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A Problem of Mapping a Finite Set into a Set of Positive Measure!?)

D. Z. DiokoviC, University of Waterloo, Ontario, Canada

1. Let E” be the Euclidean n-dimensional space and m, the Lebesgue measure in
E". Let G be a group of transformations acting on E". Let A< E" be a measurable
set having positive measure and Py, P,,..., P,e E". One can ask the following question:
Does there exist ge G such that g(P,)e A for i=1, 2,..., k?

We shall denote by 4; the homothety 4;: E"—E" defined by h,(P)=AP for all
PeE". The group of all homotheties 4, (A>0) will be denoted by H and the group
of translations by 7. By SO, we shall denote the special orthogonal group of degree n.
The elements of SO, are the proper rotations of E" fixing the origin O.

It follows from a result of Hadwiger [3] that the answer to the question mentioned
above is positive when G=HT. In this note we shall prove that the answer is positive
in the following situation: the origin O€E™ is a density point of 4, P;#0
(i=1,2,..., k) and G=Hx SO,.

2. Let us recall some definitions. B(P, r) will denote the open ball in E" with
center P and radius r >0. A point P € E" is a density point of a measurable set 4 < E" if:

i M (B(P,r) n A) _
r—0+ m,,(B(P, r))

The Lebesgue density theorem ([4], Lemma 9, p. 194) asserts that almost every point
of A is a density point of A4.

The sphere in E" with center O and radius >0 will be denoted by S(r). In
particular, S=S(1) is the unit sphere in E". Each point Pe E"\{O} can be written
uniquely in the form P = r(P) o (P) where r (P)>0 and ¢(P)eS. The number r (P)
and the point o (P) are sometimes called the polar coordinates of P (see, for instance,

[5], p. 149). If Ac E™, we define
A, ={o(P)| Ped n S(r)}

for every r >0. Evidently, 4,<=S.
Every ge SO, is a linear transformation of E". The matrix of g with respect to a

fixed orthonormal basis is an orthogonal matrix with determinant one. Hence, SO,
can be indentified with a compact subset of E »* With respect to the induced topology,
S0, is a compact topological group. A subgroup of S0, fixing a point other than O
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is closed and isomorphic to SO, ;. The homogeneous space SO,/SO,_, is homeo-
morphic to the unit sphere S if n>2 ([2], p. 33).

It is known ([1], p. 116-117) that there exists a Borel measure m on § which is
invariant under the rotations. This measure is uniquely determined up to a multi-
plicative constant. If m is suitably normalized, then:

m,(A) = f m(A4,)r"" ' dr 6}

holds for every Borel set A= E”" (see, for instance, [5], p. 149-150).
3. Our main result is contained in the following:

THEOREM: Let A,, A,,..., A,< E" be measurable sets having the origin O as a
common density point. Let P,, P,,..., P, be points in E" (not necessarily distinct) such
that P,#+0 (i=1, 2,..., k). Then there exists geG=H x SO, such that g(P,)eA,
@(i=1,2,...,k).

We need first to prove two lemmas.

LEMMA 1: Let AcE™ be a Borel set such that the origin O is a density point of
A. Let rq, ry,..., 1y be positive reals. Then, given & >0, there exists A>0 such that

m(Ay)>m(S)(L—e) (i=1,2...k).

Proof: Let, for instance, ry =>r, =+ 2r, and
F={r>0|m(4)<m(S)1-¢)}.

If the assertion of the lemma is false, then

k
U riri P F = (0, ).
i=1

To each r >0 there corresponds at least one i such that
-1 r
my (ryr,”'F 0 (0,7)) 2 k

where m, is the Lebesgue measure on the real line. We infer that:

rr rr rr,
ml(Fn(O, r));ml(Fn(O, Z‘))zzé>k;’il. Q)



A Problem of Mapping of Sets 139

By (1) we have

m,(B(0, ro)\d) = f m(S\4,) r"~dr > e m(S) f " Ldr
0 Fn (0, ro)
for every ro>0. If a=m, (F n (0, r,)) then

a
n

_ _ a
P ldr= | tdr= 2
n
F (0, ro) 0

Using (2) we get the estimate

(B0, rold) > s m(3) ()

This contradicts our hypothesis that O is a density point of 4.

LEMMA 2: Let By, B,,..., B, be Borel subsets of S such that

m(B,) > m(S) (1 _ ]%) (i=1,2... k).

If Oy, Q,,..., Qr€S then there exists g,€ S0, such that
g2(Q)eB; (i=1,2,...,k).

Proof: For B=B, N B,n...n B, we have the following inequality:

1
m(B) > m(S) (1 - E)
We shall show that in fact there exists g,€ S0, such that
g,(Q)eB (i=1,2,..,k).
Let Qe be fixed. The mapping ¢:S0,— S defined by

¢(g)=g(Q) forall geSO,

is continuous. If C< S is a Borel set, than also ¢ ~'(C) is a Borel set in SO,. We
define

m'(C) = n(¢"(C))

where u is the Haar measure on SO, normalized so that u(S0O,)=m(S). It is imme-
diate that ' is a Borel measure on S and that m’ is invariant under rotations.

Therefore we must have m’ =m.
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In particular, we take Q=0Q,, Q,, ..., Q, successively to get

1

(W) = m(8)> m(s) (1 - 3
where

U, = {ge50,|2(Q)eB}.
It follows that

k
H (m Ui) >0 ’
i=1

and we can choose g,e(") U; arbitrarily.

i=1
Lemma 2 is proved.

Proof of the Theorem: Since O is a common density point of 4,, 4,,..., 4; itis also a
density point of A=A, " A4, ... 4, (see [4], Lemma 11, p. 194). Therefore we can
assume that 4,=A4,=---=A4,=A. For any measurable set C < E", there exists a
Borel set B such that B<C and m,(C\B)=0 (see [4], Lemma 8, p. 194). Using this
fact, we can assume (without loss of generality) that the set 4 is a Borel set.

By Lemma 1 choose 4>0 so that

1
m(Ay,) > m(S) (1 . P) (i=1,2,..., k)
where r;=r (P)) (i=1, 2,..., k). Let ;=0 (P;) and choose g,€S0, so that

2(Q)ed,, (i=12,..,k).

Such g, exists by Lemma 2.
It is clear that g=h, g, satisfies

g(P)ed (i=1,2,..,k).

The theorem is proved.
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