (R

e(z) =
Um das Extremalgebiet zu konstruieren, bendtigen wir folgendes

LEMMA 2: Verpflanzt man das Problem 111 mittels einer konformen Abbildung
z=2z(w) in die w-Ebene (w= £ +in), so geht es in das

Problem 111" ;

0
(g 1) v =— 09

in G'=w(G) U=0auf I'"=w(I'), wobei U=u(z(w)), e (w)=|dz/dw|* ¢(z(w)) iiber.

Eine einfache Rechnung ergibt

(@ Dg(uw)=Dg.(U)

(b) w,(B)=w;(B’) mit B'=w(B)

In Satz 3 war das Extremalgebiet ein gerader Kreiskegel in einem Raum von kon-
stanter Kriimmung K. Dieser Kegel ldsst sich isometrisch auf einen Kreissektor
abbilden, der auf einer Fliche konstanter Kriimmung K liegt und dessen Grenzradien
identifiziert werden (vgl. §1, 1.2). Wir bilden diesen mit Hilfe einer stereographischen
Projektion3) konform in die w-Ebene ab. Das Linienelement nimmt fiir K= + R™2
die Form ds®?=4R*(14|w|*)”2 |[dw|® an, und der Kreissektor geht wieder in einen
Kreissektor iiber. Bildet man den letzteren mittels der Abbildung z=w?" (2%~ " x(6)
konform auf den Kreis der z-Ebene ab und beriicksichtigt das Lemma 2, so erhédlt man
die Massenverteilung g, fiir welche im Satz 4 das Gleichheitszeichen steht.

Entsprechend zu §2, 2.1 ergeben sich aus Satz4

3) Strubecker, DifferentialgeometrieIl, S. 50 und I1I, S. 169.
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KOROLLAR 5: Falls * (G) <2 ist (K=0), gilt

< M’
iCr-*(6)

Gleichheit beim Kreis um den Ursprung mit g (z)=|z|~©" (®/

KOROLLAR 6: Wenn o(B)/M(B)<K ist fiir jedes beliebige Gebiet BSG, gilt

4r 4r M

Das Gleichheitszeichen steht bei beliebigen Kreisen mit

4R?
= fir K=+R2.

2.3 Als Beispiel betrachten wir das Poissonproblem Au= —g(z) fiir den Kreis
|z] < R mit =0 auf der Peripherie |z] = R. Hier geben wir obere und untere Schranken
fir D(u) an. ¢(z)eC? sei eine positive, superharmonische Funktion, d.h. 49<0.
Dann ist

A 2 2
Alng=——-9——<g—x-) -—(Q—y) <0 und somit
@ @

Im rotationssymmetrischen Fall o =g (r) gilt

o*(G) = —{ﬁ %(r %’) dr d0 = — 7R Z'((If))

sofernlim, . 7 ¢,(r)/e(r)=0ist.

Um untere Schranken fiir D(u) zu finden, beniitzen wir eine Methode von Ne-
hari [14]. Wir wahlen in (17) als Vergleichsfunktion v die Lésung des Problems
Aii=—1 in {z;|z| <R}, #=0 auf |z|=R. Wegen 4o<0 ist ®(r)=[3" (r, 0) 40 eine
nicht zunehmende Funktion von r, ebenso #i=R?/4—r?/4. Unter Anwendung des
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Lemmas 1.2 von Banks4) folgt:

(ff 7 dy)z (} (R*4—r2[4) o (r) r dr)z

G

D)z —— @ ZR%/8 >
R R s
{I(R2/4 ~r4)r drf o(r)r dr/i}
2 2
5 _0 0 _ M*
g nR*/8 87

Zusammen mit Korollar 5 and 6 ergeben sich die Abschitzungen
M?[8n < D(u) < M?|(8% — 4w (G)). (26)

Die rechte Seite ist nur giiltig, wenn @ (G)<2r ist. Wenn — A Ing/20 <K ist, lautet
eine weitere Abschidtzung

4r 4rn M
K b

< 27
K2 an— KM (24}

M?[8n < D(u)

wobei 4n — KM >0 vorausgesetzt wird.
Das Gleichheitszeichen tritt sowohl in (26) als auch in (27) fiir Konstantes g in
beiden Richtungen gleichzeitig auf.

