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Plongements de variétés différentiables orientées

de dimension 4k dans R6fc+1.

J. BOÉCHAT

Introduction

Le théorème général de la théorie du lissage des plongements, tel qu'il est énoncé
dans [8], indique que pour lisser un plongement semi-différentiable/ : MW->R"+q d'une
variété différentiable Mn, q>2, on rencontre des obstructions qui sont des éléments de

Hl+1(Mn, Cf\ Cf étant le groupe des classes d'isotopie de plongements différentiables
de la sphère S1 dans la sphère Sl+q. Pour k^ 1 on sait que C2k+1 0 pour l<4k-1 et
Cfkt\ «Z (cf [7]); pour lisser un plongement semi-différentiable/ :M4*-»R6*+1, on
rencontre donc une seule obstruction: un élément de HAk{MArki Z). Lorsque M4fc est

close, connexe, orientée, on désigne par œf l'évaluation de cette obstruction sur la
classe fondamentale de M4k. Le but de ce travail est de calculer l'entier œf.

Dans une première partie, on associe à tout plongement semi-différentiable

/ :Mn->R"+ q d'une variété différentiable M", close orientée, q impair ^3, une classe

de cohomologie wfeHq~1(Mn, Z) qui ne dépend que de la classe d'isotopie de/. La
réduction modulo 2 de wf est la {q— l)ème classe de Stiefel-Whitney normale de Mn.

On montre en particulier que si Mn est ^-connexe et q n — k, la classe wf caractérise

complètement la classe d'isotopie de/.
La seconde partie est consacrée à la démonstration du résultat principal :

THÉORÈME (5.1). Soitf:M4k-+R6k+1 un plongement semi-différentiable d'une

variété différentiable M4k connexe, close, orientée. On désigne par pk la k-ème classe

de Pontrjagin normale de M4k, par w2 le cup-carré de la classe WfeH2k(M*k, Z)
associée àf et par [M] la classe fondamentale de M4k. On a la formule;

cof ± (l<w)5 [M]> + âV<Â> M».
Pour démontrer ce résultat, on introduit les groupes de cobordisme orienté de

plongements semi-différentiables Q2^ \ analogues des groupes Qlkk+1 de Thom, et on
montre que les correspondances/i-^coy,/^^ <w2, [M]> et/i-Kj?*, [M]> définissent

des homomorphismes de Qll+1 dans les entiers.

Cette interprétation permet de démontrer que cof est une combinaison linéaire à

coefficients rationnels de (wj, [M]> et de (pk9 [M]>. La détermination des coefficients

se fait en examinant des exemples particuliers.
Comme application, on déduit le théorème suivant qui prolonge partiellement le

le théorème de Haefliger-Hirsch (cf. [5]) une dimension en dessous du métastable.
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THÉORÈME (7.1). Soit M4k une variété différentiable close orientable, (2k -2)-
connexe, dont la forme quadratique d'intersection est indéfinie ou de rang <16. M4*

se plonge différentiablement dans R6k+1 si et seulement si sa classe de Stiefel-Whitney
normale entière w2k+1 est nulle.

Mes plus vifs remerciements s'adressent à mon directeur de thèse, le Professeur

A. Haefliger, pour ses nombreux conseils et ses encouragements constants. Le cas

des plongements de variétés de dimension 4 dans R7 avait été traité en collaboration
avec lui dans un précédent travail et une grande partie des idées utilisées ici sont des

généralisations naturelles de celles utilisées dans ce cas particulier (cf. [1]).
Je remercie également le Professeur O. Burlet qui m'a communiqué certains de ses

résultats non publiés qui ont permis une simplification de la démonstration du lemme

5.4, le Professeur C. Weber pour de nombreuses conversations enrichissantes et les

Professeurs G. de Rham et R. C. Kirby qui ont bien voulu faire partie du jury de

thèse.

Première partie: Classe caractéristique pour un plongement/ :M"-> Rn+q d'une variété
orientée close, q impair

1. Notations et conventions
1.1. On désigne par R" l'ensemble des suites {xj)^0 de nombres réels, telles que

Xj Opo\xTj"^n;six (Xj)j>0eRn,on désigne par ||x|| la norme euclidienne QTy x])112.

Dn+1et Sn dDn+1 sont les disques et sphères unité, c'est-à-dire respectivement
{xeRn+i | ||x||<l}et{xeRw+1 | ||x|| 1}. On pose encore Rn+ {(xj)^oeRn \ xo>0}
et Dn+1 {(xJ)j>oeDH+1\xn>0}. On désigne par uk(k^0) la suite (ôkJ)^0 où

ôkj 0si k^j et ôkk=l. On choisit sur Sn l'orientation définie par la base w1?..., wn

de l'espace tangent en uoeSn. Dn+ et Dn_ =Sn — D\ sont munis de l'orientation induite

par celle de Sn. On remarque que l'homéomorphisme Dn+ &Dn induit par la projection
Rw+1 -> Rn respecte l'orientation si n est pair, la renverse si n est impair; on a le résultat
inverse pour Dn_. Enfin, /désigne l'intervalle unité [0, 1],

1.2. Soient Mn et Xn+q des variétés topologiques de dimension n et n + q, avec

ou sans bord. Rappelons qu'un plongement/ :Mn-+Xn+q est dit localement plat si,

pour tout xeMn, il existe un voisinage U de/x dans Xn+q, tel que (U, Unf Mn,fx)
soit homéomorphe à (Rn+q, R", 0) si xeMn-ôMn et à (Rn+q, R"+, 0) si xedMn; en

particulier/"1 dXn+q~dMn.
Dans ce travail, toutes les variétés seront orientées, munies d'une structure semi-

linéaire, et les plongements seront supposés semi-linéaires, localement plats. Rappelons

que deux plongements/i:Mll->Zrt+€, i'=0, 1 sont concordants s'il existe un
plongement F:MnxI-+Xn+qxI tel que F(x,î)=(/i(*)*0 pour tout xeM",
i=0,1.
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1.3. On désigne par SGq l'espace des applications S*'1 -+ Sq~l de degré 1 et par
5F4_X le sous-espace de SGq formé des applications qui laissent fixe le point w0. Par
suspension, on identifie SGq_± à un sous-espace de SFq.v On désigne par BSGq le

classifiant pour les fibres sphériques orientés de rang q et par BSFq_x le classifiant

pour les fibres sphériques orientés de rang q et de «groupe» structural SF^. Les

inclusions SGq-lc:SFq^1czSGq induisent des applications BSGq.l-^BSFq.t^BSGq
que nous supposerons remplacées par des fibrations. On désigne par SG (resp. BSG)
la limite inductive de SGq(rçsp. BSGq) par suspensions. De la même manière, on
désignera par BSOq l'espace classifiant pour les fibres vectoriels orientés de rang q et

par SO (resp. BSO) la limite inductive des groupes SOq (resp. des BSOq) par suspensions.

SOq est un «sous-groupe» de SGq et SO est identifié à un «sous-groupe» de

SG.

1.4. Tous les groupes d'homologie et de cohomologie considérés sont à coefficients

entiers, sauf mention expresse du contraire.

1.5. Nous dirons qu'une paire (B, dB) est une paire de Poincaré en dimension n

s'il existe une classe [B, OB'] eHn (B, dB) (dite classe fondamentale) telle que n [i?, 32?]

définisse des isomorphismes Hk(B)&Hn_k (B, dB) et Hk(B, dB)« Hn^k(B) pour tout k.

2. Fibres normaux
2.1. Pour tout fibre sphérique v, on désigne par E0(v) l'espace total de v et par

E(v) l'espace total du fibre de fibre contractible associé à v.

