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On Periodic Knots

by KunNi0o MURASUGI

§ 1. Introduction

Let # be a compact oriented 3-manifold without boundary. A knot K in .# is said
to have period n>1 if there is an orientation-preserving auto-homeomorphism g of
A with the following properties (1.1)-(1.3):

(1.1) the set F of fixed points of g is a 1-sphere in .#,
(1.2) gisof period n, that is, g" is the identity and no smaller power of g is the identity,
(1.3) F and K are disjoint.

If K has period »n, we call K a periodic knot of order n. A knot can be a periodic
knot of different orders. For example, the trefoil knot in the 3-sphere S is a periodic
knot of order 2 and 3. On the other hand, we can show that there exists a knot in S3
which cannot have any period >1. (See §5.)

Our problem is to decide the possible period of a given knot. The first general
result of this problem was obtained by Trotter [8]. He gave a necessary condition
for a knot in a certain restricted class to have period .

In this paper we shall prove, as a consequence of the main theorem,

THEOREM (see Corollary 1). If K is a periodic knot of order p" in S>, p a prime,
then the knot polynomial A(t) of K must satisfy

AR =f)F Q+t+2+-+ 71771 (mod p) *)

for some knot polynomial f (t) and a positive integer 1, (4, p)=1.

Condition (*) is of a completely different nature from Trotter’s condition and it
can be applied for any knot without restrictions. Using this condition, we shall be
able to obtain quite satisfactory results. For example, we can give alternative proofs
of the following theorems due to Trotter [8] and P. E. Conner [3].

THEOREM (see Corollary 5). Any Neuwirth knot can have only finitely many
distinct periods.

THEOREM (see Corollary 6). The only periods of the torus knot of type (m, n) are
divisors of m or n.

§ 2. Knot Polynomials

Let .# be a homology 3-sphere, that is, a compact oriented 3-manifold with the
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same (integral) homology group H, (.#) as S°. Let L=K, u---UK, be an oriented
link in .# of u components.

PROPOSITION 2.1. H, (.# — L)~ Z", where Z" denotes the direct product of p
copies of Z, the infinite cyclic group.

Proof. Since L is compact, it follows from the duality theorem [7, p. 296] that
H,(#, #—L)y~H'(L). On the other hand, the homology exact sequence for
(A, #—L) yields H,(M#, #—L)~H, (#—L). Since H'(L)=Z", we obtain the
required result.

Since K;~0 in .#, there exists an orientable 2-manifold &, in # with 0% ;=K.
Thus a meridian-longitude pair (m;, /,) is defined for each knot K; in .#. Let U, be
a small open tubular neighbourhood of K; in .#. 0U,;=T, is a torus in .#. We may
assume that m; and /; lie on T;. Since K, is oriented, we can give orientations to m;
and /; in such a way that Link (m,, K;), the linking number of m; and K|, is one, and
I; and K; bound an orientable band. H, (T;) is generated by m; and /,, and /;~0 in
M —U,.

PROPOSITION 2.2. Let ;: H (T;)— H,(# —U;) be a homomorphism induced
by inclusion. Then  ;(m;)#0 in Hy (# —U,) and {{, (my),..., ¥, (m,)} forms a basis
of H (A —U), U=\Jt- | U,, where {;(m,) is a homology class in Hy (.4 — U) which
is represented by \ ;(m;).

Proof. From Theorem 5.1 in [1], we know that y; is a nonzero homomorphism.
However, since ¥ ;(/;)=0, y ;(m;) cannot be 0 in H, (.# —U;). Next, suppose that

a(my)+-+ a,,x[/u(m,,)=0 (2.1

for some integers aj,..., a,.

Fillin Uy,..., U;,_4, U;44,..., U, in some way to obtain a manifold .# — U, with
boundary T;. Then the inclusion homomorphism sends the left side of (2.1) to
ay;(m;) which is 0. Since H; (.# — U;) has no torsion and ,;(m;)#0, it follows that
a;=0. Therefore, ¥, (m,),..., ¥, (m,) are linearly independent. Since these generate
H, (# — U) by Proposition 2.1, the proof is complete.

Propositions 2.1 and 2.2 assure the existence of the Alexander polynomial,
D(ty,..., t,), of L in .#, where ¢; corresponds to the meridian m; of K.

In the following, we always assume that p> 1.

Now m, (T;) is a free abelian group generated by m; and /; (or their suitable conju-
gates), and it has a presentation (z;, u;:[z;, u;]), where z; and u; correspond to m;
and [, and [a, b]=aba~'b"*. This presentation is called a canonical presentation of

7y (T;). Then we have

PROPOSITION 2.3 [2, Theorem2.2]. G=m,(.# — L) has a presentation Z such that



164 KUNIO MURASUGI

(2.2) the deficiency of 2 is one,
(2.3) 2 contains a canonical presentation of n;(T;) for i=1,2,..., u—1.
Therefore, we may assume that 7, (.# — L) has a presentation

P = (217"" Zu—l’ Ugseens uﬂ_l, x,-,ji[zi, ui], 1 < i < H— 1, rk,,).

