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On Periodic Knots

by Kunio Murasugi

§ 1. Introduction

Let Jt be a compact orientée 3-manifold without boundary. A knot Km Jt is said

to hâve period n> 1 if there is an orientation-preserving auto-homeomorphism g of

^ with the following properties (1.1)—(1.3):

(1.1) the set F of fixed points of g is a 1-sphere in ^f,
(1.2) g is ofperiod «, that is, gn is the identity and no smaller power ofg is the identity,
(1.3) F and K are disjoint.

If K has period #, we call K a periodic knot of order «. A knot can be a periodic
knot of différent orders. For example, the trefoil knot in the 3-sphere S3 is a periodic
knot of order 2 and 3. On the other hand, we can show that there exists a knot in S3

which cannot hâve any period > 1. (See §5.)
Our problem is to décide the possible period of a given knot. The first gênerai

resuit of this problem was obtained by Trotter [8]. He gave a necessary condition
for a knot in a certain restricted class to hâve period n.

In this paper we shaîl prove, as a conséquence of the main theorem,

THEOREM (see Corollary 1). IfKis a periodic knot oforder pr in S3,p a prime,
then the knot polynomial A (t) of Kmust satisfy

A (t)=f(tY(\ + t + t2 +...+ t'-Y'1 (modp) (*)

for some knot polynomialf (t) and a positive integer A, (À,p) 1.

Condition (*) is of a completely différent nature from Trotter's condition and it
can be applied for any knot without restrictions. Using this condition, we shall be

able to obtain quite satisfactory results. For example, we can give alternative proofs
of the following theorems due to Trotter [8] and P. E. Conner [3].

THEOREM (see Corollary 5). Any Neuwirth knot can hâve only finitely many
distinct periods.

THEOREM (see Corollary 6). The only periods ofthe torus knot oftype (m, n) are
divisors ofm or n.

§ 2. Knot Polynomials

Let Jl be a homology 3-sphere, that is, a compact oriented 3-manifold with the
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same (intégral) homology group H*{Jt) as S3. Let L Klu--uK/l be an orientée!
link in Jt of \i components.

PROPOSITION 2.1. H1(uf-L)sZ'1, where Z" dénotes the direct product of n
copies ofZ, the infinité cyclic group.

Proof Since L is compact, it follows from the duality theorem [7, p. 296] that
H2{Jt,Jt-L)^H1{L). On the other hand, the homology exact séquence for
{Jt,Jt-L) yields H2{Jt, Jt-L)^Ht{Jt-L). Since H^L^Z", we obtain the
required resuit.

Since Kt~0 in Jt, there exists an orientable 2-manifold #"f in Jt with dSF^K^
Thus a meridian-longitude pair (mh /,) is defined for each knot Kt in Jt. Let J7f be

a small open tubular neighbourhood of Kt in c^. 5174= Tt is a torus in Jt. We may
assume that mt and /f lie on Tt. Since #f is oriented, we can give orientations to mi
and lt in such a way that Link (mf, Kt), the linking number of mt and £f, is one, and

/j and £, bound an orientable band. #i(Tf) is generated by wf and /„ and /f~0 in

PROPOSITION 2.2. Let $y.Hx(TJ)-+Hl(JK-Uj) be a homomorphism induced

by inclusion. Then i^(/Wy)/0 in Hx(,Jt—U^) and {^(awi),..., $^{in^} forms a basis

of H^ {Jt— U), U= [Ji= t Uit where $j(mj) is a homology class in Hx {Jt— U) which

is represented by *l/j{mj)-
Proof. From Theorem 5.1 in [1], we know that xj/j is a nonzero homomorphism.

However, since ^j{lj) O, ^j{m^) cannot be 0 in Ht {Jt— Uj). Next, suppose that

for some integers au..., a^.
Fill in Uu..., E7,_l5 Ui+l9...9 U^ in some way to obtain a manifold Jt-Ui with

boundary Tt. Then the inclusion homomorphism sends the left side of (2.1) to

a^ifai) which is 0. Since H± {Jt- Ut) has no torsion and ^i(m<)?*0, it follows that

#f 0. Therefore, \I/l{mi),..., ^M(wM) are linearly independent. Since thèse generate

Ht{Jt- U) by Proposition 2.1, the proof is complète.

Propositions 2.1 and 2.2 assure the existence of the Alexander polynomial,

&{*!>>•> O> °f L m ^> where tt corresponds to the meridian mi of Kt.
In the following, we always assume that fi> 1.