A tout plongement/ : Mn cXn+q est associé son fibre normal v(/); c'est un fibre

sphérique orienté de rang q. Nous choisirons pour v(/) le modèle explicite suivant

(cf. Fadell [4]) : Eo (v (/)) est l'espace des chemins œ : /-> Xn+q pour lesquels œ (t)efMn
si et seulement si t=0; E(v(f)) est la réunion de E0(v(f)) et des chemins constants

œ:I-+fMn; la projection est définie par coh->o)(0). Si 3MV 05/définit un plongement

f\ dMn:dMn-+dXn+q; le fibre normal v(/| ôMn) a même type d'homotopie fibrée

que la restriction v(/) | dMn9 et peut lui être substitué dans la plupart des raisonnements

classiques. Ainsi, si on pose E-E{y{f% E0~E0(v(f)), E'~E(v(f\ ôMn%

E^ E0(v(f\dMn)), il y a un isomorphisme de Thom relatif Hk(E,EouEf)&
&Hk_q(Mn, dMn) pour tout k. Quand nous envisagerons une section a de v(/), nous

supposerons toujours, sans restreindre la généralité que a \ dMn est une section de

v(f\dMn) (toute section de v(/) est homotope à une section de ce type).

2.2. Avec les notations de 2.1, on désignera par a les différentes applications définies

par q)^cd(I); parmi celles-ci, il y a a: (E, E0)->(Xn+\ Xn+*-M% (E\Ei)
-*(dXm+*9dXk+*-dhî1) et (E,EouE')^(Xm+*9(Xm+*-M")vdX*+<); ces trois

applications induisent des isomorphismes ct*:Hk(E, E0)&Hk(Xn+q9 Xn+q-Mn)9
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Hk(E'9Ei)&Hk(dXn+q9dXH+*-dMn) et Hk(E,EovE')&Hk(Xn+q,(Xn+q-Mn)
KjôXn+q) pour tout k.

Le deuxième isomorphisme est donné par le théorème (7.4) de [4]; le premier
isomorphisme s'obtient en ajoutant des cols ouverts à Mn et hXn+q, en appliquant le

théorème cité, puis en rétractant les cols ; le troisième isomorphisme s'obtient à partir
des deux premiers et du lemme des cinq.

L'application a permet d'interpréter directement les sections de v(/) comme des

déplacements de Mn dans la variété ambiante Xn+q; plus précisément, soient a une
section de v(/), non nulle au-dessus de AaMn et BczAndM"; la composition ococr

définit une application /ff:(Mn, dMn)->(Xn+q-f(A), dXn + q-f (B)) que nous
appellerons le déplacement de (Mn, dMn) en dehors de (A, B) associé à a.

2.3. Soit v un fibre sphérique orienté de rang q^2, de base une paire de Poincaré

en dimension n, (B, ôB). Posons E=E(v), E0 E0(v), E' E(v | dB), Eq E0(v | dB\
désignons par p la projection et par UeHq(E, Eo) la classe de Thom de v. Soit

rjeHn+q(E9 E0KjEf)défmipaip*(Unrj) J[B, ôB~\. r\ est une classe fondamentale pour
(E, Eo u JE"), c'est-à-dire qu'il y an diagramme commutatif

Si a est une section non nulle de v, on désignera par wa l'élément de Hq~x (Eo) défini

par w(rndrj g* [B, OB']. En utilisant le diagramme commutatif adéquat on vérifie que
ôwff= U; on dira que wa est le relèvement de U associé à a.

On appellera classe d'Euler de a l'élément %a o* (w^eH*1'1 {B). Si on choisit

pour {B, ôB) une variété semi-linéaire close (M", dMn) et si on désigne par Kj le

j-squelette de Mn pour une triangulation fixe de M", on peut définir encore la classe

d'Euler %a pour toute section a de v, non nulle au-dessus de Kq. Pour cela on choisit
un voisinage régulier (Mo, ôM0) de Kq dans Mn; on suppose sans restriction de généralité

que a est non nulle au-dessus de Mo; on applique alors la construction décrite
avant avec (B, dB)= (Mo, dM0) et v remplacé par v | Mo. On obtient ainsi un élément

/r€~1 (M). Une interprétation de xa est fournie par le lemme suivant:

2.4. LEMME. Soient (Mn, dMn) une variété semi-linéaire close, ^ un fibre sphérique

orienté de rang q^2 sur Mn, a une section de v, non nulle au-dessus de Kq. La
réduction modulo 2 Q2X(teHq~~1{Mn, Z2) est la classe de Stiefel-Whitney wq~l de v.

2.5. Pour démontrer ce lemme, nous allons développer quelques préliminaires.
Soit v un fibre sphérique orienté de rang #5*2, de base un CW-complexe B. On

appelle désuspension de v tout fibre sphérique orienté <J, de rang q— 1, tel que v ait
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même type d'homotopie fibrée que ^©a1^1 étant le fibre trivial de rang 1. Soit
(p:B->BSGq une application classifiante pour v, les désuspensions de v correspondent
aux relèvements (p de cp dans BSGq_t. D'autre part, les sections non nulles de v

correspondent aux relèvements 0 de (p dans BSFq.^ Comme BSGq.1^BSGq se

factorise en BSGq^1-+BSFq_1-+BSGq il résulte qu'à toute désuspension correspond
une section non nulle. L'inverse n'est pas vrai en général, c'est-à-dire que toute section

non nulle ne provient pas nécessairement d'une désuspension. On sait que la fibre de

BSGq-1->BSFq-1 est (2#-5)-connexe (cf. [7]), d'autre part no(SGu SFi) 0; on en

déduit alors le résultat suivant: Si v est un fibre sphérique orienté de rang q sur un
CW-complexe de dimension ^q— 1, et si q^2, alors toute section non nulle a de v

provient d'une désuspension f de v et le type d'homotopie fibrée de £ | (#-2)-squelette
de la base ne dépend que de la classe d'homotopie de la restriction de a au {q — 2)-
squelette de la base.

2.6. Soient v un fibre sphérique de rang #^2, orienté, sur un CW-complexe B,
Ç une désuspension de v, a la section non nulle associée à £. Posons E= E(v), Eo E0(v)
et soit UeHq(E9 Eo) la classe de Thom de v. On peut construire un relèvement

WçeHq~1(E0) de U (c'est-à-dire que ôw^= U) tel que a* (w^) soit la classe d'Euler de Ç.

La classe w% est naturelle dans le sens suivant: soient A un CW-complexe/: A -> B

une application,/"1vet/"^les fibres sphériques induits par// :f~1Eo Eo(f~iv)
-+E0 l'application définie par/ alors la classe wf-i^eHq~1(f~lE0) est égale à/fw^.
Enfin, dans le cas où B est un complexe de Poincaré, w$ wa où wa est le relèvement

de U associé à a défini dans 2.3.

Ces diverses affirmations se démontrent toutes facilement en utilisant les diagrammes

commutatifs appropriés. Nous n'explicitons pas les détails et nous nous
contentons d'indiquer la construction de wf Posons E' E(Ç) et EÔ E0(Ç)\ on peut
remplacer Eo par l'espace obtenu en suspendant Eq fibre par fibre. On peut alors

identifier Eq au sous-espace «équateur» de Eo et E' au sous-espace «hémisphère

supérieure» de EOi a étant donné par les pôles nords des diverses fibres. Par excision,

onaunisomorphismecp*://*"1 {E0,E_)^*Hq~1(E', Eq),E. étant le sous-espace

«hémisphère inférieur» de JE:o. S\UteHq~1{E\ Eq) est la classe de Thom de £, on définira

w4eHq~1(E0) comme restriction de (p*1 (V).