Now, without change of the group G, we can add to this presentation & a new
generator z, representing the meridian m, in G and a new relator S=z,{™", where {
is a certain word written in zy,..., z,_y, #;,..., 4,y Or X; ;. The resulting presenta-
tion will be denoted by . Since G/G’ is generated by z,..., z,, we can write u;=
[Tt-; zt** (mod [G,G]), where 1, ;=0 and A, ;=Link(K; K;), and x; ;=
[T2-. 2 * (mod [G, G]).

Introduce new generators v,=u; ([[4=; z¢"*)™! and a; ;=x; ;([Th=1 z4"**) "
Using these generators, we obtain a new presentation #” of G:

” . ’ ’
g = (Zl,..., Zﬂ" vl,..., 1)“_1, a,-‘j.Wl,..., Wu_l, rk’l, S ),

where w;=[z;, v; ([T¢=1 zt**)~*], and r; ,, s’ are obtained from r; ;, s by rewriting
x;, ;jin terms of a, 4, v, Z,.

Let 0: F=(2y,..0s 24y V15eees Uymy, @i, 52 ) = Gand Y : G- G/[G, Gl = (ty,..., 1,2 [11, 1],
1 <i, j<p) be natural homomorphisms so that Y¢ (z;)=t,. We use the same symbols
@, ¥ to denote the uniquely extended ring homomorphisms between integer group
rings.

Now all the generators of G except {zy,..., z,} belong to [G, G] and Yo (z,)=t,.
Therefore, the Alexander matrix M of 2" and the associated Alexander polynomial
D(t,,..., t,) will be obtained by means of the free differential calculus [4, II]. To make
our argument smooth, we assume that the first u columns of M correspond to
Z3,..., 2z, and the next y—1 columns to vy,..., v,_; and the first p—1 rows to wy,...,

Wy—y.

PROPOSITION 2.4, Let M* be the matrix obtained from M by deleting the first
column (corresponding to z,). Then the first row of M* is divisible by 1—t,. Let M*
be the matrix obtained from M* by dividing the first row by 1 —t,. Then D(t,,...,t,)~
~det M*, where ~ means that both sides are equal up to the unit in the polynomial
ring Z[ty,..., t,].

Proof. By Lemma 1.1 of [2],

(zy —1)* D(ty,..., t,) ~ 6-det M*,

where & denotes the g.c.d. of the fundamental ideals of H; (.# —L). Since the first
Betti number of H, (# —L) is u>1, we have 6=1. This proves Proposition 2.4.
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§ 3. Cyclic Coverings

Consider the n-fold cyclic covering space M of M branched along K. If (n, A, ;)=
a;, each of Ky,..., K, is covered by o knots K ,,..., K; , in . If A is a homology
3-sphere, then, as is shown in §2, we can define the Alexander polynomial f)(?z,l, ceey
1,.4,)» Where #; , corresponds to a meridian of X, , in M.

We wish to find a certain relation between D(%,,,,..., 7, ,,) and D(t;,..., 2,), or
more precisely speaking, the reduced Alexander polynomial D (%) of D (%, ,,..., b2,
and D(t,,..., t,).

For simplicity, in the following, we assume that p=2 and 4; ,#0.

Let (n, 4,,,)=7. Then K, is covered by exactly y knots K, ..., I?y in 2. A presen-
tation # of G=n, (#—L),L=K, w-+UK,, will be obtained as follows.

From the choice of the generators in the presentation Z” of G, we see that a set
of generators in P is
=zy0;2; %, @,y = 21a; ;21 ,0<v<n—1}

~ v -V
{Zv = 2122Z1 , U4,

and a complete set of relators is

{ziyz{" =y, where yiseither w, r; , ors’}.

Let p:F=(%,,v; ,, a5 ;,,:)— G and

¥:G-GI[G,G]=(y,.... 1[I, 1], 1<i,j<y)
be natural homomorphisms, and further, let #:G/[G, G]—» Z=(¢:) be a homomor-
phism defined by % (¥;)=1 for all i. Then it is obvious that ¢ (£,)=¢ and ¥ p (v;,,)=

flp(b(ai,j,v): 1.
Let N, be the n x n matrix ring with entries in Z[¢], and let w be a ring homo-
morphism from Z[¢,, ¢,] into N, defined by

010 -0
001
w(t)=P= and o(t,)=tE.
.. -
10 - - 0]

