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Plongements de variétés différentiables orientées

de dimension 4k dans R%*1,

J. BOECHAT

Introduction

Le théoreme général de la théorie du lissage des plongements, tel qu’il est énoncé
dans [8], indique que pour lisser un plongement semi-différentiable f : M"—»R"*?d’une
variété différentiable M", g>2, on rencontre des obstructions qui sont des éléments de
H'™1(M", Cf), Cf étant le groupe des classes d’isotopie de plongements différentiables
de la sphére S’ dans la sphére S'*%. Pour k1 on sait que C*** ' =0 pour /<4k—1 et
Ck* 1 ~Z (cf [7]); pour lisser un plongement semi-différentiable /' : M**—R**1 on
rencontre donc une seule obstruction: un élément de H**(M*¥, Z). Lorsque M** est
close, connexe, orientée, on désigne par w, I’évaluation de cette obstruction sur la
classe fondamentale de M**. Le but de ce travail est de calculer Ientier w,.

Dans une premiére partie, on associe & tout plongement semi-différentiable
f:M"— R""1d’une variété différentiable M", close orientée, g impair >3, une classe
de cohomologie w,e H?~!(M", Z) qui ne dépend que de la classe d’isotopie de f. La
réduction modulo 2 de w, est la (¢— 1)éme classe de Stiefel-Whitney normale de M".
On montre en particulier que si M" est k-connexe et g=n—k, la classe w, caractérise
complétement la classe d’isotopie de f.

La seconde partie est consacrée a la démonstration du résultat principal:

THEOREME (5.1). Soit f : M**—»R**! yn plongement semi-différentiable d’une
variété différentiable M** connexe, close, orientée. On désigne par p, la k-éme classe
de Pontrjagin normale de M**, par w? le cup-carré de la classe w,e H**(M*, Z)
associée a f et par [ M] la classe fondamentale de M**. On a la formule;

w; =+ (3w}, [M]) + 2 < B [MD).

Pour démontrer ce résultat, on introduit les groupes de cobordisme orienté de
plongements semi-différentiables $2%**, analogues des groupes Q3* ! de Thom, et on
montre que les correspondances fi—w,, f> <wj, [M]) et f+->{p, [M]) définissent
des homomorphismes de @25* ! dans les entiers.

Cette interprétation permet de démontrer que w, est une combinaison linéaire a
coefficients rationnels de {w}, [M ] et de {f;, [M ]). La détermination des coefficients
se fait en examinant des exemples particuliers.

Comme application, on déduit le théoréme suivant qui prolonge partiellement le

le théoréme de Haefliger-Hirsch (cf. [5]) une dimension en dessous du métastable.
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THEOREME (7.1). Soit M** une variété différentiable close orientable, (2k —2)-
connexe, dont la forme quadratique d’intersection est indéfinie ou de rang <16. M**
se plonge différentiablement dans R%**! si et seulement si sa classe de Stiefel-Whitney
normale entiére w2**1 est nulle.

Mes plus vifs remerciements s’adressent & mon directeur de thése, le Professeur
A. Haefliger, pour ses nombreux conseils et ses encouragements constants. Le cas
des plongements de variétés de dimension 4 dans R” avait été traité en collaboration
avec lui dans un précédent travail et une grande partie des idées utilisées ici sont des
généralisations naturelles de celles utilisées dans ce cas particulier (cf. [1]).

Je remercie également le Professeur O. Burlet qui m’a communiqué certains de ses
résultats non publiés qui ont permis une simplification de la démonstration du lemme
5.4, le Professeur C. Weber pour de nombreuses conversations enrichissantes et les
Professeurs G. de Rham et R. C. Kirby qui ont bien voulu faire partie du jury de
these.

Premiére partie: Classe caractéristique pour un plongement / : M"— R"*? d’une variété
orientée close, g impair

1. Notations et conventions

1.1. On désigne par R" I’ensemble des suites (x;);», de nombres réels, telles que
x;=0pour j>n;six=(x;);»0€R", on désigne par ||x|| la norme euclidienne (3_; x7)'/.
D"*let S"=0D"*! sont les disques et sphéres unité, c’est-a-dire respectivement
{xeR"*!| |x[ <1} et {xeR"*! | |x]|=1}. On pose encore R’ = {(x;);>0€R" | x>0}
et DV '={(x;);50€D""* | x,20}. On désigne par u(k=>0) la suite (8;;);50 OU
0x;j=0si k#j et d,;=1. On choisit sur S" 'orientation définie par la base uy, ..., 4,
de ’espace tangent en u,e€S". D", et D =S"— D", sont munis de I’orientation induite
par celle de S". On remarque que ’homéomorphisme D’, &~ D" induit par la projection
R"*1 - R" respecte I’orientation si n est pair, la renverse si # est impair ; on a le résultat
inverse pour D" . Enfin, I désigne I’intervalle unité [0, 1].

1.2. Soient M" et X"* 1 des variétés topologiques de dimension n et n+gq, avec
ou sans bord. Rappelons qu’un plongement f : M"— X" "4 est dit localement plat si,
pour tout xe M", il existe un voisinage U de fx dans X"*4, tel que (U, Unf M", fx)
soit homéomorphe a (R"*9, R", 0) si xe M"—0M" et a (R""%, R%,0) si xedM"; en
particulier f ~! 0X"*1=0M".

Dans ce travail, toutes les variétés seront orientées, munies d’une structure semi-
linéaire, et les plongements seront supposés semi-linéaires, localement plats. Rappe-
lons que deux plongements f;: M"— X"*% =0, 1 sont concordants s’il existe un
plongement F:M"xI—X"*4xI tel que F(x,i)=(f;(x).i) pour tout xeM",
i=0, 1.
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1.3. On désigne par SG, I’espace des applications S?71— §?7! de degré 1 et par
SF,_; le sous-espace de SG, formé des applications qui laissent fixe le point u,. Par
suspension, on identifie SG,_; & un sous-espace de SF,_;. On désigne par BSG, le
classifiant pour les fibrés sphériques orientés de rang g et par BSF,_, le classifiant
pour les fibrés sphériques orientés de rang g et de «groupe» structural SF,_,. Les
inclusions $G,_; = SF,_,; = SG, induisent des applications BSG,_, —» BSF,_, —» BSG,
que nous supposerons remplacées par des fibrations. On désigne par SG(resp. BSG)
la limite inductive de SG,(resp. BSG,) par suspensions. De la méme manitre, on
désignera par BSO, I’espace classifiant pour les fibrés vectoriels orientés de rang g et
par SO (resp. BSO) la limite inductive des groupes SO, (resp. des BSO,) par suspen-
sions. SO, est un «sous-groupe» de SG, et SO est identifié 2 un «sous-groupe» de
SG.

1.4. Tous les groupes d’homologie et de cohomologie considérés sont a coeffi-
cients entiers, sauf mention expresse du contraire.

1.5. Nous dirons qu’une paire (B, 0B) est une paire de Poincaré en dimension »n
s’il existe une classe [ B, dB]e H, (B, dB) (dite classe fondamentale) telle que N[ B, 9B]
définisse des isomorphismes H*(B)~ H,_, (B, 0B) et H*(B, 0B)~ H,_,(B) pour tout k.

2. Fibrés normaux

2.1. Pour tout fibré sphérique v, on désigne par E,(v) I’espace total de v et par
E(v) I’espace total du fibré de fibre contractible associé a v.

