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Pinching Implies Strong Pinching

by HERMANN KARCHER 1)

The author was led to look for bounds as in (2) by a preprint manuscript of the
article by E. Ruh which precedes this paper. Denote by 6 the minimum, by 4 the
maximum of the sectional curvatures at pe M (dim M =n) and by A the smallest, by A
the largest eigenvalue of the curvature operator ¢:M,AM,—»M,AM, (defined by
ow (X, Y):=trace; o(R (X, Y) Z, Z) in terms of the curvature tensor R of the
Riemannian metric on M).

It is well known that A<26 and 24 < A. We prove:

traceg = Y, {R(X;, X,) X, X;) = scalar curvature. (1)
ik

A4+5—-3(A-8)[n(n—-1)(n+P]"?*<Ai<A4< 5

A+5+3(4—38)[n(n—1)(n+3]". @

From (2) and Ruh’s theorem [3] we have the

COROLLARY. A complete simply connected Riemannian manifold with
0/421-[1+5(n(n—1) (n+1))*]7! has A/A=%, hence is diffeomorphic to the
standard sphere

Remark. The numerical values are worse than the ones obtained by Gromoll
(explicitly computed up to n =12); for example for n =7 resp. n =12 we need 6/4 > 0.966
resp. 0.985, Gromoll’s figures are 0.819 resp. 0.931.

Proof. Use a normal coordinate system at pe M with associated basis X;(i=1,..., n)
of M,. For weM,AM, put o, =w(X;, X;), hence o =% ) ;.04 X; A X;. The scalar
product in M, AM,, is given by (@, @) =% ) ; x1® @y

We have
e(X;n Xj) (Xks Xz) = 2Ry;; = e (X; A Xj)s XA XD, (€))
hence
{ow, w) =% z’ Rkljiwijwkl . 4)
(Z' = ), hereand below)
k#l,i#j

(3) and (4) imply A<25 and 24 < A, but (3) shows also that the eigenvectors @’ (v=
1,..., 3n(n—1)) of g are in general not forms of rank 2 so that the reversed inequalities

1) This paper was prepared under the program ‘“‘Sonderforschungsbereich Theoretische Mathe-
matik’’ at Bonn University.
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cannot be expected. (4) implies (1) immediately:
traceg = ; {ow’, ®") =% ) ' Ry ;w: f
=3 Z’Rkl ji (5ik5 a— 040 jk) = 1?;':'1 Ry -

Define Ry (X, ¥Y) Z:=3(4+6) KY,Z) X—<X,Z) Y)and D:=R—R,. Since D and
R have the same symmetries we have from (7), (8), (9) in [2] for unit vectors in M ,:

KD(X, Y)Y, Uy <272(4=9), (<3(4-9) if X1U) ®)
If ZLX,Y then |KD(X,Y)Z,U)|<%(4-9) (6)
D} = max KD (X, Y) Z, U)| < (34/36)'/% (4 - §). 7

IX|=|¥|=|2|=|U|=1

Remark. In forthcoming papers on the differentiable pinching problem Sugimoto
and Shiohama have used || D| <k (with normalization 4 +6 =2) as a pinching condi-
tion. ||D||<k clearly implies for the sectional curvatures 1—-k<K<1+k. The
converse is not true since for the complex projective space |D| =%k. However
1-k<K<1+k and (7) imply ||D| <(34/9)'/? k.

We rewrite (4) as

{ow, 0> =A4+06+1% z' Dy ;0,01 t))
and apply Schwarz’ inequality (note |w|=1):
| % Z’ Dkljtwi jwkll < (Zl thji)llz- 9

(Schwarz’ inequality can be applied in various ways to (8) leading to different ex-
pressions for the [ ]-bracket in (2); in our computations they were all of the order
n3'2 or worse. If (2) is a poor estimate the loss probably occurs in (9) since the following
estimates seem fairly sharp to us.)

Z' lelji = Z letjt + Z D:lji + Z Diui (10)
Kk i=j,i k,i=1,j kiﬁj
U# i,

14

We have from (5) with /, i fixed and a,: =D,;,,(}; D2;;))~*"*

1/2
;ak Dy = (; Dl%jji) . (11)

If I+, j we have from (6) with a,: =Dy;, (3 D)~

_ (; D,f,ﬁ)m . (12)

2712 (4 -6) >

%(A —9d) = 12, a; Dy
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Insert (11) and (12) in (10) to get
Y Dap< Yy (4=08 + ¥ $A-08’=%(A-0 n(n-1)(n+3). (13
jFi 1#i#j#1

(8), (9) and (13) prove (2).
Remark. The method can also be used to improve Berger’s estimate [1] for the
Eulercharacteristic:

-1y
23"'7t'"m' (l1 d2m 11 Jam Rlllzjuz “R12m tizmjam- 1sz) dV

< 2""(2m)!(4/5)"’.

Berger estimates the integrand by ((2m)!)?4™. We use first m-[[[L,a; <Y |a)|"<
<max|a,|™ "% Y a?,then Berger’s | Ry;;| <3 (4—6), | Ryl <%(4—8)-see (5), (6) —and
the analogues of (11), (12) for R instead of D to estimate the integrand by

(@n -2 a2:2mam - [ 1+ (1-5) @+ - D ey
We obtain (m>3)
£ (M™) < 2.4+ 27 (2m — 2)! (4/6)".

In Dimension 4 Chern’s coordinate choice [1] simplifies the integrand to
32(Ry212R3434 + Ry313Ro404 + Ris14R2323 + Riz3s + R3314+ R315,) Which Berger esti-
mates by 32(34'> +%(4’—¢')?). Here 4’ and 6’ are minimum and maximum at each
point. However R,,,, =0 in Chern’s coordinates. This improves the estimate to
32(4'6'+24'*+8(4"'—5)*)<32-34'% and gives x(M*)<(4/6)* instead of
<(4/8)* +((4/6)—1)>. The same estimate improves known lower bounds for the
volume in terms of the second Betti number:

2 + by = x(M*) < (4n2)~1-342-vol (M*).

x(M?™) =
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