2.4 Eine Verallgemeinerung der harmonischen Verpflanzung

Die harmonische Verpflanzung geht auf J. Hersch [10] zuriick und stellt eine
Moglichkeit dar, Funktionen von einem Gebiet in ein anderes zu verpflanzen, ohne
dass sich dabei das Dirichletintegral dndert. Die Gebiete brauchen im Gegensatz zur
konformen Verpflanzung nicht vom selben topologischen Typ und zwei-dimensional
zu sein. Diese Verpflanzung kann gebraucht werden, um Vergleichsfunktionen fiir ein
Extremalprinzip zu konstruieren. Wir werden sie hier in einer allgemeineren Form als
in [10] wiedergeben.

Es sei G ein Ringgebiet der (x', x*)-Ebene, dessen Rand in zwei Klassen I'y und
I’y zerfillt (vgl. §2, 1), und

o [ .. 0
L = == M —
ox (“ 6x’>

4) D. Banks, Bounds for the Eigenvalues of some Vibrating Systems, Pac. J. Math. 10, Nr. 2,
473 (1960).

Ahnliche Ungleichungen finden sich auch in der Arbeit von J. Hersch, Propriétés de convexité du
type de Weyl pour des problémes de vibration ou d’équilibre, ZAMP 12, Nr. 4, 308, 315 (1961).
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ein in G definierter, selbstadjungierter, elliptischer Differentialoperator. a*/(x!, x?)
seien stetig differenzierbar in x* und x2. Wir betrachten das Randwertproblem

Problem1V:
L[h]=0 in G
h=1 auf I,.

Wir werden mit I'; die Niveaulinien A=A bezeichnen und mit 7 diejenige Normale,
fiir die 0h/on>0. Wegen des Maximumprinzips von E. Hopf siehe z.B. [6] nimmt A
sein Maximum und Minimum auf dem Rand I' an. Unter dem verallgemeinerten
Modul verstehen wir die Grosse

[ oo

Der Divergenzsatz besagt fiir dieses spezielle 4

oh [ Oh
§ (axj) n,ds = § ha” (5;) n; ds

n (28)

” ( )( )"" =5 (A= (m ).
Ferner gilt
folg)mas o [ () oo o

I, r Ga

Wir berechnen nun

- (2o

fiir eine Funktion f (x*, x?)=v(h(x", x*)). Es ist

1

b(f) = f "(A)gﬁ ’f(‘”‘ )(jh)dnds (30)

A=0
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Aus (28) und (29) folgt
1

D(f)=Jv’2(l)di%. (31)
0

Dank (31) sind wir in der Lage, eine Funktion f (x!, x*)=0(h), die in G definiert ist,
so in ein Gebiet G mit demselben Modul ji zu verpflanzen, dass das Dirichletintegral
D unverindert bleibt. Es sei & die Lésung von Problem IV fiir das Ringgebiet (I, I, ).
Wir setzen f=uv(h). fist in G definiert. Nach (31) gilt

Dq(f) = Da(f) (32)
Eigenschaften von ji: ji ist durch das Variationsprinzip

g'= Min D(f) (33)
f=0auf I'g
S=1laufl;

gekennzeichnet. Wir geben durch ¥ (P)=A4, wobei ¥ =0 auf I'y und ¥ =1 auf I';,
ein System von Niveaulinien vor. Nun suchen wir eine Funktion f(P)=v(¥ (P)),
fiir die D( /) moglichst klein wird. fin (33) eingesetzt ergibt

1

(0
E~'< Min | v'2(1) dA Q a” —‘kl n;ds. (34)
v(0)=0 0x
v(1)=1 0 ra

I, bedeutet die Niveaulinie ¥ =A. Wir definieren

T(4)= § a“(%) n;ds.

BEHAUPTUNG: T'(A) ist positiv.
grad ¥ = (0%/0n) 7, wobei 0¥/dn > 0. Somit gilt

i O oy
a P nj—gﬁa nn;.

Da L ein elliptischer Operator ist, ist a/n;n;>0. Wegen der Schwarzschen Ungleichung

1st
1 1 1

jv’z(A)T(A)dzz{ofv'dz}z U 7%}—1 =H %}"‘ 5

0 0
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Aus (34) und (35) folgt
1

0> J A (36)
) T(4)

Das Gleichheitszeichen steht genau dann, wenn die Niveaulinien von ¥ mit
denjenigen von A zusammenfallen. Wir bezeichnen mit dii den Modul des Gebietes,
fiir das AS ¥ <1+dA. Wegen (28) gilt

di~ ! = L a (gl//)n ds—-—T(/l) §a”nn — 37

I,

Aus (36) und (37) folgt u?fo dii(4), d.b. f ist superadditiv. Diese Uberlegungen
stiitzten sich auf [19, S. 46].