A tout plongement f : M"< X"*? est associé son fibré normal v(f); c’est un fibré
sphérique orienté de rang ¢q. Nous choisirons pour v(f) le modele explicite suivant
(cf. Fadell [4]): Eo (v (f)) est 'espace des chemins w:I— X" pour lesquels w (t)efM,
si et seulement si t=0; E(v(f)) est la réunion de Ey(v(f)) et des chemins constants
w:I—-fM";a projection est définie par w—> @ (0). Si IM"# 0, f définit un plongement
f| 8M":0M" - 3X"*1; le fibré normal v(f| dM") a méme type d’homotopie fibrée
que la restriction v(f) | 9M", et peut lui étre substitué dans la plupart des raisonne-
ments classiques. Ainsi, si on pose E=E(v(f)), Eo=E,(v(f)), E'=E(v(f| oM"),
Eq=E,(v(f | oM"), il y a un isomorphisme de Thom relatif H, (E,E,uE)~
~ H,_,(M", dM™) pour tout k. Quand nous envisagerons une section o de v (f), nous
supposerons toujours, sans restreindre la généralité que ¢ | OM" est une section de
v(f|oM™) (toute section de v(f) est homotope  une section de ce type).

2.2. Avec les notations de 2.1, on désignera par « les différentes applications défi-
nies par o w(1); parmi celles-ci, il y a a: (E, Eo)— (X"*9, X"*1—M"), (E’, E,)
- (0X"*9, 0X* 1 —aM?) et (E, EqUE")— (X", (X" 1—M")U0X""9); ces trois
applications induisent des isomorphismes ay:Hy(E, Eo)~ H (X nte ynta_ M™),
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H.(E', E))xH,(6X""%, 0X""1—0M") et H/(E E,UE)~H (X" %, (X" 1-M")
U oX" 1) pour tout k.

Le deuxiéme isomorphisme est donné par le théoreme (7.4) de [4]; le premier
isomorphisme s’obtient en ajoutant des cols ouverts 3 M" et 3 X"*9, en appliquant le
théoréme cité, puis en rétractant les cols; le troisi¢me isomorphisme s’obtient a partir
des deux premiers et du lemme des cinq.

L’application « permet d’interpréter directement les sections de v(f) comme des
déplacements de M" dans la variété ambiante X"*?; plus précisement, soient ¢ une
section de v(f), non nulle au-dessus de A = M" et Bc A ndM"; la composition a.o
définit une application f,:(M", dM™)— (X"*1—f(4), 0X"*9—f(B)) que nous ap-
pellerons le déplacement de (M", dM") en dehors de (A4, B) associé & a.

2.3. Soit v un fibré sphérique orienté de rang g >2, de base une paire de Poincaré
en dimension n, (B, B). Posons E=E(v), Eg=E,(v), E'=E(v | 0B), E;=E, (v | 0B),
désignons par p la projection et par Ue HI(E, E,) la classe de Thom de v. Soit
neH,,  (E, Eyu E") défini par p, (Unn)=[B, 0B]. n est une classe fondamentale pour
(E, Ey U E'), c’est-a-dire qu’il y an diagramme commutatif

““"Hk+1(Ea Eyu E’)“Q’Hk(Eo, E(I))_——-)Hk(E, E') —_—
Nntss nonis natis
e ____)Hn+q-k-—1 (E) “_')Hn+q—k_1 (Eo)'—)Hn+q_k(E, EQ)_) ...

Si o est une section non nulle de v, on désignera par w, ’élément de H?™ ' (E,) défini
par w, N dn=a,[B, 0B]. En utilisant le diagramme commutatif adequat on vérifie que
ow,=U; on dira que w, est le relévement de U associé a o.

On appellera classe d’Euler de o I'élément y,=0*(w,)e H?~*(B). Si on choisit
pour (B, 0B) une variété semi-linéaire close (M", IM") et si on désigne par K; le
J-squelette de M™ pour une triangulation fixe de M", on peut définir encore la classe
d’Euler y, pour toute section ¢ de v, non nulle au-dessus de K,. Pour cela on choisit
un voisinage régulier (M,, 0M,) de K, dans M,,; on suppose sans restriction de généra-
lité que o est non nulle au-dessus de M,; on applique alors la construction décrite
avant avec (B, 0B)= (M,, dM,) et v remplacé par v | M,. On obtient ainsi un élément
X.€HY 1 (My)=H? *(M). Une interprétation de x, est fournie par le lemme suivant:

2.4. LEMME. Soient (M", 0M") une variété semi-linéaire close, & un fibré sphé-
rique orienté de rang q<2 sur M", o une section de v, non nulle au-dessus de K,. La
réduction modulo 2 ¢, x,e H1"'(M", Z,) est la classe de Stiefel-Whitney w?™* de v.

2.5. Pour démontrer ce lemme, nous allons développer quelques préliminaires.
Soit v un fibré sphérique orienté de rang ¢>2, de base un CW-complexe B. On
appelle désuspension de v tout fibré sphérique orienté £, de rang g—1, tel que v ait
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méme type d’homotopie fibrée que ¢@e’, ¢! étant le fibré trivial de rang 1. Soit
@:B— BSG, une application classifiante pour v, les désuspensions de v correspondent
aux relevements @ de ¢ dans BSG,_,. D’autre part, les sections non nulles de v
correspondent aux relévements ¢ de ¢ dans BSF,_,. Comme BSG,_,— BSG, se
factorise en BSG,_, —» BSF,_; —» BSG, il résulte qu’a toute désuspension correspond
une section non nulle. L’inverse n’est pas vrai en général, c’est-a-dire que toute section
non nulle ne provient pas nécessairement d’une désuspension. On sait que la fibre de
BSG,_, - BSF,_,; est (29— 5)-connexe (cf. [7]), d’autre part n,(SG,, SF;)=0; on en
déduit alors le résultat suivant: Si v est un fibré sphérique orienté de rang g sur un
CW-complexe de dimension <g—1, et si g=>2, alors toute section non nulle ¢ de v
provient d’une désuspension & de v et le type d’homotopie fibrée de & | (¢9—2)-squelette
de la base ne dépend que de la classe d’homotopie de la restriction de o au (g—2)-
squelette de la base.

2.6. Soient v un fibré sphérique de rang ¢>2, orienté, sur un CW-complexe B,
¢ une désuspension de v, ¢ la section non nulle associée & &. Posons E= E(v), Eq=Ey(v)
et soit Ue HY(E, E,) la classe de Thom de v. On peut construire un relévement
w.eH?™ ' (E,) de U (c’est-a-dire que dw,= U) tel que o* (w,) soit la classe d’Euler de &.

La classe w, est naturelle dans le sens suivant: soient 4 un CW-complexe f: 4 — B
une application, f ~vet f ~1&les fibrés sphériques induits par f, f;:f “1Eq=E,(f ~'v)
— E, I’application définie par f, alorsla classe w -1, H2 ™! (f ~'E,) est égale & f{*w,.
Enfin, dans le cas ou B est un complexe de Poincaré, w,=w, ou w, est le relévement
de U associé a o défini dans 2.3.

Ces diverses affirmations se démontrent toutes facilement en utilisant les diagram-
mes commutatifs appropriés. Nous n’explicitons pas les détails et nous nous con-
tentons d’indiquer la construction de w;: Posons E’'=E (&) et Eq=E,(£); on peut
remplacer E, par I’espace obtenu en suspendant E; fibre par fibre. On peut alors
identifier E; au sous-espace «équateur» de E, et E’ au sous-espace «hémisphere
supérieure» de E,, o étant donné par les poles nords des diverses fibres. Par excision,
onaunisomorphismep*: H4™* (E,, E_) S H* 1 (E’, Eg), E_ étantle sous-espace « hé-
misphére inférieur» de E,. SiU'e H1™ ! (E’, Eg) est 1a classe de Thom de £, on définira
wee H1~1 (E,) comme restriction de ¢ ' (U’).