2.7. Démonstration du lemme 2.4. Soit i:M0 -» Mn l'inclusion dans M d'un voisinage

régulier de Kq.v Comme i^:Hq-'{Mn)^Hq-'(Mo) et i*:Hq-1(Mn9Z2)^H^1
(Mo, Z2)sontinjectifs, il suffira de prouver que ^2 (/*/(r)=/*^"1(v). Soient v' v | Mo

et <7' (j|Mo;il est évident quef*w€"1(v) w«"1(v/)et il estfacilede voir que i*x<, X<,'-

Selon la remarque finale de 2.4, il existe une désuspension f ' de v', à laquelle & est

associée et selon 2.6, %a,= £? est la classe d'Euler de f. La restriction modulo 2 de

Xa', est donc la classe de Stiefel-Whitney w9'1(i0)^w9'1(i'®e1)^w*''1(v%c.q.f.d.
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3. Classes d'enlacement
3.1. Nous allons considérer la situation suivante: (Mw, dMn)cz(Xn+q, ôXn+q) est

un plongement, de fibre normal v(/), HH+1(X, dX) 0 et l'image de Hn(M,dM)
dans Hn(X9 ôX) est nulle; il s'ensuit que la classe d'Euler de v(/), #(v(/)), est nulle.
Puisque x(v(f)) s'interprète comme première obstruction à construire une section
non nulle, on peut construire des sections de v (/), non nulles sur le ^-squelette Kq
de Mn ; soit a une telle section et soit fa : (M", dMn) -» (X- Kq, dX- Lq) le déplacement
associé à a (cf. 2.2), où Lq KqnôMn est le ^-squelette de dMn. Les hypothèses faites

sur Xn+q montrent que l'homomorphisme d:Hn+l(X,(X-M)KjdX)-+Hn(X-M,
dX-dM) associé à la «paire de paires» ((X, dX\ (X-M, dX-dM)) est injectif et

que, (p^:Hn(X-M9 dX-dM)-?>Hn(X-Kq, ôX-Lq) étant l'isomorphisme induit par
l'inclusion, «p*1/**^, 3M] est dans l'image de d. On appelle classe d'enlacement
de la section g, l'élément X^Dd'1^1 /,[M, dM~], D:Hn+1(X,(X-M)vdX)&
&Hq~1x(M) étant la dualité d'Alexander.

3.2. LEMME. Dans les conditions décrites ci-dessus, si g, a' sont deux sections de

v(/), non nulles au-dessus de Kqt on a les formules suivantes:

(a) 4-V=±rf(a,o-')
O) la- Xa' ± 2 (K ~K>)SÎ(1 eSt imPair
où d(a, a') désigne la première obstruction à construire une homotopie de a vers a'

(en tant que sections non nulles au-dessus de Kq) et %a, Xo> sont ^es classes d'Euler de

a, a' définies dans 2.3.

3.3. Dans une étape préliminaire, nous allons montrer qu'on peut supposer g et
a' non nulles partout. Choississons un voisinage régulier Mo de Kq dans Mn et soit X1

un voisinage régulier de M=M — M0 dans X; posons X0 X— Xt. On a donc un
plongement/0:(M0, ôM0)cz(X09 dX0).

En les remplaçant par des sections homotopes si nécessaire, on peut supposer que
a et g' sont non nulles au-dessus de Mo, que les déplacements associés envoient Mo
dans Xo—Mo, dM0 dans dX0 — dM0 et M1 dans Xl9 en bref on peut supposer que
g | M0 g0 et g' I Mq=g0 sont des sections non nulles de v(/0). Il n'est pas difficile de

vérifier que Hn+x (Xo, dX0)=0 et que l'image par/0* de [M, dM0 ] dans Hn (Xo, dX0) est

nulle; on peut donc définir les classes d'enlacement kao et Xo.0eHq"1(M0) et il est

immédiat qu'elles correspondent à Xa et kaeHq~1 (M) par l'isomorphisme canonique

3.4. Nous allons donner de Xa—Xa, une expression en terme des relèvements wa

et hv de la classe de Thom UeHq(E(v), E0(v)) introduit dans 2.3, et en déduire
la formule (b). Grâce à 3.3, on supposera que g et g' sont partout non nulles.

Posons comme d'habitude E=E(v(f% EQ E0(v(/)),£"=E(v(f \ dM)) et E^
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E0(v(f\ ôM)),p la projection et tjeHn+q(E, EouE') la classe définie parp*(Un rç)=
[M, 3M]. Considérons le diagramme commutatif suivant:

-m, ex-

leshomomorphismes a* sont ceux décrits dans 2.2. La dualité d'Alexander est obtenue.
du moins au signe près, en suivant les flèches a*1, (H*/)"1»/7*"1- Désignons par
vaeHq~1{EQ) l'élément tel que var\dr\ d(x.Z 1d1~1/<r*[V, 3Af] et de manière
analogue tv-

Rappelons que waeHq~1(E0) est caractérisé par wanôrj (j^lMf 5M] et de

manière analogue mv. Ces formules ainsi que l'injectivité de dl9 permettent de montrer
que w<r — w<Tl va—vat. En comparant avec la définition de Xai XQ> on voit que Aa

cr*(t?ff), k<T> Gt*{va). D'autre part, domme va et va>, proviennent de Hq~1(E), on
a a*(v<r) af*(v(T) et cr*(tv) (7'*(tv). On en déduit la formule

(c) A, - Xa. <r*(Wff - w) <7'*(wff - w..)

3.5. Démonstration de la formule (b). Supposons q impair. Nous allons montrer
que 0*(wa') <r'*(wo). Soit i:(E0i Eq)œ(E9 Ef) l'inclusion. On a p*i+a+=*p+i+a+. Il
nous suffit de montrer que

o-'* M n [M,
a* (vv) n [M, 3Af] />**>* (a* (w^) n [M, dMj)

P*i* K' n a-* [M, dM]) p^f* (vtv, n (wa n ^)) p*i* ((wff, u wff) n drj).

On a de même (7'*(w<r)n[M, 3M]=jp*/%((w(Tuwtr')n^). Le résultat provient donc
de l'égalité wau ^^ w^.u wff puisque ^—1 est pair.

En ajoutant membre à membre les formules

on obtient 2(ka-Xa) G*(wa)-Gr*(wa). Selon la définition de x* (voir 2.2), c'est la

formule (b).

3.6. Démonstration de la formule (a). Soit Mo un voisinage régulier du (#-1)-
squelette Kq_t de M" dans M". Soit i: Mo-+M l'inclusion. Il suffit de prouver que

i*(Aff-Aa,)=±i*d(a9 g'). Répétant le procédé décrit au n° 3.3, en remplaçant Kq

par Kq-l9 on se ramène à des classes d(G09 g'o), XffQ9 À^^H^^Mo) qui sont précisément

égales à i*d{G,G% i*Aa,/*V. Cela montre qu'on peut supposer Hi(M)=0
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pour i^q. Dans ce cas, selon les remarques terminales de 2.5, g et g' correspondent
à des désuspensions £, {' de v(/) et selon la formule (c) du n° 3.4, on a Xa — Xa> —

(j*(wff — waï) o*(wç — Wç>) où Wç et w^ sont les classes définies dans 2.6.

