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Konstruktionisoperimetrischer Ungleichungen der mathematischen

Physik aus solchen der Géométrie

Catherine Bandle (Zurich)

Einleitung

In dieser Arbeit ist von folgenden physikalischen Grôssen die Rede:
Elektrischer Widerstand (Modul), Torsionssteifigkeit von Stâben, Energie einer

sich im Gleichgewicht befindenden Membran, die vertikalen Krâften ausgesetzt ist
(Poissonproblem), Grundfrequenz einer schwingenden Membran (Eigenwertproblem).
Aile dièse Grôssen, sowie ihre Verallgemeinerungen aus § 2, 3.4 lassen sich durch
Extremalprinzipien (Dirichlet- und Rayleighprinzip) kennzeichnen. Es gibt isoperi-
metrische Ungleichungen der mathematischen Physik, welche in enger Beziehung
stehen zu solchen aus der Géométrie. Die berûhmteste geometrische isoperimetrische
Ungleichung der Ebene lautet: Von allen Gebieten gleicher Flâche hat der Kreis den

kleinsten Umfang. Entsprechende Sâtze der mathematischen Physik sind beispielsweise

(a) der Satz von Carleman [5], der von Szegô [23] verallgemeinert wurde: Von

allen mehrfach zusammenhângenden Gebieten mit gegebener Flâche, sowie vorge-
schriebener Flâche der innern Lâcher hat der Kreisring den grôssten Modul.

(b) die Vermutung von St. Venant, die 1948 von Pôlya [18] bewiesen wurde:
Von allen einfach zusammenhângenden Gebieten mit gegebener Flâche hat der Kreis die

grossie Torsionssteifigkeit.
(c) die Vermutung von Rayleigh, fur welche unabhàngig voneinander Faber [7]

und Krahn [13] einen Beweis geliefert haben: Von allen Gebieten mit gegebener Flâche

hat der Kreis den tiefsten Grundton.
Dièse und weitere Ungleichungen âhnlicher Art finden sich im Buch ,,Isoperimetric

inequalities in mathematical physics" von Pôlya-Szegô. Wir môchten an dieser Stelle

auch auf die wertvolle Zusammenstellung isoperimetrischer Ungleichungen von
Payne [15] hinweisen.

Wir werden die eingangs erwâhnten Grôssen fur Gebiete auf allgemeinen zwei-

dimensionalen Flâchen untersuchen. Mit Hilfe geometrischer isoperimetrischer
Ungleichungen von Alexandrow [1] werden Sâtze der Art (a), (b) und (c) aufgestellt.
Die Briicke, die eine Verbindung zwischen der Géométrie und unseren Problemen

herstellt, ist das Lemma 1 (§1, 2.2). Dièses Lemma war schon verschiedenen Autoren
bekannt [7,13,14,16,19,...]. Dièse allgemeineren Betrachtungen erlauben uns,
Schranken fur das Dirichletintegral der Lôsungsfunktion des Poissonproblems und
Abschâtzungen fur die Grundfrequenz einer inhomogenen schwingenden Membran
anzugeben. Durch Benutzung der harmonischen Verpflanzung [10] leiten wir eine
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isoperimetrische Ungleichung fur die Torsionssteifigkeit mehrfach zusammenhàngen-
der Gebiete her. Ferner seien erwâhnt die Verschârfung eines Satzes von Peetre [16],
Verallgemeinerungen eines Ergebnisses von Nehari [14, Satz I] und des Satzes von
Gasser-Hersch [8]. Im letzten Abschnitt werden allgemeinere Eigenwertprobleme
diskutiert. Insbesondere leiten wir in Anlehnung an [11] und [17] ein Maximum-
prinzip fur den ersten Eigenwert her. Es sei hier betont, dass wir uns nicht mit Existenz-

fragen beschâftigen werden, sondern dass wir die Lôsbarkeit der Problème stets

voraussetzen werden. Die Anregung zu dieser Arbeit stammt aus einem Satz von
Nehari [14], der lautet: Der erste Eigenwert ^ einer inhomogenen Membran mit der

Massendichte q, fiir die Itiq subharmonisch ist, genUgt der Ungleichung Aj ^jl/M
(M-^fJgdxdy: totale Masse, j0 2,4048...).

Einige Resultate wurden in [2] angekûndigt. In [3] und [4] wurden die Ungleichungen

(a) und (c) in einer anderen Richtung verallgemeinert.
Ich mochte Herrn Professor J. Hersch herzlich danken. Er hat mich in verstândnis-

voller Weise in das Gebiet der isoperimetrischen Ungleichungen eingefûhrt und mich

in meiner Arbeit stets gefôrdert. Mein Dank gilt ebenso Herrn Professor H. Bûhl-

mann, bei dem ich Assistentin war, fur seine grosszûgige Unterstûtzung.
Nachtrag bei der Korrektur: In der Arbeit ,,Inequalities for Condensers, Hyperbolic

Capacity, and Extremal Lengths" von F. W. Gehring, welche demnâchst im Michigan
Mathematical Journal erscheinen wird, finden sich âhnliche Ungleichungen fur den

Modul wie in § 2,1. Beriicksichtig man dort im Satz 1 (11) die Alexandrowsche

Ungleichung, so erhâlt man die gleichen Abschâtzungen wie im Satz 2 unserer Arbeit.
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§ 1. VERALLGEMEINERUNG DER SCHWARZSCHEN SYMMETRISIERUNG

1. Einfuhrung

1.1 Begriffe und Bezeichnungen
Es sei 301 eine zwei-dimensionale Mannigfaltigkeit vom topologischen Typ der

Ebene, dargestellt durch ein Linienelement der Form ds2=gijdxi dxJ (i,j= 1,2).
A (G)=JJG Jg dx1 dx2[g=Det (g0-)] ist die Flâche eines Bereichs G c m, L (r)=Jr ds

die Lange eines Bogens Fc$0t Mit co(G) bezeichnen wir die (totale) Krummung und
mit Q (G) die absolute Krummung von G. Wenn KG die Gauss'sche Krummung be-

deutet, so gilt œ(G)=$$GKGdA und G(G)=JJG \KG\ dA [dA= Jgdx1 dx2\ Wir
werden auch Metriken zulassen, bei denen KG in isolierten Punkten ein Dirac'sches
Mass ist. Geometrisch bedeutet das, dass SOI neben den tiblichen regulâren Flâchen
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auch Polyeder umfasst. Die Krummung co(P) eines einzelnen Punktes Pist gleich der
Differenz von 2n und dem vollen Winkel des Tangentialkegels in P. Sie ist daher in
den Spitzen der Flàche von Null verschieden. Wir werden von nun an voraussetzen,
dass Q(B)^ C fur jeden kompakten Bereich Bc 501. Fûhrt man in SOI die Abstands-
funktion q(P, g) infr{Jr ds] ein, wobei Fa501 ùber aile Verbindungskurven von P
und Q variiert, so kann 9M als Mannigfaltigkeit beschrânkter Krummung im Sinn von
A. D. Alexandrow [1] aufgefasst werden. Unter der ,,Krummung bezùglich K"
[1, S. 513] (K beliebige réelle Zahl) verstehen wir die Mengenfunktion œK(G)

œ(G)-KA(G). Es seien û)^(G) sup£cG{%(£:)},%((?) supÊcG{-a)x(£)} fur
jede Borelmenge EaG. Nach dem Jordanschen Zerlegungssatz gilt cok(G) cqk {&) —

-%((/). Im Fall einer regulâren Metrik ist œ^ (G)=$$G max{KG-K, 0} dA und

œ-(G) $$Gmax{-KG + K90}dA. Es ist Q(G) û>+(G) + aT (G). Wir werden

folgende Bezeichnungen verwenden: (ô/dxi)u ui9V(u,v)—giJuivj9 wobei giJ die

kontravarianten Komponenten des metrischen Tensors sind. Tritt ein Index wieder-

holt auf, so ist darûber zu summieren.