Then the reduced Alexander matrix of G at ¥ is M*® which is denoted by . To
obtain the reduced Alexander polynomial D(¢) of L, consider the matrix #* which
is obtained from § by deleting the nth row and the first column. Then we see that
det M* = D (1). (3.1
Let g, (£)=(1—1¢*)/(1—1t), A being an integer. Then we can formulate a relation
between D(t) and D(t,, t,) as follows.
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PROPOSITION 3.1. 9,(2)D(t)~T]iZo D(t, &), where & is a primitive nth root of
unity and A=14, ,.
Proof. From Proposition 2.4, it follows that

n—1
det M** ~ [] D(1, &).
i=0
By using (3.1), it only remains to show that
0, (t) det M* ~ det M1*~. 3.2)

Consider M* and M*®. Since w, = [z, v,z%], it follows that

ow, oy ow, 0¥ awl)w ow, oV
s = (t; — 1 t), — =t —1, — = =0.
(622) (s )aa(t2) (avl ) 1 av, (6(1“

Hence, the entries of the first row of M* are

((ty = 1) @1 (t2), 1, = 1,0,...,0).

Therefore, the first n» rows of M*® are represented by

(P—E)g,(t)E,P—E,0,...,0).

Hence, the first n— 1 rows of M* are represented by

0 -1 1
-0 0 : -11
.. ' :

|

|

|

I
|
I
:0 s Q=Ql(t)
I
l
|

On the other hand, the first n rows of M*“ are represented by
(e2(1) E, E,0,..., 0).

The differences between two matrices M * and M ** are the following.
(3.3) (1) The number of rows (and columns) of M* is less than that of M*® by
exactly one;
(2) If N denotes the minor matrix of M * obtained by deleting M', then M* and
M*° are of the form
e;(t)E E 0..0

Sk M’ |0 erarsruss
M _(N) and M™® = .

Now, add the 2nd, ..., nth columns of M *® to the first to obtain the new matrix M.
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(3.4) Only the first n entries of the first column of M are non-zero and each is g, (t).
Proof. It is obvious that each of the first n entries of the first column is g, (¢).
Therefore, it remains to show that the other entries are 0. By the fundamental formula
[4, I], for any relator r of 27,
2

or or ar or
=)+ (2,1 > 7 (o > 1) =r—1.
oz (z, - 1) oz, (z2—-1) + o, (- 1)+ 3a, j(al,j )=r-1
i=1 o 3.3)

Evaluate (3.5) at pyw. Since 25 =¢E and r*¥®=E, it follows that (3.5) becomes

<§f~>wm (P—E)+ (g)w (tE — E)=0.

Zy 2

Let R=(d;;), 1 <i, j<n, where d;;=d;; =1 for 1 <i<n, and d;;=0 otherwise. Then the
first column of (P—E)R is zero, and hence that of (dr/dz,)*¥® (1—1)R is zero.
Therefore, the first column of (dr/dz,)?¥“ R must be zero. This proves (3.4).

Now we know that M is of the form:

!
!

!

M= '
"

|

|

!

Subtract the second row from the first, and then the third from the second, and so
fourth, consecutively, to obtain M. Then the first n—1 rows except the first column
of M are identical with the first n—1 rows of M* multiplied by (—1). Thus

0, (t) det M* ~ det M = det M = det M**.
This proves (3.2), and hence Proposition 3.1.
§ 4. Main Theorem

PROPOSITION 4.1. Let D(t,,t,) and D(t,) be the Alexander polynomials of a
link L=K, UK, and a knot K, respectively, in a homology 3-sphere M. Then

D(t;, 1)~ 0;(t}) D(t1), 4.1)

where A=Link (K;, K,), and D(1)=£1. -
Proof. Since it is well known that D(1)= %1, we shall prove (4.1). However, in
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order to use the same notations as is used in §2, we shall prove the following equiv-
alent formula (4.2) instead of (4.1).

D(1,t;) ~ 0:(t;) D(2,), 4.2)

where D(t,) is the Alexander polynomial of K.

Now let " =(zy, z5, vy, a;, ;:Wy, I'y, 1, §') be a presentation of n; (.# — L) given in
§2 with p=2. The deficiency of 2" is one. Then, a presentation Z; of n, (# —K,) is
obtained from £” by adding one relator z; =1 to 2", Let M be the Alexander matrix
of #”. Then the Alexander matrix M, of Z, is obtained as M" with one extra row
(1,0,0,...,0), where t denotes the retraction homomorphism G/G’' —»Z=(t,:) de-
fined by 7(¢;)=1 and 7(¢,)=1¢,. Note that the entries of the first row of M are
(0,0,¢-1,0,...,0). Now, the Alexander polynomial D(t;, ¢t,) of L is, by Proposi-
tion 2.4,

or; ; ory ;1Y

0z, 0ay,;
os' 05

622 aak,,

D (ty,t;) ~ det

On the other hand, since the deficiency of &, is 0 and K, is a knot, it follows that
D (t,) is the determinant of a matrix obtained from M, by deleting one row and one
column corresponding to w, and z,, respectively. Therefore,