La démonstration de la formule (a) se réduit donc à celle du lemme suivant:

3.7. Soient v un fibre sphérique orienté de rang q^2 sur un CWr-complexe K de

dimension ^q—\, £, <*' deux désuspensions de v, g, a' les sections non nulles associées

à Ç, £' et d(a, a^eH9"1^) la première obstruction à construire une homotopie de

a vers g'. Alors, Wç> et w^eHq~1^E0(v)) étant les classes définies dans 2.6, on a la

formule

La démonstration de ce lemme s'effectue en deux étapes: D'abord on le réduit au
cas où v est un fibre trivial sur K=Sq~1, ensuite on démontre la formule dans ce cas

particulier. La réduction est très facile et utilise simplement les propriétés de naturalité
des classes d(a, g'), w%9 w%> et le fait que les deux sections (et les deux désuspensions)
sont isomorphes au-dessus du (q—2)-squelette de K. Nous omettons les détails.
Pour le cas particulier, (S**1, 0) étant une paire de Poincaré, on peut de nouveau
utiliser wa au lieu de w% et on est donc ramené à démontrer que G*(wa — wa>)

±d(G, g') avec E0(v) Sq~x xS*'1. Supposons a(resp g') donnée par x\-*(x,f(x))
(resp. x\-^(x, g(x))) alors <d(G, g'),[S~\> ±(deg/— degg). Choisissons des

générateurs a (pour la base) et b (pour la fibre) de Hq_1 (S*"1 x S9"1) et soient a, /? leurs
duaux par Poincaré. On a <<x, a} (p, b} 0 et <<x, b} (-l)q~1 <)S, a)= ±1. On a

or*[5']=âr+deg/é, (TH:[>S']=a+degg6, donc wff a + deg/jft, w^ oc + deggp et wff-
- hv (deg d-deg g)fi enfin <cr* (wff-wa)9 [S]) (wa- mv, a+deg/Z?> <(deg/-
- deg g) p,a> ± (deg/- deg g) c.q.f.d.

3.8. Nous disons, dans les conditions de 3.1, que la section g est non enlacée si

Aff 0; la formule (a) du lemme 3.2. permet de déduire la proposition suivante:

PROPOSITION. Soit (M\ dMn)a(Xn+q9 dXn+q) un plongement satisfaisant aux
conditions de 3A. Il existe toujours des sections non enlacées.

Démonstration. Soit g0 une section quelconque de v(/), non nulle au-dessus de

Kq9 et choisissons une section G:Kq^1 -*E0(y(f)) telle que d(G0 \ Kq_u g)= ±A<ro, le

signe étant celui de la formule (a) de 3.2. Comme À(T0 est un élément de Hq~x (Kq) et

non simplement de Hq~x (^-i), on peut appliquer le théorème (37.4) de [19]. On peut
donc prolonger g en une section de v (/) non nulle au-dessus de Kq. De d(G0, g)=± X(T0

et de la formule (a), il découle que g est non enlacée.

3.9. La classe wf. Soitf:(Mn,dMn)c:(Xn+q, dXn+q) un plongement satisfaisant
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aux conditions de 3.1, q impair. Nous désignerons par WfSH*'1 (Mn) la classe d'Euler
d'une section de v(/), non nulle au-dessus de Kq9 non enlacée. La formule (b) de 3.2
montre que wf est indépendant du choix de la section non enlacée. Nous dirons que
wf est la classe caractéristique du plongement /. Il découle de 2.4 que la réduction
modulo 2 de wf est la classe de Stiefel-Whitney wq~x(v(f)).

3.10. Supposons, en plus des conditions de 3.1 que l'on ait Hn(dX) 0. Dans ce

cas, le plongement f\ dM:dM-+dXsatisfait aussi aux conditions de 3.1; on vérifie
immédiatement que pour une section a de v(/) non nulle au-dessus de Kq9 la restriction

de Xo (resp. x<r) à Hq~x(dM) est égale k K\ôm (resp. x*\ôm) on en déduit que
si a est non enlacée pour (M, ôM)cz(X, dX), alors a | ôM est non enlacée pour
dMczdX; en particulier, la restriction de wf à Hq~1(ôM) est égale à wf j ÔM.

3.11. Enonçons encore le résultat suivant qui s'obtient par une méthode analogue
à celle utilisée pour le lemme 3.2.

LEMME. Soit v un fibre sphérique orienté de rang q, q impair ^3, sur une paire
de Poincaré (B, dB), et soient a, a' deux sections non nulles de v. Si d(<r, <r')eHq~i (B)
est la première obstruction à construire une homotopie de a vers a' et si ia et %a. sont
les classes d'Euler de a et a' alors

Remarquons que cette formule se déduit des formules du lemme 3.2 lorsque v est le

fibre normal d'un plongement (M", dMn)cz(Xn+q, dXn+q) de codimension impaire

4. Application à la classification des plongements
4.1. Les plongements f:Mn-+Sn+q (ou Mn->Rn+q) pour q^2 satisfont à toutes

les conditions posées en 3.1. Supposons q impair ^3; on voit facilement que la classe

wf ne dépend que de la classe de concordance de/. Si on désigne par q^1 wq~i(M)
l'ensemble des éléments de H*1'1 (M) dont la restriction modulo 2 est la (q- l)ième
classe de Stiefel-Whitney normale de M et par Pl(Mn, Sn+q) l'ensemble des classes

de concordance de plongements Mn-+Sn+q, la correspondance f^wf induit une

application <2>:P1(M", Sn+q)-+Q2 *

4.2. THÉORÈME. Supposons n-k impair ^3. Si Mn est (k-\)-connexe,

l'application $> est surjective: Pl(Mn, S2""*)-*^1 w""^1 (Mn). Si Mn est k-connexef

0 est bijective.

4.3. Préliminaires. La démonstration se fait suivant les mêmes lignes que celle
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des théorèmes 2.3 et 2.4 de [5] en utilisant les techniques semi-linéaires correspondantes.

Les conditions de métastabilité peuvent être évitées, en remplaçant les
théorèmes (3.2) a et b de [5] par les théorèmes d'Irwin [12] et de Hudson [10] qui sont
valables sans ces conditions. On utilisera les résultats suivants:

Mn étant (k- l)-connexe et M0 Mn-int(Z>), D étant un disque plongé.
(a) Si wn~"k 0 (coefficients entiers \) Mo se plonge dans R2/t~* et le fibre sphérique

normal de ce plongement admet une section non nulle.

(b) Si Mn est k-connexe, deuxplongements de Mo dans R2n~k sont toujours isotopes.
Dans ces énoncés, on suppose toujours n—k impair ^3. (b) est conséquence des

théorèmes 10.3 de [11], et (a) vient du fait que Mo se plonge dans R2rt~fc (cf. théorème
8.3 de [11]) et que wn~k s'interprète alors comme première obstruction à construire
une section du fibre sphérique normal.

4.4. Démonstration de 4.2. L'image de wIt~k~1 par le cobord associé à la suite
exacte 0->Z->Z-»Z2-*0 est la classe entière wn~k. Ainsi £2

1 wn~k~1(M)^Q si et
seulement si wn~k Q. D'autre part, il est bien connu que wn~k 0 est une condition
nécessaire pour l'existence d'un plongement Mn-+R2n~k. Le théorème est donc
démontré pour w>n~V0. Supposons maintenant ww~* 0, et soit weHq~1(Mn) un
élément de Q2iwn~k~x(Mn). Par (a) ci-dessus, il existe un plongement /0:M0->
-*R2n~k et v(/0) admet une section non nulle. Choisissons une section non nulle a
telle que xff==w (c'est possible en vertu de la formule du lemme 3.11). Pour conclure,
il reste à prolonger f0 en un plongement de Mn dans R2n~fc, de manière que a soit
non enlacée. On procède comme suit.

Choisissons un voisinage régulier (X, dX) de Mo dans R2"~fc, tel que dMocdX
(voisinage régulier relatif) et modifions a si nécessaire, de manière que le déplacement

fa associé envoie Mo dans dX et soit l'identité sur dM0. Posons Y=R2n~k — X,
I=fo(dMo)^Sn-1 et a=/ff*[M0, dM0-]eHn(Y, I).