Now nx { Tt) is a free abelian group generated by W; and lt (or their suitable conju-

gates), and it has a présentation (zi9 ut: [zf, wj), where zt and ut correspond to wf
and li9 and [a, b'] aba~1b~1. This présentation is called a canonical présentation of

(T;). Then we hâve

PROPOSITION 2.3 [2, Theorem 2.2]. G^n^Jt-L) has aprésentation 0> such that
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(2.2) the deficiency of & is one,

(2.3) 0* contains a canonicalprésentation ofn^T^for i— 1, 2,..., ju— 1.

Therefore, we may assume that 7T1(-# —L) has a présentation

0> (zl9...9 zfl_l9 ui9..., u^l9 xitj\[zh ti,], 1 < ï < /* - 1, rM).

Now, without change of the group G9 we can add to this présentation & a new

generator z^ representing the meridian m^ in G and a new relator S=zf£~19 where Ç

is a certain word written in zl9...9 zM_1? w1?..., wM_! or xitj. The resulting présentation

will be denoted by âP'. Since GjG' is generated by zl9...9 z^ we can write w,=
rifc-i^^ (mod [^G])' where ^i,i ° and Aity Link(^, Xy), and xltJ
Ul^zï'-* {mod [G, Cf]).

Introduce new generators vi ui(Yli=1z^i'k)~1 and attJ xttJÇ[lîsslzli'Sth)~1.
Using thèse generators, we obtain a new présentation &" of G:

where wt= \_zh vt (Y\k=i zfei'k)~1]j and ^,i? -s' are obtained from rk)h s by rewriting

xifj in terms of aq>hi vq, zq.

be natural homomorphisms so that ^(p(zf)=^. Weuse the same symbols

<p, ^ to dénote the uniquely extended ring homomorphisms between integer group
rings.

Now ail the generators of G except {zl9..., z^} belong to [G, G] and ^ç>(z,.) ff.
Therefore, the Alexander matrix M of &" and the associated Alexander polynomial
D(tl9...9t^) will be obtained by means of the free differential calculus [4, II]. To make

our argument smooth, we assume that the first fi columns of M correspond to

zl9...9 Zp and the next ju — 1 columns to vi9...9 vll^1 and the first ju —1 rows to wi9...9

PROPOSITION 2.4. Let M* be the matrix obtainedfrom M by deleting the first
column (corresponding to zt). Then the first row of M* is divisible by l—ti. Let M*
be the matrix obtainedfrom M* by dividing the first row by 1 — ^. Then D{tl9...,t^)^
~detil/*, where ~ means that both sides are equal up to the unit in the polynomial
ringZ[tl9...9Q.

Proof By Lemma 1.1 of [2],

where S dénotes the g.c.d. of the fundamental ideals of ^(Jif—L). Since the first
Betti number of H1(«>#—L) is ju>1, we hâve 5 1. This proves Proposition 2.4.
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§ 3. Cyclic Coverings

Consider the «-fold cyclic covering space Jt of J( branched along Kx. If (n, XltJ)

ccj, each of K2,..., KMis covered by ocjknots Kjtl,..., Rjajin J(. If J? is a homology
3-sphere, then, as is shown in §2, we can define the Alexander polynomial JBÇt2,u •••>

^.0' w^ere ^\« corresponds to a meridian of KUq in «^.
We wish to find a certain relation between DÇt21,..., ï^ and D(r1,..., ^), or

more precisely speaking, the reduced Alexander polynomial /)(?) of D(12fl,...9 l^J
and D(^,..., r^).

For simplicity, in the following, we assume that /i 2 and A1>2#0.

Let (n, X±12) y, Then K2 is covered by exactly y knots Ku..., ^y in Jt. A présentation

^ of G n1(^—L),L=K1Kj"iuËy, will be obtained as follows.
From the choice of the generators in the présentation &" of G, we see that a set

of generators in & is

{zv Z1Z2ZP, t;i>v z\vtzï\ aitjty z\aUjzl\ 0 ^
and a complète set of relators is

n - 1}

{z\yzîv j
Let îp\F={zy, vitV,

$:G-+Gl[G9 G]

where y is either h or s'}.

1 y)

be natural homomorphisms, and further, let %:Gl\G, fî]->Z=(/:) be a homomor-

phism defined by f (ïf) t for ail i. Then it is obvious that £$ (f> (zv) r and f$ $ (t;it v)

Let JVB be the n xn matrix ring with entries in Z[f], and let œ be a ring homo-

morphism from Z[tu r2] into Nn defined by

'010- • 0"
0 0 1

and co(t2)

i
1 0 • • • 0__

Then the reduced Alexander matrix of G at y$T is M*10 which is denoted by fil. To

obtain the reduced Alexander polynomial D{t) of I, consider the matrix itëf* which

is obtained from fil by deleting the «th row and the first column. Then we see that

detJCr* =D(t). C3-1)

Let Qx(t) (1 -tk)j{\ -/), A being an integer. Then we can formulate a relation

between D{t) and D(tl912) as follows.
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PROPOSITION 3.1.

unity and A /L1>2.