[ Or; ; or; ; Or;, j_"’"”

or; ; Ori ; aad
0z, Ovy 0ay,

ov, 0
D(t,)~det| 0s' 05" O ~ det 0 1:1 g o
7 T s s

1 0 0 |

Using the fundamental formula, we see that if W is either r; ; or s’, then

oW\ oW \*"*
—_— th)=—{ — .
(avl) 2 (t2) (622)

Hence, we have

or; ; or;, ; \add or;, ; Or; ; ov
aZz 6ak 1 501 aak
D(1,t,) ~ det ’ = — 0, (t,) det " ~0,(t,)D(t,).
1,1t) € o5’ os' 0. (t;) de as’ s’ 0:(t2) D(2;)
0z, Oay,, dvy Oay,,

This proves (4.2).
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PROPOSITION 4.2. Let f(x, y) be an integer polynomial of two indeterminates

x,y. Let n=p"m, (p, m)=1, p a prime, r>0. Let ¢ and n denote primitive nth and mth
roots of unity. Then

n—1 m—1 r

I &)= [T )] moan). @43)

Proof. Since n=p"m, £ is a primitive mth root of unity. Thus, n may be written
as &7, and hence, n/=¢77, 1< j<m. Let #; denote the ideal generated by 1—¢™,
1<i<p"—1,in the ring Z[x, £]. Note that £™ is a primitive p"th root of unity. Since
(p, m)=1, there exist integers a, f such that ap”+pm=1. Then, E=n"¢*™ and
hence { =4 (mod.#;). Similarly, & =»#** (mod.# 1), 1 <k<m.Since (a, m)=1, ka=lu
(modm) implies k=1 (modm). Therefore,

iijl fx, &)= jﬁ f(x, ') (modJs),

where ./ is the ideal contained in all #,..., # ;. Similarly, for any ¢,0<g<n—1,
=y" (mod. ) for some integers r and s. Thus, we obtain
n—1 . m—1 . p ~
T /&)= T] )| (modd), @4
= J

where .7 is the ideal contained in reees I proy.
Since both sides of (4.4) are integer polynomials, # must be in Z. Therefore, £ is
some power of p, and hence, we obtain the required formula (4.3).

By combining Propositions 3.1, 4.1, and 4.2, we obtain the main theorem.

THEOREM 1. Let L=K, VK, be a link of two components in a homology
3-sphere M. Suppose that the n-fold cyclic covering space A of M branched along
K, is again a homology 3-sphere. Then the knot K, is covered by a link Lin A. Let
D(t,, t,) and D (t,) be the Alexander polynomials of L and K, in #, respectively and
let D (1) be the reduced Alexander polynomial of Lin M. Let A=Link (Ky, K;)#0,
and let ¢ be a primitive nth root of unity. Then

0:(t) D () ~ 1:"[1 D(t,¢). (4.5)
If n=p'm, p a prime, (p, m)=1, r>0, then
- r
0()50)=[T] PG| (modn), @9

where 1 denotes a primitive mth root of unity. In particular, if m=1, then

D) =Dt 0,(t)”"" (modp). 4.7
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Proof. (4.7) follows from the fact that D (¢, 1)~g;(¢) D(¢) and D(¢)#0 (modp),
since D(1)=+1.

§ 5. Applications

Let K be a periodic knot of order » in a homology 3-sphere A and let ghbea

periodic auto-homeomorphism of A Let F be the set of fixed points of g. Let p be
a prime.

PROPOSITION 5.1. The orbit space # = A /g is also a homology 3-sphere.
Proof. Since .# is a compact orientable closed 3-manifold, it is enough to show

that H, (.#)=0. Since F is a 1-sphere, F~0 in A , and hence the image F, of F under

the collapse is also homologous to zero in .#. Now it is obvious that A is an n-fold
cyclic covering space of .# branched along F,. Further, it is easy to verify that there

is a surjective homomorphism fimy (./Z)—Mtl (#). f induces the surjective homo-
morphism f,: H; (.4?)—+H1 (#). Since H, (J{) 0, it follows that H, (.//{) 0.

Now, with a periodic knot K in A we can associate a link KU Fin . Since the
knots K and F are mapped onto the knots K, and F,, respectively, in the orbit space
A under the collapse, we obtain a link Ly=K,UF, in .#. Since .# is a homology

3-sphere, the Alexander polynomial D (¢, t,) of L, is defined. A is an n-fold cyclic

covering space of .# branched along F,, and since K, is covered by K in .//7, it
follows that Link (K, Fy)=A4#0 and (4, n)=1. Thus, Theorem 1 implies

THEOREM 2. Suppose that K is a periodic knot in A of order p". Let D(t) and
D(t) be the Alexander polynomials of K, in #A and K in ./{ respectively. Then
D@)=0,(t)” 'D()” (modp).