Par position générale et dualité d'Alexander, la paire (Y, S) est (n—2)-connexe et

l'homomorphisme d'Hurewicz nn(Y, Z)->Hn(Y, I) est donc surjectif; on peut alors

représenter a par une application (p:(Dn, S"""1)-» (F, I). Par Irwin (cf. [12]) on peut
supposer que q> est un plongement coïncidant avec/0 sur Stt~1 dM0. En recollant

/o et q> on obtient un plongement/:Mw~>R2n"fc et en utilisant les suites de Mayer-
Vietoris, on vérifie que a est non enlacée pour/.

Il reste à démontrer que 0 est injectif si M" est A>connexe. Soient/, / ' : M" -? R2 n ~ k

deux plongements tels que wf=wf>. Par (b) du n° 4.3, on peut supposer que/| Mo

=/' | Mo. Construisons un voisinage régulier relatifX de Mo dans R2*""* comme dans

la 1ère partie de la démonstration et soient a, g' des sections non enlacées pour/,/',
des fibres v(/), v(/'). Comme xff=xff', on a d(a, a'^O; il s'ensuit que l'on peut

supposer a | M0=a' | Mo. Choisissons de nouveau gq=g\Mq de manière que le

déplacement associé à <r0 envoie Mo dans dX et soit fixe sur dM0; en utilisant les
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mêmes notations, la condition que <r0 est non enlacée pour/et pour/' implique que

fKD-.S*-1):^,!?-1)-*^,!;) et /' | (D\ S""1):^", S""1)-*^, I)
envoient [Z>«, S11"1] sur le même élément aeHn(Y, I). Comme maintenant (Y, I) est
(H-l)-connexe, il s'ensuit que/| (£>", S"1"1) et/' | (Dn, S"1"1) sont homotopes. Mais
alors, selon Hudson [10],/1 (D\ S""1) et/' | (D\ S""1) sont isotopes modulo S""1.
On en déduit que/et/' sont isotopes, c.q.f.d.

Deuxième partie: obstruction à lisser un plongement semi-différentiable/ : M4k-+S6k+*

Dans cette partie, toutes les variétés sont supposées différentiables et orientées.
Préliminaires. Rappels sur la théorie du lissage.

Nous adoptons le point de vue exposé dans [8]. Soit BSDq le produit fibre des

applications naturelles BSO-+BSG et BSGq-^BSG, rempacées par des fibrations.
Les applications naturelles BSOq-* BSO et BSOq-^BSGq définissent une application
n:BSOq^BSDq que nous remplaçons aussi par une fibration.

Un plongement/: Mw-> Vn+q est dit semi-différentiable s'il est localement plat et
semi-linéaire relativement à des triangulations C00 de Mn et de Vn+q. Un plongement
semi-différentiable /: Mn -+Sn+q détermine une application (p:Mn-+BSDq9 définie

par les applications Mn -> BSGq et M" -» BSO qui classifient respectivement le fibre
sphérique normal de/et le fibre vectoriel normal stable de M\

Un lissage de/est un plongement différentiable g:Mn-+Sn+q qui est semi-diffé-
rentiablement isotope à/.

Le théorème principal de la théorie du lissage peut s'énoncer (cf. [8])/peut être

lissé si et seulement s'il existe un relèvement $:Mn-+BSOq de l'application (p:Mn-+

->BSDq définie par/.
Lorsque q^3,h groupe d'homotopie n^SDJSO^ de la fibre de n est isomorphe

au groupe C? des classes d'isotopie de plongements différentiables de Si dans Si+q.

Selon Haefliger [7] (voir aussi James [13]) C? 0 si /<2#-3 et C%±\kZ si k>l.
En conséquence, pour lisser un plongement f:M4k-+S6k+1, on rencontre une

unique obstruction, qui est un élément de H4k(Mn,Z); plus précisément, soit

yeH4k(BSO2k+i, Z) la première obstruction à construire une section de n et soit

ç : m4k -> BSO2k+1 l'application associée à/, on appellera obstruction à lisser / l'entier
Le résultat principal de ce travail est le suivant:

5.1. THÉORÈME. L'obstruction cof à lisser un plongement semi-linéaire f:M4k

S6k+1 d'une variété différentiable orientée M4k est donnée par la formule

coff ± (|<w£ [M]> + ^<pk9 [M]»
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où wfeH2k(Mn) est la classe caractéristique définie dans la première partie et pk est la
k-ème classe de Pontrjagin normale de Mn.

Posons pour abréger w} (wj, [M]} et pk (pk, [M]}. Le plan général de la
démonstration de 5.1 est le suivant. Nous introduisons d'abord des groupes de cobor-
disme de plongements semi-différentiables fij| et nous interprétons l'obstruction comme
un homomorphisme Qll+i-*Z. Des résultats généraux sur les groupes de cobordisme
permettent de montrer que cof est une combinaison linéaire rationnelle de wj- et pk.

Il reste à déterminer la valeur des coefficients de cette combinaison linéaire, ce que
nous faisons en choisissant des exemples particuliers.

5.2. Cobordisme semi-différentiable. On définit Qqn le groupe de cobordisme (orienté)
de plongements semi-différentiables/:Mn-*Sn+q de la manière suivante: un élément
de Ûqn est représenté par une paire (Mn,f) où Mn est une variété close connexe diffé-
rentiable orientée et/un plongement semi-différentiable Mn-*Stt+q. Deux paires
(Mhfi) i=0,l représentent le même élément s'il existe une variété différentiable
compacte orientée Wn+1 de bord ôW=M1 u( — Mo) (réunion disjointe de Mx et Mo,
MQ étant munie de l'orientation opposée) et un plongement semi-différentiable
F:(Wn+1, dW)-+ (Sn+qx/, Sn+qx dl) tel que F(x) (f(x), i) VxeMt et f=0, 1.

En remplaçant partout dans cette définition semi-différentiable par différentiable
on retrouve les groupes de cobordisme Qqn de Thom (cf. [20]). Dans les deux cas
l'opération d'addition est donnée par la somme connexe des plongements. Il y a un
homomorphisme évident Q9, ->&*.

5.3. LEMME. Les correspondances (M4fe,/)i—KOy, wj-, pk définissent des homo-

morphismes œ, w2, p : ÛH+1-+Z.
En effet, pour p le résultat est bien connu, pour co il découle directement de la

définition de œf comme première obstruction et pour w2, il provient de la remarque
finale de 3.10.

5.4. LEMME. // existe des nombres rationnels ock et f)k tels que

cof ockwj + pkpk

La démonstration commence par une série de remarques.
1. Qn étant le groupe de cobordisme des variétés abstraites de dimension n, il y a

des homomorphismes naturels QJ -» Qn et Q\ -> Qn. L'homomorphisme p du lemme
5.3 est en fait défini sur Q4k. L'homomorphisme w2 est aussi défini sur Q%1+1.

2. Il y a une involution (piQ^Ql définie par (M,/)«->(-M,/) (on change
l'orientation de M, mais pas le plongement). Lorsque q>n+l. Qqn&Qn et on a

q> (x) - x VxeQ*. D'autre part, si x e QH+ \ on a w2 (q> (x)) =-w2 (x) ; en effet, il suffit
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de revenir à la définition de w}: l'opération (M,/) -> (-M,/) ne change pas wj mais
il faut ensuite évaluer sur — [M] au lieu de [M].

