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A Problem of Mapping a Finite Set into a Set ofPositive Measure1)

D. Z. DjOKOVié, University of Waterloo, Ontario, Canada

1. Let En be the Euclidean w-dimensional space and mn the Lebesgue measure in
En. Let G be a group of transformations acting on En. Let AczEn be a measurable

set having positive measure and Pt, P2,..., Pk e En. One can ask the following question :

Does there exist geG such that g{pt)eA for z= 1, 2,..., kl
We shall dénote by hx the homothety hx:En-*En defined by hx(P) XP for ail

PeEn. The group of ail homotheties hk (l>0) will be denoted by H and the group
of translations by T. By SOn we shall dénote the spécial orthogonal group of degree n.

The éléments of SOn are the proper rotations of En fixing the origin 0.
It follows from a resuit of Hadwiger [3] that the answer to the question mentioned

above is positive when G HT. In this note we shall prove that the answer is positive
in the following situation: the origin OeEn is a density point of A, P^O
(ï 1, 2,..., k) and G HxSOn.

2. Let us recall some définitions. B(P, r) will dénote the open bail in En with
center P and radius r > 0. A point P eEn is a density point of a measurable set v4 c isn if:

1lim 7;rrr-o+ mn(B(P,r))

The Lebesgue density theorem ([4], Lemma 9, p. 194) asserts that almost every point
of A is a density point of A.

The sphère in En with center O and radius r>0 will be denoted by S(r). In

particular, S=S(l) is the unit sphère in En. Each point PeEn\{0} can be written

uniquely in the form P r(P) a(P) where r (P)>0 and or(P)eS. The number r (P)
and the point c(P) are sometimes called the polar coordinates ofP (see, for instance,

[5], p. 149). IfAcEn, we define

Ar {v(P)\PeAnS(r)}

for every r >0. Evidently, ArczS.

Every £eS<9n is a linear transformation of En. The matrix of g with respect to a

fixed orthonormal basis is an orthogonal matrix with déterminant one. Hence, SOn

can be indentified with a compact subset of En\ With respect to the induced topology,

SOn is a compact topological group. A subgroup of SOn fixing a point other than O
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is closed and isomorphic to SOn^t. The homogeneous space SOJSOn^1 is homeo-

morphic to the unit sphère S if «^2 ([2], p. 33).

It is known ([1], p. 116-117) that there exists a Borel measure m on S which is

invariant under the rotations. This measure is uniquely determined up to a
multiplicative constant. If m is suitably normalized, then:

dr (1)

0

holds for every Borel set AaEn (see, for instance, [5], p. 149-150).

3. Our main resuit is contained in the following:

THEOREM: Let Au A2,...9AkczEn be measurable sets having the origin O as a

common density point. Let Pi9 P29...9 Pk be points in En (not necessarily distinct) such

that PrfO (/=1, 2,..., k). Then there exists geG HxSOn such that g{P^eAt
(i=l,2,...,fc).

We need first to prove two lemmas.

LEMMA 1 : Let AczEn be a Borel set such that the origin O is a density point of
A. Let rl9 rl9..., rk be positive redis. Then, given s >0, there exists A>0 such that

mO4Ari)>m(S)(l-e) (î 1, 2 fc).

Proof: Let, for instance, rx ^ r2^ ••• ^ rk and

F {r > 0 | m(Ar) < m(S)(l - s)}.

If the assertion of the lemma is false, then

U Vf1 F (0,oo).

To each r >0 there corresponds at least one i such that

where m1 is the Lebesgue measure on the real line. We infer that:
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By (1) we hâve

ro

mn(B(O, ro)\A) J m(S\Ar) r""1 dr > e m (S) f r»"1 dr
0 Fn(O, ro)

for every r0 >0. If 0 ^ (F n (0, r0)) then

f
F n (0, ro) 0

Using (2) we get the estimate

mn(B(09 ro)\A) > - e m (S) ~
This contradicts our hypothesis that O is a density point of A.

LEMMA 2: Let Bu B2,..., Bk be Borel subsets of S such that

-h) «-.,2 t).

there exists g0eSOn such that

Proof: For B=BlnB2n...nBkv/Q hâve the following inequality:

m(£)>m(S)fl-^Y

We shall show that in fact there exists g0eSOn such that

Let QeS be fixed. The mapping (j>:SOn-*S defined by

0(g) g(6) for ail geSOn

is continuous. If Ce S is a Borel set, than also </>"l (C) is sl Borel set in SOn. We
define

where n is the Haar measure on SOn normalized so that n(SOn)=m(S). It is immédiate

that m! is a Borel measure on S and that m' is invariant under rotations.

Therefore we must hâve m'=m.
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In particular, we take Q Qu Q2,->, Qk successively to get

where

It follows that

and we can choose go^D Ui arbitrarily.

Lemma 2 is proved.

Proofofthe Theorem: Since O is a common density point of Al9 A2,..., Ak it is also a

density point ofA=A1nA2 n ...nAk (see [4], Lemma 11, p. 194). Therefore we can
assume that A1=A2 -~=Ak=A. For any measurable set CczEn, there exists a
Borel set B such that BaC and mn(C\B) 0 (see [4], Lemma 8, p. 194). Using this
fact, we can assume (without loss of generality) that the set A is a Borel set.

By Lemma 1 choose À>0 so that

n :.-..2 *)

where rt= r (Pf) (/= 1, 2,..., k). Let Qt a{P^ and choose g0eSOn so that

Such g0 exists by Lemma 2.

It is clear that g=hxg0 satisfies

g^eA (î l,2,...,fc).

The theorem is proved.
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