If we consider a periodic knot in a simply connected 3-manifold S, then the orbit
space is also simply connected. Therefore, D(¢) and D(¢) in Theorem 2 become the
knot polynomials (see [1]), and we have the following result.

COROLLARY 1. Suppose that K is a periodic knot of order n=p" in S. Then the
knot polynomial A(t) of K must satisfy the following:

A()=e:,(ty"" D) (modp),

for some positive integer A, (4, p)=1, and a certain knot polynomial D(t).

COROLLARY 2. Under the same assumption as in Corollary 1, if A(t) is not a
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product of other knot polynomials in Z[t], then for some positive integer A, (4, p)=1,

AW =0; (1" (modp), (5.1)
and hence, for any integer s,
A4(s)=0 or +1 (modp). (5.2)
Proof. From (4.5), (4.7), and Coroliary 1, it follows that
n—1
(4~ 1D, §)=0:()'D(t)" (modp). (5.3)
Since D(z, 1)~g,(t) D(t) by (4.1), and g, (¢)#0 (modp), we see that
n—1
40~DO [[ D &) =a: (P DEY  (modp), (5.4)

Since D(t) and [[i=| D(t, &) are knot polynomials, either 4(¢)~D(t) or D(t)~1,
If A(t)~D(t), then []i={ D(¢, &) ~1. Since D(t)#0 (modp), it follows from (5.4)
that

L~ TI P& =0 DO (modp).

This is possible only when both D(#) and g, (¢) are congruent to + 1 modulo p. Thus
A4(t)=1 (modp). This is a special case of (5.1). If D(¢)~1, then from (5.4) we have

A()=e:(1)""" (modp).
This proves (5.1). (5.2) follows from Fermat’s Theorem.

COROLLARY 3. If K is a periodic knot of order p" in S, then the degree of A(t)
is not less than p"—1, unless A(t)=1 (modp).

Proof. Let @, be a natural ring homomorphism: Z[t]—- Z,[t], Z,=Z/pZ. Let
d,(f) denote the reduced degree of a polynomial f(¢) in Z,[¢]. That is, if f(¢)=
=aqt*+--+at', a,#0, a,;#0, in Z,[¢], then we define d,(f)=/—k. The reduced
degree of an integer polynomial f (¢) will be denoted by dq(f). Then, obviously,
for any integer polynomial f(¢), d,(®,/)<d,(f). Now, Corollary 1 shows that
d,(9,4)= (n—1)|A| +nd,(®,D)=n—1, since A#0 or d,(P,D)>0 unless 4(t)=1
(mod p).

COROLLARY 4. Any knot in S has only finitely many distinct prime periods
unless A(t)=1.

COROLLARY 5. If, for any prime q, A(t)#1 (modq), then K can have only
finitely many distinct periods. In particular, a fibre knot (or Neuwirth knot) can have
only finitely many distinct periods.
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Proof. Let d be the degree of A(t). Then it follows from Corollary 3 that the
possible prime power periods of K are the powers p* such that p*<d+1. Let p,,..., p,
be all the primes such that p{*<d+1, where we assume that «; is the maximal ex-
ponent satisfying the above condition. Then the possible period of K must be of the
form p8t...pfm 0< B;<«;. In fact, if, for some B;, B;>a;, then K would have period
p¥*1, Therefore, the number of possible periods of K is finite, that is, at most

™ 1(B;+1). If Kis a fibre knot, then |4(0)|=1 and d#0. Thus, 4(¢) #1(modq)
for any prime g. Hence, it has only finitely many distinct periods.

Remark. The latter assertion of Corollary 5 follows from Theorem (1.2) of [8] if
4 (?) has no repeated roots.

COROLLARY 6. Let K,, , be the torus knot of type (m, n). Then any period of
K., is a divisor of m or of n.

Proof. It is obvious that any divisor of m or of n can be a period of K,, ,. There-
fore, it remains to show that these divisors are only periods of K,, ,. To do this, it
suffices to show the following.

(5.5) Let m=p"a and n=q°b, where p and q are distinct primes, (p, a)=1, (g, b)=1.
Then

. () p"*! cannot be a period of K,, ,,

(i) p*q®, a, B>0, cannot be a period of K, ,.

Proof of (5.5). Without loss of generality, we may assume that m, n>1. Now we
know that the knot polynomial 4,, ,(¢) of K,, , is given by

1—t1—t™

Am,n(t) = 1 _ tn 1 _ tm * (5'6)

(i) Suppose that K,, , has period p"**. Then, by Corollary 1, we see that for some
A, (A, p)=1, and f (t)eZ[¢],

0: () 4 n () =) (modp). (5.7)

Since @,(t)=(1—t*)/(1—¢) and 1—¢t"*=(1—1¢")"" (mod p), an easy calculation
yields

A-Meg@ =1-MfE”" (modp), (5.8)

where g(t)=(1—1*")/(1—1°).