Die y-te Komponente von gradw ist (gmdu)j=giJUi uj. gradw steht in der

Metrik gtj senkrecht auf den Niveaulinien von u.

stellt den zweiten Differentialoperator von Beltrami (verallgemeinerter Laplaceope-

rator) dar. Z)(/) JJ V(/,/) ^jg dx1 dx2 ist das (verallgemeinerte) Dirichletintegral.

1.2 Geometrische isoperimetrische Ungleichungen

Die folgenden Ungleichungen stammen von A. D. Alexandrow [1, S. 509, 514].

Es sei Dc9JÎ ein Jordangebiet mit dem Rand F, A(D) A und L(F) L. Wir werden

stets voraussetzen, dass die absolute Krummung beschrânkt sei.

(a) Es gilt

L2^2(2n-œ+(D))A fur œ+(D)<2n. (1)

Das Gleichheitszeichen steht genau dann, wenn D der Mantelflâche eines geraden

Kreiskegels mit der Krummung co+ (D) in der Spitze isometrisch ist1). (Wickelt man

den Kegel auf die Ebene ab, und bezeichnet P den Zentriwinkel des Sektors, so stellt

co+(D)=2n-p die Krummung der Kegelspitze dar).

(b) Ist co (B) ^ KA (B) fur jedes beliebige Gebiet BcD,so gilt :

(2)

x) Dièse Ungleichung wurde auch von A. Huber [12] mit rein potentialtheoretischen Mitteln
hergeleitet.
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Das Gleichheitszeichen tritt bis auf Isometrie nur bei den geodâtischen Abstands-
kreisen aufeiner Flâche konstanter Gauss'scher Kriimmung ein.

Die nâchste Ungleichung enthâlt (a) und (b) als Spezialfâlle und lautet :

(c)Falls co£(D) <27r,folgt:

L2 > A (4tt - 2œ£ (D) - KA). (3)

Das Gleichheitszeichen steht genau dann, wenn D der Mantelflâche eines geraden

Kreiskegels in einem Raum konstanter Kriimmung K mit der Kriimmung œ^ (D) in
der Spitze isometrisch ist.

Ein Modell eines solchen Kegels ist der Kreissektor auf einer Flâche konstanter
Gauss'scher Kriimmung K mit dem Zentriwinkel 2n — co^ (D), bei dem die beiden

Grenzradien identifiziert werden.

1. BEHAUPTUNG : œ^ (D) ist eine nicht zunehmende Funktion von K.
Denn es ist œKt (B) ^ œK2 (B) fur K± < K2.

2. BEHAUPTUNG: Im Falle einer Gauss'schen Metrik hat die Funktion
H(K) 4ti — 2cok (D) — KA bei gegebenem Bereich D genau ein Maximum H(K0). Ko
wird bestimmt durch die Gleichung

D

wobei

(x)+ I1 fûr x > ° 1
^ ^

(0 sonst j
5eww; Aus H(K)=4n-2 $$Kg>k (Kg-K) dA-KA ergibt sich

dA-A.

H' (K) ist eine nicht zunehmende Funktion von K. Folglich ist H(K) konkav und
nimmt an der Stelle Ko mit H' (Ko)=0 ihr Maximum an.

Aus (c) und der Behauptung 2 folgt
(c') Ist Ko gemâss (*) bestimmt und œ^0 (D)< 2n9 so gilt

I}^aU%-2 fi KGdA\>A{4n-2(ot{D)-KA) (4)

fûr aile K.
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2. Symmetrisieiiingen

2.1 Definitionen
Es sei G ein beliebiges Gebiet das mit samt seinem Rand F in einem Jordangebiet

DczïJt liegt. /sei eine auf GuF definierte, positive Funktion, die stùckweise stetig
differenzierbar ist, und welche auf dem Rand F verschwindet, O.B.d.A. konnen wir
annehmen, dass 0</< 1 ist.

DEFINITION: In einem Raum mit konstanter Krummung Kbezeichnet rw+x((/)
die Mantelflâche eines geraden Kreiskegels mit der Krummung (0% (<2n) in der Spitze
undder Flâche A Tû>+K (G)) gleich A (G).

Wenn K> 0, existiert Tn+K (G) nur, fails A (G) ^ (4n - lœ^ )/K ist.

Spezialfaile : T0)+(G) stellt die Mantelflâche eines gewôhnlichen, geraden Dreh-
kegels im euklidischen Raum dar. Ist œ^ =0, so bedeutet T^K{G) einen Kreis auf
einer Flâche konstanter Gauss'scher Krùmmung K.

DEFINITION: Der gegebenen Funktionf auf G wird eine Funktion TsfaufTs(G)
(s=cok) zugeordnet, deren Niveaulinien Abstandskreise mit dem Mittelpunkt in der

Spitze des Kegels sind, und die aufdem Rand von Ts (GA) den Wert X annimmt.

Ts/ist eine nicht zunehmende Funktion des Abstandes der Punkte auf TS(G) von
der Spitze des Kegels. Tsf ist durch / eindeutig bestimmt. Ferner ist Tsf wegen der
Monotonie fast uberall differenzierbar. Die Transformation G-*TS(G) kann als

Verallgemeinerung der Schwarzschen Symmetrisierung eines Gebietes G und /-> Tsf
als Verallgemeinerung der Schwarzschen Symmetrisierung einer Funktion/aufgefasst
werden.

Spezialfaile: (a) Ist co+ =0 und K=0, so stellt /-» Ts/die Schwarzsche Symmetrisierung

dar. Sie ist in [19, S. 189ff.] beschrieben.

(b) T(a+f(K=0) stimmt im wesentlichen mit der Symmetrisierung von Peetre [16]
ûberein.

2.2 Eigenschaften der Symmetrisierung
Wie unmittelbar aus der Définition hervorgeht, gilt fur eine beliebige in [0, 1]

integrierbare Funktion H{t)

jJH(f)dA= jj H(Tœ+Kf)dA. (5)

Nach den in §1, 2.1 getroffenen Definitionen und Voraussetzungen gilt ein zu [19,
S. 190...]analoger
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SATZ 1 : Wenn co£ (D)=s<2n ist, so giltfur das Dirichletintegral der Funktionen

fund Tsfdie Ungleichung

DG(f)>DTt(O)(TJ) (6)

d.h. bei einer Symmetrisierung verkleinert sich das Dirichletintegral.
Beweis: Wir werden in Zukunft die Kurzformen A(X) A(GX) und L(X)=L(FX)

verwenden. Der Beweis beruht wesentlich auf dem nachstehenden Lemma. Dièses

geht auf [7, 13,19,...] zurûck. Der Vollstândigkeit halber werden wir den Beweis
wiederholen.