2.5 Untere Schranken fiir die Torsionssteifigkeit von mehrfach

zusammenhdngenden Gebieten

Gc I sei ein Gebiet, das von endlich vielen disjunkten Jordankurven berandet
wird: der dusseren Randkurve I’y und den inneren Randkurven I'Y” j=1,..., n
G{" bezeichnen das Innere von I'{? j=1,...,n und D das Innere von I'y. Es sei
G,=U}-1 GPund I'y = Jj- | I'{". Wir betrachten das

Problem V :

du=-—1 in G
u=0 auf Fpu=c; auf TP j=1,..,n

wobei die ¢; durch die Beziehung §,» 0u/0n ds=A; (A; Fliche von G{”, n innere
Normale von G{”) bestimmt sind. In der Ebene handelt es sich um das Torsions-
problem eines Stabes mit dem Querschnitt G. Die Torsionssteifigkeit stimmt bis auf
einen Faktor mit dem Dirichletintegral iiberein

S=DG(u)=”udA+ il c/A;. (38)

S ist durch die folgenden Extremaleigenschaften charakterisiert [20]:

S = M:lx {2 :J‘ vdA - DD(v)} (39)
)
S = Max 2 | (40)

v Dp(v)
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In beiden Fillen durchléduft v alle stiickweise stetig differenzierbaren Funktionen,
welche lings I'y verschwinden und in G{” j=1, ..., n konstante Werte annehmen. Das
Maximum wird nur bei der Lésung u des Problems V erreicht.

SATZ 5: Von allen Gebieten mit dem Modul po=pr,r, (v8l.§2, 1), der Fliche der
inneren ,,Licher A, (A, =A(G,)) und der Kriimmung wg (D)<2n hat der Kreisring
G=T,+ . 0y(D)\T o+, 0)(Gy) auf einem Kreiskegel in einem Raum konstanter
Kriimmung K die kleinste Torsionssteifigkeit. Wenn K>0, muss KA(D)<2rn—wg (D)
vorausgesetzt werden.

Beweis: Wir werden mittels der harmonischen Verpflanzung eine Vergleichs-
funktion fiir das Extremalprinzip (40) konstruieren. Die Losung # von Problem ¥V in
G hat dieselben Niveaulinien wie die harmonische Funktion f in G, die auf I, (Rand
von T+ (D)) den Wert 0 und auf I, (Rand von T+ »(Gy)) den Wert 1 an-
nimmt. 4 sei die entsprechende Funktion in G mit h=0 auf 'y und A=1 auf I';. 4
hat die Form = ¥ (h). Wir setzen v= ¥ (h). Es sei ferner

V_ v in G
T lP(1) in G,.

V ist eine zuldssige Funktion fiir (40). Also gilt

(U VdA)2 (fovdA+A1W(l))2

S> D0 D.() . (41)

Wegen der Invarianz des Dirichletintegrals gegeniiber harmonischer Verpflanzung
folgt
Dg(v) = Dg(i). (42)

Um den Zihler von (41) abzuschitzen gehen wir folgendermassen vor:
I' (1) bzw. I’ (1) bezeichnen die Niveaulinien h=1—(u/uo) bzw. h=1—(u/n,). Wie
man leicht nachpriift, ist x4 der Modul der Gebiete

G1 - iy = {P; PeG, h(P)>1- ﬁ}
Ho
und
Cr_ s = {p; PG, h(P)>1- fi}.
Ho
Wir fiihren u als Parameter ein und erhalten
Ho
. . dA .o
J‘Jv dA =J Y (u) —du, wobei ¥(u)= ?l’(l - _Ii_). (43)
du Ho

G 0
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Wegen (14) aus §2, 1 und der Schwarzschen Ungleichung folgt

Zf = 3@ dn ds § ds/dn > H; ds}z = I2(I' (w)). (44)

I'(w) I'(p) I'(w)

LEMMA 3: L(I'(u)) = L(F (r))
Beweis des Lemmas: Auf Grund von Satz 2 (§2, 1) ist

A (G1 — (uluo)) = A(G1 — (1/po))- (45)

Die Flidche des Gebietes, das nur von I' (1) bzw. I (1) begrenzt wird, ist
A'=A(Gy_ ) +4; bzw. 4'=A(G;_ ) +4;. Beriicksichtigt man, dass f (4)=
= (4n—2wg (D)— KA)A fiir

4= [0, 0) falls K<0
~|[0,(27 — wg (D))/K] falls K >0

monoton wachsend ist, so folgt mit Hilfe von (45) und der isoperimetrischen Un-
gleichung (c) aus §1, 1.2

L*(I'(w) > A’ (4n — 205 (D) — KA') > 4'(4n — 205 (D) — KA') = L*(F ().