2.7. Démonstrationdulemme?2.4. Soiti:My— M"’inclusion dans M d’un voisinage
régulier de K,_;. Comme i*: H*™*(M")— H*™" (M) et i*:H* ' (M", Z,)~ H?
(M,, Z,) sont injectifs, il suffira de prouver que @, (i*x,)=i*w?" 1(v). Soient v'=v | M,
eto’ =0 | M, ;il estévident quei*w? ™' (v)=w? " (v')etil estfacile de voir que i*), = 4.
Selon la remarque finale de 2.4, il existe une désuspension & de v/, a laquelle o’ est
associée et selon 2.6, x, =, estla classe d’Euler de £'. La restriction modulo 2 de
Y.+, est donc la classe de Stiefel-Whitney w?™1(&)=w?"! (&'@e")=w*""(v'), c.q.f.d.
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3. Classes d’enlacement

3.1. Nous allons considérer la situation suivante: (M", M™) = (X""9, dX""9) est
un plongement, de fibré normal v(f), H,,{(X, 0X)=0 et I'image de H,(M, M)
dans H,(X, 0X) est nulle; il s’ensuit que la classe d’Euler de v(f), x(v(f)), est nulle.
Puisque x(v(f)) s’interpréte comme premiére obstruction & construire une section
non nulle, on peut construire des sections de v(f), non nulles sur le g-squelette K,
de M"; soit o une telle section et soit f,:(M", OM") - (X —K,, 0X— L)) le déplacement
associé a g (cf. 2.2), ou L,=K,nOM" est le g-squelette de IM". Les hypothéses faites
sur X"*4 montrent que I’homomorphisme 0:H, ., (X,(X—M)udX)—- H,(X—M,
0X—0M) associé A la «paire de paires» ((X, 0X), (X—M, 0X—0M)) est injectif et
que, @, :H,(X—M, 0X—0M)>5H,(X—K,, 0X—L,) étant I'isomorphisme induit par
Iinclusion, ¢z f,«[M, ®M] est dans I'image de 8. On appelle classe d’enlacement
de la section o, I’élément A,=Dd ;' f,[M, dM], D:H,,,(X,(Xx—M)UdX)~
~H? ' x (M) étant la dualité d’Alexander.

3.2. LEMME. Dans les conditions décrites ci-dessus, si o, 6’ sont deux sections de
v(f), non nulles au-dessus de K,, on a les formules suivantes:

(@) A4,—4,=+d(o,0")

() xo—Ao=E2(A,— ;) si q est impair

ou d(o, ') désigne la premiére obstruction a construire une homotopie de ¢ vers ¢’
(en tant que sections non nulles au-dessus de K ) et x,, x,» sont les classes d’Euler de
o, ¢’ définies dans 2.3.

3.3. Dans une étape préliminaire, nous allons montrer qu’on peut supposer o et
¢’ non nulles partout. Choississons un voisinage régulier M,, de K, dans M, et soit X,

un voisinage régulier de M =M — M, dans X; posons X,=X—X;. On a donc un
plongement f;,: (M,, 0My) < (X,, 0Xo).

En les remplacant par des sections homotopes si nécessaire, on peut supposer que
o et ¢’ sont non nulles au-dessus de M,, que les déplacements associés envoient M,
dans X,—M,, 0M, dans 0X,—0M, et M; dans X;, en bref on peut supposer que
o | M,=o0,¢eta’ | M, =0, sont des sections non nulles de v(f;). Il n’est pas difficile de
vérifier que H, , ; (X,, 0X,)=0et que 'image par fo, de [M, dM, ] dans H, (X,, 0X,) est
nulle; on peut donc définir les classes d’enlacement A,, et 4, ,e H1™ ' (M,) et il est
immeédiat qu’elles correspondent & 4, et 4,-€ H4~* (M) par 'isomorphisme canonique
HT™ Y (M)~ H*1(M,).

3.4. Nous allons donner de 4,— 4, une expression en terme des relévements w,
et w,. de la classe de Thom UeH%(E(v), E,(v)) introduit dans 2.3, et en déduire
la formule (b). Grice a 3.3, on supposera que o et ¢’ sont partout non nulles.
Posons comme d’habitude E=E(v(f)), Eo=Eo(v(f)), E'=E(v(f|oM)) et E;=
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Eo(v(f| 8M)), p la projection et neH,,,(E, E,u E’') la classe définie par p, (U ) =
[M, oM ]. Considérons le diagramme commutatif suivant:

. N o
H* ' (E)2 H,41 (E, Eo UE) S H, ., (X, (X — M)u 0X)

TR b
H? (M);*—’;H"*l (Eo)—— H,(Eq, Eq)— H,(X — M, 0X — M)
61 l« \d'*’ Ll ch"‘y Sor%

n ey
H%(E, Eo)— H,(E, E') > H,(M, 6M)

les homomorphismes o, sont ceux décrits dans 2.2. La dualité d’Alexander est obtenue.
du moins au signe prés, en suivant les fleches ay ', () ~?, p* 1. Désignons par
v,e H1"1(E,) lélément tel que v,Nnon=00y 07" f,x[M,OM] et de manicre
analogue v,.. |

Rappelons que w,e H1"!(E,) est caractérisé par w,ndn=0,[M,0M] et de
maniére analogue w,.. Ces formules ainsi que I’injectivité de d,, permettent de montrer
que w,—w, . =v,—,.. En comparant avec la définition de 4,, 4,- on voit que A,=
=0*(v,), A;-=0"*(v,.). D’autre part, domme v, et v,., proviennent de H¢~*(E), on
a o*(v,)=0"*(v,) et 6*(v,)=6"*(v,,). On en déduit la formule

(C) ,10. - Aa’ = O'*(Wa - Wa’) = OJ*(WG - Wa')

3.5. Démonstration de la formule (b). Supposons g impair. Nous allons montrer
que o*(w,.)=a"*(w,). Soit i :(E,, Eg)=(E, E") I'inclusion. On a p,iy0y=pyix0x. 1l
nous suffit de montrer que

o*(w,) N [M, OM] = ¢'*(w,) " [M, dM]
0'* (Wa’) N [M’ aM] = p*i*a* (G* (Wa’) N [M!' aM])
= Paix (Wor 0 04 [M, OM]) = pyis (Wer, 0 (o 0 01)) = puin (Wor 0 we) 0 on).

On a de méme ¢'* (w,) N [M, OM ] =p,i, ((w, U w,)ndn). Le résultat provient donc
de I’égalité w,uw,. =w,. Uw, puisque g—1 est pair.

En ajoutant membre & membre les formules

/10. - )‘a’ =o* (wa) —a* (Wo") et Aa - }'o' = OJQ (wa) —o'* (wa’)
on obtient 2 (A, — 4,.)=0*(w,)—0'*(w,). Selon la définition de x, (voir 2.2), c’est la
formule (b).

3.6. Démonstration de la formule (a). Soit M, un voisinage régulier du (g—1)-
squelette K,_; de M" dans M". Soit i: M, > M I’inclusion. 11 suffit de prouver que
i*(A,— A, )= +i*d(c, 0’). Répétant le procédé décrit au n° 3.3, en remplacant K,
par K,_;, on se raméne & des classes d (0, Go)s Aggr Aore€H ™1 (Mp) qui sont précise-
ment égales a i*d(c, '), i*A,, i*A,. Cela montre qu'on peut supposer H'(M)=0
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pour i=>gq. Dans ce cas, selon les remarques terminales de 2.5, o et ¢’ correspondent
a des désuspensions &, &' de v(f) et selon la formule (c) du n° 3.4, on a 4,— A, =
=0* (W, — Wy )=0% (Wg— W) OU W, et W, sont les classes définies dans 2.6.