Let A and B be non-zero non-constant terms modulo p with the minimal degree
in the left and right sides of (5.8), respectively. Then A is either t**=¢™ or —t*. On
the other hand, the degree of B is either Ip"*! or n, [ being a positive integer. There-
fore, there are four possible cases:

(@) m=Ip™!, (b) m=n, (c) A=Ip™*!, (d) A=n.
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However, the first three cases are easily eliminated by the original assumption.
Suppose that A=n. Then (5.8) becomes

gy =7 (modp), (5.9)

which is impossible, since g(#)##h(¢)? (mod p) as is seen from the expansion of g(z).
This proves (5.5) (i).
(ii) Suppose that K,, , has period p*g®. Then from (4.6) we obtain

(1) 0, (1) 4w () =f () (mod p)} for the same integer (5.10)
Q) 0r(D) dwn()) =g (moda)] & (hp)=1,(ha)=1. '

We may assume that a < p" and B < ¢°, for otherwise K,, , would have period

Pr+1 or qs+1'
Now from (5.10) (1), we obtain
1—m .
(1-1t) o A= f@®” (modp). (5.11)

Then, as was done in the proof of (i), compare the non-zero non-constant terms with
minimal degree on both sides of (5.11) to obtain A=m. On the other hand, in the
same way, we can show from (5.10) (2) that A=n. Therefore, m= 4=n, which contra-
dicts our assumption. This proves (5.5) (ii).

As another application of our theorems, we consider the knot in S> with two
bridges [6]. From a simple observation, we know that any knot K with two bridges
has period 2, and its image K, under the collapse is unknotted. Thus from Corollary
1, we obtain the following.

COROLLARY 7. If K is a knot in S* with two bridges, then
A0 =0,() (mod2)

for some odd integer A.
At the conclusion of this paper, we shall complete the list of periods of certain
knots in Reidemeister’s table [5]. According to Trotter [8],

(1) 44,6,, 7, 8,2, 942, 945 can have no period other than 2,

(2) 34, 63,74, 850, 8,1, 945 can have no period other than 2, 3 or 6, (5.12)

(3) 944 can have no period other than 2 or 4.

In the first group of knots, the Alexander polynomials of 9,, and 9,5 are irre-
ducible over Z[¢]. By Corollary 2, we see that these knots do not have period 2.

Thus, they have no period at all. On the other hand, the first four knots have period 2,
since these are knots with two bridges.
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In the second group, all knots except 3; do not have period 3 by Corollary 1, and
hence, do not have period 6. Also we can see that all knots except possibly 8,, and 9,
have period 2. Therefore 65, 7,, and 8,; have only period 2, and 3, has periods 2 and 3.

Finally, 9,, does not have period 2. Therefore, it has no period at all. Besides
9425 944, and 9,5, we now know that at least the following nine knots have no period
at all: 8¢, 817, 9225 9305 932: 933, 934> 936> 943
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Verallgemeinerung eines Satzes von H. Samelson

vON H.-J. SCHNEIDER

Einleitung

H. Samelson bewies in [7] folgenden Satz: Sei G=QX der Schleifenraum eines
punktierten topologischen Raumes X (allgemeiner kann G eine beliebige Gruppe in
der Kategorie der punktierten topologischen Rdume modulo Homotopie sein). Fiir
aen,(G), fen,(G), p>1, g> 1, bezeichne [«, flen, . ,(G) das Samelsonprodukt von
a mit B. Dann gilt fir den Hurewiczhomorphismus ¢,:7,(G)— H,(G),n>1 und
P, 421:9,.4[0 B1=[0, (), 0, (B)]=0, () 0,(B) — (—1)* ¢,(B) ¢,(«). Dabei be-
zeichnet ¢, () ¢,(B), ¢,(B) @, («) das Pontryagin-Produkt.

Im folgenden wird dieser Satz homotopietheoretisch formuliert und bewiesen und
in zwei Richtungen verallgemeinert.