Wegen (43), (44) und Lemma 3 folgt
u

U vdA > f P12 (P (p)du = f Gf ddA. (46)

0
Durch Einsetzen von (46) in (41) ergibt sich die Behauptung.
Sind u; und u, die Losungen des Problems II fiir die Gebiete G{” bzw. D, und
wéhlt man in (39)

p—Juite in G j=1,..,n
u in G=D\G1

(u Losung von Problem V'in G), so folgt die Ungleichung von Weinberger [24]

S+ Y, D¢, (4;) < Dp(uo). ' (47)
i=1

Das Gleichheitszeichen steht dann und nur dann, wenn I'{? mit einer Niveaulinie von

Uo zusammenfallt.
Ahnlich wie in §2, 2.2 lassen sich mit Hilfe von Satz 5 und der Ungleichung (47)

die niachsten Korollare beweisen.
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KOROLLAR 7: G; j=1,..., n seien einfach zusammenhdngende, ebene Gebiete
(G;nG;=¢ fiir i+j), die in einem Jordangebiet G, der z-Ebene liegen. I'; i=0, 1,..., n
stelle den Rand von G, u; die Losung von 111 in G, dar, d.h. du;= —¢(2) in G, u;=0
auf T';. ¢(z) erfiille die gleichen Bedingungen wie in §2, 2.2. Wenn o™ (G,) <2, so gilt

n 2
Do (t0) = X, D, (1) > o (e~ 1),
i=1 x

wobei a=2n—w*(Go), M; =37, [{s, ¢ dx dy, pror-=po Modul von Go\U}-; G},
F, = U;‘:l F]' .

Das Gleichheitszeichen tritt ein, wenn j=1, g(z)=|z|™®" “* und sowohl G, als
auch G, ein Kreis um den Ursprung ist.

KOROLLAR 8: Von allen mehrfach zusammenhdngenden, ebenen Gebieten mit dem
Modul pr r,= o und der Fliche der inneren Licher A, hat der Kreisring die kleinste
Torsionssteifigkeit, d.h.

A2

Sz 1(efo —1).

8n

Zusammen mit dem Satz von Pdlya-Weinstein [20] ergibt sich die Abschdtzung

A? A, + A)* — 4}
-éi(eg""°—1)<8<(~ - 8) > (A: Fliche von G). .
T T

3. Eigenwertprobleme

3.1 Homogene schwingende Membran aud einer Mannigfaltigkeit
G <IN sei ein Gebiet, das in einem Jordangebiet D < )t liegt. Der Rand von G sei
I'. Das Problem der homogenen schwingenden Membran lautet:

Problem V1:
Au+Au=0 in G
u=0 auf I.

Wir setzen voraus, dass dieses Problem l6sbar sei, und dass eine abzdhlbare
Menge positiver Eigenwerte existiere. Der kleinste ist durch das Rayleighprinzip

. D(v '
11= Min ~—(-—)—'—' (48)
v=0aufl'ff Usz

G

charakterisiert. Das Minimum wird bei der ersten Eigenfunktion von Problem VI
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angenommen. Peetre hat eine untere Schranke fiir A, angegeben [16]. Der nachfolgende
Satz stellt eine Verallgemeinerung und teilweise Verschdrfung jenes Ergebnisses dar.