La démonstration de la formule (a) se réduit donc a celle du lemme suivant:

3.7. Soient v un fibré sphérique orienté de rang q=2 sur un CW-complexe K de
dimension <q—1, &, &' deux désuspensions de v, 6, ¢’ les sections non nulles associées
a & & et d(o,o)eHT 1 (K) la premiére obstruction & construire une homotopie de
o vers o'. Alors, wy et w.e H1™ " (Ey(v)) étant les classes définies dans 2.6, on a la
Sformule

o* (Wg — we) =+ d(a, o)

La démonstration de ce lemme s’effectue en deux étapes: D’abord on le réduit au
cas ol v est un fibré trivial sur K=S7"1, ensuite on démontre la formule dans ce cas
particulier. La réduction est trés facile et utilise simplement les propriétés de naturalité
des classes d(o, 0’), w,, w, et le fait que les deux sections (et les deux désuspensions)
sont isomorphes au-dessus du (g—2)-squelette de K. Nous omettons les détails.
Pour le cas particulier, (S, @) étant une paire de Poincaré, on peut de nouveau
utiliser w, au lieu de w, et on est donc ramené & démontrer que o*(W,—w,.)=
= 1d(o, 0’") avec Eo(v)=S57"! x §97. Supposons o (resp ¢’) donnée par x> (x, £ (x))
(resp. x—(x, g(x))) alors <d(o, 0’),[S]> = +(deg f—deg g). Choisissons des géné-
rateurs a (pour la base) et b (pour la fibre) de H,_, (S¢7 ' x §971) et soient a, f§ leurs
duaux par Poincaré. On a {a, ad>=<{B, b>=0 et {a, by=(—1)"1{B,ad=+1.Ona
o«[S]=a+degfb, 0,[S]=a+deggb, donc w,=a+deg B, w, =o+deg gf et w,—
—w,.=(deg d—deg g) B enfin {o* (W, —w,.), [S]) =<{w,—~w,., a+deg fb)={(deg f—
—deg g) B, a) = +(deg f—deg g) c.q.f.d.

3.8. Nous disons, dans les conditions de 3.1, que la section ¢ est non enlacée si
A,=0; la formule (a) du lemme 3.2. permet de déduire la proposition suivante:

PROPOSITION. Soit (M", 0M™)<(X"*9, 0X"*9) un plongement satisfaisant aux
conditions de 3.1. Il existe toujours des sections non enlacées.

Démonstration. Soit o, une section quelconque de v(f), non nulle au-dessus de
K,, et choisissons une section 6:K,_; = Eo (v(f)) telle que d(a, | K1, 6)=+4,,, le
signe étant celui de la formule (2) de 3.2. Comme 4, est un élément de H4™ ' (K,) et
non simplement de H?~* (K, _,), on peut appliquer le théoréme (37.4) de [19]. On peut
donc prolonger ¢ en une section de v(f) non nulle au-dessus de K,. De d(o,, 0)= +4,,
et de la formule (a), il découle que o est non enlacée.

3.9. La classe w;. Soit f:(M", 0M")< (X"*4, 0X"* %) un plongement satisfaisant
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aux conditions de 3.1, g impair. Nous désignerons par w,e H4~*(M") la classe d’Euler
d’une section de v(f), non nulle au-dessus de K,, non enlacée. La formule (b) de 3.2
montre que w, est indépendant du choix de la section non enlacée. Nous dirons que
w; est la classe caractéristique du plongement f£. Il découle de 2.4 que la reduction
modulo 2 de w, est la classe de Stiefel-Whitney w?™* (v(f)).

3.10. Supposons, en plus des conditions de 3.1 que I’on ait H,(0X)=0. Dans ce
cas, le plongement f I OM :0M — 0X satisfait aussi aux conditions de 3.1; on vérifie
immédiatement que pour une section ¢ de v(f) non nulle au-dessus de K, la restric-
tion de A, (resp. x,) 2 H? 1 (0M) est égale a A, |om (T€SD. X o) ON en déduit que
si o est non enlacée pour (M, dM)c< (X, 8X), alors o | 0M est non enlacée pour
0M = 0X; en particulier, la restriction de w, a H%™'(0M) est égale & w; | 5.

3.11. Enoncons encore le résultat suivant qui s’obtient par une méthode analogue
a celle utilisée pour le lemme 3.2.

LEMME. Soit v un fibré sphérique orienté de rang q, q impair =3, sur une paire
de Poincaré (B, 0B), et soient 6, ¢’ deux sections non nulles de v. Si d(o, c')e H*~* (B)
est la premiére obstruction a construire une homotopie de c vers a’ et si y, et Y, sont
les classes d’Euler de o et o’ alors

Xo = Ko = +t 2d (0-9 O-’)

Remarquons que cette formule se déduit des formules du lemme 3.2 lorsque v est le
fibré normal d’un plongement (M", 0M")=(X"*9,0X"" ) de codimension impaire
q=3.

4. Application a la classification des plongements

4.1. Les plongements f:M"—S"*? (ou M"— R"*9) pour ¢>2 satisfont a toutes
les conditions posées en 3.1. Supposons ¢ impair >3; on voit facilement que la classe
w, ne dépend que de la classe de concordance de f. Si on désigne par g; ' Wi (M)
I’ensemble des éléments de H?~*(M) dont la restriction modulo 2 est la (g—1)i¢me
classe de Stiefel-Whitney normale de M et par PI(M”", S"" ) I’ensemble des classes
de concordance de plongements M"— S"*4, la correspondance f+w, induit une

application @:PI(M", S**9)—g; ' w1~ (M).

4.2. THEOREME. Supposons n—k impair >3. Si M" est (k—1)-connexe,
I'application ® est surjective: PL(M", §*"~¥) -0, Lypn~k=1(M™). Si M" est k-connexe,
D est bijective.

4.3. Préliminaires. La démonstration se fait suivant les mémes lignes que celle
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des théoré¢mes 2.3 et 2.4 de [S] en utilisant les techniques semi-linéaires correspon-
dantes. Les conditions de métastabilité peuvent €tre évitées, en remplacant les théo-
rémes (3.2) a et b de [5] par les théorémes d’Irwin [12] et de Hudson [10] qui sont
valables sans ces conditions. On utilisera les résultats suivants:

M?" étant (k— 1)-connexe et M,=M"—int(D), D étant un disque plongé.

(@) Siw" *=0 (coefficients entiers |) M, se plonge dans R*"~* et le fibré sphérique
normal de ce plongement admet une section non nulle.

(b) Si M" est k-connexe, deux plongements de M, dans R*"~* sont toujours isotopes.

Dans ces énoncés, on suppose toujours n—k impair > 3. (b) est conséquence des
théorémes 10.3 de [11], et (a) vient du fait que M, se plonge dans R?*"~* (cf. théoréme
8.3 de [11]) et que w"~* ’interpréte alors comme premiére obstruction 4 construire
une section du fibré sphérique normal.

4.4. Démonstration de 4.2. L’image de w" *~! par le cobord associé & la suite

exacte 0—Z — Z— Z, -0 est la classe entiére w" ™%, Ainsi g; ' w" " *"1(M)#0 si et
seulement si w*~*=0. D’autre part, il est bien connu que w"~*=0 est une condition
nécessaire pour ’existence d’'un plongement M" — R?"~ ¥, Le théoréme est donc dé-
montré pour %" ¥#0. Supposons maintenant w" *=0, et soit weH?™ ! (M") un
élément de g5 'w"~*~1(M™). Par (a) ci-dessus, il existe un plongement f:M,—>
— R2"* et v(f,) admet une section non nulle. Choisissons une section non nulle o
telle que y,=w (c’est possible en vertu de la formule du lemme 3.11). Pour conclure,
il reste & prolonger f, en un plongement de M" dans R?"~* de maniére que o soit
non enlacée. On procéde comme suit.

Choisissons un voisinage régulier (X, 6X) de M, dans R*"~¥, tel que M, <=dX
(voisinage régulier relatif) et modifions o si nécessaire, de maniére que le déplacement
f, associ€é envoie M, dans 0X et soit l'identité sur dM,. Posons Y=R?*""*_X,
T=fo(0My)~S" ! et a=f,,[ My, M, e H,(Y, X).