3. En composant le plongement/:Mn -+ Sn+q avec l'inclusion /: sn+qcSn+q+1 on
définit un homomorphisme Qqn-+ Ql+l. On remarque que wiof Q: en effet, on peut
choisir pour section non enlacée la section donnée par les vecteurs normaux à Sn+q,

pointant vers le pôle nord.
Le fibre v(/) est alors une désuspension de v(io/) correspondant à cette section;

wiof s'interprétant comme classe d'Euler de v(/) est donc nul. On déduit de cette

remarque que w2 s'annule sur l'image de Qlkk dans Qll+1.
4. La suite Qlkk+1 ^Q2kk+l^Z est exacte puisque cof est l'unique obstruction à

lisser/. Nous utiliserons les deux résultats suivants, (cf. O. Burlet [3]).

(A) La suite ^©Q -» Q4k®Q —^-5 Q est exacte.

(B) Compte tenu des isomorphismes bien connus &lk+i~n6k+l(MSO2k+l) et
Qk2k+1ttn3k+1(MSO2k+i) où MSO2k+1 est l'espace de Thom du fibre vectoriel
universel de rang 2k +1 sur BSO2k+1, les éléments du noyau N de Qlk+ * ® Q -+ Q4k(g) Q

s'interprètent comme produits de Whitehead d'éléments de 0**+1®Q.
5. w2 s'annule sur le noyau N. En effet, si x eN alors par (B) x=[a, b"] où a, b sont

dans Qlk+1ttQk. Selon la remarque 2, <p(a)=—a et q>(b)=—b d'où cp(x)

\_(p(a), <?(£)] [—a> —&] [#, 6] x; il s'ensuit, toujours par la remarque 2, que

5.5. Démonstration de 5.4. Montrons que si xeQlkk+i®Q et

(p®id)(x)=0, alors (w2®/d) (x)=0. Pour cela on considère le diagramme com-

mutatif suivant

en vertu de 4, x provient d'un élément yeQH+1®Q tel que (p®id) (y) 0.

Par (A) y est somme d'un élément de N et d'un élément qui provient de 0^Q;
selon les remarques 3 et 5, (w2 ® m/) (x) (w2 ® /d) (^) 0. Il découle de ce résultat que w2

est une combinaison linéaire rationnelle de œ et de p. On connaît des exemples pour

lesquels co#0, w2^Q et /?=0, (voir ci-dessous le lemme (6.3) pour les détails), le

lemme 5.4 s'en déduit aussitôt.

6. Détermination des coefficients ock et pk

6.1. Nous allons utiliser une description plus géométrique de l'obstruction à
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lisser. Soient M4k une variété connexe close, D4,* un disque plongé différentiablement
dans M4k (en respectant l'orientation) et M0 M4k —int D4?. Tout plongement semi-
différentiable f:M4k-+S6k+i est isotope à un plongement semi-différentiable
g:M4k-+S6k+1 différentiable sur Mo (en vertu du théorème général du lissage rappelé
en début de la 2ème partie). Plus précisément, on peut supposer que g(M0)cD6++1
et g(D0)cD6-+1. L'obstruction à lisser/est alors l'élément du groupe C24kt\ défini

par g\dD0:eD0 S4k-1->S6k D6*+1nD6Jc~1. Cette définition de l'obstruction
coïncide avec la définition précédente (du moins au signe près); en fait il y a un iso-
morphisme naturel Clkt{&7i4k-l(SD2k+1ISO2k+i) et pour définir l'obstruction
comme un entier, il faut convenir d'un isomorphisme C2^*} «Z, c'est-à-dire choisir
un générateur de C2^*}. Nous conviendrons de choisir le plongement S4k~1-+S6k
décrit par Haefliger dans [6] (p. 463) ; ce plongement sera dénommé «noeud standard»
dans la suite.

6.2. Plus précisément, Haefliger décrit dans [6] un plongement différentiable de

M0 S2kxS2k — int (Dok) dans D6k+1, avec un champ de repères normal et dont la
restriction à dM0 S4k~1 est exactement le noeud standard.

Ainsi, selon nos conventions, en prolongeant «coniquement» ce plongement dans
D6k+1 on obtient un plongement semi-différentiable S2k x S2k dans S6k+1 pour lequel
l'obstruction œ est 4-1. Ce plongement est décrit suffisamment explicitement pour
permettre un calcul de l'entier wjL Plus précisément la classe À introduite dans [6]
(p. 457) correspond au signe près et à torsion près à la classe d'enlacement Xe, de la
section e de v(/) définie par le premier vecteur du champ de repères normal. Si a
est une section non enlacée pour /, on a d'après la formule (b) du lemme 3.2

2(K-K)=±(Xe-Xo) d'où 2Ae=±*ff w/. On en déduit que |w2 <h>2/8,[M]>
<^/2,[M]> a2/2,[M]> et Haefliger montre que <A2/2,[M]>= ±1. En reprenant

ses arguments en tenant compte de nos conventions d'orientation, on obtient — 1.

(Nous ne décrivons pas les détails, il faut surtout choisir sur Mo une orientation qui
induise sur 3M0 54k"1, l'orientation opposée à l'orientation convenue, pour que
dM0 soit orientée comme bord de D4,* et non comme bord de Mo). Enfin puisque
M4k=S2kxS2k,pk(M4k)=0. En résumé:

6.3. LEMME. // existe un élément de Ù2^1 pour lequel œ=l, w2= -8,/?=0.
On en déduit aussitôt

6.4. COROLLAIRE. **=-£.

6.5. Pour calculer pk, nous allons nous servir d'un diagramme auxiliaire que
nous allons décrire avec soin. On désigne par FCllt{ le groupe des classes d'isotopie
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de plongements différentiables de S4*"1 -? S6k avec champ de repères normal, c'est-à-
dire des classes d'isotopie de plongements différentiables de S4*"1 x D2k+i -+ S6k.

Il y a un homomorphisme évident I:FC%±\-+C%;t11 qui consiste à oublier le
champ de repères. Il y a d'autre part un homomorphisme n4k-i(SO2k+i)->FC%±\
décrit comme suit. A la classe d'homotopie de r .-S4*"1 -? SO2k+1, qu'on suppose dif-
férentiable, on fait correspondre la classe d'isotopie du plongement obtenu en
composant S^xD^+S^xD2**1^6* où ?(x>y) (x,r(*)y) et <p est le

plongement standard défini par

- y212) xl9..., V(r=7272) x4fc, yjji,..., y2k+lljl)

on a posé y2

La suite

est exacte (voir [7] et utiliser le fait que le fibre normal d'un plongement S4*""1 -? s6k
est toujours trivial selon [15]). On définit un homomorphisme FClkt[ -+II4k-1 (S2k)
de la manière suivante: si f:S*k~x xD2k+1 -+S6k est un plongement, l'application
f':S2k dD2k+x-*S6k-f(S4k-1) définie par f'{y)=f (uo,y) est une équivalence
d'homotopie. A la classe d'isotopie de / on fait correspondre la classe d'homotopie
de l'application go/" où/":,?4*-1 -» ^-/(S'4*-1) est définie par/"(*)=/(*, u0) et

g est un inverse homotopique de/'. Définissons encore un homomorphisme FC^t {-?
-+II4k^1(SO). Soient/:5r4fc~1->56k un plongement avec champ de repères normal
ctj:S6kczS6k+1 l'inclusion. Le plongement j0/est isotope au plongement standard,
ce qui implique qu'on peut le prolonger en un plongement F:D4k-*D6k+2. Choisissons

une trivialisation T:N-+D4kxR2k+2 du fibre normal N de F; le champ de

repères normal de/ augmenté du champ des vecteurs normaux à S6k dans S6k+1

pointés vers le pôle nord, définit une application S4*""1 xR2k+2-+T(N\ S4*""1) de

la forme (x, y)\-+(x9 <x(x) (y)) avec a(x)eSO2k+2 (en choisissant une métrique rieman-
nienne convenable). L'homomorphisme à définir associe à la classe d'isotopie de

/ la suspension stable dans nAk^i (SO) de la classe d'homotopie de l'application

On définit encore un homomorphisme n4tt-.1(SO)-+Z en associant à la classe

d'homotopie de a:54fc~1^5'OiV, N grand, le nombre de Pontrjagin <p*,[S4*]> du

fibre vectoriel de rang N sur S4k obtenu en recollant Df x RN et Dik x RN le long de

S4k~1xRN par identification pour chaque xeS4*"1 de (x,y)eD?xRN avec

(x, oc(x)y)eDXkxRN. Les groupes et homomorphismes que nous avons décrit prennent

place dans le diagramme suivant, dont il est facile de vérifier la commutativité:

n4k-l(SO2k+1)-+n4k..1(S2k) est induit par la fibration standard SO2k+1~>S2\
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(i)

n4k_1{S02k+\)-*nArk_1(S0) est l'homomorphisme de suspension, H est l'invariant
de Hopf, h, h\ k, k' sont définis par composition des autres applications.

