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Curvature and Differentiable Structure on Spheres

by ERNST A. RuH1)

1. Introduction

An important problem in differential geometry is to characterize the global
behaviour of a manifold in terms of local invariants. A result in this direction is given
by the following isomorphism theorem: A simply connected, complete, riemannian
manifold whose curvature tensor is close to the curvature tensor of the sphere is
isomorphic to the sphere. Several versions of this theorem have been obtained in the
past. The difference between these versions is a result of the difference in the meaning
attached to the terms ““close’ and “isomorphic”.

Traditionally, the proximity of the curvature tensors R and R, of the manifold M
and the sphere S respectively has been measured in terms of sectional curvature as
follows: A riemannian manifold whose sectional curvature K satisfies the condition
0<K<1 is called d-pinched. In a series of papers Rauch [10], Berger [1, 2] and
Klingenberg [6, 7] proved that a complete, simply connected, }-pinched riemannian
manifold is homeomorphic to a sphere. With the discovery of exotic differentiable
structures on spheres by Milnor [9], the question arose whether the homeomorphism
theorem could be sharpened to a diffeomorphism theorem. Gromoll [5] and Calabi
proved that this can be done if, at the same time, the sectional curvature is more
severely restricted. Gromoll showed that there exists a sequence é, with limJd,=1 as n
tends to infinity such that a simply connected, complete, J,-pinched riemannian
manifold of dimension n is diffeomorphic to the standard sphere S”.

Calabiand Gromoll’s diffeomorphism theorem leaves the following question open:
Do there exist riemannian metrics on exotic spheres with curvature tensors R arbitrarily
close to the curvature tensor R, of the standard sphere? To make this question more
precise, we introduce a different measure for the proximity of R and R,. For this
purpose, we think of the curvature tensor asalinear, selfadjointmapR: VAV > VAV,
where ¥V A V denotes the exterior product of the tangent space with itself. So, if the
eigenvalues A of the map R at every point of M satisfy the condition § <A< 1, then the
manifold is called strongly d-pinched. Now, the purpose of this paper is to answer the
question left open by Calabi and Gromoll’s diffefomorphism theorem: There are no
riemannian metrics on exotic spheres with curvature tensors close to the curvature
tensor of the standard sphere.

Here we might add that Bochner and Yano [3] in their version of the isomorphism
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theorem measured the proximity of R and R, in terms of strong é-pinching. Bochner
and Yano obtained the following result: A compact, orientable, strongly }-pinched
riemannian manifold is a homology sphere.

2. The Main Result

In previous studies of the diffeomorphism theorem the pinching constant depended
on the dimension of the manifold. However, the introduction of strong é-pinching has
the following advantage: The constant ¢ in the theorem below is independent of the
dimension of the manifold.

THEOREM. A complete, simply connected, strongly é-pinched riemannian manifold
of dimension n with 6 =0.66 is diffeomorphic to the standard sphere S”.

The main idea of the following proof is new. However, methods similar to those
employed by Rauch [10], Berger [1, 2], Klingenberg [6, 7], Gromoli [5], and Cheeger
[4] have been adapted to obtain the necessary estimates. The pinching constant 6
enters in several of these estimates. The constant 6 =0.66 could be improved some-
what, but to keep nonessential complications at a minimum, no attempt has been
made to obtain the optimal constant possible with our method.

3. Outline of Proof

We prove the theorem by constructing an explicit C *-diffeomorphism f : M — S™.
In case M is a strictly convex hyper surface in euclidian space E"*!, a diffeomorphism
is provided by the Gauss map g: M — S”. The idea now is to pattern the construction
of fafter the Gauss map g. To carry this idea out we first recall what makes the Gauss
map possible and why it is a diffeomorphism in this special case. The map g sending
xeM into the unit normal vector at x translated to a fixed point x, is well defined
because parallel translation in E=M x E"*' =t (M)@®v(M ), where t(M) and v(M)
denote tangent and normal bundle respectively, is independent of the path. In addi-
tion, g is a diffeomorphism because in the special case under consideration the
derivative Dyn of the unit normal vector field n in any direction X #0 is non zero.