Par position générale et dualité d’Alexander, la paire (Y, X) est (n—2)-connexe et
I’homomorphisme d’Hurewicz =,(Y, 2)— H,(Y, X) est donc surjectif; on peut alors
représenter o par une application ¢: (D", S""1)— (¥, Z). Par Irwin (cf. [12]) on peut
supposer que ¢ est un plongement coincidant avec f; sur $"~!=0M,. En recollant
fo et @ on obtient un plongement f:M"—R?*"~* et en utilisant les suites de Mayer-
Vietoris, on vérifie que o est non enlacée pour f.

Il reste & démontrer que @ est injectif si M" est k-connexe. Soient f, f':M"—R?*"~*
deux plongements tels que w,=w,.. Par (b) du n° 4.3, on peut supposer que f | M,=
=f' | M,. Construisons un voisinage régulier relatif X de M, dans R?"~* comme dans
la 1&re partie de la démonstration et soient g, ¢’ des sections non enlacées pour f, f~,
des fibrés v(f), v(f’). Comme x,=x,., on a d(o,c")=0; il s’ensuit que ’on peut
supposer o | My=0'| M,. Choisissons de nouveau o,=0 | M, de manitre que le

déplacement associé & o, envoie M, dans 0X et soit fixe sur dM,; en utilisant les
)
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mémes notations, la condition que ¢, est non enlacée pour f et pour f’ implique que
fl@ 8 ):(D", S ) (Y,3) et f | (D", s~ 1):(D", 5"~ 1) > (Y, %)

envoient [ D", S"~'] sur le méme élément ac H, (Y, 2). Comme maintenant (Y, 2) est
(n—1)-connexe, il s’ensuit que f | (D", S" Y et f* | (D", §*~1) sont homotopes. Mais
alors, selon Hudson [10], /| (D", S"™*) et £’ | (D", S"~1) sont isotopes modulo §*~1,
On en déduit que fet £’ sont isotopes, c.q.f.d.

Deuxiéme partie: obstruction a lisser un plongement semi-différentiable / : M**— §6k+1

Dans cette partie, toutes les variétés sont supposées différentiables et orientées.
Préliminaires. Rappels sur la théorie du lissage.

Nous adoptons le point de vue exposé dans [8]. Soit BSD, le produit fibré des
applications naturelles BSO — BSG et BSG,— BSG, rempacées par des fibrations.
Les applications naturelles BSO, — BSO et BSO,— BSG, définissent une application
n:BSO,— BSD, que nous remplacons aussi par une fibration.

Un plongement f: M" — V"1 est dit semi-différentiable s’il est localement plat et
semi-linéaire relativement a des triangulations C* de M" et de ¥"*4. Un plongement
semi-différentiable f:M"— S"*? détermine une application @:M"— BSD,, définie
par les applications M" — BSG, et M" — BSO qui classifient respectivement le fibré
sphérique normal de f et le fibré vectoriel normal stable de M™.

Un lissage de f est un plongement différentiable g: M" — S"*? qui est semi-diffé-
rentiablement isotope a f.

Le théoréme principal de la théorie du lissage peut s’énoncer (cf. [8]) f peut &tre
lissé si et seulement s’il existe un relévement $: M"— BSO,_ de I'application ¢:M"—
— BSD, définie par f.

Lorsque g3, le groupe d’homotopie =;(SD,/SO,) de la fibre de = est isomorphe
au groupe C{ des classes d’isotopie de plongements différentiables de S’ dans S**4.
Selon Haefliger [7] (voir aussi James [13]) C#=0si i<2q—3 et C3{Ii~Z si k>1.
En conséquence, pour lisser un plongement f:M**— S%*1 on rencontre une
unique obstruction, qui est un élément de H**(M", Z); plus précisement, soit
ye H**(BSO,44,, Z) la premiére obstruction & construire une section de = et soit
¢:M** - BSO,, ,’application associée & f, on appellera obstruction a lisser f I’entier
w;={p*y,[M]). Le résultat principal de ce travail est le suivant:

5.1. THEOREME. L’ obstruction o, & lisser un plongement semi-linéaire f:M**—
— S+ Pune variété différentiable orientée M ** est donnée par la formule

W, =+ (4<w}, [M1) + 25 B [MD))
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ot w e H*(M") est la classe caractéristique définie dans la premiére partie et p, est la
k-éme classe de Pontrjagin normale de M".

Posons pour abréger W= (wi, [M]) et p,=<p;, [M])>. Le plan général de la
démonstration de 5.1 est le suivant. Nous introduisons d’abord des groupes de cobor-
disme de plongements semi-différentiables Q¢ et nous interprétons ’obstruction comme
un homomorphisme Q2}f . ;, —»Z. Des résultats généraux sur les groupes de cobordisme
permettent de montrer que w, est une combinaison linéaire rationnelle de Wf et .
Il reste a déterminer la valeur des coeflicients de cette combinaison linéaire, ce que
nous faisons en choisissant des exemples particuliers.

5.2. Cobordisme semi-différentiable. On définit 32 le groupe de cobordisme (orienté)
de plongements semi-différentiables f: M" — S"* 4 de 1a maniére suivante: un élément
de $2 est représenté par une paire (M", ) oll M" est une variété close connexe diffé-
rentiable orientée et f un plongement semi-différentiable M"— S**4, Deux paires
(M,, f;) i=0, 1 représentent le méme élément s’il existe une variété différentiable
compacte orientée W"*! de bord W= M, U (— M,) (réunion disjointe de M, et M,,
M, étant munie de l'orientation opposée) et un plongement semi-différentiable
F: (W1, oW)— (S""1x 1, §"*1x 8I) tel que F(x)=(f(x), i) VxeM; et i=0, 1.

En remplacant partout dans cette définition semi-différentiable par différentiable
on retrouve les groupes de cobordisme Q7 de Thom (cf. [20]). Dans les deux cas I’opé-
ration d’addition est donnée par la somme connexe des plongements. Il y a un homo-
morphisme évident Q2 — Q4.

53. LEMME. Les correspondances (M *, f )y, W}, Dy définissent des homo-
morphismes o, w2, p: Q3+t 5 Z,

En effet, pour p le résultat est bien connu, pour il découle directement de la
définition de w, comme premiére obstruction et pour w?, il provient de la remarque

finale de 3.10.

5.4. LEMME. Il existe des nombres rationnels o, et B, tels que

~2 ~
@, = Wy + B by

La démonstration commence par une série de remarques.

1. Q, étant le groupe de cobordisme des variétés abstraites de dimension 7, ily a
des homomorphismes naturels 22— Q, et 04— Q,. L’homomorphisme p du lemme
5.3 est en fait défini sur Q,,. L’homomorphisme w? est aussi défini sur Q55* 1,

2. Il y a une involution ¢:Q2— QI définie par (M, f)—(—M,f) (on change
’orientation de M, mais pas le plongement). Lorsque g>n+1. QI~Q, et on a

@ (x)= —x VxeQZ D’autre part, si x e Q35" ', ona w? (¢ (x))= —w?(x); en effet, il suffit
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de revenir a la définition de w7: I'opération (M, f)— (—M, f) ne change pas w4 mais
il faut ensuite évaluer sur —[M] au lieu de [M].

3. Encomposant le plongement /: M"— S"*?avec I’inclusion i: S"*9< §"*4+1 on
définit un homomorphisme Q12— Q2*!, On remarque que w,, s=0: en effet, on peut
choisir pour section non enlacée la section donnée par les vecteurs normaux a S"+9,
pointant vers le pdle nord.