Proof. From Proposition 2.4, it follows that

KUNIO MURASUGI

Yil-o D{t>> £')> where £, is a primitive nth rootof

By using (3.1), it only remains to show that

£A(Odetiiï*~det;tf*û>.

Consider itëf * and M*œ. Since w± [zl9 vtz^\, it follows that

Hence, the entries of the first row of M * are

Therefore, the first n rows of M*(0 are represented by

Hence, the first /z — 1 rows of Âf * are represented by

M'

-1 1

-1 î

(3.2)

-QQ
On the other hand, the first n rows of M*w are represented by

(QA(t)E9E90,...,0).

The différences between two matrices M* and M*™ are the following.
(3.3) (1) The number of rows (and columns) of M* is less thon that of M**0 by

exactly one;
(2) If N dénotes the minor matrix of M* obtained by deleting M', then M* and

M*" are of the form
~Qx(t)E E 0...0"

and
N

Now, add the 2nd,..., nth columns ofM *co to the first to obtain the new matrix i&.
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(3.4) Only thefirst n entries of thefirst column ofÛ are non-zero and each is qx (t).
Proof It is obvious that each of the first n entries of the first column is Qx(t).

Therefore, it remains to show that the other entries are 0. By the fundamental formula
[4,1], for any relator r of &*",

dr
dz\

dr
"dz~i £h-»+Y*

L8ai, (3.5)

Evaluate (3.5) at (pij/œ. Since zf"=Œ and r*** E9 it follows that (3.5) becomes

y
Let R (dij), 1 < i9 j< «, where dH dn l for 1 ^ i < m, and dkl 0 otherwise. Then the

first column of (P-E)R is zéro, and hence that of {drjdz2y*(a (l-t)R is zéro.

Therefore, the first column of {drjdz^^R must be zéro. This proves (3.4).

Now we know that Û is of the form:

Q

Q

N

Subtract the second row from the first, and then the third from the second, and so

fourth, consecutively, to obtain ]df. Then the first n — 1 rows except the first column

of ik are identical with the first n-1 rows of Si* multiplied by — 1). Thus

Qk (t) det Si* ~ det M det fit det M*œ.

This proves (3.2), and hence Proposition 3.1.

§ 4. Main Theorem

PROPOSITION 4.1. Let D(tu t2) and Dfa) be the Alexander polynomials of a

link Is^u^ and a knot Ku respectively, in a homology 3-sphere Jt. Then

D(tl9l)~QA(h)D(f1), (4-D

where À Link(Ku K2), and D{\)= ±1.
Proof. Since it is well known that D(l)= ± 1, we shall prove (4.1). However, in
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order to use the same notations as is used in §2, we shall prove the following équivalent

formula (4.2) instead of (4.1).

D(l9t2)~Qx(t2)D(t2)9 (4.2)

where D(t2) is the Alexander polynomial of K2.
Now let 0>" ~(zu z2, i?i, aitj\wu r'k$u s') be a présentation of % (*Jf—L) given in

§2 with /x 2. The deficiency of &" is one. Then, a présentation ^ of nt {Jt-K2) is
obtained from 0>" by adding one relator zt 1 to &". Let M be the Alexander matrix
of &". Then the Alexander matrix Mx of ^ is obtained as Mx with one extra row
(1,0, 0,...,0), where x dénotes the retraction homomorphism G/G'-+Z=(t2:) de-

fined by t^^I and x(t2) t2. Note that the entries of the first row of M are

(0, 0, tt -1,0,..., 0). Now, the Alexander polynomial D(tu t2) of L is, by Proposition

2.4,

dz2 dakfl

ds' ds'

_dz2 dak>l_

On the other hand, since the deficiency of^ is 0 and K2 is a knot, it follows that
D(t2) is the déterminant of a matrix obtained from Mx by deleting one row and one
column corresponding to w± and z2, respectively. Therefore,

D (t2) ~ det

K
dz

ds'

i

jôrlj
l dvx

ds'

0

K
Sakt

ds'

0

j
i

i

<p\l/x

-det
as'

_ôvt

ds'

Using the fundamental formula, we see that if W is either r •_ j or s', then

Hence, we hâve

D (1, f2) - det

This proves (4.2).