LEMMA 1 :

wobei A'(X) (d/dX) A(X). Das Gleichheitszeichen steht genau dann, wenn df/dn longs
aïlen Niveaulinien konstant ist.

n bedeutet die Normale an Fx beziïglich der Metrik gij9 welche ins Innere von Gx

weist.
Beweis des Lemmas: |grad/| (go/*/J')1/2; die Flâche zwischen Fx und Fx+dX

betràgt §Fa dn ds, wenn s die Bogenlânge auf Fx ist und dn dn(s, X) die Breite des

Streifens zwischen Fk und Fx+dx an der Stelle s darstellt. Es gilt (vgl. § 1, 1.1)

1 1

r r e/2 ç r
0 — dn ds \ dk (p

J JSn J J
A 0 Ta 0 rA

df
dn

ds

Auf Grund der Schwarzschen Ungleichung

und (8) schliesst man auf die Behauptung des Lemmas.
Setzt man in (7) die Ungleichung (3) ein, so folgt

(8)

rfA

mit dem Gleichheitszeichen bei Tm+K{D)f.
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§ 2. ANWENDUNGEN

1. Der Modul eines Ringgebietes

Es sei D ein Jordangebiet auf einer Mannigfaltigkeit 501 (vgl. §1, 1.1). GczD sei

ein Gebiet, das von endlich vielen Jordankurven berandet wird. Dièse Randkurven
seien in zwei Klassen eingeteilt: {rtf | /'= 1,..., m} und {r[J) | j= 1,..., n}, wobei die

,,âussere" Randkurve der ersten Klasse zugeteilt wird. Wir setzen Fo= [JT=i r&° und
Fx Uï=i ^iJ) un(i betrachten das folgende Dirichletproblem fur dièses ,,Ringgebiet

(A,, A)":
Problem I :

Ah 0 in G (h ist eine 5îharmonische" Funktion in G)
h 0 auf r0
h 1 auf rx

Die Grosse /jroFl 1/Z)G(A) heisst Modulées Ringgebietes (r0, A).
Das Dirichletprinzip besagt:

i *= Minfi *= Min DG(t;),
y 0 auf Fo
t;= 1 auf Ti

(9)

wobei v stûckweise stetig differenzierbar ist.

Setzt man in (9) Funktionen ein mit vorgeschriebenen Niveaulinien, so erhâlt

man âhnliche Abschàtzungen wie in [19, S. 46]. Es sei W(P) À(PeG) ein zulâssiges

System von Niveaulinien und v v(W (P)), dann gilt
î î

; Min
v 0 auf To
t>=lauf rt A=0

J J
dnds \ vf2(X)dÀ&>

J J dn
ds (10)

wobei Tk die Niveaulinie W À bedeutet. Es wurde Amin 0 und Amax=l gesetzt. Wir
schreiben T(X) §rx \dW/ôn\ ds. Die Schwarzsche Ungleichungliefert

î 11 î

v'2(X)T(X)dX>
o

mit dem Gleichheitszeichen fur v' (X)=[ r(A)] " VJo [ r(A)] ~1dk.

(10) und (11) ergeben mit dieser speziellen Funktion v (A)

dk

Jn
ds (12)
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Wir definieren

di]/

~dn
ds

ds

dn
(13)

Somitlautet(12)

\ (14)

o

Das Gleichheitszeichen in (14) tritt genau dann ein, wenn die Niveaulinien Fx mit
denjenigen von h zusammenfallen.

Wir bezeichen mit Gt die Vereinigungaller Gebieteinnerhalb r[j)j= 1, 2,..., n; A1

sei die Flàche von Gl9 A diejenige von G.

SATZ 2 : Wenn œ^ (D) < 2n, gilt:

1 [ A + A, At
^^2{2n-(o^ (D)) {An- 2œ£ (D) - K(A + Ax)

^
An - 2œ£ (D) - KAX)] '

Das Gleichheitszeichen steht genau dann, wenn G dem Gebiet ô T(0+K(D)(GyjG1)\
T<o+K(D) (^î) isometrisch ist.

Beweis: Es sei (l der Modul des Extremalgebietes ô. fi ist die Lôsung des Problems I
fur das Gebiet ô und h diejenige fur das Gebiet G. Wir setzen H= \

1 _[l in Cri

Wegen des Dirichletprinzips (9) und Satz l gilt

fi'1 < DÔTsiGKjGl)(TsH) < DG(h) .-1

Nun lâsst sich fi explizit berechnen.
Die Niveaulinien tk von h, sind konzentrische Kreise. Folglich ist

1 dn dnL{tx) A'{k)dk
ds

dit
ds

wobei A(X)=A (ÔA). Wegen (c) in § 1, 1.2 folgt

-A'(X)dX
"A(X)(4n-2coi(D)-KA(X))
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und auf Grund von (14)
1

— A'
A(4n-2co£(D)-KA)dX¦J:

(15)

¦J
1

- 1 (M KA' \
dk.

An - 2cûk (D) \A An- lœ^ (D) - KA
o

Daraus ergibt sich die Behauptung.
Dieser Satz stellt eine Erweiterung des Satzes von Carleman [5] und Szegô [23] dar.

Setzt man K= 0, so erhâlt man das

KOROLLAR 1: Wennco+ (D)<2n(K=0)ist,folgt

Das Gleichheitszeichen steht dann und nur dann, wenn G einem Kreisring auf einem

geraden Kreiskegel isometrisch ist.

Existiert in D die Gauss'sche Krûmmung KG, so gilt

œK(B)= KGdA-KA(B) fur aile BcD.
B

KOROLLAR 2 : Faite KG^K in D, ist

U

Das Gleichheitszeichen tritt genau dann ein, wenn G einem Kreisring auf einer Flâche

konstanter Gauss'scher Krûmmung K isometrisch ist.

Pôlya und Szegô haben dièses Ergebnis fur den Fall bewiesen, dass sich G auf
einer Kugeloberflâche befindet [19, S. 220].

2. Poissonproblem

2.1 Homogènes Poissonproblem aufeiner Mannigfaltigkeit
Wir betrachten das Problem
Problemïï:

Au -\ in G

u 0 auf r.
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Ober G treffen wir die gleichen Annahmen wie in §1, 2.1. Das Dirichletprinzip
lautet in diesem Fall

D(u)= Max \l f f vdA-D(v)\ (16)
y Oaufr \ J J J

GG

oder in einer âquivalenten Form

D(u)= Max f [vdA] jD{v). (17)

G

Fur v sind in beiden Fâllen stûckweise stetig differenzierbare Funktionen zugelassen.
Die Maxima werden von der Lôsung u von II geliefert. Ist G ein einfach zusammen-
hângendes Gebiet der Ebene, so gilt D(u)=P/4, wobei P die Torsionssteifigkeit
eines Stabes bedeutet [19, S. 87].

SATZ 3 : Falls œ+K(D)<2n ist, gilt

wobei wir Gleichheit beim Gebiet Tû>+k(jD) (G) haben.