In the general case the normal bundle is not available; however, we replace it by a
trivial line bundle ¢(M ) and define a flat connection V' on E=1(M )@e(M ). At this
point, the map f: M — S” is defined analogous to the Gauss map by replacing the
normal vector field by a cross section e of length onein ¢(M); i.e., the image
f(x)eS"<E"*! is defined by parallel translation of e(x) to the fibre E"*! over a
fixed point x,. Again, f: M — S" is a local; and since M is simply connected, a global
diffeomorphism as long as Vye#0. Therefore, the proof consists of defining a flat
connection V' on 7(M )®e(M ) and checking Vye#0.
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The first step in the construction of V' is to define a connection V” in E with small
curvature as follows:

V;e,-=VXei—-c<X,ei>e
Vye =cX,

where V denotes the riemannian connection in the tangent bundle ©(M); and e;, i =
1,2,..., n denotes a moving orthonormal frame in 7 (M ); while e is a section of length
one in ¢(M); and c is a constant close to one to be determined later. The curvature of
V” will be estimated in section 4. We might add that the idea for the definition of V"
originates from the following observation: In case M is the standard sphere embedded
in E"*1, the covariant derivative defined above is nothing but the ordinary derivative
in E"*1,

In the next step, V” is used to construct a cross section «’ in the principal bundle of
(n+1)-frames with structure group 0(n+1) associated to E. The results necessary for
this construction are compiled in the first four chapters of [5]. The proofs in [5] are
based on the Alexandrov-Rauch-Toponogov comparison theorem and the Morse
critical point theory. In particular, we use the following properties: Let g, and g, be a
pair of points with maximal distance ¢(go, ¢;) on M, where ¢ denotes the distance
function induced by the riemannian metric. Set y (p)=¢(q0, p)—0 (¢, p) and define
C=x"1(0), My=x "' ((— o0, 0]), M; =y "*([0, 0)). The exponential maps exp, and
exp, with centers at g, and g, respectively are bijective maps if restricted to a ball of
radius 7. Finally, C is diffeomorphic to $”~! and takes the place of the equator
while M, and M, take the place of upper and lower hemisphere respectively.

At this point we are in a position to indicate the definition of the section «’. First,
we define a section u, on M, by moving an (n+1)-frame u,(g,) chosen over the
center g, of M, by parallel translation with respect to V" along geodesic rays to
points in M,. Second, we define u,(g;) by parallel translation of uy(g,) along a
shortest geodesic to ¢,, the center of M;, Now u, is defined analogous to u,. On
C=M,nM, the cross sections u, and #, may not coincide, but the distance in the
fibre can be estimated in terms of the pinching constant 8. Therefore, for é close
enough to 1, the sections u, and u; can be modified to yield a differentiable cross
section #’ on M. Finally, let V' denote the flat covariant derivative in E=1 (M )®e(M)
that corresponds to the section «’ in the associated principal bundle.

It remains to be shown that Vye#0. The result follows because for é close to 1,
the difference of V' and V” is small; and ||Vye|| =c||X || ~ | X||. The details, as well as
the estimate § =0.66 will be furnished in the subsequent sections.

4. The Connection V”

The purpose of this section is first, to give an estimate for the curvature of V7,
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second, to use this estimate to obtain an upper bound for the effect of parallel transla-
tion along null homotopic closed paths. We recall the definition of V” introduced in
the outline:

Ve =Vye,—c<X,e;>e
V”
x€ =cX.

Instead of dealing with the connection V”, we prefer to make the computations in
terms of its connection form «”. In order to give a formula for ", let (4;;) denote the
standard basis of the Lie algebra o(n+1) of the orthogonal group 0(n+1); and let @
denote the connection form of the given riemannian connection on M. In terms of a
frame field (e, ..., e,, €), where e,..., e, form an orthonormal basis in the tangent
space 7(M ), and e is a section of length one in ¢ (M), »” can be expressed as follows:

o' =w+c) ef® Ay =0+ ca,

where e; denotes the dual of e; and a is defined by the above equation. To simplify the
computation of the curvature, we assume further that ¢,, ..., e, arises from a canonical
coordinate system around a point pe M. In addition, the connection form w”, as well
as the curvature form Q”, will be considered as forms on M, rather than on the
principal bundle P; i.e., we will deal with the pullback via the section (e, ..., e,, €).

At this point, we compute the curvature form Q" at pe M. Because of the choise of
a canonical coordinate system at p we have dw” =dw. Therefore, the Cartan identity
yields the following equation:

do" =— 0" A"+ Q" =—owo Ao+ Q=do.

Again, because of the choice of the section (ey, ..., e,), w is zero at pe M; therefore,
the above equation yields:

Q" =Q+ ca A a.

Now, both Q" and Q may be considered maps from V' A Vinto o(n+1), since o(n) is a
a subspace of o(n+1). Note that in the case where M=S", and ¢=1, the map
Q":VAV-o(n+1) is identically zero. This explains why the pinching condition
implies that Q" is close to zero.