6.6. LEMME. Pour tout xeII4k_l(SO2k+l)9 k'(x)= -4h'(x).
Démonstration. Choisissons (p:SAk~1-*SO2k-i, représentant x. h'(x) est l'entier

</?^(^),[54fc]>, où Ç est le fibre vectoriel de rang 2k +1 obtenu en recollant
£4fcxR2k+ieti)4kxR2fc+ien identifiant, pour chaque jceS4*"1, le point (x,y)e
eZ>4kxR2fc+1 au point (x9 q>(x)y)eD^xj^.2k+1. Il revient au même, remplaçant
S4k par S*kID%\ de considérer le fibre Ç sur S4k obtenu en recollant D4kxR2k+1 à
R2k+1 en identifiant pour chaque xeS4k~\ (x,y)eD4kxR2k+1 à cp(x)yeR2k+1, à

condition toutefois d'évaluerpk{Ç) sur — \_S4k~\ au lieu de [S4*] (on a en effet échangé
les rôles de D+ et D_). On a donc *'(*)= -<?*(& [^4/c]>.

Soit Eo l'espace total du fibre en sphères associé à £' et n:E0 -> 54fc la projection.
Soient encore/:54fe"1->»Sr2fc l'application associée à <p, Xj le CW-complexe obtenu

en attachant un disuqe D4k à S2k au moyen de/, et^rXy-^S4* l'application obtenue

en collapsant S2k en un point. On voit facilement que/? se relève en une application

g:Xf-+E0, qui envoie le sous complexe S2k homéomorphiquement sur la fibre au-
dessus dep(S2k); g est même une inclusion de sorte qu'on peut considérer Xf comme

un sous-espace de Eo, identifiant ainsi/? à n \ Xf. Soit t le fibre sur Eo formé des

vecteurs tangents aux fibres de n. On a n"1 (£') ^©e1, e1 étant un fibre trivial de rang 1

sur Eo. On vérifie que (n | Xf)* [Xf~] [S], \_X/\ étant le générateur de H4k (Xf)
correspondant à [S]eH4k(S4k) par l'application/?. On a/?k(T)=(x(t))2. D'autre part la classe

d'Euler de t | Xf est ± 2w, u étant un générateur de H2k (Xf, Z) « Z. On peut donc écrire :

- k'(x) <A(O I

|

et par définition <w2, [X^]> est l'invariant de Hopf de/, c.q.f.d.
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6.7. Principe d'utilisation du diagramme (I)
On considère un plongement/:M4* -» S6k+1 pour lequel f(M0)c:Df+ \ f(D0)cz

cD6k+1,f est différentiable sur Mo, et/(M0) est muni d'un champ de repères normal
(voir 6.1 pour les notations). Dans une telle situation, on peut définir un élément
xeFCfkt\ par restriction de/et du champ de repères normal à 5D0 S4k"1. On a
l'interprétation suivante: l(x) est l'obstruction cof à lisser / et k(x) est le nombre de

Pontrjagin normalpk(Mn) (pour ce dernier point, cf [14]). C'est en utilisant ce principe

que nous allons démontrer les deux lemmes suivants:

6.8. LEMME. // existe xoeFClkkt{ tel que /(xo) +1, k(x0) 0, h(x0) -6.

6.9. LEMME. Il y a un élément x^FC^Xl, associé à un plongement f du type
décrit dans 6.7, et pour lequel on a:

^(xO^O, h(x1) 0, avec wf 0

Avant de démontrer ces lemmes, nous allons montrer comment le théorème 5.1 s'en
déduit.

6.10. Démonstration de 5A. Pour l'élément xx décrit dans 6.9, on a l(xï) cof —

PkPk:=Pkk(xi)- Considérons alors l'élément y xl—f$k k{xi) x0, x0 étant l'élément
décrit dans le lemme 6.8. On a l(y)=0, donc g provient de i74&_1 (SO2k+i). Par 6.6,

on a donc -k(y) 4h(y). Mais k(y)=k(xi)^0 et A(j)= -Pkk{xl)h(xQ)

6.11. Démonstration de 6.8. On reprend l'exemple de Haefliger déjà utilisé pour
le lemme 6.3. Il suffit de montrer que h(x) -6, x étant l'élément de FCfkt\ défini

par le noeud standard. Rappelons la construction de ce noeud, (x, y, z) (xt xlk,
Ji--- y2k-> zi>- zik) désignant un point général dans R6k S6k— oo, on envisage les

trois sphères S4*"1 plongées dans R6fc de la façon suivante:

S, {(x, y, z)eR6k \ x 0 ; y2/*2 + z2//?2 1}

S2 {(x, y, z)eR6k \y 0; z>2 + x2//?2 1}

S3 {(x, y, z)eR6fc | z 0 ; x2/a2 + }>2/j32 1}, a > jS > 0

Ces trois sphères sont reliées par deux tubes joignant l'un St à S2 et l'autre S2 à S3 ;

on obtient ainsi un plongement de S*k~i=Sl%S2*S3 dans R6fc, ^ désignant la

somme connexe. Le noeud standard est complété par un champ de repères normal tel

que sur Sl9 le 1er vecteur du champ de repère soit donné par le vecteur normal à Sl
dans {(x, y, 0)eR6k | x, yeR2k}, et de façon analogue sur S2 et 53. Soit 5/, i 1, 2, 3,

la sphère S( poussée dans S6k-Si^S2^S3 le long du 1er vecteur du champ de repère.

Il nous faut calculer l'invariant de Hopf de l'application S4k-i 2k
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définie en composant l'inclusion S{%S2%S3c:S6k — S1%:S2%S3 avec une équivalence
d'homotopie de S6k — St s&S2%S3 avec S2k respectant les conventions d'orientation
indiquées dans 6.5 concernant l'application FC2£t\ -?774fc_1(*Sf2k). Cette application
S4*"1 -»• S2* est la somme des trois applications S4k~"1^S2k obtenues en composant les

inclusions de S[, S2 et S3 dans S6k-S1%S2ï%S3 avec l'équivalence d'homotopie
précédente.

Par symétrie, il nous suffira de calculer l'invariant de Hopf de l'une de ces trois
applications, par exemple celle relative à £3, et de multiplier le résultat par 3.