Beweis: Es sei û die Lôsung des Problems II im Extremalgebiet ô=ro)+Jc(D)(G).
Wir wenden das Dirichletprinzip (17) auf Dô(û) an. Als Vergleichsfunktion wâhlen
wir T<0+k(1>)m und erhalten

Dieletzte Ungleichungist eine Folgerung aus (5) und Satz 1. Um DG(û)zu berechnen,

gehen wir wie folgt vor :

Aus Symmetriegrunden sind die Niveaulinien tx von û konzentrische Kreise um
die Spitze des Kegels. Wir setzen û=û(a)9 wobei a die Flâche von ôx (Gebiet inner-
halb fA) ist. DG (û) ist durch (16) gekennzeichnet, also

A A

DG(û)= Max \2 [v(a)da- [ a{An - 2co£(D)- Ko) v'2(a)da\. (18)
v(A) O [ J J J

0 0

Die zum Variationsproblem gehôrige Euler'sche Gleichung lautet:

l+~[a(4n- 2œ£ (D) - Ko) û'{aj\ 0. (19)
da
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Die Randbedingungen sind : û (A) 0, û (0) < oo. Durch Intégration erhàlt man

(20)

Wegen der Greenschen Identitât ist

Dô(û) - ûAû dA + (D w — ds

ô

und somit
A

w)= m rffl ^— In

o

K2 An - 2œ£ (D) - KA K

Dièses Ergebnis erweitert einen Satz von Pôlya-Szegô [18, 19, S. 191] ûber die

Torsionssteifigkeit. Als Spezialfâlle seien erwâhnt (vgl. Korollar 1,2):

KOROLLAR 3 : Falls œ
+ (D) < In (K= 0) ist, gilt

"w^4(27c-a>+

Z)a^ Gleichheitszeichen steht bei Gebieten, die der Mantelflàche eines geraden Kreis-
kegels isometrisch sind.

Beweis: Das Korollar 3 folgt aus dem Satz 3, wenn man ^gegen Null streben lâsst.

I An - 2œt (D) A
In

K2 An-2œ£(D)-KA K

Dies kann auch direkt aus (19) gewonnen werden, indem man dort #=0 setzt und
integriert.

KOROLLAR 4 : Im Faite KG^K in D gilt

An An A
DG(u)

K2 An-KA K

Das Gleichheitszeichen stehtfiir ein Gebiet G, das einem Kreis aufeiner Flàche von kon-
stanter Krummung K isometrisch ist.

2.2 Das ebene, inhomogene Poissonproblem
D sei ein kreishomôomorphes Gebiet der (jc, >>)-Ebene mit der Metrik ds2 q (x9 y) x
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x (dx2+dy2). Der Beltramioperator hat dann die Form

A
i/o2 d2

(22)

Die Gauss'sche Krûmmung betrâgt

Q. (23)

Ein bekannter Satz besagt [siehe beispielsweise [6, S. 249]]: Wenn KGg(x,y)=
œ(x9y) Hôlder stetig ist, gilt fur In g der Ausdruck (24). Dièses Ergebnis wurde von
Riesz [22] verallgemeinert: Es bezeichne P der laufende Punkt in D und h(P) eine
harmonische Funktion in D. Ist In g die Differenz zweier subharmonischer Funktionen
in D, so gibt es ein Radonsches Mass co mit

In q (P) - ^ f f In \P - Q\ co (dAQ) + h (P) (dAQ : Flâchenelement). (24)

D

Das Intégral ist im Sinn von Lebesgue-Radon aufzufassen.
Es gilt

wo die Ableitungen im Sinn der Distributionen verstanden werden. Gemâss Resultaten

von Reschetnjak2) und A. Huber ist co(dAQ) die Krûmmung im Sinn von Alexandrow
(vgl.§l, 1.1).

Wir betrachten das

Problem III:

uxx + uyy — q(*> y) in G

u 0 aufT.

Wir nehmen der Einfachheit halber an, G sei ein Jordangebiet in der (x, >>)-Ebene mit
dem Rand F. Weiter setzen wir voraus, dass ln# die Differenz zweier subharmonischer
Funktionen sei. Es gilt deshalb die Darstellung (24).

Mit Hilfe des zugehôrigen Masses co definieren wir wie in § 1, 1.1

coK(B) co(B) - KM(B), M{B) \\ qdxdy

2) Eine kurze Zusammenfassung des Satzes von Reschetnjak findet sich in [1, S. 504].
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fur jedes Gebiet B^G. coK=co^ —œ^ bedeute wiederum die Jordansche Zerlegung
(vgl. §1,1.1).

Die Ûbertragung von Satz 3 auf das Problem III ergibt

SATZ 4: Fur die Lôsung u des Problems III genûgt das Dirichletintegral D(u)
JJg {ul + u*) dx dy im Falle co£ (G) < 2n der Ungleichung

An — 2œ$ (G) ^
4tt — 2œî (G) M

G

Das Gleichheitszeichen steht beispielsweisefur den Kreis um den Ursprung mit

Um das Extremalgebiet zu konstruieren, benôtigen wir folgendes

LEMMA 2 : Verpflanzt man das Problem III mittels einer konformen Abbildung
z z (w) in die w-Ebene (w Ç + irj), so geht es in das

Problem IIV:

2 h?

in Gf w(G) U= 0 aufF w(r), wobei U=u(z(w))9 q (w) \dz/dw\2 q (z(w)) ùber.
Eine einfache Rechnung ergibt
(a) DG(u) DG,(U)
(b) coQ(B) coè(B') mit B' w(B)
In Satz 3 war das Extremalgebiet ein gerader Kreiskegel in einem Raum von kon-

stanter Kriimmung K. Dieser Kegel lâsst sich isometrisch auf einen Kreissektor
abbilden, der auf einer Flâche konstanter Kriimmung Â'iiegt und dessen Grenzradien
identifiziert werden (vgl. §1, 1.2). Wir bilden diesen mit Hilfe einer stereographischen
Projektion3) konform in die w-Ebene ab. Das Linienelement nimmt fur K= ±R~2
die Form ds2 4i^2(l±|w|2)"2 \dw\2 an, und der Kreissektor geht wieder in einen
Kreissektor ûber. Bildet man den letzteren mittels der Abbildung z w2n/(2n~C0+K{G))

konform auf den Kreis der z-Ebene ab und berûcksichtigt das Lemma 2, so erhâlt man
die Massenverteilung q, fur welche im Satz 4 das Gleichheitszeichen steht.

Entsprechend zu §2, 2.1 ergeben sich aus Satz 4

3) Strubecker, Differentialgeometrie II, S. 50 und III, S. 169.
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KOROLLAR 5: Falls co+(G)<In ist (K=0), gilt

M2

"y"J^4(2n-co+(G)Y

Gleichheit beim Kreis um den Ursprung mit q (z) \z\~(O+ (G)/7C

KOROLLAR 6: Wenn co(B)IM(B)^K ist fur jedes beliebige Gebiet B^G, gilt

4n 4n M
D(u)^ —^lnw K2 4n- KM K

Das Gleichheitszeichen steht bei beliebigen Kreisen mit

4R2

y
fUr >~2

2.3 Als Beispiel betrachten wir das Poissonproblem Au— —q(z) fur den Kreis
\z\ <R mit «=0 auf der Peripherie \z\ =R. Hier geben wir obère und untere Schranken
fur D(u) an. q(z)eC2 sei eine positive, superharmonische Funktion, d.h.
Dann ist

undsomit

Im rotationssymmetrischen Fall q q (r) gilt

2nR

Qr(R)