SATZ 6: Falls wg (D) <2m ist, gilt
4

f a(4n — 2wg (D) — Ka) v'*(a) da
Ay = Min 2 - (A =f Jg dx! dxz) . (49)
v(4)=0
f v’ (a) da

0
Das Gleichheitszeichen tritt genau dann ein, wenn G der Mantelfliche eines Kreiskegels
in einem Raum konstanter Kriimmung K isometrisch ist.
Beweis: Wir wenden das Rayleighprinzip (48) fiir 4, im Extremalgebiet G =
T,+ . (G) an und wihlen als Vergleichsfunktion v=T,.  pu, wobei u die erste
Eigenfunktion von Problem VI in G ist. Das gibt

3 < Do) __ Do(w)

ffvdA ffudA=

Die letzte Unglelchung folgt aus Satz 1 und (5) (§1, 2.2). Bei der Berechnung von
/4, ist zu beachten, dass die Niveaulinien I, von # konzentrische Kreise auf G sind.
Folglich gilt nach Lemma 1 (§1, 2.2)

r ('1)
De(it) = J A ,1)

wobei L(4) die Linge der Niveaulinie I'; und 4 (A) die Fliche von G, bezeichnen. Es
darf 0.B.d.A. angenommen werden, dass 0<#<1. L(4) ldsst sich in diesem Fall
durch 4 (A) ausdriicken (vgl. §1, 1.2 (c)). Somit ist

A (4 — 207 (D) - KA(D)
Dg(d) = f 4 () dl

und wegen (48)
A

f a(4n — 2wg (D) — Ka) v'*(a) da
A, = Min 2 y : (50)

v(4)=0
f v’(a) da

0
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Wir erwiéhnen wiederum die beiden Spezialfille

KOROLLAR 9: Wenn w™ (D) <2n ist, gilt

S 2z — o™ (D)) o

A
! 24

(Jo=2,4048... erste Nullstelle der Besselfunktion nullter Ordnung)
Das Gleichheitszeichen steht nur bei Gebieten, die der Mantelfliiche eines Kreiskegels

isometrisch sind.

KOROLLAR 10: Wenn w(B)/A(B) < K fiir alle Gebiete B< D ist, dann gilt

y
f a(4r — Ka) v'*(a) da
),1 ? Min 0 A

o(4)=0
f v?(a) da

0

Das Gleichheitszeichen steht bis auf Isometrie nur bei den geoditischen Abstandskreisen
auf einer Fliche konstanter Gauss’scher Kriimmung K.
Beispiele: 1) G sei ein Gebiet auf einem Polyeder. E; i=1,..., n seien seine Ecken
innerhalb G und w; die entsprechenden Eckenkriimmungen. Nach Korollar 9 folgt
@Qr— Y w)j o

wi>0

24

A >

2) Eine Folgerung aus Korollar 10 lautet: Von allen Gebieten mit gegebenem
Flacheninhalt auf einer Fliche konstanter Gauss’scher Kriimmung hat der Kreis den
kleinsten ersten Eigenwert. Dieser Satz wurde schon von Peetre [16] fiir beliebige
Dimensionen bewiesen.

Bemerkung A : Die rechte Seite von (50) kann als erster Eigenwert eines homogenen
Seiles der Linge 4 und mit dem Elastizitétskoeffizienten & (a)=a(4n — 2w (D)~ Ka)
aufgefasst werden, das rechts eingespannt und links frei ist. Die zugehorige Differen-
tialgleichung ist (k(a) v’ (a)) +vv(a)=0 in (0, 4), v(4)=0 und v(0) beschrinkt. K
war bis auf die Bedingung wg (D)<2nr eine willkiirliche Konstante. Wir setzen nun
die Existenz der Gauss’schen Kriimmung voraus. Verwendet man bei der Abschitzung
des Dirichletintegrals (Lemma 1, § 1, 2.2) anstelle von Ungleichung (c) die schirfere
Ungleichung (c¢’), so erhilt man das Ergebnis:
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Voraussetzungen: K, (a) sei darch die Beziehung
2 ff (KG - Ko)+ dA=a
D

(vgl. §1,1.2) bestimmt. Wir setzen ko(a)=a(4n—2wg, 4 (D)—K,(a)a). Es gelte
Wkoay (D) <2m.

Behauptung: A, >v,, wobei ¥, der erste Eigenwert des Seiles ist, das durch die Dif-
ferentialgleichung (ko (@) v’ (@))’ +¥v(a)=0 in (0, A)=0 und v’ (0)=0 wenn k¢ (0)+0,
sonst v(0) endlich, beschrieben wird.

Beispiel: G sei ein Jordangebiet mit K,, < K; <K, in G. B= G bedeute den
Bereich, fiir den K;=K,. Wir treffen folgende Annahmen: A(B)>A/2, wobei
A=A(G), und K, A <4rn. Nach dem obigen Resultat gilt

Ky(a) =a(4n — Kya).