We arrive at an estimate of Q" by letting ||Q"|| denote the maximum of || Q" (B)|
where f ranges over the unit sphere in V' A V. In addition, we identify V' A V with
o(n) by means of the map e; Ae; — A4;;, where 4,;, i <j<n denotes the standard basis
of o(n). Under this identification, a A o corresponds to the identity map id: VAV —
— V AV as indicated in the following:

aAale,e;)=[Amn+1 Ajnr1] = Aij,
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where [ , ] denotes the Lie bracket in o(n+1), and A4, for i<j<n+1 denotes the
standard basis of o(n+1), while 4;; for j<i stands for —A4 ji- Note that, under the
above identification of VAV with o(n), the curvature form Q of the riemannian
connection coincides with — R, the negative of the curvature transformation
R:VAV—>VAV. Therefore, the eigenvalues 1” of the map Q" =Q+c?ax Ao can be
estimated as follows:

—1+e2<A<-6+c2,

where 6 is the pinching constant. The best estimate of max|4”| =||Q"| is obtained by
setting ¢>=%(1+6). The result is: |Q"| <3(1—4).

In the second half of this section, we apply this result to obtain an estimate for
the effect of parallel translation along null homotopic, piecewise differentiable,
closed paths. Let H:IxI— M be a piecewise differentiable homotopy of the closed
path y defined by s —» H (s, 0) into the constant path s— H (s, 1). Parallel translation
along y transforms the frame u into the frame wa, where ua is the image under
right multiplication of the frame u by the element ae0(n+1). We achieve an estimate
for the distance ¢ (e, a) of the element a€0(n +1) from the identity element ec0(n+1)
in terms of the homotopy A with the following lemma:

LEMMA. ¢ (e,a)<max|Q"||A<%(1—0) A, where the maximum is taken over points
in H(IxI)c M, and A denotes the area of H (Ix1I).

Of course, the distance ¢ (e, a) depends on the metric in 0(n+1). However, this
metric has been normalized such that the space 0(n+1)/0(n) is isometric to the unit
sphere.

The proof is straightforward. The idea is the same as in the proof of the factoriza-
tion lemma [8, p. 285]. Namely, we subdivide I x I into m? squares s; ; of equal size,
and write parallel translation along y in terms of parallel translation along the bounda-
ries y,;=0H (s;;) of the images H (s;;) of the squares s;;. Now let a;; be the orthogonal
map defined by parallel translation along y;;. Neglecting terms of higher order in
A;;=area of H(s;;), we obtain the estimate g(e, a;;)<|[R"]|*4;; for the distance
o(e, a;;) of a;; from the identity. Therefore, the factorization lemma yields g (e, a)<
<max|Q"|| 4. The correction terms of higher order in A4;; can be neglected if the
number of subdivisions of Ix I is increased to achieve 4;; — 0. Finally, the estimate
Q"] <4(1—0) completes the proof.

3. A Preliminary Estimate

In section 3, the manifolds M, and M, were introduced and compared to the upper
and lower hemispheres respectively of the standard sphere. In this section, the metric
aspects of this comparison will be studied. The estimate obtained here is based on
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results compiled in the first four chapters of [5]. This estimate is necessary for the
construction of V', which will be carried out in the next section.

In case M =S", we have the following isometry between the tangent spaces at the
north and south poles; Source and image are related by lying on the same geodesic
joining north and south poles. In case M is §-pinched with 6 >4, Gromoll [5] proved
the existence of a diffeomorphism 4 similar to the above map. To define 4, let S, and
S; denote unit spheres in the tangent space of the points ¢, and g, that were in-
troduced in section 3. The map A:S,—S; is now defined by requiring exp,x and
exp; th(x) to coincide for some ¢ =1 (x) satisfying n/2 <t (x)<7z/(2\/ ). Note that the
point of intersection lies on the “equator” C defined in section 3.

At this point, we prove that the map 4 is close to an isometry; i.e., we give an
estimate for the ratio ||, Y| :|| Y| for Yet(S,), the tangent bundle of the unit sphere
S, in the tangent space at g,eM,. Here we recall that the definition of the map A
implies [lexpos? (x) Y||=|exp;4 2 (x) oY ||, Where expoy is the differential of the
exponential map exp, evaluated at a point ¢ (x) x for some xeS,. Now, the above
equation, together with the Rauch comparison theorem, yields the following estimate:

(«/ 3 sin

T

(2/6)

(/1

(28)

-1
) > Y : | Y] >+/8 sin

We arrive at the estimate when we observe that the extreme ratio would occur if the
sectional curvatures of M, and M; would be equal to § and 1 respectively. Therefore,
a comparison of the exponential maps exp, and exp, to exponential maps on spheres

of radius 1 /\/ $ and 1 respectively, yields the estimate.
6. The Connection V’

The purpose of this section is to construct a flat connection V' on the bundle
E=1(M)®e(M) with the property Vye#0, where e denotes a section of length one
in ¢(M); and X denotes a non zero tangent vector. As stated in the outline, V' is
obtained by constructing a cross section #': M — P in the principal bundle P asso-
ciated to E. Again, we follow the outline and define uy,:M,— P and u, :M, —» P as in
section 3. The point now is to modify %, and u, to obtain a smooth section »’: M — P.