2JJ dr\' HT* " KR~q(R)
O 0

sofernlimr^0 r £r
Um untere Schranken fur D(u) zu finden, benûtzen wir eine Méthode von Ne-

hari [14], Wir wâhlen in (17) als Vergleichsfunktion v die Lôsung des Problems
Aû= -1 in {z; \z\<R}, w=0 auf \z\=R. Wegen Aq^O ist <P(r)=$%n (r, 0)d6 eine
nicht zunehmende Funktion von r, ebenso w=i?2/4—r2/4. Unter Anwendung des
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Lemmas 1.2 von Banks 4) folgt :

2fjj û dx dy\ [ (R2/4 - r2/4) <P(r) r drX

D(u) > —G -5
D(û) tlR4/8

R R

|f(JR2/4 - r2/4) rdrf<P(r)r drl—
M2

Zusammen mit Korollar 5 and 6 ergeben sich die Abschâtzungen

M2/8tt ^ D (m) ^ M2/(8tc - 4œ (G)). (26)

Die rechte Seite ist mxr gùltig, wenn œ(G)<2n ist. Wenn —À ing/lQ^Kist, lautet
eine weitere Abschâtzung

\
K2 An-KM K

(27)

wobei 4%—KM> 0 vorausgesetzt wird.
Das Gleichheitszeichen tritt sowohl in (26) als auch in (27) fur Konstantes q in

beiden Richtungen gleichzeitig auf.

2.4 Eine Verallgemeinerung der harmonischen Verpflanzung
Die harmonische Verpflanzung geht auf J. Hersch [10] zuruck und stellt eine

Môglichkeit dar, Funktionen von einem Gebiet in ein anderes zu verpflanzen, ohne
dass sich dabei das Dirichletintegral ândert. Die Gebiete brauchen im Gegensatz zur
konformen Verpflanzung nicht vom selben topologischen Typ und zwei-dimensional
zu sein. Dièse Verpflanzung kann gebraucht werden, um Vergleichsfunktionen fur ein

Extremalprinzip zu konstruieren. Wir werden sie hier in einer allgemeineren Form als
in [10] wiedergeben.

Es sei G ein Ringgebiet der (x1, x2)-Ebene, dessen Rand in zwei Klassen Fo und

rlzerfailt(vgl.§2, l),und

L —.

4) D. Banks, Bounds for the Eigenvalues of some Vibrating Systems, Pac. J. Math. 10, Nr. 2,
473 (1960).

Âhnliche Ungleichungen finden sich auch in der Arbeit von J. Hersch, Propriétés de convexité du

type de Weylpour desproblèmes de vibration ou d'équilibre, ZAMP12, Nr. 4, 308, 315 (1961).
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ein in G definierter, selbstadjungierter, elliptischer Differentialoperator. d\xl9 x2)
seien stetig diJBTerenzierbar in x1 und x2. Wir betrachten das Randwertproblem

ProblemlV:

L[/i]=0 in G

/i 0 auf r0
h l auf rx.

Wir werden mit Fx die Niveaulinien h X bezeichnen und mit n diejenige Normale,
fur die dhldn>0. Wegen des Maximumprinzips von E. Hopf siehe z.B. [6] nimmt h

sein Maximum und Minimum auf dem Rand F an. Unter dem vemllgemeinerten
Modul verstehen wir die Grosse

Der Divergenzsatz besagt fur dièses spezielle h

(28)

Ferner gilt

<29)

Wir berechnen nun

fur eine Funktion/fc1, ^2)=»(A(x1, x2)). Es ist

(30)

A=*0 Ta
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Aus(28)und(29)folgt

£(/) f v'2(X)dl-. (31)

0

Dank (31) sind wir in der Lage, eine Funktion/^1, x2) v(h)i die in G definiert ist,
so in ein Gebiet G mit demselben Modul fi zu verpflanzen, dass das Dirichletintegral
D unverândert bleibt. Es sei K die Lôsung von Problem IV fiir das Ringgebiet (f0, fA).

Wir setzen/=i?(/ï)./ist in G definiert. Nach (31) gilt

DcXf) &~g(?) (32)

Eigenschaften von fi: fi ist durch das Variationsprinzip

/Z"1= Min D(f) (33)
/ 0 auf To
/= 1 auf Ti

gekennzeichnet. Wir geben durch W(P)=À9 wobei ^=0 auf To und W=l auf J\,
ein System von Niveaulinien vor. Nun suchen wir eine Funktion f(P) v(W(P)),
fur die jD(/) môglichst klein wird./in (33) eingesetzt ergibt

i
fi- * < Min f v12(X) dX (C aij (dJÇ) rij ds. (34)

v(o)=oj J \dx J

Fx bedeutet die Niveaulinie W=A. Wir definieren

BEHAUPTUNG: T(X) ist positiv.
grad !P (dW/dn) n, wobei 3!F/ô«>0. Somit gilt

Da L ein elliptischer Operator ist, ist ^Jntnj > 0. Wegen der Schwarzschen Ungleichung

ist

i 111 (35)
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Aus(34)und(35)folgt

(36)

Das Gleichheitszeichen steht genau dann, wenn die Niveaulinien von W mit
denjenigen von h zusammenfallen. Wir bezeichnen mit djl den Modul des Gebietes,
fur das X < W ^ X+dX. Wegen (28) gilt

Aus (36) und (37) folgt ji>$odjï(X), d.h. p, ist superadditiv. Dièse Oberlegungen
stûtzten sich auf [19, S. 46].

2.5 Untere Schrankenfur die Torsionssteifigkeit von mehrfach
zusammenhângenden Gebieten

Gaffll sei ein Gebiet, das von endlich vielen disjunkten Jordankurven berandet

wird: der âusseren Randkurve Fo und den inneren Randkurven F(p j=l,...,n.
G^ bezeichnen das Innere von F^ j=l,...,n und D das Innere von Fo. Es sei

G* =* U"-1 GiJ) und A U"-1 rij)-wir betrachten das

ProblemV:

Au=-1 in G

u 0 auf r0, u Cj auf r(/} j 1,..., n,

wobei die Cj durch die Beziehung §riu> du/on ds=Aj (Aj Flâche von G[j), n innere
Normale von G[j)) bestimmt sind. In der Ebene handelt es sich um das Torsions-

problem eines Stabes mit dem Querschnitt G. Die Torsionssteifigkeit stimmt bis auf
einen Faktor mit dem Dirichletintegral ùberein

S DG(u) =(judA+ £ cjAj (38)

G

S ist durch die folgenden Extremaleigenschaften charakterisiert [20] :

S Max<2 f f v dA - DD(v)\ (39)

S Max " (40)
DD(v)
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In beiden Fâllen durchlàuft v aile stiickweise stetig differenzierbaren Funktionen,
welche lângs Fo verschwinden und in G{p j= 1,..., n konstante Werte annehmen. Das
Maximum wird nur bei der Lôsung u des Problems Ferreicht.

SATZ 5: Von allen Gebieten mit dem Modul nQ ^ror, (VS^ §2,1J, der Flâche der

inneren ,,Lôcher" Ax (A1=A(Gl)) und der Krummung œ^{D)<2n hat der Kreisring
ô T(O+KiD)(D)\T(o+K(D)(G1) auf einem Kreiskegel in einem Raum konstanter

Krummung K die kleinste Torsionssteifigkeit. Wenn K>0, muss KA{D)^2n — œ^ (D)
vorausgesetzt werden.