Erstens wird statt der Gruppe G nur eine Loop G vorausgesetzt. Es ergeben sich
Resultate iiber den Kommutator und den Assoziator von Loopelementen sowie iiber
gewisse allgemeinere Loopworter. Zweitens wird in 7,(G)=n(S", G) die Sphire
S"=Y 8§""1 durch eine Einhdngung ) Y (fiir gewisse RdumeY) ersetzt und der er-
wahnte Satz von Samelson auf das allgemeine Samelsonprodukt erweitert (Satz 1.2,
Satz 2.2 und Korollar 2.6). Die Beweise werden in der Kanschen Homotopietheorie
von simplizialen Mengen gefiihrt (vgl. [3]). Dabei wird das Pontryaginprodukt mit
Hilfe eines Smashprodukts definiert. Um zu sehen, daB diese Definition mit der
iiblichen iibereinstimmt, wird in Satz 2.8 ein Isomorphismus zwischen z (A, 2, 4)
und n(4[n]/4 [n], A), A simpliziale abelsche Gruppe, konstruiert. Dieser [somorphis-
mus ist von einem Isomorphismus in der Homotopiekategorie # von Gabriel-
Zisman [3] V1.3.4. zwischen A, @ und 4 [n]/4 [n] induziert. Seine explizite Angabe
ist vielleicht auch in anderem Zusammenhang interessant.

Ich danke dem Referenten fiir niitzliche Bemerkungen zu dieser Arbeit.

1. Ein Satz iiber multiplikative Objekte

1.1 Bezeichnungen

Wie in [3] sei 4°C die Kategorie der simplizialen Objekte einer Kategorie Cand 4
die Kategorie mit den geordneten Mengen [n]={0,.... n},n>0 als Objekten und
ordnungserhaltenden Abbildungen als Morphismen. Ein multiplikatives Objekt
(M, m) einer Kategorie ist ein Objekt M und ein Morphismus m: M x M — M. Ab

bzw. .S bezeichnen die abelschen Gruppen bzw. punktierten Mengen. 4°.S=n ist
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die Kategorie der punktierten simplizialen Mengen modulo Homotopie; 4 [n] sei
das n-te Standardsimplex, 4 [#] sein Rand, I:=A[1] und Q:=I/I der simpliziale
Einheitskreis. Fiir Xe4°.S heift ) X:= QA X Einhingung von X (s. [3] VI.2.3.).
Sei x=(xo, ..., X,) ein Element aus I,. Dann existiert i, —1<i<n, mit x;=0 fiir j<i
und x;=1 fiir j>1. Sei e} : = ¢, := x. Dieselbe Bezeichnung wird fiir Elemente aus Q,
verwendet. Durch p,:I, x I, - I, p,(e;, e;)=e¢, k :=Max{i, j} wird eine simpliziale
Abbildung p definiert und es gilt u: Id~0; seirt : = p,(r, t).

Im folgenden Satz wird p zur Konstruktion einer Homotopie auf einem Produkt
von Einhdngungen verwendet. Schlieflich werde noch fir Y,,..., ¥,€4°S und
1<i<novi[[i=1 i [[1=1 Yi durch v(3g,eves ) = (P15 o0 Vie1s %, Vis1s oo ¥y) Mit
y:i€(Y;),, p >0, definiert (x bezeichnet den Grundpunkt).

1.2 SATZ: (G, 1) und (H, T) seien multiplikative Objekte in A°.S, sodap fiir
beliebige Ze A°.S, geA°.S(Z, G), he 4°.S(Z, H) gilt:
(1) glg~0, ATh=0.

2 gl0~g, ATO~A.

Fiir 1<i<n seien X; punktierte simpliziale Mengen und X:=][}-, ) X;. Dann
gilt fiir fe A°.S (G, H) und a, be A°. S (X, G) mit
Q3) av,=bv, fir 1<i<n:
f(aLlb)~faT fb.

Beweis: Sei d:=a[[}-pri:[[1=1(Ix X))~ G, wobei pri: IxX;»I[IAX;=) X,
die natiirliche Projektion ist. Ebenso seib:= b [Ti=1pr:

Fir p>0 werde ¢,:I,x[[i=; IxX;),»H, durch ¢,(t,ry, x1,..., 1y, X,) 1=
: ifp(ﬁp(rl, Xgoenes Py Xg) LB, (811, X1, ooy 10y X)) T £ (Bp(Pys Xp vy Py %) L
Lb,(try, Xy, ..., try, x,)) mit ¢, r;e I, x,€(X;), definiert. ¢ =(¢,),» o ist eine simpliziale
Abbildung, da die Multiplikation (z, r;))+> tr; simplizial ist. Sei k:=1Ix[]i=; pr;:Ix
x[[l-1 UxX)->Ix][i=. Y X

Fir p>0werde y,: I, x [ [{=1 (& X)), = H, durch y,(x): = ¢,(»), falls k, () =x,
definiert. y, ist wohldefiniert, da wegen (1) und (3) ¢, (¢, ry, Xy, ..., I, X,)=* gilt, falls
1 <ignexistiert mitr;=(0, ..., 0) oder r;=(1,..., 1) oder x;=x.