The sections u, and u,, restricted to My, "M, in general do not coincide. The idea
is to replace u, and , by their average. Since the average is defined only if ¢ (1o, u;) <7
we estimate the distance between u, (p) and u, (p) for pe C. We recall that the frame
u; (p) is obtained form u,(p) by parallel translation with respect to V" of u,(p)
along the closed path y consisting of the shortest geodesic segments (p, ¢o), (40> 91)s
and (g, p). In order to obtain an estimate for the distance ¢ (u,, #,) by means of the
lemma of section 4, it is necessary to define a homotopy of the broken geodesic
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(40, P> 4,) into the shortest geodesic (¢, ¢;) that was used in the definition of u,, In
addition, we need an estimate fo the area of this homotopy.

Instead of defining the homotopy on M, and M, directly, we define a homotopy
in their inverse images, T, and T, under exp, and exp, respectively. In T, we define
the homotopy by rotating the line corresponding to the geodesic (g, p) into the line
corresponding to the geodesic (o, g, ). On T,, we define the homotopy again in terms
of a family of lines originating from OeT,, The choice of the family is determined
since we require the images of the homotopies under exp, and exp; respectively to
match on C=M,nM,. We estimate the area swept out by the homotopy on M, by
means of the Rauch comparison theorem. For an estimate of the corresponding area
on M, we need, in addition, the estimate on ||, Y| :| Y| which has been obtained in
the preceeding section.

These considerations lead to the following estimate of the area A of the above
homotopy:

n = z \!
A< |1+ \/ o sin —<~',:) )
o ( ( 240

With this upper bound for A4, the lemma of section 4 provides an estimate for the
distance @ (ug, u;) of u, and u; =uya, where ae0(n+1); and the distance is measured
in the fibre over points in C=My,nM,. The result is:

0 (gr 4y) = 0 (e, @) < 12}5(1 *(ﬁ 575)>

If we choose & close enough to 1 to make sure that ¢ (e, a) <=, then there is a
unique shortest geodesic joining e and a in 0(n+1). Consequently, the average of u,
and u, exists. In the next paragraph, we illustrate how this average leads to an approxi-
mation u*: M — P of the section u': M — P.

We begin with the definition of u* restricted to C=M,NM,, by sending a point
geC into the midpoint of the shortest geodesic joining uo(g) and u; (g) in the fibre
over . Subsequently, we extend the definition of u* to M. One might attempt to
extend the definition of u* to M, and M, by parallel translation of u*(g), g€ C, with
respect to V” along geodesic rays originating from ¢, and g, respectively. However,
this extension of w* results in singularities at the points go and ¢;. To avoid this
difficulty, we modify parallel translation as follows: Instead of parallel translation of
u*(g) along geodesics exposx, we translate u* expd” (p) B along the same geodesic
to the point p =exp, d(q) x, where d(p) is the distance from g, to p, while B=B(q)e
o(n+1) is defined by the equation u, (¢) expd (q) B=u*(q); and d*:M,—R is ob-
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tained by smoothing d at g, while keeping d* (q,)=0. The above completes the
definition of ug =u*:M,— P. Now, to extend u* to a cross section u} =u*:M, - P we
utilize the same method. The section u*: M — P, as constructed satisfies all but one of
the requirements of the section «’ listed in the outline, i.e., u* is not differentiable on C.
In the next paragraph, we smooth u* to obtain a section v’ :M — P.

In order to define ' we first extend the definitions of u and u?, so far defined on
M, and M, respectively, to a tubular neighborhood N,(C) of C=M,nM,. Subse-
quently, the following symbolic formula indicates the definition of ¥’ on N,(C):

u' =1 —1t)ug + ty},

where the function ¢: N,(C)— R will be defined later. Here we define u’ as the point
on the geodesic joining ug and u} whose respective distances from uj and u? we
determine by the ratio ¢:(1—¢). Outside N,(C), the sections u* and ' are identical.
For the proper choice of the function ¢z, the section %’ is differentiable. It remains to be
shown that the connection V' associated to u’ satisfies the property Vye#0 discussed
in the outline.