Le fibré v(f) est alors une désuspension de v(iof) correspondant & cette section;
Wi, s s’interprétant comme classe d’Euler de v(f) est donc nul. On déduit de cette
remarque que w? s’annule sur 'image de Q2% dans Q2F*!,

4. La suite Q3; "' >0 2 Z est exacte puisque w, est 'unique obstruction 2
lisser /. Nous utiliserons les deux résultats suivants, (cf. O. Burlet [3]).

(A) La suite Q2*@®Q - Q,,0Q heten Q est exacte.

(B) Compte tenu des isomorphismes bien connus Qii* '~ mg . (MSO,,4,) et
QF* a1 (MSOy4q) o0 MSO,;., est Pespace de Thom du fibré vectoriel
universel de rang 2k + 1 sur BSO,, . ,, les éléments du noyau N de Q3% "' ®@Q —» 2,k®Q

s’interprétent comme produits de Whitehead d’éléments de Q2**'®Q.

5. w? s’annule sur le noyau N. En effet, si x e N alors par (B) x=[a, b] ol a, b sont
dans Q¥**'~Q,. Selon la remarque 2, ¢(a)=—a et ¢(b)=—>b d’ou ¢(x)=
=[¢(a), ¢ (b)]=[—a, —b]=[a, b]=x; il s’ensuit, toujours par la remarque 2, que
w? (x)=0.

5.5. Démonstration de 5.4. Montrons que si xe(33"'®Q et (w®id) (x)=
=(p®id) (x)=0, alors (W*®id) (x)=0. Pour cela on considére le diagramme com-
mutatif suivant

%* & Q— Q¥ @ Qo s 2kt ®Q—?::Q
AN 1} /
NQ, QY
lp®id
Q

en vertu de 4, x provient d’un élément ye Q3" ' ®Q tel que (p®id) (y)=0.

Par (A) y est somme d’un élément de N et d’un élément qui provient de Q3 ®Q,
selon les remarques 3 et 5, (W>®id) (x) = (w*®id) (y)=0. Il découle de ce résultat que w?
est une combinaison linéaire rationnelle de w et de p. On connait des exemples pour
lesquels w#0, w?#0 et p=0, (voir ci-dessous le lemme (6.3) pour les détails), le

lemme 5.4 s’en déduit aussitot.

6. Détermination des coefficients oy et B, ,
6.1. Nous allons utiliser une description plus géométrique de I’obstruction a
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lisser. Soient M** une variété connexe close, D un disque plongé différentiablement
dans M ** (en respectant I’orientation) et M, =M **—int Dg3*. Tout plongement semi-
différentiable f:M**— §%*! est isotope 4 un plongement semi-différentiable
g: M** - §%%*1 différentiable sur M, (en vertu du théoréme général du lissage rappelé
en début de la 2¢me partie). Plus précisement, on peut supposer que g(M,)c= D% *1
et g(Do)c D+, L obstruction i lisser f est alors I’élément du groupe C2¥*! défini
par g|0D,:0Dy=8*"1— S*=D¥*1 A D%~ 1 Cette définition de I'obstruction
coincide avec la définition précédente (du moins au signe prés); en fait il y a un iso-

morphisme naturel Cifi~my_;(SDys1/SO+1) €t pour définir I’obstruction

comme un entier, il faut convenir d’un isomorphisme C2*!~Z, c’est-a-dire choisir

un générateur de C2k*1. Nous conviendrons de choisir le plongement S**~1 — §6*
décrit par Haefliger dans [6] (p. 463); ce plongement sera dénommé «noeud standard »

dans la suite.

6.2. Plus précisement, Haefliger décrit dans [6] un plongement différentiable de
My=8%*x S**—int (Dg¥) dans D%, avec un champ de repéres normal et dont la
restriction & M, =S**"1 est exactement le noeud standard.

Ainsi, selon nos conventions, en prolongeant «coniquement» ce plongement dans
D®**1 on obtient un plongement semi-différentiable S2* x S§2* dans S°**! pour lequel
I’obstruction w est + 1. Ce plongement est décrit suffisamment explicitement pour
permettre un calcul de I'entier w7. Plus précisement la classe 4 introduite dans [6]
(p. 457) correspond au signe prés et & torsion prés & la classe d’enlacement 4., de la
section e de v(f) définie par le premier vecteur du champ de repéres normal. Si o
est une section non enlacée pour f, on a d’aprés la formule (b) du lemme 3.2
2(Ae—Ag)=%(Xe—x,) A0l 24,= %, =w,. On en déduit que w>=<w3/8,[M])=
=(A2[2,[M])=<A%2,[M]) et Haefliger montre que <{A?/2,[M]>=+1. En repre-
nant ses arguments en tenant compte de nos conventions d’orientation, on obtient — 1.
(Nous ne décrivons pas les détails, il faut surtout choisir sur M, une orientation qui
induise sur My, =S4*"1, ’orientation opposée A ’orientation convenue, pour que
0M, soit orientée comme bord de Dg¥ et non comme bord de M,). Enfin puisque
M** =82 x §2* 5, (M**)=0. En résumé:

6.3. LEMME. Il existe un élément de QX*' pour lequel =1, w*= —8, p=0.
On en déduit aussitot

6.4. COROLLAIRE. o= —}.

6.5. Pour calculer B;, nous allons nous servir d’'un diagramme auxiliaire que

nous allons décrire avec soin. On désigne par FC2k*! le groupe des classes d’isotopie
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de plongements différentiables de $**~! — $%* avec champ de repéres normal, c’est-3-
dire des classes d’isotopie de plongements différentiables de S**~1 x D?*+1 _, g6k

Il y a un homomorphisme évident /: FC3x*1— C2*! qui consiste 3 oublier le
champ de repéres. Il y a d’autre part un homomorphisme 74;_; (SO, 4,) —» FC2k+1
decrit comme suit. A la classe d’homotopie de r: S~ - §0,, . ;, qu’on suppose dlf-
férentiable, on fait correspondre la classe d’isotopie du plongement obtenu en com-
posant 471 x DHFLE, g4k, 2t 8 96k oy F(x, y)=(x,r(x)y) et @ est le
plongement standard défini par

(P((xb Foih x4k), ()’1, ceos Vok+ 1))

= (\/(1 - y2/2) X1y e \/(1 - yf/czj X 4ks )’1/\/2_, coos Vak+ 1/\/5)

on a posé y2=) y?.
La suite

Mai—1(SO0zk+1) = FCiz-"i Ciuli—0

est exacte (voir [7] et utiliser le fait que le fibré normal d’un plongement S**~1 - 56k
est toujours trivial selon [15]). On définit un homomorphisme FCI*} —1T,,_, (S¥)
de la maniére suivante: si f:S**~! x D***1 §6k est un plongement, I’application
f':8%*=0D**1 gk £(§4*~1) définie par f'(y)=f (uo, ¥) est une équivalence
d’homotopie. A la classe d’isotopie de f on fait correspondre la classe d’homotopie
de I’application gof” ol f":S**~1 — §*— £ (S**~1) est définie par £ (x)=f (x, uo) et
g est un inverse homotopique de £ . Définissons encore un homomorphisme FC3:*} —
—114,_,(SO). Soient f:S*~1— §° un plongement avec champ de repéres normal
et j:S%* = S§%%*1 Pinclusion. Le plongement j. f est isotope au plongement standard,
ce qui implique qu’on peut le prolonger en un plongement F: D** — D%%*2 Choisis-
sons une trivialisation 7:N — D**xR2?**2 du fibré normal N de F; le champ de
repéres normal de f, augmenté du champ des vecteurs normaux & S dans §%**!
pointés vers le pdle nord, définit une application S**~1x R**2 - T(N [ $4*~1) de
la forme (x, y)— (x, «(x) (y)) avec a(x)€ SO, 4, (en choisissant une métrique rieman-
nienne convenable). L’homomorphisme 3 définir associe & la classe d’isotopie de
f la suspension stable dans IT,,_, (SO) de la classe d’homotopie de I’application
a:S* 1580, 4 5.