ôz2 dakil

ds' ds'

Jz2 dak>l_

ds' ds'

Jvx dakil
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PROPOSITION 4.2. Letf(x,y) be an integer polynomial of two indeterminates
x, y. Let n =prm, (p,m)=\,p a prime, r > 0. Let £ and y\ dénote primitive nth and mth
roots ofunity. Then

ïï /(*. «') Tn /(*, 1J)Y (modp). (4.3)
i 0 L O J

Proof. Since n=prm, Z? is a primitive wth root ofunity. Thus, n may be written
as £pr, and hence, rjj Çprj, l^j^m. Let J{ dénote the idéal generated by \-^im9
1 <i^pr-1, in the ring Z[x, {]. Note that Çm is a primitive /?rth root of unity. Since
(/?, m)=l, there exist integers a, £ such that a/?r+£m=l. Then, ^ ^m, and
hence £ rça (mod,/^). Similarly, ^fc nk<l (mode/^), 1 < A: ^ m. Since (a, m) 1, ka /a

(modra) implies /: / (modm). Therefore,
m m

where «/ is the idéal contained in ail ^,...,^"fcj8. Similarly, for any ^, O^q^n— 1,

Çq rjr (mod^"s) for some integers r and 5. Thus, we obtain

«-1 rm-l ~\pr ^
11 /(^> f) II f(x> ïï1) (mod^), (4.4)fi
i 0 j

where J is the idéal contained in Ju..., «/pr_ t.
Since both sides of (4.4) are integer polynomials, J must be in Z. Therefore, «/ is

some power ofp, and hence, we obtain the required formula (4.3).

By combining Propositions 3.1, 4.1, and 4.2, we obtain the main theorem.

THEOREM 1. Let L=K1vK2 be a link of two components in a homology

3-sphere Je, Suppose that the n-fold cyclic covering space Jt of Jt branched along

K2 is again a homology 3-sphere. Then the knot Kt is covered by a link L in Jt. Let

D(tu t2) and D(tx) be the Alexander polynomials of L and Kt in Jt', respectively and

let D{t) be the reduced Alexander polynomial oftin Jt. Let A Link (Kl9K2)&0,
and let £ be a primitive nth root ofunity. Then

jiD(t,?). (4.5)
i O

Ifn =prm, p a prime, (p, m)= 1, r>0, then

Qk (0 D (0 » [11 D (t, ^)]
*

(modp), (4.6)

where rj dénotes a primitive mth root ofunity. In particular, ifm=l, then

D(t)=D {tf qx (t)pr- * (mod p). (4.7)
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Proof. (4.7) follows from the fact that D(t, l)~Qx(t) D(t) and D(t)£O (modp),
since Z)(l)=±l.

§ 5. Applications

Let K be a periodic knot of order « in a homology 3-sphere Jt and let g be a

periodic auto-homeomorphism of Jt. Let F be the set of fixed points of g. Let p be

a prime.

PROPOSITION 5.1. 77ze orbit space Jt=Jt\g is also a homology 3-sphere.

Proof. Since Jt is a compact orientable closed 3-manifold, it is enough to show

that Hx (Jf) 0. Since Fis a 1-sphère, F~0 in Jt, and hence the image FOj of Funder
the collapse is also homologous to zéro in Jt. Now it is obvious that Jt is an «-fold
cyclic covering space of Jt branched along Fo. Further, it is easy to verify that there

is a surjective homomorphism f:n1(^)^n1(J^). f induces the surjective homo-

morphism/^i^J?)^/^^). Since Hx(Jt) 09 it follows that ifjL(^) O.

Now, with a periodic knot K in J( we can associate a link ^TuFin ^. Since the
knots K and F are mapped onto the knots Ko and Fo, respectively, in the orbit space

Jt under the collapse, we obtain a link Lo KokjFo in c^. Since Jt is a homology

3-sphere, the Alexander polynomial i)(/l512) of Lo is defined. ^ is an w-fold cyclic

covering space of J! branched along Fo, and since Ko is covered by K in ^, it
follows that Link (KQ, F0)=X^Q and (1, «)= 1. Thus, Theorem 1 implies

THEOREM 2. Suppose that K is a periodic knot in Jt of order p\ Let D(t) and

D(t) be the Alexander polynomials of Ko in Jt and K in Jtf respectively. Then

If we consider a periodic knot in a simply connected 3-manifold S, then the orbit
space is also simply connected. Therefore, D(t) and D{t) in Theorem 2 become the

knot polynomials (see [1]), and we hâve the following resuit.

COROLLARY 1. Suppose that K is a periodic knot of order n=pr in S. Then the

knot polynomial A (t) of K must satisfy the following:

(modp),

for some positive integer X, (A,p)= 1, and a certain knot polynomial D(t).