Beweis: Wir werden mittels der harmonischen Verpflanzung eine Vergleichs-
funktion fur das Extremalprinzip (40) konstruieren. Die Lôsung û von Problem V in
ô hat dieselben Niveaulinien wie die harmonische Funktion fi in ô, die auf 10 (Rand
von Tm+Km(D)) den Wert 0 und auf /\ (Rand von T^^^G^) den Wert 1 an-
nimmt. h sei die entsprechende Funktion in G mit h 0 auf Fo und h=\ auf Fv û

hat die Form û ¥ (h). Wir setzen v W (h). Es sei ferner

v l° in G

\V0) in Gx.

Kist eine zulàssige Funktion fur (40). Also gilt

(iivdÀî

Wegen der Invarianz des Dirichletintegrals gegenûber harmonischer Verpflanzung
folgt

DG(v) Dô(û). (42)

Um den Zâhler von (41) abzuschâtzen gehen wir folgendermassen vor :

F{ii) bzw. t(ii) bezeichnen die Niveaulinien h=l-(iilfi0) bzw. fi 1 -Ou/ju0). Wie

man leicht nachpruft, ist \i der Modul der Gebiete

und

Wir fiihren \i als Parameter ein und erhalten

Mo

iï v dA f 9(n) dd-du, wobei 9{p)=w(l-£j. (43)
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Wegen (14) aus §2,1 und der Schwarzschen Ungleichung folgt

^= <C dnds (b ds/dn^l® dsi L2(r(/z)). (44)

LEMMA 3 : L (r (fi)) >L(f (fi))
Beweis des Lemmas: Auf Grund von Satz 2 (§2, 1) ist

A(Gt - (/i//i0)) >A(Ôt- (/#„)). (45)

Die Flâche des Gebietes, das nur von F(fi) bzw. f(fi) begrenzt wird, ist
A'=A(G1-(jlinQ))+A1 bzw. Âf A{ôl^(jllilQ^)-¥Av Beriicksichtigt man, dass/(^)

{An- 2(Ok (D)-KA)A fur

f[0,oo) falls K^O
\lO,(2n-a)£(D))IK'] falls K > 0

monoton wachsend ist, so folgt mit Hilfe von (45) und der isoperimetrischen
Ungleichung (c) aus § 1, 1.2

A'(4n - 2œ£(D) - KAf) > Â'(4n - 2co£(D) - KÂ') L2(t(fi)).

Wegen (43), (44) und Lemma 3 folgt

[<¥L2(P{ii))dii= [iûdA. (46)

Durch Einsetzen von (46) in (41) ergibt sich die Behauptung.
Sind Uj und u0 die Lôsungen des Problems II fur die Gebiete G[j) bzw. D, und

wâhltmanin(39)

V \u
j + c,. in G[J) j l,...,n

in G D\Gt
(u Lôsung von Problem Fin G), so folgt die Ungleichung von Weinberger [24]

t (47)

Das Gleichheitszeichen steht dann und nur dann, wenn r(/} mit einer Niveaulinie von
^0 zusammenfallt.

Âhnlich wie in §2, 2.2 lassen sich mit Hilfe von Satz 5 und der Ungleichung (47)
die nâchsten Korollare beweisen.
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KOROLLAR 7: Gj y=l,..., n seien einfach zusammenhângende, ebene Gebiete

(GjnGi (f)fur i^j), die in einem Jordangebiet Go der z-Ebene liegen. Fti=0, 1,..., n
stelle den Rand von Gh ut die Lôsung von III in Gt dar, d.h. Aut —q{z) in Gh ut 0

aufrt. q(z) erfiille die gleichen Bedingungen wie in §2, 2.2. Wenn œ+ (G0)<2n, so gilt

wobei cc 2n-co+ (Go), Ml=^"J=1 ^Gj q dx dy, nror n0 Modul von G0\U"=i Gj,

Das Gleichheitszeichen tritt ein, wennj=l, q(z)=\z\ w+(Go>^ und sowohl Go als

auch Gx ein Kreis um den Ursprung ist.

KOROLLAR 8 : Von allen mehrfach zusammenhângenden, ebenen Gebieten mit dem

Modul /jroFl =fi0 und der Flàche der inneren Lôcher Ax hat der Kreisring die kleinste

Torsionssteifigkeit, d.h.

A2
5^— (e8nfi0 - 1).

8tc

Zusammen mit dem Satz von Pôlya-Weinstein [20] ergibt sich die Abschâtzung

^ (e8*"° - 1) < S <{Al + A)2 ~ ^ {A : Flàche von G).
o7r on

3. Eigenwertprobleme

3.1 Homogène schwingende Membran aud einer Mannigfaltigkeit
GcSDÎ sei ein Gebiet, das in einem Jordangebiet Dc= 3DÎ liegt. Der Rand von G sei

T. Das Problem der homogenen schwingenden Membran lautet:

Problem Yl:

Au + lu 0 in G

u=0 auf T.

Wir setzen voraus, dass dièses Problem lôsbar sei, und dass eine abzâhlbare

Menge positiver Eigenwerte existiere. Der kleinste ist durch das Rayleighprinzip

D(v) -

Ai= Min 77 (48)

JJ2^
charakterisiert. Das Minimum wird bei der ersten Eigenfunktion von Problem VI
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angenommen. Peetre hat eine untere Schranke fur Xt angegeben [16]. Dernachfolgende
Satz stellt eine Verallgemeinerung und teilweise Verschârfung jenes Ergebnisses dar.

SATZ 6 : Falls œ^ (D) < In ist, gilt
A

[ a (4n - 2œ£ (D) - Ko) v'2 (a) da

X, > Min ^
-A (a [[y/g dx1 dx2) (49)

v(A) 0 r \ JJ /
v2(a)da G

o

Das Gleichheitszeichen tritt genou dann ein, wenn G der Mantelftâche eines Kreiskegels
in einem Raum konstanter Kriimmung Kisometrisch ist.

Beweis: Wir wenden das Rayleighprinzip (48) fur Xx im Extremalgebiet ô
Tm+K(D)(G) an und wâhlen als Vergleichsfunktion v=T(0+K^D)u, wobei u die erste

Eigenfunktion von Problem VI in G ist. Das gibt

G G

Die letzte Ungleichung folgt axis Satz 1 und (5) (§1, 2.2). Bei der Berechnung von
Xt ist zu beachten, dass die Niveaulinien tx von û konzentrische Kreise auf ô sind.

Folglich gilt nach Lemma 1 (§ 1, 2.2)

0

wobei L(X) die Lange der Niveaulinie tx und A (X) die Flâche von ôx bezeichnen. Es

darf o.B.d.A. angenommen werden, dass 0<w^l. L(X) lâsst sich in diesem Fall
durch A (X) ausdriicken (vgl. § 1, 1.2 (c)). Somit ist

1>A(X){4K-2cQ+K{D)-KA{X))dx

o

undwegen(48)
A

[ a(4n - 2ù)k (D) - Ko) v'2(à) da

Xx Min 5 (50)

f v2(a)da
o
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Wir erwâhnen wiederum die beiden Spezialfâlle

KOROLLAR9: Wennco+ (D)<2nist,gilt

Àl> 2A

(/0 2,4048... erste Nullstelleder Besselfunktion militer Ordnung)
Das Gleichheitszeichen steht nur bei Gebieten, die der Mantelflâche eines Kreiskegels

isometrisch sind.