On définit encore un homomorphisme Il (SO)— Z en associant a la classe
d’homotopie de a:S**~1— SOy, N grand, le nombre de Pontrjagin {p;,[S**]> du
fibré vectoriel de rang N sur S** obtenu en recollant D4 x RN et D** x R le long de
S*~1 xRN par identification pour chaque xeS**™! de (x,y)eD*xRY avec
(x, a(x) y)e D4 x R¥. Les groupes et homomorphismes que nous avons décrit pren-
nent place dans le diagramme suivant, dont il est facile de vérifier la commutatmté
I (SO,141) =4 (S?*) est induit par la fibration standard SOz 44— Sk
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H4k—1(S02k+1)'—’FCill:iiL’Ci’lzi}""’o @

41 (SO, 41) =1 41 (SO) est 'homomorphisme de suspension, H est ’invariant
de Hopf, A, /', k, k' sont définis par composition des autres applications.

6.6. LEMME. Pour tout xell 4, (SO +1), k' (x)= —4h"(x).

Démonstration. Choisissons ¢:S**~1— S0,,_,, représentant x. h’(x) est I’entier
pi(€),[S**]), o & est le fibré vectoriel de rang 2k+1 obtenu en recollant
D% x R%¥*1 et D* x R?**! en identifiant, pour chaque xeS**~1, le point (x,y)e
eD¥xR***! au point (x, ¢ (x) »)eD¥*x R***! 1l revient au méme, remplagant
S** par S*¥/ D%, de considérer le fibré &’ sur S** obtenu en recollant D**x R2*+1 3
R2**1 en identifiant pour chaque xeS**~%, (x, y)e D** x R***1 3 ¢ (x) yeR?***1, &
condition toutefois d’évaluer p, (¢) sur — [S**] au lieu de [ S**] (on a en effet échangé
les roles de D, et D_). On a donc &’ (x)= —{p, (&), [S**]).

Soit E, I’espace total du fibré en sphéres associé & &' et n: E, — S** la projection.
Soient encore f: S**~! — §2* Iapplication associée & ¢, X, le CW-complexe obtenu
en attachant un disuge D** 2 $2* au moyen de f, et p: X, — S** ’application obtenue
en collapsant S2* en un point. On voit facilement que p se reléve en une application
g:X;— E,, qui envoie le sous complexe S** homéomorphiquement sur la fibre au-
dessus de p(S?¥); g est méme une inclusion de sorte qu’on peut considérer X, comme
un sous-espace de E,, identifiant ainsipa n | X;. Soit 7 le fibré sur E, formé des vec-
teurs tangents aux fibres de 7. On a ™ (&) =1@¢, ¢! étant un fibré trivial de rang 1
sur E,. On vérifie que (n | X,)4 [X,]=[S], [X,] étant le générateur de H,, (X,) corres-
pondant & [S]e H,,(S*) par I'application p. On a p,(t)=(x(z))?. D’autre part la classe
d’Eulerde t | X est +2u, u étant un générateur de H**(X;, Z)~ Z. On peut donc écrire:

— k' (%) = {p (&), [S]> = <pu (&), (7 | XD [ XD
= (| Xp)* P (&), [X,1D = <pe((m | X,)2E), [X,1D
= (ot | X)), [X, 1) = 4, [X,]) = 44, [X,])

et par définition {u?, [X,]) est 'invariant de Hopf de /. c.q.f.d.
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6.7. Principe d’utilisation du diagramme (I)

On considére un plongement f: M ** — §°**1 pour lequel 1 (My)= D1, £ (Do) <
=D%*1, fest différentiable sur M,, et f (M,) est muni d’un champ de repéres normal
(voir 6.1 pour les notations). Dans une telle situation, on peut définir un élément
xe€FC;] par restriction de f et du champ de repéres normal 3 8Dy =S**"!, On a
Pinterprétation suivante: /(x) est I'obstruction w, a lisser f et k(x) est le nombre de
Pontrjagin normal j, (M") (pour ce dernier point, cf [14]). C’est en utilisant ce prin-
cipe que nous allons démontrer les deux lemmes suivants:

6.8. LEMME. I/ existe x,€ FC5* 1 tel que I(xo)=+1, k(xo)=0, h(x,)= —6.

6.9. LEMME. 1l y a un élément x,e FC3i 1, associé & un plongement f du type
décrit dans 6.7, et pour lequel on a: '

k(x;)#0, h(x;)=0, avec w,;=0

Avant de démontrer ces lemmes, nous allons montrer comment le théoréme 5.1 s’en
déduit.

6.10. Démonstration de 5.1. Pour I’élément x,; décrit dans 6.9, on a /(x,)=w,=
= . 5* = Byk (x;). Considérons alors I'élément y=x; — B, k(x,) xo, X, étant ’élément
décrit dans le lemme 6.8. On a /(y)=0, donc g provient de IT,;_; (SO, +,). Par 6.6,
on a donc —k(y)=4h(y). Mais k() =k (x,)#0 et h(p)= — Bk (x,) h(xo) = 6Bk (x,).
D’oll f= —54.

6.11. Démonstration de 6.8. On reprend I’exemple de Haefliger déja utilisé pour
le lemme 6.3. 11 suffit de montrer que A (x)= —6, x étant I'élément de FC2k*! défini
par le noeud standard. Rappelons la construction de ce noeud. (x, y, z)=(x; ... X2,
Yi-ee Yok Z1--- Z5;) désignant un point général dans R%*=S%*—o0, on envisage les
trois sphéres S4*~! plongées dans R°* de la fagon suivante:

Sy ={(x,y,2)eR%*|x=0;  y*a’ + Z*/p* =1}
S, = {(x, y, z)eR%* | y=0; 22 ja? + x?[B* = 1}
Sy ={(x,y,2)eR%|z=0; x*[a*+)y’[f*=1}, a>p>0

Ces trois sphéres sont reliées par deux tubes joignant'un S, 4 S, et’autre S, 4 S5;
on obtient ainsi un plongement de S**~!=8S, % S,%S; dans R®* % désignant la
somme connexe. Le noeud standard est complété par un champ de repéres normal tel
que sur S, le ler vecteur du champ de repeére soit donné par le vecteur normal 4 S,
dans {(x, y, 0)eR®* | x, yeR?*}, et de fagon analogue sur S, et S;. Soit S}, i=1, 2, 3,
la sphére S; poussée dans S®* — S, %S, % S, le long du ler vecteur du champ de repére.
Il nous faut calculer I'invariant de Hopf de I’application S**~1=S/%S;%S;— S**
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définie en composant ’inclusion S| %S, %53 =S % — S, %5, %S, avec une équivalence
d’homotopie de S®*— S, %S, %S, avec S2* respectant les conventions d’orientation
indiquées dans 6.5 concernant I’application FC3i* ] —IT1,,_; (S?¥). Cette application
S4k=1_, §2k estla somme des trois applications $4*~1— §%* obtenues en composant les
inclusions de S{, S, et S; dans S®*—S,%S,%S; avec I’équivalence d’homotopie
précédente.

Par symétrie, il nous suffira de calculer I’invariant de Hopf de I'une de ces trois
applications, par exemple celle relative a S;, et de multiplier le résultat par 3.