3.2 Inhomogene schwingende Membran in der Ebene

Wir werden in diesem Abschnitt stets voraussetzen, dass G ein Jordangebiet in der
(x, y)-Ebene sei. I' bedeute den Rand von G. Das Problem der inhomogenen schwin-
genden Membran in G mit der Massendichte g (x, y)lautet:

Problem VII:

Uy +u,+Agu=0 in G
u=0 auf TI.

Genau gleich wie in §2, 2.2 schliesst man von Satz 6 auf

SATZ 7: Ing sei die Differenz zweier subharmonischer Funktionen und besitze die
Darstellung (24) (§2, 2.2)

1ng=-—-715ff1n|P-—Q| w(dAy) + h(P). ‘o

G

wg (B)—wg (B) sei die Jordansche Zerlegung von wg(B)=w(B)—KM(B), wobei
M (B)=[{5 0 dx dy (vgl.§1, 1.1, §2, 2.2). Falls wg (G)<2n ist, gilt:
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M
f a(4n — 204 (G) — Ka) v'*(a) da

. 0
Ay = Min i

v(M)=0
f v*(a) da

0

<M = f f 0 dx dy: totale Masse) .
G

Das Gleichheitszeichen steht beim Kreis um den Ursprung mit

R?(2 — wg (G)[m)? ||~ ox" @)=
2n-wgt(G)]2
[1 +z| = ]

e(z)=

fiir K=+ R™? und bei allen konform dquivalenten Problemen.
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0 (z) wurde wiederum durch stereographische Projektion gewonnen (vgl. §2, 2.2).

Als Spezialfille seien erwihnt (vgl. §2, 2,2 Korollar 5 und 6):

KOROLLAR 11: Falls o™ (G) < 2= ist, gilt

2n — 0™ (G) . .
A’l ? —‘—““ZM_“ _}(2) (]0 = 2,4048 ...).

Das Gleichheitszeichen wird beim Kreis um den Ursprung mit 9(z)=|z

angenommen.

|~w+ (G)/n

Dieses Korollar stellt eine Verallgemeinerung des Ergebnisses von Nehari [14]

dar. Ist ndmlich In g subharmonisch, so gilt o * (G)=0und somit 4, > nj3/ M.

In gewissen Fillen erlaubt Satz 7 die Schranke von Nehari zu verschirfen. Das

néchste Korollar enthilt eine solche Verschirfung.

KOROLLAR 12: Unter der Bedingung w (B)< KM-(B) fiir beliebige Gebiet B& G

folgt

M
f a(4n — Ka) v'*(a) da
A, > Min 2 "

v(M)=0
f v*(a)da

0
Das Gleicheitszeichen steht bei beliebigen Kreisen mit

e(z) =4R*(1 £ (z/*)% fir K=+R"2.
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3.3 Obere Schranken fiir den ersten Eigenwert einer Membran

G<I sei ein Gebiet, das von endlich vielen disjunkten Jordankurven I'”
j=0,1,..., m begrenzt wird. I''® bedeute die dussere Randkurve und D<IR das
Jordangebiet innerhalb I'?’, das G enthilt. In G definieren wir das Problem der elas-
tisch gebundenen Membran:

Problem VIII ;

Au+Au=0 in G
ou .
— + ki(s)u=0 auf " i=o0,1,....,m
on
(nist die dussere Normale von G beziiglich der Metrik g;;, k;(s) >0 eine stetige Funk-
tion der Bogenlinge s auf I'®)

Der kleinste Eigenwert ist durch das Rayleighprinzip

D(v)+ Y S’; kv* ds
j=o

A; = Min re , (51)

ffvsz

G

wobei v beliebige, stiickweise stetig differenzierbare Funktionen bedeuten, charakteri-
siert. Das Minimum wird von der ersten Eigenfunktion u geliefert.
Neben Problem VIII betrachten wir das Problem I in G (§2, 1), wobei wir I'y=
S0 TV und I'y=T.4 TP setzen. Der Modul prr, sei po (§2,1), G, =
T s+1 GV, wobei G das Gebiet innerhalb I'Y? bezeichnet. 4, ist die Fliche von
Gy, Ko=) =0 $rw k;dsund K, =Y 7. .| $rw» k; ds dietotale Federung von I'y und I';.
sei ein Kreisring auf einem Kreiskegel in einem Raum konstanter Kriimmung K
mit dem vollen Winkel 27 —wg (D) in der Spitze (w; (D)<2n). Der Rand von G setzt
sich aus zwei Kreislinien ', und I’; zusammen, wobei I, die jenige mit dem kiirzeren
Abstand zur Kegelspitze ist (Fig. 1.). G, bezeichne das Gebiet innerhalb I'; auf dem
Kegel.
YA

ds®=Q(z) 1dz|® mit
0(2)=LaR? (1£[z)})
firK=+R2

><Y

Figur 1.