COROLLARY 2. Under the same assumption as in Corollary 1, if A(t) is not a
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product ofother knot polynomials in Z[f], thenfor some positive integer A, (A,/?)=l,

A{t)^Qk{tf-' (mod/?), (5.1)

and hence,for any integer s,

A(s)=O or ±1 (mod/?). (5.2)

Proof. From (4.5), (4.7), and Corollary 1, it follows that

qx (t) A (t) ~ "n D (r, {') Qx (tf D (tf (mod p). (5.3)
i 0

Since D(t, \)~Qx(t) D(t) by (4.1), and Qx(t)£O (mod/?), we see that

A(t)~D (0 "ff D (t, «') s QX (tf -l D (ty (mod p). (5.4)
»=i

Since D(t) and fl?=i &(*> &) are knot polynomials, either A(t)~D(t) or Z)(r)~l,
If A{t)~D(t\ then n?=i ^(^ i1) ~L Since Z)(r)^O (mod/?), it follows from (5.4)
that

1 - "ff J> ('¦ «') s ^ (0"" ' ^> M""l (mod p).
i=l

This is possible only when both D(t) and ^a(0 are congruent to ± 1 modulo/?. Thus
zl (r)= 1 (mod/?). This is a spécial case of (5.1). If D(t)~ 1, then from (5.4) we hâve

A{t)^Ql{ty^ (mod/?).

This proves (5.1). (5.2) follows from Fermat's Theorem.

COROLLARY 3. IfK is a periodic knot of order pT in S, then the degree of A (t)
is not less than pr— 1, unless A (t)= 1 (mod/?).

Proof Let #p be a natural ring homomorphism: Z[r]->Zp[f], Zp ZjpZ. Let

*/p(/) dénote the reduced degree of a polynomial/(f) in Zp[t~\. That is, if/(f)
=#*** +•••+#/, afc^0, aj#O, in Zp[r], then we define dp(f)^l-k. The reduced

degree of an integer polynomial/(f) will be denoted by dQ(f). Then, obviously,
for any integer polynomial /(*), dp(<Ppf)^d0(f). Now, Corollary 1 shows that
dp(<PpA)>(n-l)\À\+ndp(<PpD)^n-l, since A#0 or rfp(<È>p2))>0 unless

(mod/?).

COROLLARY 4. ^4«^ knot in S fias only finitely many distinct prime periods
unless A(t)=l.

COROLLARY 5. If for any prime q,A(t)£l (mod#), then K can hâve only
finitely many distinct periods. In particular, a fibre knot (or Neuwirth knot) can hâve

only finitely many distinct periods.
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Proof. Let d be the degree of A (t). Then it follows from Corollary 3 that the

possible prime power periods of K are the powers p* such that p* ^ d+1. Let p1,..., pm
be ail the primes such that/?Jl<rf+l, where we assume that at is the maximal ex-

ponent satisfying the above condition. Then the possible period of K must be of the
form jPi1-"JpJr, O^pi<af. In fact, if, for some fii9 Pt>ocu then K would hâve period
p?+1. Therefore, the number of possible periods of K is finite, that is, at most

nr=i(& + !)• If ^is a fibre knot, then |J(O)| 1 and dj=0. Thus, A(t)£l(modq)
for any prime q. Hence, it has only finitely many distinct periods.

Remark. The latter assertion of Corollary 5 follows from Theorem (1.2) of [8] if
A (t) has no repeated roots.

COROLLARY 6. Let KmtTl be the torus knot of type (m, n). Then any period of
Kmn is a divisor ofm or ofn.

Proof It is obvious that any divisor of m or of n can be a period of Kmn. Therefore,

it remains to show that thèse divisors are only periods of Kmn. To do this, it
suffices to show the following.

(5.5) Let m —pra and n qsb, wherep and q are distinctprimes, (p, a) 1, (q, b) 1.

Then

(i) pr+i cannot be a period ofKmn9

(ii) paqp, a, /?>0, cannot be a period ofKmn.
Proof of (5.5). Without loss of generality, we may assume that m, n> 1. Now we

know that the knot polynomial Amn(t) of Kmn is given by

(i) Suppose that Kmn has period pr+1. Then, by Corollary 1, we see that for some

Qx(t)Amin(t)^f(tyr+1 (modp). (5.7)

Since Qx(t) (l-tx)ftl-t) and \-tprs^(l-trs)pr (mod/?), an easy calculation

yields

(1 - ï)g{tY s (1 - f)f(tr+i (modp), (5.8)

where g(t)=(l-tan)l(l-ta).
Let A and B be non-zero non-constant terms modulo p with the minimal degree

in the left and right sides of (5.8), respectively. Then A is either tpra=tm or -tk. On

the other hand, the degree of B is either lpr+i or «, / being a positive integer. Therefore,

there are four possible cases:

(a) m lpr+1, (b) m=n9 (c) k=lpr+\ (d) X=n.
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However, the first three cases are easily ehmmated by the original assumption
Suppose that A «. Then (5 8) becomes

g{tY=f(tf" (modp), (5 9)

which îs impossible, smce g(t)£h(t)p(modp) as îs seen from the expansion of g(t).
This proves (5 5) (1).

