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Pinching Implies Strong Pinching

by Hermann Karcher1)

The author was led to look for bounds as in (2) by a preprint manuscript of the
article by E. Ruh which précèdes this paper. Dénote by ô the minimum, by A the
maximum of the sectional curvatures atpeM (dimM=n) and by k the smallest, by A
the largest eigenvalue of the curvature operator q:MpaMp->MpaMp (defined by
qco(X, Y): =tracez co(R (X9 Y) Z, Z) in terms of the curvature tensor R of the
Riemannian metric on M).

It is well known that A<2<5 and 2A ^A. We prove:

trace g £ <jR (Xh Xk) Xk, Xty scalar curvature. (1)

A+6-Uà-6)t»(»-l)(n + mll2ZKA< \
A 4. |5 _t_ 2. / A &\\n(n 1 ^ In 4- 4-^1lj^2 f

From (2) and Ruh's theorem [3] we hâve the

COROLLARY. A complète simply connected Riemannian manifold with

ô/A^l — [y+y(«(«— 1) (^+i))1/2]~1 has X\A^\9 hence is diffeomorphic to the

standard sphère
Remark. The numerical values are worse than the ones obtained by Gromoll

(explicitly computed up to n 12) ; for example for n 7 resp. n 12 we need £/J ^0.966
resp. 0.985, Gromoll's figures are 0.819 resp. 0.931.

Proof. Use a normal coordinate System atpeM with associated basis Xt (i 1,...,«)
of Mp. For coeMpAMp put colJk=(«(Zi, JQ, hence ^0=^^^^^^ aIj. The scalar

product in Mp aMp is given by <ca5 ô;> =-j
We hâve

*,.)> ^ a X{>, (3)

hence

o, œ} \ X' Rklji(OijCûkl.

(3) and (4) imply Â^2Ô and 2J <yl, but (3) shows also that the eigenvectors cov(v

1,..., \n (n — 1 of q are in gênerai not forms of rank 2 so that the reversed inequalities

*) This paper was préparée under the program "Sonderforschungsbereich Theoretische Mathe-
matik" at Bonn University.
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cannot be expected. (4) implies (1) immediately:

tracée Z<Q«>\ o)v} \ £'Rkin

DefineR0(X, Y) Z: =i(J +5) «7, Z> X-<X, Z> F) and D:=R-R0. Since£> and
i? hâve the same symmetries we hâve from (7), (8), (9) in [2] for unit vectors in Mp:

KD(X,Y)

If Z1I,
||D||

Y, U>\ ^
Y then

max

2-l'2{A-ô), (¦

\(D(X, Y)Z,U}\:

KD(x,Y)z,uy

sH(A-ô) if

^1(^1-5)

\<(34I36Y'2(A

XIU)

-ô).

(5)

(6)

(7)

Remark. In forthcoming papers on the differentiable pinching problem Sugimoto
and Shiohama hâve used ||Z>||</: (with normalization A +ô =2) as a pinching condition.

||D|K& clearly implies for the sectional curvatures l—k^K^l+k. The

converse is not true since for the complex projective space \\D\\ =f&. However

l-k^K^l+k and (7) imply ||Z>K(34/9)1/2 k.
We rewrite (4) as

(q(o9 û>> A + S + i £' DujiCOijCOu (8)

and apply Schwarz' inequality (note |û>| 1):

I i I' JW»i/»u I < G' ^2(Ji)1/2- (9)

(Schwarz' inequality can be applied in various ways to (8) leading to différent
expressions for the [ ]-bracket in (2) ; in our computations they were ail of the order
«3/2 or worse. If (2) is a poor estimate the loss probably occurs in (9) since the following
estimâtes seem fairly sharp to us.)

I'0£y»= I DlJt+ £ D2UJt+ £ D2m (10)
k, I i,i k,l i,j k,l,i,j

i

We hâve from (5) with /, i fixed and ak: =DkJJi(£k Z)2

Jkjji -to*
1/2

If /#/,y we hâve from (6) with ak: =DklJi(£k Z>âj

«k DUjt
/ \1/2
(Y D2klJj

(H)

(12)
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Insert (11) and (12) in (10) to get

£'!>«,¦ <IC*-«)2+ Z i(A-ô)2 ±(A-ô)2n(n-l)(n+i). (13)

(8), (9) and (13) prove (2).
Remark. The method can also be used to improve Berger's estimate [1] for the

Eulercharactenstic :

2m\ ^ ' \ (p o D U
03m,PrW™! I V '1 »2m °Jl J2m £^lll2jlj2 *^l2m-U2mj2m-U22 n m!J

M

Berger estimâtes the integrand by ((2m)\)2Am. We use first /w-nr=i0»<Z klm<
<max|a,r-2 Z «?, thenBerger's |j^j <i(J -5), |J«Wjl| <f (A -5)-see (5), (6) - and
the analogues of (11), (12) for R instead of D to estimate the integrand by

((2m - 2)!)2 ,T2-2m (2m -1)^1 + ^1- 0((±r + (m -
We obtain (m ^3)

x(M2m) < 2.4 • 2"m(2m - 2)! (A/Ô)m.

In Dimension 4 Chern's coordinate choice [1] simplifies the integrand to
32(*1212tf3434+i*1313i*2424+l*1414^
mates by 32(3J'2+f(J' — ô')2). Hère A' and <5' are minimum and maximum at each

point. However R12i2 =& in Chern's coordinates. This improves the estimate to
32(A'ô'+2Af2+%(A'-ô')2)<:32-3A'2 and gives x(M4)<:(A/ô)2 instead of
< (A/ô)2 +-£ï((A/ô)— l)2. The same estimate improves known lower bounds for the
volume m terms of the second Betti number:

2 + b2 z(M4) < (4tc2)-1-3J2-vo1(M4).
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