KOROLLAR 10: Wennœ{B)jA{B)<iKfuraileGebieteBaDist,danngilt

a(4n-Ka)vf2(a)da/¦
À, > Min —

v(A)

(a)da

Das Gleichheitszeichen steht bis auflsometrie nur bei den geodâtischen Abstandskreisen

aufeiner Flâche konstanter Gauss'scher Krummung K.
Beispiele: 1) G sei ein Gebiet auf einem Polyeder. Et i=\,...,n seien seine Ecken

innerhalb G und coi die entsprechenden Eckenkrûmmungen. Nach Korollar 9 folgt

(2;r- £ a>t)f0

^ 2A '

2) Eine Folgerung ans Korollar 10 lautet: Von allen Gebieten mit gegebenem
Flâcheninhalt auf einer Flâche konstanter Gauss'scher Krummung hat der Kreis den
kleinsten ersten Eigenwert. Dieser Satz wurde schon von Peetre [16] fur beliebige
Dimensionen bewiesen.

Bemerkung A : Die rechte Seite von (50) kann als erster Eigenwert eines homogenen
Seiles der Lange A und mit dem Elastizitâtskoeffizienten k(a) a{An-2œ^ {D)-Ka)
aufgefasst werden, das rechts eingespannt und links frei ist. Die zugehôrige Differen-
tialgleichung ist (k(a) v'(a))'+vv(a)=0 in (0, A), v(A)=0 und v(0) beschrânkt. K
war bis auf die Bedingung œ^ (D)<2n eine willkûrliche Konstante. Wir setzen nun
die Existenz der Gauss'schen Krummung voraus. Verwendet man bei der Abschâtzung
des Dirichletintegrals (Lemma 1, § 1, 2.2) anstelle von Ungleichung (c) die scharfere

Ungleichung (c'), so erhâlt man das Ergebnis:
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Voraussetzungen: Ko (a) sei durch die Beziehung

2Jj(KG-K0)+dA a

D

(vgl. §1,1.2) bestimmt. Wir setzen k0{a) a{An-2(o^o{A){D)-K0(a)a). Es gelte

Behauptung: À1^v1, wobei vx der erste Eigenwert des Seiles ist, das durch die Dif-
ferentialgleichung (ko(a) v'(a))' +vv(a) Q in (0, ^4) 0 und t/(0) 0 wenn fco(0)=j=0,

sonst v(0) endlich, beschrieben wird.

Beispiel: Gc3Jl sei ein Jordangebiet mit Km^KG^KM in G. BaG bedeute den

Bereich, fur den KG=KM. Wir treffen folgende Annahmen: A(B)^A/2, wobei
A A(G), und KMA<An. Nach dem obigen Résultat gilt

K0(a)=a(4n-KMa).

3.2 Inhomogene schwingende Membran in der Ebene

Wir werden in diesem Abschnitt stets voraussetzen, dass G ein Jordangebiet in der

(x, >>)-Ebene sei. F bedeute den Rand von G. Das Problem der inhomogenen schwin-
genden Membran in G mit der Massendichte q (x, y) lautet :

Problem VII:

uxx + uyy + Xqu 0 in G

w 0 auf J\

Genau gleich wie in §2, 2.2 schliesst man von Satz 6 auf

SATZ l:\nq sei die Differenz zweier subharmonischer Funktionen und besitze die

Darstellung (24) (§2, 2.2)

ICC
lne ln|P-Q| œ(dAo) + h(P).

n J J =<* \ u/ v /
G

cûk(B)~cûk(B) sei die Jordansche Zerlegung von œK(B) co(B)—KM(B), wobei

M{B)~l\B q dx dy (vgl. §1,1.1, §2, 2.2). Fallsœ+ (G)<2n ist.gilt:
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M

f a (4tt - 2œi (G) - Ko) v'2 (a) da

o
lx ^ Min y.

v(M) - 0

[ v2(a)da
o

(m= q dx dy\ totale Masse J.
G

Das Gleichheitszeichen steht beim Kreis um den Ursprung mit

[l±|z|2ît "*

fur K= ±R~2 und bei allen konform âquivalenten Problemen.

q{z) wurde wiederum durch stereographische Projektion gewonnen (vgl. §2, 2.2).
Als Spezialfâlle seien erwâhnt (vgl. §2, 2,2 Korollar 5 und 6) :

KOROLLAR 11 : Falls œ+(G)< 2n istf gilt

h >
2U

""^
(G) il (jo 2,4048

Das Gleichheitszeichen wird beim Kreis um den Ursprung mit Q{z) \z\"(a+{G)ln

angenommen.
Dièses Korollar stellt eine Verallgemeinerung des Ergebnisses von Nehari [14]

dar. Ist nâmlich In g subharjnonisch, so gilt œ+ (G) 0 und somit Xx ^ njlJM.
In gewissen Fâllen erlaubt Satz 7 die Schranke von Nehari zu verschârfen. Das

nâchste Korollar enthâlt eine solche Verschàrfung.

KOROLLAR 12: Unter der Bedingung o)(B)^KM(B)fur beliebige Gebiet

folgt
M

f a(4n-Ka)vf2(a)da

At> Min s
v(M) 0 r

v2(a)da
o

Das Gleicheitszeichen steht bei beliebigen Kreisen mit

q(z) 4R2(1 ± \z\2y2 fur K ±R~2.
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3.3 Obère Schrankenfiir den ersten Eigenwert einer Membran
(jczSOÎ sei ein Gebiet, das von endlich vielen disjunkten Jordankurven FU)

7 0, 1,..., m begrenzt wird. r(0) bedeute die âussere Randkurve und D<=9Jt das

Jordangebiet innerhalb r(0), das G enthâlt. In G definieren wir das Problem der elas-

tisch gebundenen Membran :

Problem VIII:

Au + Au 0 in G

^- + kt(s)u 0 auf F(i) ï 0, l,...,m
on

(n ist die âussere Normale von G bezûglich der Metrik gij9 k{ (s) ^ 0 eine stetige Funk-
tion der Bogenlânge s auf f(0)

Der kleinste Eigenwert ist durch das Rayleighprinzip

D(v)+ £ (b kjv2 ds

Min -^—^ (51)

wobei v beliebige, stûckweise stetig differenzierbare Funktionen bedeuten, charakteri-
siert. Das Minimum wird von der ersten Eigenfunktion u geliefert.

Neben Problem VIII betrachten wir das Problem I in G (§2, 1), wobei wir Fo

U;=o^0) und r1 U7=s+ir(y) setzen. Der Modul /vori sei juo (§2, 1), Gx

UT=s+i gU)> wobei Gu) das Gebiet innerhalb rU) bezeichnet. At ist die Flâche von
Gt, Ko =Yj=o §ro) kj ds und Kx =Yj=s+i§ru) kjds die totale Federung von Fo und F1.