(11) Suppose that Kmn has penod p'q" Then from (4.6) we obtain

(1) Qk (t) Am>. (0 f (tY (mod p)\ for the same integer
(2)QK(t)Am,n(t)^g(tf (modq)l k, (1, p) 1, (A, q) 1. P 1U;

We may assume that oc^pr and /? < #s, for otherwise jRTm „ would hâve penod
pt + 1orqs+1

Now from (5.10) (1), we obtain

(i -1") ^ç=a
Then, as was done in the proof of (i), compare the non-zero non-constant terms with
minimal degree on both sides of (5.11) to obtain À m. On the other hand, in the

same way, we can show from (5 10) (2) that A «. Therefore, m 2.~n, which contra-
dicts our assumption. This proves (5.5) (n)

As another application of our theorems, we consider the knot in S3 with two
bridges [6]. From a simple observation, we know that any knot K with two bridges
has penod 2, and îts image £0 under the collapse îs unknotted. Thus from Corollary
1, we obtain the followmg.

COROLLARY 7. IfKisa knot in S3 with two bridges, then

A(t) Qx(t) (mod 2)

for some odd integer A.

At the conclusion of this paper, we shall complète the hst of penods of certain
knots in Reidemeister's table [5]. According to Trotter [8],

(1) 4l9 62, 76, 812, 942, 945 can hâve no period other thon 2,

(2) 3l5 63, 77, 820, 821, 948 can hâve no period other than 2, 3 or 6, (5.12)

(3) 944 can hâve no period other than 2 or 4.

In the first group of knots, the Alexander polynomials of 942 and 945 are îrre-
ducible over Z\t\. By Corollary 2, we see that thèse knots do not hâve penod 2.

Thus, they hâve no period at ail. On the other hand, the first four knots hâve period 2,

since thèse are knots with two bridges.
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In the second group, ail knots except 3± do not hâve period 3 by Corollary 1, and
hence, do not hâve period 6. Also we can see that ail knots except possibly 820 and 948

hâve period 2. Therefore 63,77, and 821 hâve only period 2, and 3t has periods 2 and 3.

Finally, 944 does not hâve period 2. Therefore, it has no period at ail. Besides

942, 944, and 945î we now know that at least the following nine knots hâve no period
at ail: 816, 817, 922, 930, 932. 933, 934, 936, 943.
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Verallgemeinerung eines Satzes von H. Samelson

von H.-J. Schneider

Einleitung

H. Samelson bewies in [7] folgenden Satz: Sei G QX der Schleifenraum eines

punktierten topologischen Raumes X (allgemeiner kann G eine beliebige Gruppe in
der Kategorie der punktierten topologischen Râume modulo Homotopie sein). Fur
(xenp(G)9 /}enq(G)9p^l, q>\, bezeichne [a, fi2enp+q(G) das Samelsonprodukt von
a mit /?. Dann gilt fur den Hurewiczhomorphismus (pn:nn(G)-+ Hn(G), n^l und

p, q>l:q>p+q[*9P] [<pMvM><Pp(*)9*iP) ~ ("0M <Pq(P)<?»• Dabei be-

zeichnet (pp(cc) (pq(P), <Pq(P) <Pp(<x) das Pontryagin-Produkt.
Im folgenden wird dieser Satz homotopietheoretisch formuliert und bewiesen und

in zwei Richtungen verallgemeinert.
Erstens wird statt der Gruppe G nur eine Loop G vorausgesetzt. Es ergeben sich

Resultate ûber den Kommutator und den Assoziator von Loopelementen sowie ûber

gewisse ailgemeinere Loopwôrter. Zweitens wird in nn(G) n(Sn9 G) die Sphàre
Sn YJSnl durch eine Einhângung £7 (fiir gewisse Râume Y) ersetzt und der er-

wâhnte Satz von Samelson auf das allgemeine Samelsonprodukt erweitert (Satz 1.2,

Satz 2.2 und Korollar 2.6). Die Beweise werden in der Kanschen Homotopietheorie
von simplizialen Mengen gefûhrt (vgl. [3]). Dabei wird das Pontryaginprodukt mit
Hilfe eines Smashprodukts definiert. Um zu sehen, daB dièse Définition mit der

iiblichen ûbereinstimmt, wird in Satz 2.8 ein Isomorphismus zwischen n{f\n Q, A)
und n {A [n]/À [n], ^4), A simpliziale abelsche Gruppe, konstruiert. Dieser Isomorphismus

ist von einem Isomorphismus in der Homotopiekategorie 3tf von Gabriel-
Zisman [3] VI.3.4. zwischen f\nQ und A [«]/À [«] induziert. Seine explizite Angabe
ist vielleicht auch in anderem Zusammenhang intéressant.