Désignons pas S; -S,.S; le sous-espace de S°* obtenu en réunissant S;, S, et S,
par deux arcs joignant I'un S; 4 S,, 'autre S, & S5. S*—S8,.5,.5; a le type d’homo-
topie d’un wedge de trois sphéres §2*, S v §2*v S, L’application de S; dans S2*
dont il faut calculer invariant de Hopf peut aussi étre obtenu en composant I’inclu-
sion S;— 8% S,.S5,.8; avec une équivalence homotopique de S*— 8, S,0.5; avec
S v S v S et avec I'application de S v S2*v S —S52¥ qui est Iidentité sur
chaque exemplaire S?* («folding map»). Il est clair que S3’ est homotope a 0 dans
S€k— 8, .85 et %% —8, .85, de sorte qu’on peut encore décrire ’application f: S, — S2*
comme composée de I'inclusion i:S;=95; = S% —S,.S5,, d’'une équivalence homoto-
pique ¢:S5%%—S8,.5,— S v S et de ’application F:SZ v S7* - §2* qui est I’iden-
tité sur chaque exemplaire S7?*. Il faut donc calculer H(Fo¢oi). Pour tenter un tel
calcul, il faut avoir une description aussi explicite que possible de ¢; a cette fin nous
introduisons les boules B,, B, dans S °®* définies dans R®*~ §%* — (o0) par les équations

B,:x=0, yvia? + 2?B* < 1
B,:y=0, 22l + x*pE > 1.

B, est completé dans S°* par le point & I'infini. On a donc B; nB,=0, 6B; =S, et
0B,=S,.

Soient 4; et A, des épaississements (voisinages tubulaires) de B, et B, allant en
s’amincissant vers les bords 0B, et dB,, de maniére que A;— 0B, soit fibré en disques
fermés D** au-dessus de B;—0B;, i=1, 2. On choisit aussi 4, et A, tels que 4, A, =0
et on choisit le segment joignant S; a S, de maniére qu’il ne rencontre pas 4;—dB;,
i=1,2.

On définit @ en imitant la construction de Thom-Pontrjagin: ¢ envoie S®*—(4, U A4,)
sur le point base de S2*v S7* et 4,— 0B, sur S, i=0, 1, de maniére que sur chaque
fibre D?*, ¢ soit I’application surjective D?* — S§2* qui identifie dD* au point base.
11 est facile de vérifier que ¢ est une équivalence homotopique conforme aux conven-
tions d’orientation.

Pour calculer H(Fo.¢.i) on sait qu’il faut calculer le coefficient d’enlacement des
images inverses de deux valeurs régulicres.

On peut choisir ¢ de telle maniére que Fop soit différentiable au voisinage de
(By—S;))u(B,—S,), et que [(B;—S;)u(B,—S;)]nS; soit I'image inverse d’une
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valeur réguliere que Fo¢oi. On obtient ainsi une description trés explicite de I’image
inverse d’une valeur réguliére et il n’est pas difficile de calculer le coefficient d’enlace-
ment de E avec la sous-variété obtenue en poussant E en dehors de lui-méme dans S;.
Le calcul donne la valeur — 2 pour H(Fo¢oi).

6.12. Démonstration de 6.9. Nous commencons par décrire un homomorphisme
@:11,,(SG, SO)— FC3i* 1. Un élément y de IT,,(SG, SO) peut étre représenté par
une application D**x S¥— S¥ pour N assez grand; on peut supposer que g est
différentiable et que u,eSY est une valeur réguliére. L’image inverse de u, est une
sous-variété a bord (Mg¥, dMg*) orientée, de bord OMg*~S* "1, plongée avec un
champ de repéres normal dans (D**x S¥, §*~1 x §¥), le champ de repéres étant
induit par une base orientée de I’espace tangent 2 S™ en u,. En raisonnant comme dans
le n° 3.3. de [7], on peut supposer que M, est 'union d’un disque D** et d’anses
d’indices > (2k—1). En considérant D**x SV plongé dans R{**"*! on obtient un
plongement (M, dM,) < (R ***1 aRY*** 1) avec champ de repére normal d’une va-
riété M, (2k — 1)-connexe. Selon Hirsch (cf. [9]), ce plongement est isotope & un plon-
gement f:(M,, O0M,)— (R} ***1, GRY***1) avec champ de repéres normal tel que
f(My)=RS, le champ de repéres étant formé d’un champ de repéres normal de
f(M,)=R et du repére normal de R% dans RY***! formé des vecteurs ug, ...,
Uy 4x- Nous ferons correspondre 4 y la classe de concordance du plongement de
S**~1=9M, dans S = (RS ') U (c0) défini par /| 9M,, avec son champ de repéres
normal; cela définit ’homomorphisme .

On vérifie que le diagramme suivant commute (au moins au signe prés)

FCiuli
°/ N\
H4k(SG9 SO) iy 1] o (SO)

Comme 90, on en déduit qu’il y a des éléments x, de FC***! qui proviennent de
I1,,(SG, SO) par & et pour lesquels k(x;)#0. La description donnée ci-dessus de
& montre qu’un tel x, est représenté par un plongement avec champ de repéres normal
S4k=1_, R* = §%_(o0) obtenu par restriction & M, d’un plongement avec champ
de repéres normal f:M*—R$*! d’une variété Mg* de bord IM,~S**~*; de plus,
toujours en vertu de la construction de @, on peut supposer que f est obtenu en com-
posant un plongement M&* —» R% avec I'inclusion R¥=R$ ™! et que le ler vecteur
du champ de repéres normal est donné par le vecteur normal & R dans Ré*! La
remarque du n° 3 de la démonstration de 9.4 montre que w,=0; il est d’autre part
évident que I'image de S**~! dans R%*—f(S**"!) obtenu en poussant S**~* en
dehorsde f (S**~!)lelong du ler vecteur du champ de repéres normal est homotope 2
0, ce qui montre que /(x;)=0 et achéve la démonstration du lemme,
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7. Une application

Lorsque M*¥ est (2k —2)-connexe, on vérifie que w2* est une classe de Wu. En
conséquence, désignant par H le groupe H?*(M)/Torsion et notant multiplicative-
ment la forme quadratique d’intersection H® H — Z la condition que we H provienne
d’une représentation entiére de w** peut aussi s’exprimer sous la forme wx=x?
(mod2) Yxe H. Cette remarque, combinée aux théorémes 4.2 et 5.1 permet d’énoncer
le critére suivant:

7.1. THEOREME. Soit M ** une variété différentiable orientée, (2k —2)-connexe.
Soit H= H?**(M)|Torsion et notons multiplicativement la forme quadratique d’inter-
section HQH—Z de M**. Alors, M** peut étre plongée différentiablement dans
R®**1 si et seulement si w?**1=0 (coefficients entiers) et s’il existe we H tel que

(i) wx=x?(mod2)VxeH
(i) w*=-%1{p. [MD

7.2. Dans le cas particulier k=1, M* étant orientée on a w> =0 (cf. [17]); d’autre
part —3(p;, [M]>=r (v étant la signature de M*). On retrouve ainsi le résultat
annoncé dans [1] (une démonstration en est donnée dans [2]).

7.3. Pour une forme quadratique unimodulaire, non dégénérée quelconque, on
peut toujours trouver w satisfaisant (i) et pour un tel w on a w?= 1 (mod8), t étant la
signature de la forme quadratique. La conditions (ii) est plus délicate. Dans le cas
des formes indéfinies, on dispose d’une classification compléte (voir par exemple
[18]) et en utilisant cette classification, on peut montrer que pour tout entier z, z=1
(mod8), on peut trouver w satisfaisant (i) et w?> =z. Quant aux formes quadratiques
définies positives, il existe une liste de celles qui sont de rang <16 (voir Kneser [16]).
On vérifie directement que chaque forme de cette liste posséde aussi cette propriété.
On obtient ainsi le corollaire suivant:

7.4. THEOREME. Soit M** une variété différentiable close orientable (2k —2)-
connexe, dont la forme quadratique d’intersection est indéfinie ou pour laquelle le rang
de H*(M) est <16. Alors M** peut étre plongée différentiablement dans R%*** si et
seulement si w2**1 =0 (coefficients entiers).
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