Isoperimetrische Ungleichungen der Mathematischen Physik 209

Wir treffen folgende Annahmen: 4(G,)=4, (G, hat den gleichen Flicheninhalt
wie G,), G habe den gleichen Modul u, wie G. Daraus folgt, dass L (") =2aA4, L,e*°/
(L2 +KAfe*™* ) mita=2n—wg (D) und L} =4, (2a—KA4,).

Wir betrachten die Membran

A aﬁ K'
di+ =0 in G,—+——#=0 auf I, i=0,1. 52
i+ A in 6n+L(fi)u au i (52)

SATZ 8: Unter den in §2,3.3 erwdhnten Voraussetzungen gilt A, <2,. Wenn
K>0ist, muss zusétzlich 4 (D) < (2n— o™ (D))/K gefordert werden.

Beweis: Aus Symmetriegriinden hat die erste Eigenfunktion # von (52) dieselben
Niveaulinien wie i (vgl. §2, 1 und §2, 2.5). Wir schreiben i#= ¥ (k). & kann harmonisch
nach G verpflanzt werden. Wir setzen die verpflanzte Funktion v= ¥ (k) in das Ray-
leighprinzip (51) ein und erhalten

Dg(v) + ), § kv’ds+ Y k;v? ds
Jj=0 j=s+1
rw rw

f f v dd ¥ (53)

G
< Do) + K, 72(0) + K, ¥*(1)

ffasz
G

Die zweite Ungleichung von (53) ergibt sich aus den gleichen Uberlegungen wie in
§2,2.5 (42), (43)..., (46). Insbesondere wird dort gezeigt, weshalb man fiir positive X
eine zusétzliche Voraussetzung verlangen muss.

Dieser Satz verallgemeinert denjenigen von Gasser-Hersch [8]. Es lassen sich
folgende Folgerungen ziehen:

Ay <

=Zl'

KOROLLAR 13: Von allen eingespannten Membranen mit gegebenem Modul, fester
Fliche der ““innern Locher” und vorgegebener Kriimmung ™ (D) hat der Kreisring auf
einem Kreiskegel den grissten ersten Eigenwert.

KOROLLAR 14: Von allen Membranen von gegebenem Modul, fester Fliche A,
und mit der Gauss’schen Kriimmung K; <K in D, die lings I'y frei und lings I ein-
gespannt sind, hat der Kreisring auf einer Fliche konstanter Gauss’scher Kriimmung K
den grissten ersten Eigenwert. Wenn K>0, muss A(D) <2n/K vorausgesetzt werden.

3.4 Allgemeinere Eigenwertprobleme
Wir fiihren folgende Bezeichnungen ein:
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G': n-dimensionales, beschrinktes Gebiet im R"
I': Randfliche von G

(.= [ 4@ o) eV,

L sei ein beziiglich der Metrik ( ), 0> 0 selbstadjungierter, elliptischer Operator
zweiter Ordnung in G. Er ldsst sich allgemein in der Form [6]

darstellen, wobei @/ =a’'ist. Wegen der Elliptizitit von L ist a”/¢ &, eine positiv definite
quadratische Form in G. Wir werden von nun an stets voraussetzen, dass >0 in G.
Nun betrachten wir das Eigenwertproblem

Problem IX:

L[ul]=4u in G (ueC?
u=0 auf I

Der kleinste Eigenwert ist durch die Extremaleigenschaft

[0 0
Ja” (53’) (é%) odV + j bv’e dV
G (54)

Ay = Min £
v=0aufI' fvzg dV

G

gekennzeichnet. Die Vergleichsfunktionen v seien stiickweise stetig differenzierbar. Die
folgenden Betrachtungen stammen von Peetre [17]. Um A; besser abschidtzen zu
konnen, beniitzen wir das Hilfsproblem

Problem IX':
AW]=Xv in G
u' =0 auf I
wobei

Alu']=- ;/% A(Jcu') + (b + 4\—}—?) u', a=1/Det(a”),

0 1 0 ., 0
=—=, A="—‘_-—“ ”——. .
¢ Ja \/aax‘(\/aa 6x’)
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Das Rayleighprinzip fiir 1) lautet
_ _ _ 4./c
jV(va, Jev) Jadv +j<b + \/—\/.c) v dV
c
Ay= Min £ ¢ : (55)
v=0auf I fvyg av
G
Setzt man fiir /¢ u, =1, so geht IX’ iiber in

Problem X :

Au+1u—(b+f1—-\/—_ i=0 in G
Je

#=0 auf I.