Ich danke dem Referenten fiir nûtzliche Bemerkungen zu dieser Arbeit.

1. Ein Satz Uber multiplikative Objekte

1.1 Bezeichnungen

Wie in [3] sei A°C die Kategorie der simplizialen Objekte einer Kategorie Candzl
die Kategorie mit den geordneten Mengen [n] {0,....«}, n^O als Objekten und

ordnungserhaltenden Abbildungen als Morphismen. Ein multiplikatives Objekt
(M,m) einer Kategorie ist ein Objekt M und ein Morphismus m:MxM->M. Ab

bzw. .S bezeichnen die abelschen Gruppen bzw. punktierten Mengen. A°.S=n ist
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die Kategorie der punktierten simplizialen Mengen modulo Homotopie; A [ri] sei

das «-te Standardsimplex, À\rï\ sein Rand, I: A\Y\ und Q: I/1 der simpliziale
Einheitskreis. Fur XeA°.S heiBt £X: OaX Einhângung von X (s. [3] VI.2.3.).
Sei x (x0,..., xn) ein Elément aus /„. Dann existiert i, —l</^«, mit x,= 0 fury<i
und Xj= 1 fur j>L Sei e" : ef : je. Dieselbe Bezeichnung wird fur Elemente aus Qn

verwendet. Durch pLn:InxIH-^In9fin(eheJ) ek9k:=Max{i9j} wird eine simpliziale
Abbildung \x definiert und es gilt p:Id~0; sei rt: nn(r9 t).

Itn folgenden Satz wird \i zur Konstruktion einer Homotopie auf einem Produkt
von Einhângungen verwendet. SchlieBlich werde noch fur Yl9..., YneA°.S und

K/</i vf:n?=i *wn?=i Yt durch vi(yu~'>yn)=(yi,"',yi~u*,yi+u-<,yn) mit
yie(Yi)p9 p^09 definiert (* bezeichnet den Grundpunkt).

1.2 SATZ: (G9 1) und (H, T) seien multiplikative Objekte in A0.S, sodafi fur
beliebigeZeA°.S, geA°.S(Z9 G), heA°.S(Z, H)gilt:
(1) g±g~0, hTh O.

(2) g±0~g9 hTO~h.
Fur l^i^n seien Xt punktierte simpliziale Mengen und

giltfurfeA°.S(G9 H)unda, beA°.S(X9 G)mit
(3) avl=bvl fur l^Kn:
f(a±b)~faTfb.

Beweis: Sei à: aY[ï=iPri:YlUi(IxXi)-*G> wobeipri:£idie naturliche Projektion ist. Ebenso sei b : b ^[1= i Pft.
Fur p>0 werde (j)p:IpxY\ï=1(IxXi)p-+Hp durch <i>p{t, rl9 xl9..., rn, xn):

'=îfp(àp(rl9 xl9...9 rn, xn)±bp(trl9 xl9...9 trn9 xn))Tfp(Bp(rl9 xl9...9 rn9 xn)l
±bp(trl9 xi9..., trn9 xn)) mit t, rtelp9 xfe(X£)p definiert. ^ (^p)p^0 ist eine simpliziale
Abbildung, da die Multiplikation {t, r^v-^trt simplizial ist. Sei k: Ix Y\l=i

werde \\,p:Ip x []?=i (I Xt)p^Hpdurch tp(x): <t>p(y)9 falls kp(y) x,
definiert. \//p ist wohldefiniert, da wegen (1) und (3) <f)p(t9rl9xl9...9 rn9 xn) * gilt, falls

1^/</i existiert mit rf (0, 0)oderrf (l,..., l)oderA:f *.
Da A: und 4> simpliziale Abbildungen sind, ist auch ^ (^p)p^o simplizial: Be-

zeichne n* den von rj : [#] ~> [/?] induzierten simplizialen Operator ; dann gilt n^i//p (x)
^*0P (y) 0€ (^?*>;) $q (kq (rj*y)) ^ (n*kp (y)) \j/q (rj*x).
Also ist \J/ eine punktierte simpliziale Homotopie. \j/ an der Stelle t=(0,..., 0) bzw.

t=(1,..., 1) werde mit ^(0) bzw. i^(1) bezeichnet. Nach Définition gilt

xl/a) =f (a 1 b) T/ (b 1 é) -/ (a 1 b) T 0-/ (a 1 i) wegen (1) und (2).
Also folgt/aT/6~f (a 1 b).