ô sei ein Kreisring auf einem Kreiskegel in einem Raum konstanter Krûmmung K
mit dem vollen Winkel 2n — œ^ (D) in der Spitze (œ^ (D) < 2n). Der Rand von ô setzt
sich aus zwei Kreislinien f0 und fx zusammen, wobei fl die jenige mit dem kùrzeren
Abstand zur Kegelspitze ist (Fig. 1.). ôt bezeichne das Gebiet innerhalb ft auf dem

Kegel.
H

s2=q(z)|di|2

irMu
fùrK=iR'2

.f ds2=q(z)|di|2mif

2Jt-(0+K(D)

Figurl.
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Wir treffen folgende Annahmen: A{ô^) A1 (6t hat den gleichen Flâcheninhalt
wie Gx), ô habe den gleichen Modul /x0 wie G. Daraus folgt, dass L(to) 2ocA1Lleafi0/

Wir betrachten die Membran

Aû + Xû 0 in (S, — + —i- Û 0 auf f t i 0, 1. (52)
dn L(/\)

SATZ 8: Unter den in §2,3.3 erwàhnten Voraussetzungen gilt A^^. Wenn
K> 0 ist, muss zusâtzlich A (D) <{2n-œ+ (Z>))/Kgefordert werden.

Beweis: Aus Symmetriegriïnden hat die erste Eigenfunktion û von (52) dieselben

Niveaulinienwieîi(vgl.§2, 1 und§2, 2.5). Wirschreibenû=lP(£i).ûkannharmonisch
nach G verpfianzt werden. Wir setzen die verpfianzte Funktion v=W(h) in das Ray-
leighprinzip (51) ein und erhalten

DG(v)+£ f>kJv2ds+ £ to
J=0 J j=s+l J

ro) ru)

(L2dA

!l"
Die zweite Ungleichung von (53) ergibt sich aus den gleichen Oberlegungen wie in
§2, 2.5 (42), (43)..., (46). Insbesondere wird dort gezeigt, weshalb man fur positive K
eine zusâtzliche Voraussetzung verlangen muss.

Dieser Satz verallgemeinert denjenigen von Gasser-Hersch [8]. Es lassen sich

folgende Folgerungen ziehen:

KOROLLAR 13 : Von allen eingespannten Membranen mit gegebenem Modul,/ester
Flâche der t(innern Lôcher" und vorgegebener Krûmmung co+(D) hat der Kreisring auf
einem Kreiskegel den grôssten ersten Eigenwert.

KOROLLAR 14: Von allen Membranen von gegebenem Modul, fester Flâche At
und mit der Gauss'schen Krûmmung KG < K in D, die lângs Fx frei und l&ngs Fo ein-

gespannt sind, hat der Kreisring aufeiner Flâche konstanter Gauss'scher Krûmmung K
den grôssten ersten Eigenwert. Wenn K> 0, muss A (D) <2njK vorausgesetzt werden.

3.4 Allgemeinere Eigenwertprobleme
Wir fuhren folgende Bezeichnungen ein:
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G: n-dimensionales, beschrânktes Gebiet im Rn

F: Randflâche von G

(u,v)e ju(x)v(x)Q(x)dV,

L sei ein bezûglich der Metrik )e q>0 selbstadjungierter, elliptischer Operator
zweiter Ordnung in G. Er lâsst sich allgemein in der Form [6]

darstellen, wobei aiJ aJIist. Wegen der Elliptizitât von L ist aij^^j eine positiv definite

quadratische Form in G. Wir werden von nun an stets voraussetzen, dass b ^ 0 ixi G.

Nun betrachten wir das Eigenwertproblem

ProblemîX:

L[u] Au in G (ueC2)
m 0 auf F

Der kleinste Eigenwert ist durch die Extremaleigenschaft

it= Min G

Oaufr 2Qdy

G

gekennzeichnet. Die Vergleichsfunktionen v seien stiickweise stetig differenzierbar. Die
folgenden Betrachtungen stammen von Peetre [17]. Um Xx besser abschâtzen zu
kônnen, benutzen wir das Hilfsproblem

ProblemlX':

i4[M'] AV in G

m' 0 auf r
wobei

'] ^ A(V') (b Aj£\ ', a

Ô
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Das Rayleighprinzip fur X[ lautet

r / A /c\
+ -y^)v2QdvJ

Ai- Min G- j 2 (55)
v Oaufr v2q dV

G

Setzt man fur je u, w, so geht IX ' iiber in

ProblemX:

Ajc\t-)û 0 in G

w 0 auf r.

LEMMA 4 (Peetre) : X± Xx X±.

Beweis: Berûcksichtigt man die Identitâten

und setzt dièse in (55) ein, so folgt mit Hilfe von (54) unmittelbar die Behauptung.

Folgerungen
1) Infolge des Lemma 4 gilt fur den ersten Eigenwert von Problem IX

vt + inî(b + A-^J\ < X, < Vl + supf6 + ^-C). (56)

vt ist der erste Eigenwert von Au + vu 0 in G, u 0 auf F, wobei unter d der Bel-

tramioperator bezûglich der Metrik atj (aiJ kontravariante Komponenten des metri-
schen Tensors) zu verstehen ist. Obère und untere Schranken fur vx liefern gleich-
zeitig Schranken fur Ax. Das Gleichheitszeichen steht in (56) nur, wenn b-{-(A je/je)
fast uberall konstant ist.

2) Das Lemma 3 ermôglicht es, Ergebnisse, die in [11] fiir spezielle Eigenwert-
probleme bewiesen worden sind, auf allgemeinere vom Typ IX zu ubertragen.

KOROLLAR 15 : Wenn Ax der erste Eigenwert des Problems IX istt gilt

A Je 1 d ,- hkx Max inf< b -\ }=- -I—= —* (Ja p) —

- g Ve jadx*



212 CATHERINE BANDLE

wobei pl nach xl differenzierbar ist, a=l/Det(aiJ), c

Beweis: ù sei die erste Eigenfunktion von Problem X. Es gelten folgende Umfor-
mungen:

ow/»y - -7= ;,Y( (V« *>') "2 - -7= ri (V« JP'"2) + «yPV^ + W ^1 (57>

\ y/aox J y/a ox ox

und unter Beriicksichtigung der Schreibweise m f dû/dx1 und ù'=aiJûj

1 d

=" Jh h (J" p'a2) apj

(58)

Durch Intégration von (58) ergibt sich auf Grund der Bedingung m 0 auf F und der

ElliptizitâtvonL

J V (fi, fi) ja dV + f Lypy - -1 A (v/^ y)l a2 Ja
G

dV > 0

und daraus

(59)

Ix ist der erste Eigenwert des Problems X. Auf Grund von (59) und Lemma 4 folgt die

Behauptung. Das Maximum wird fur pt= —ff/û angenommen. Die linke Seite von
(56) folgt unmittelbar aus dem Korollar 15 durch geeignete Wahl von/?.

3) Setzt man in (57) <s/a=Q und bedeutet u die erste Eigenfunktion von IX mit
dem zugehôrigen Eigenwert ku so geht (58) ùber in

aijpipj - - —. (qp*) \u2 - - —. (gju2) + aiJ(uj + upj) (u, + upt).

(60)
Wie im Korollar 15 folgt

J [Ai " b~ \ h dv>0

und daraus
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KOROLLAR 16: Es sei p (p\p2,...,pn), wobei pl je nach xl fur i l,2,...,n
differenzierbar sind, dann giltfur Xx von IX das Maximumprinzip

X, Max inf \b + - ^ (gp1) - a^À.
P G l Q OX J

Das Maximum wird fur/?1 — u^u i= 1,...,« angenommen.
Bemerkung: Dièses Résultat steht in engem Zusammenhang mit einem Ergebnis

von Hartman-Wintner [9].
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