Da k und ¢ simpliziale Abbildungen sind, ist auch ¥ =(/,),, simplizial: Be-
zeichne n, den von n: [¢] - [ p] induzierten simplizialen Operator ; dann gilt . , (x) =
=150, (1) = b (M 3) =g (kg (123)) =g (MK, (¥)) =V, (14%).

Also ist Y eine punktierte simpliziale Homotopie. { an der Stelle = (0, ..., 0) bzw.
t=(1,..., 1) werde mit ¥, bzw. Y, bezeichnet. Nach Definition gilt
Yoy=/(aL0)Tf(bL0)~faTfbwegen (2) und
Yay=f(aLlb)Tf (bLb)~f(aLlb)TO~f(alb)wegen(1)und(2).

Alsofolgt faT fb~f (aLb).

1.3 BEISPIELE: 1) Multiplikationen L mit (1) und (2) ergeben sich auf folgende
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Weise. Fiir eine Gruppe G und a, beG seialb:= ab™1, oder allgemeiner: a L b sei
ein Wort in @ und b, sodaBl 1 =Summe der Exponenten von @ und — 1 =Summe der
Exponenten von b gilt, also zum Beispiel a Lb=a[a, b]* b~ ([a, b]ist der Kommuta-

tor von a, b). Analog 148t sich auf einer Loop in 4°.S bzw. A°.S eine Operation L mit
(1), (2) einfiihreren. Eine Loop in der Kategorie der Mengen ist eine Menge L mit
Multiplikation, neutralem Element und eindeutiger Losbarkeit der Gleichungen
ax=>b, ya=bfirallea, beL.

2) Beispiele fiir a, be 4°.S(X, G) mit (3) erhilt man fiir multiplikative Objekte,
die sich wie in 1) aus Loopstrukturen auf G ergeben, wie folgt: Fiir x;€4°.S(}_ X, G)
sei y;:=x;pr; in 4°S(J]i-=1 Y X, G). Die Loopmultiplikation von G in 4°.S habe
einen Reprdsentanten m:G x G — G, sodaB (G, m) H-Objekt in 4°.S ist; die von m in
den Morphismenmengen induzierte Multiplikation werde mit - bezeichnet. Fiir
n=2seia:=y;'y,,b:=y,-y;; firn=3seia:=(y,'y,)'ys, b:=y,"(y,'y3). Dann
ist (3) erfiillt. Ist L die Differenz von Loopelementen, so ist a L b im Fall n=2 der
Kommutator von y,, y, und im Fall n=3 der Assoziator von y,, y, und y;. Ahnlich
ergeben sich Distributoren, die zum Beispiel fiir eine simpliziale Gruppe G einer
Kategorie C in der simplizialen Gruppe Hom 4oc (G, G), die auBer der Gruppenmulti-
plikation noch die von der Komposition induzierte Multiplikation besitzt, auftreten.

1.4 Bemerkung: Satz 1.2 1dBt sich von 4°.S auf A4°C fiir gewisse Kategorien C
verallgemeinern.

1) Sei C eine Kategorie mit Nullobjekt, (endlichen) Produkten und Koprodukten.
Sei KeA’S (mit K, endlich fiir alle n) und Xe4°C. Nach Kan [4] ist ein Produkt
K®XeA°C definiert; fiir C=.S ist K® X=K x X/K x {*}. Damit 148t sich auf 4°C
eine Homotopierelation einfiithren und fiir X, YeA4°C ist Hom(X, Y)e4°S bzw.
4°.S wie im Falle C=.S erklidrt. Zur Definition der Einhdngung werde zunéchst ein
Smashprodukt KA X, KeA°.S (mit K, endlich fiir alle n), XeA°C eingefiihrt. Sei
(KAX),:=]]c X} keK}:= K,\{*} und X¥:=X, fiir keK*; fir @:[m]— [n] sei
o< durch @& iny=in,, @ fir keK*, k' =@k (k) # * und o™ in, =0 fiir ¢ (k)==*
definiert. KA X ist ein Verallgemeinerung des Smashprodukts in [3]. In natiirlicher
Weise gilt
A°C(KAX, Y)=A°.S(K, Hom(X, Y))und
Homoc(KA X, Y)= Homo (K, Hom(X, Y)).

Die Einhdngung )’ X von X sei jetzt wie im Falle C=.Sin [3] durch } X:=QAX
definiert.

2) Satz 1.2 gilt fiir die Situation in 1), falls C folgende Distributivitidtsbedingung
erfilllt: Fiir n>1, endliche Indexmengen I(k), beliebige Objekte Xi(1ys s Xiny aUS
C,i(k)el(k)und J=]T;-, I(k)ist der Morphismus
JIk=1 > LT Ti=1 Xiw) = TTi=1( Ir @ Xia) epimorph. C hat diese Eigen-
schaft, falls der Funktor — x X, XeC mit Koprodukten oder Fasersummen ver-
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