1.3 BEISPIELE: 1) Multiplikationen 1 mit (1) und (2) ergeben sich auf folgende
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Weise. Fur eine Gruppe G und a, beG sei a±b : aft"1, oder allgemeiner: alb sei

ein Wort in a und b, sodaB 1 Summe der Exponenten von a und — 1 Summe der

Exponenten von b gilt, also zum Beispiel a J_b=a [a, A]s b~1 ([a, &] ist der Kommuta-

tor von a, 6). Analog lâBt sich auf einer Loop in A0.S bzw. zl°.S eine Opération 1 mit
(1), (2) einfùhreren. Eine Loop in der Kategorie der Mengen ist eine Menge L mit
Multiplikation, neutralem Elément und eindeutiger Lôsbarkeit der Gleichungen
ax=b, jtf=& fur aile a, beL.

2) Beispiele fur a, beA°.S(X, G) mit (3) erhâlt man fur multiplikative Objekte,
die sich wie in 1) aus Loopstrukturen auf G ergeben, wie folgt: Fur Xje/do.S(£ Xj9 G)

sei yj: Xjprj in J°.S(f]"=1 £ Xh G). Die Loopmultiplikation von G in A0.S habe

einen Reprâsentanten m:GxG->G, sodafi (G, m) i/-Objekt in A0,S ist; die von m in
den Morphismenmengen induzierte Multiplikation werde mit • bezeichnet. Fur
n 2 sei a: yl-y2t b: y2-y1; fur n 3 sei a:=(yl-y2)'y3,b: y1-(y2'y3). Dann
ist (3) erfullt. Ist 1 die Differenz von Loopelementen, so ist alb im Fall n 2 der

Kommutator von yl9 y2 und im Fall n — 3 der Assoziator von j^, }>2 und ^3- Âhnlich
ergeben sich Distributoren, die zum Beispiel fur eine simpliziale Gruppe G einer

Kategorie C in der simplizialen Gruppe HomAoc(Gi G), die auBer der Gruppenmulti-
plikation noch die von der Komposition induzierte Multiplikation besitzt, auftreten.

1.4 Bemerkung: Satz 1.2 lâBt sich von A0.S auf A°C fur gewisse Kategorien C

verallgemeinern.
1) Sei C eine Kategorie mit Nullobjekt, (endlichen) Produkten und Koprodukten.

Sei KeA°S (mit Kn endlich fur aile n) und XeA°C. Nach Kan [4] ist ein Produkt
K®XeA°C definiert; fur C .S ist K®X=KxX/Kx {*}. Damit lâBt sich auf A°C
eine Homotopierelation einfûhren und fur X, YeA°C ist Hom(X, Y)eA°S bzw.
A0.S wie im Falle C .S erklârt. Zur Définition der Einhângung werde zunâchst ein

Smashprodukt KaX, KeA°.S (mit Kn endlich fur aile ri), XeA°C eingefûhrt. Sei

{KAX)n: ]\kXlkeKÎ'.= Kn\{*} und Xkn:=Xn fur keK*; fur ç>:[m]^M sei

<p?AX durch 9?AX ink ink. (pi fur keK*, k' cp\ (k) # * und ç)?^ mfc 0 fur cpf (k)
definiert. A^A^ist ein Verallgemeinerung des Smashprodukts in [3]. In natiirlicher
Weise gilt
A°C(KaX, Y)*A°.S(K,Hom(X9 F))und
HomAoc(KAX9 Y)2ÉHomAo.s(K, Hom(X9 Y)).

Die Einhângung £ X von X sei jetzt wie im Falle C .S in [3] durch £ X : Q a X
definiert.

2) Satz 1.2 gilt fur die Situation in 1), falls C folgende Distributivitâtsbedingung
erfullt: Fur n^l, endliche Indexmengen I(k), beliebige Objekte Xia),...9 Xi(n) aus
C, i(k)el(k) und /= []*=i 7(^)ist der Morphismus
<Uï=i/wUfc)>:Ui(n2=i^(fc))-^riï=i(IJ/(fc)Xf(k)) epimorph. C hat dièse Eigen-
schaft, falls der Funktor — xi, XeC mit Koprodukten oder Fasersummen ver-
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