7. Some Estimates Concerning V’

The purpose of this section is to prove that Vye#0, where e is a section of length
one in ¢(M); and X is any non zero vector in the tangent bundle 7(M). Since
|[Vxell~ | X || for é close to 1, it suffices to show that the difference of V” and V' is
small, provided that ¢ is close enough to 1.

In order to simplify the computations involved in the estimate of the difference
between V” and V' in a neighborhood U of a point pe M, we identify the bundle P
restricted to U with Ux 0(n+1). We accomplish this by identifying U x {e} with the
following section s” adapted to V”: The section s” is defined by parallel translation
with respect to V” along geodesic rays of an (n+1)-frame over pe M. Subsequently,
we identify the cross section #’ that defines V' with the corresponding map u': U —
0(n+1). Because s” is adapted to V", the following estimate for the difference between
V” and V' at peM holds: |Vys—Vye| <|Du'X |, where Du’' denotes the differential
of the map u'.

Instead of dealing with the estimate of Du’ directly, we begin by showing that
| Du*X || and || Du’ X || satisfy the same inequality and subsequently estimate || Du*X]|.
To compare Du’ and Du*, we differentiate the symbolic formula ' = (1 —t) ug +tu}
by means of the product rule as if it would be an actual formula. Since we are only
interested in the first derivative this is acceptable because it is possible to give the
above formula a precise meaning by replacing the orthogonal group by its tangent
space o(n+1) at ee0(n+1). This being understood, we gain the following expression
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for the derivative Du’ of u':
Du’ = Dt (uy —ug) + (1 — t) Du¥ + tDu*,
and therefore
|Du’ X || < [ID2X | ¢ (ug, ut) + max (| DugX|, [Du}X]).

To complete the argument, it suffices to show that | DtX | o (ug, ut)is arbitrarily small
if we choose the function #: N,(C)—R as follows: We begin by identifying N, (C)
with [ —¢, €] x C and we define 7 to be constant on {z} x C. On the z-axis we define ¢
to be the integral of the function 4 (z), where A (z) is basically the function Allz| but
modified such that 4 (z) is differentiable on [¢, ¢]; 4 (z) is tangent to the z-axis at —e
and ¢, and satisfies the property j'g_s A (z) dz=1. Since we choose the constant A small,
and since ¢ (ug, u7) on {z} x {g} with ge C is bounded by ¢ |z| for some constant c, the
quantity | Dt X || ¢ (ug, uT) is negligeable.

Given the preceding remark, we reduced the problem of estimating || Ve — Vie|
to estimating || Du*X ||, where u*: M — P in a neighborhood U of a point peM is
identified with #*: U — 0(n+1) be means of the section s” as previously defined. Now,
in order to estimate | Du*X | we estimate the larger quantity || Dv*X ||, where v* is the
map v*=(exp) ' u*: M —o(n+1);i.e., the composition of u* with the inverse of the
exponential map exp:o(rn+1)—0(n+1). Of course, since exp decreases distances,
| Du*X|| is smaller than |[Dv*X|.

Now we are prepared to estimate | Dv+X || in terms of a canonical coordinate system
with center g,eM,. The following estimate holds for points in M, only; however, the
method works for M, as well. We begin with an estimate for || Dv*X ||, where X points
in radial direction. Subsequently, we estimate |Dv*X| for vectors X pointing in
angular direction by a similar method. To simplify the computations, we now sub-
stitute 6 =0.66. This is not the best possible value for 4, but the will observe later
that  =0.66 cannot be improved by much.

With the substitution of § =0.66 in the estimate for ¢ (e, a) of section 6, we obtain
the following numerical value: ¢ (e, 4) <0.607. Keeping in mind that the distance of C
from g, is at least #n/2, and that u* was defined on C by taking the average of u, and
u;, we conclude that [|[Dv*X | <0.60||.X || if X points in radial direction. A similar
estimate shows that |Dv*X | <0.67 | X|| for X in angular direction. We obtain the
above numerical value by estimating the derivative of the composition v* exp: T, —
—o0(n+1), where T, denotes the tangent space of M at g,. Of course, we have to take
into account that exp, decreases distances. However, the decrease is bounded from
below by the factor (2./6/r) sin("/,,5). Now we combine the above two inequalities
and obtain: |Dv*X| <0.90 | X| for arbitrary direction of X.

Here, we recall that the above estimate of Dv* yields |Vye—Vye| <0.90 | X|. On
the other hand, we obtain from the definition of V” that ||Vye| ~0.91 | X||. Finally,
the triangle inequality implies ||Vyel| #0 for non zero vectors X.
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