LEMMA 4 (Peetre): A, = A; =1,.
Beweis: Beriicksichtigt man die Identitéten

V(e w,Jcv) =cV(w,v) + V(/c, Jewv)
V(e Jewv) = % a%(ﬁ a’ Jc wo g(\/f)) Jewv de,

und setzt diese in (55) ein, so folgt mit Hilfe von (54) unmittelbar die Behauptung.

Folgerungen
1) Infolge des Lemma 4 gilt fiir den ersten Eigenwert von Problem IX
4./c 4
vy +inf| b + —= <v,+sup|b+—= (56)
1 ( Jc) 1 Gp( \/c)

v, ist der erste Eigenwert von du+vu=0 in G, u=0 auf I', wobei unter 4 der Bel-
tramioperator beziiglich der Metrik @;; (¢ kontravariante Komponenten des metri-
schen Tensors) zu verstehen ist. Obere und untere Schranken fiir v, liefern gleich-
zeitig Schranken fiir A,. Das Gleichheitszeichen steht in (56) nur, wenn b+ (4 /¢c/./c)
fast iiberall konstant ist.

2) Das Lemma 3 ermoglicht es, Ergebnisse, die in [11] fiir spezielle Eigenwert-
probleme bewiesen worden sind, auf allgemeinere vom Typ IX zu iibertragen.

KOROLLAR 15: Wenn A, der erste Eigenwert des Problems I1X ist, gilt

4
Ay = Max1nf{b+ \/c ai(\/ap) aul’P}

i
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[5=(p', P>, "), wobei p' nach x' differenzierbar ist, a=1/Det(a"), c=0/./a,
a;;=(a’)"'.]

Beweis: ii sei die erste Eigenfunktion von Problem X. Es gelten folgende Umfor-
mungen:

~

i j 1 6 — ~ i u
(aijppl e \72: P (\/ap)) @ =— %é——,(\/a p'i*) + a;;p'p’i® + 2iip’ P (57)
und unter Beriicksichtigung der Schreibweise #; = 0ii/0x’ und &’ = a"i;
aijaiﬁj + l: iiP' ' — :/“_ (\/— ap ):I

=——= ~—~(\/a p'w?) + @'t + 2dap'a; + p,p’u (38)

\/aa‘

B Ja 2 1(Ja P+ a @, + py) (3 + ).

Durch Integration von (58) ergibt sich auf Grund der Bedingung #=0 auf I" und der
Elliptizitdt von L

JV(iZ, i) Jadv +J[ gp'p —;—/— (\/a p):l i*\JadV =0
undearaus ’

f[1—<b+£j/—;) \/laal(\/ap)+a”pp:|~2\/adV>0. (59)

1, ist der erste Eigenwert des Problems X. Auf Grund von (59) und Lemma 4 folgt die
Behauptung. Das Maximum wird fiir p,= —#'/ii angenommen. Die linke Seite von
(56) folgt unmittelbar aus dem Korollar 15 durch geeignete Wahl von p.

3) Setzt man in (57) \/a=¢ und bedeutet u die erste Eigenfunktion von IX mit
dem zugehdrigen Eigenwert 4,, so geht (58) iiber in

J Lo18 1a .
"J“i“f+[“ifPP"'55;i(Qp)] u?=—-— (qu2)+aj(u + up;) (u; + up;).

(60)
Wie im Korollar 15 folgt

1 i
Al—b———(gp)+a,,pp uo dv >
G

und daraus
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KOROLLAR 16: Es sei p=(p*, p?,..., p"), wobei p' je nach x* fiir i=1,2,...,n
differenzierbar sind, dann gilt fiir A, von 1X das Maximumprinzip

1o . o
A, =Maxinf<b + - — (op") — a;;p'p’ ¢.
i FXG{ an,(ep) a,pp}

Das Maximum wird fiir p’= —u'/u i=1, ..., n angenommen.
Bemerkung: Dieses Resultat steht in engem Zusammenhang mit einem Ergebnis
von Hartman-Wintner [9].
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