Désignons pas Sx oS2oS3 le sous-espace de S6k obtenu en réunissant Sl9 S2 et S3

par deux arcs joignant l'un SthS2, l'autre S2hS3. S6k — S1oS2oS3&\e type d'homotopie

d'un wedge de trois sphères S2k, S2kv S2kvS2k. L'application de S3 dans S2k

dont il faut calculer l'invariant de Hopf peut aussi être obtenu en composant l'inclusion

S^S6- SloS2oS3 avec une équivalence homotopique de S6k — StoS2oS3 avec

S2kvSikvS3k et avec l'application de S2kvS2kvS3k-+S2k qui est l'identité sur
chaque exemplaire S2k («folding map»). Il est clair que S3 est homotope à 0 dans
S6k- Si o S3 et S6k- S2 o S3, de sorte qu'on peut encore décrire l'application/: S3->S2k
comme composée de l'inclusion i:S3 S3-*S6k — StoS2, d'une équivalence homotopique

q> : S6k- Sx o S2 -+ S?k v S2k et de l'application F: S2k vS2k^S2k qui est l'identité

sur chaque exemplaire S?k. Il faut donc calculer H{Fo(poï). Pour tenter un tel
calcul, il faut avoir une description aussi explicite que possible de q> ; à cette fin nous
introduisons les boules Bu B2 dans S6k définies dans R6k~S6k — (oo) par les équations

J3i:x O, }>2/a2 + z2\$2 < 1

B2 est complété dans S6k par le point à l'infini. On a donc B1nB2 Q, ôBt =St et
dB2 S2.

Soient A± et A2 des épaississements (voisinages tubulaires) de Bx et B2 allant en

s'amincissant vers les bords dBx et 5i?2> de manière que Ai — dBi soit fibre en disques
fermés D2k au-dessus de Bt — dBi9 i 1, 2. On choisit aussi AxQtA2 tels que AxnA2 0

et on choisit le segment joignant Sx à S2 de manière qu'il ne rencontre pas Ai — dBb

«=1,2.
On définit q> en imitant la construction deThom-Pontrjagin: q> envoie S6k—(Al uA2)

sur le point base de S2k vS2k et Ai — dBi sur S2k, i 0, 1, de manière que sur chaque
fibre D2k, (p soit l'application surjective D2k-+S2k qui identifie dD2k au point base.

Il est facile de vérifier que q> est une équivalence homotopique conforme aux conventions

d'orientation.
Pour calculer H{Fo<poï) on sait qu'il faut calculer le coefficient d'enlacement des

images inverses de deux valeurs régulières.
On peut choisir q> de telle manière que Fo(p soit diflférentiable au voisinage de

(l?i— Si)\j(B2 — S2), et que [_(Bl—S1)u(B2 — S2)']riS3 soit l'image inverse d'une
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valeur régulière que Focpoi. On obtient ainsi une description très explicite de l'image
inverse d'une valeur régulière et il n'est pas difficile de calculer le coefficient d'enlacement

de E avec la sous-variété obtenue en poussant E en dehors de lui-même dans $3.
Le calcul donne la valeur - 2 pour H(Fo(poi).

6.12. Démonstration de 6.9. Nous commençons par décrire un homomorphisme
$:II4k(SG, SO)->FCllt[. Un élément y de n4k(SG, SO) peut être représenté par
une application D4kxSN-+SN9 pour N assez grand; on peut supposer que g est

différentiable et que uoeSN est une valeur régulière. L'image inverse de u0 est une
sous-variété à bord (M$k, dM$k) orientée, de bord SMq*»*?4*"1, plongée avec un
champ de repères normal dans (D4kxSN, S4*"1 xSN), le champ de repères étant
induit par une base orientée de l'espace tangent à SN en t/0. En raisonnant comme dans

le n° 3.3. de [7], on peut supposer que Mo est l'union d'un disque D4k et d'anses

d'indices > (2A;-1). En considérant D4kxSN plongé dans R^+N+1, on obtient un
plongement (Mo, dM0)c(R++4k+1, 3R++4fe+1) avec champ de repère normal d'une
variété Mo (2k— l)-connexe. Selon Hirsch (cf. [9]), ce plongement est isotope à un
plongement/:(M0, dM0)->(R++4k+1, dRN++4k+1) avec champ de repères normal tel que
/(M0)c:R+fc, le champ de repères étant formé d'un champ de repères normal de

f(M0)c:Rf et du repère normal de R6+ dans R*+4fe+1 formé des vecteurs u6ki

uN+4k. Nous ferons correspondre à y la classe de concordance du plongement de

S4*"1 ôM0 dans S6h (dR6+ + *)u (oo) défini par/| dM0, avec son champ de repères

normal ; cela définit Phomomorphisme $.
On vérifie que le diagramme suivant commute (au moins au signe près)

FCfkt\
•s \774fc(SG,SO)->774,_1(SO)

e

Comme d^O, on en déduit qu'il y a des éléments xx de FC2k+i qui proviennent de

II4k(SG, SO) par # et pour lesquels k(xl)^0. La description donnée ci-dessus de

0 montre qu'un tel jq est représenté par un plongement avec champ de repères normal

S**'1 -+R6k S6k — (oo) obtenu par restriction à dM0 d'un plongement avec champ
de repères normal f:M$k-+R6+k+i d'une variété M40k de bord dMo^S4*"1; de plus,

toujours en vertu de la construction de 0, on peut supposer que /est obtenu en

composant un plongement Mofe-»R6+ avec l'inclusion R^cR^1 et que le 1er vecteur

du champ de repères normal est donné par le vecteur normal à R+fc dans R+fc + 1. La

remarque du n° 3 de la démonstration de 9.4 montre que W/=0; il est d'autre part
évident que l'image de S4*"1 dans R6*-/^4*"1) obtenu en poussant S4*""1 en

dehors de/ (S4*"1) le long du 1er vecteur du champ de repères normal est homotope à

0, ce qui montre que h(xl)=0 et achève la démonstration du lemme.
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7. Une application
Lorsque M4k est (2k — 2)-connexe, on vérifie que w2k est une classe de Wu. En

conséquence, désignant par /fie groupe #2*(M)/Torsion et notant multiplicative-
ment la forme quadratique d'intersection H®H-+ Z la condition que weH provienne
d'une représentation entière de w2k peut aussi s'exprimer sous la forme wx=x2
(mod2) VxeH. Cette remarque, combinée aux théorèmes 4.2 et 5.1 permet d'énoncer
le critère suivant:

7.1. THÉORÈME. Soit M 4k une variété différentiable orientée, (2k-2)-connexe.
Soit H— H2k(M)/Torsion et notons multiplicativement la forme quadratique d'intersection

H®H'-+Z de M4fc. Alors, M4k peut être plongée différentiablement dans
R6fc+1 si et seulement si w2k+1 0 (coefficients entiers) et s'il existe weH tel que

(i) wx=x2(m
(ii) w2

7.2. Dans le cas particulier k= 1, M4 étant orientée on a w3 0 (cf. [17]); d'autre
part --K/Ji, [M]> t (T étant la signature de M4). On retrouve ainsi le résultat
annoncé dans [1] (une démonstration en est donnée dans [2]).

7.3. Pour une forme quadratique unimodulaire, non dégénérée quelconque, on
peut toujours trouver w satisfaisant (i) et pour un tel w on a w2=x (mod8), x étant la
signature de la forme quadratique. La conditions (ii) est plus délicate. Dans le cas
des formes indéfinies, on dispose d'une classification complète (voir par exemple
[18]) et en utilisant cette classification, on peut montrer que pour tout entier z, z=x
(mod8), on peut trouver w satisfaisant (i) et w2 z. Quant aux formes quadratiques
définies positives, il existe une liste de celles qui sont de rang ^16 (voir Kneser [16]).
On vérifie directement que chaque forme de cette liste possède aussi cette propriété.
On obtient ainsi le corollaire suivant:

7.4. THÉORÈME. Soit M4k une variété différentiable close orientable (2k-2)-
connexe, dont la forme quadratique d'intersection est indéfinie ou pour laquelle le rang
de H2 (M) est < 16. Alors M4k peut être plongée différentiablement dans R6k+1 si et
seulement si w2k+1 =0 (coefficients entiers).
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