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Comparison Domains for the Problem of the Angular Derivative

B. G. EKE

1. Introduction

Let S be a simply connected domain in the w=u+iv plane having an accessible
boundary point, w,, located at w=o0. Suppose w=w(z)=u(z)+iv(z) maps
Y={z=x+iy:0<y<n} (1-1) and conformally onto S so that w(x+in/2)—w,
as x — +00. If in any substrip {z:0<d<y<n—48} of X the difference w(z)—z tends
to a finite limit as Re(z) — + 0o, then we say that S [or w(z)] has a (finite) angular
derivative at w,, [or Re(z)= + o0]. The problem of determining geometrical conditions
on S which imply or are implied by the existence of an angular derivative has long
been studied, (see e.g. [7] Chapter VI for results prior to 1955 and [2], [4], [8], [9]).
A necessary and sufficient condition for S to have an angular derivative at Re (w)= +
has been given when S is contained in O <v <7 ([8] Theorem 6, [4], [7] p. 215) and
when S contains 0<v == ([7], p. 216). For more general S less is known and in this
paper we give a necessary and sufficient condition on a class of strip-like domains
which need neither contain nor be contained in a strip of width n. These domains may
be useful as interior comparison domains for sufficiency (see e.g. [9], Theorem 2) and
as exterior comparison domains for necessity investigations into this aspect of the
study of the boundary behaviour for quite general classes of simply connected
domains.

Suppose {#,}7, {v,}7> {v.}T are sequences of real numbers such that

Upp1—U,2d>0(n=1,2,..); limv,=0; limv,=n; v,<v,(n=12,...)

n—+w n—*a0

and define forn=1, 2,...,
0,, = vt'l = Up, An = max(lv;ﬁl - vrlnl’ Ivn+1 - U,,D-

We consider throughout the remainder of the paper simply connected domains S
which are the interior of the union of the rectangles {w=u+iv:u,Susu,,;
Uy SUSV, .4} (n=1,2,...) and the half strip {w=u+iv:u=<u, v, Sv=<v}}, and the
maps w=w(z)=u(z) +iv(z) of Z onto S for which

lim u(x+in/2)=+00, lim u(x+in/2)=—o00.

x-*+ o x—>—~ o0

Recently Warschawski ([9], Theorem 1) has proved that the convergence of
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Y =01l (Upey —u,) and Y Az log1/4,
n=1 n=1

is sufficient to ensure S has an angular derivative at Re (w)= +co. For the strip-like
domains under consideration the difference w(z)—z will tend to a finite limit for
unrestricted approach to Re(z)= +0o whenever the angular derivative exists. We
prove the following

THEOREM. IfS is a strip-like domain for which either

i (0= 0510 1) (g1 — 1) (1)
or i AXlogl/a, Q)

is convergent, then a necessary and sufficient condition for S to have an angular derivative
at Re(w)= + o0 is the convergence of the other sum.

The special case v,=v,+7 (n=1, 2,...) was considered by Ferrand [5] and with
Dufresnoy [6] and they showed Y s, A2 convergent necessary and Y o 4> conver-
gent sufficient for an angular derivative. Warschawski’s result indicates that the
convergence of (2) is sufficient and we can now assert that this is also necessary.

Also the convergence of (2) may already be implied by the convergence of (1).

If this is so then consideration of equation (24) enables us to assert that the con-
vergence of (1) is necessary and sufficient for an angular derivative. For example,
suppose S is contained in 0<v<n, then n—6,,, =4,,,; and so the convergence of (1)
implies that of ) =2, 4, (and hence that of (2)). In this case the theorem is contained in
[8], Theorem 6 and [4].

The author is grateful to Professor S. E. Warschawski for the opportunity of
reading [9] prior to publication.

2. Some deductions from the Poisson integral

Let 4,(D,) and B,(C,) be the two vertices on the lower (upper) boundary of S
which have abscissa u, and where the interior angles are n/2, 3n/2 respectively.
Suppose z=a,, f,, Y, +in, 0, +in (a,, B, Va> O, real) are the pre-images of 4, B,, C,, D,
respectively under w=w(z). (The boundaries of S and X are in (1—1) correspon-
dence).

Denote by I, (n=1, 2,...) whichever of the intervals a, <x< g, or f,<x<a, is not
empty and by I, (n=1, 2,...) either y,<x <4, or §,<x<7y,. Then
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lim v(¢)=0, lim v( +in)=m, lim v(&)=v,, lim o(¢+ in) =},
&=+ o0 E>+ o oo oo
O _ofee O 1), “EE D _o(ee 1)

i —0<é¢nL=Jll,.>, T =0 ¢¢n911n : 3
d d .
JZ(;)d§=vn+1—v,,,fv(iié_km)d§=v,',+l—v,’,(n=1,2,...).

n I'n

Now v(Zz) is harmonic in X, has continuous boundary values except at the two infinite
boundary points, and remains bounded in Z. So, from the Poisson integral representa-

tion,
[+ o}

w(z) = no(x + iy) = J v(€) d arctan (e — e cos y)/e* siny

=
[29]

+ J v(& + in) d arctan (e* + e” cos y)/e* sin y.

- Q0

Integrating by parts,
d
n(z) = g(n —6,)+0,y— f —2(&9 arctan (e° — e* cos y)/e* sin y d¢
d .
- J -P(—i%-lz) arctan(e® + e cos y)/e”* sin y) d¢,
whence

© ]

@ _ J dof)  &Tsiny

0x dé e¥ + e** — 25 * cosy
P “4)
N dv (¢ + in) et *siny
dé e 4+ e +2e5 " cosy

dv(z) " dv(€) e —e**icosy p |
ay ! dé e** + e** —2¢* *cosy
o , v )
dv(¢é+in e + e""* cos
+ (é ) 2x 2¢ E+x A dé *
d¢ e+ e+ 2" *cosy

U

LA ‘
For x, <x,, the Cauchy-Riemann equations, (3) and (5) give, interchanging the
orders of integration,
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 ov(x + inf2
mu(x, + inj2) — nu(x, + inf2) = n:J M dx

oy
- > dU é 2x
=01(x2—-x1)—de J d(f)ez"e-k 028 dé
- dv(¢ +in) €**
+ J fet J‘ dé e?* + e* de
Ldv(§) (e** 4™
=0,(x; - Z J‘E_d(f—) ( 2x; +ezc) dg
n=11I,
1d 6 + i e?™ 4 %
Z J' v( n) ( ezg) de.

n= 11,1

Since lim,, ., _, (mu(x, +in/2)—0,x,) exists finitely (k say) we may let x; —»— o0
and obtain

nu(x, +inf2)=k + 0,x, — Z Jdu(f) log(1 + e2*279) d¢
n=11I, \ (6)

1 ‘M 2(x2-8)
5}: J T log(1 +e ) dE.

n=1 I‘n

If x, exceeds the values in I, and I,, then

“%J 90 1og (1 + 2279 g Jdv(ﬁ 1% log (1 + &*50) de

ac ae

_ dv(&) dv(& + i) 3

[ [ 2D
n r

_1[du(®) JRICEES dv (¢ + im) 2(4-x2)
2J i log(1 + )dé + J‘ T log(1+¢ ) d&

n I'n

=((x2 = Ba) + O(loty = Bul)) (v — Oas1) + (%2 = a) + O(I7n — Gu])) (541 — 20)
—%Jdv(f)log(l 4 o2& xz)) & + Jdv(f + m’) log(1 +e2(§—xz)) de,

dé d¢

I, Iy
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since dv(&)/d¢, dv (& +in)/dé have constant sign on each I,, I, respectively, and where
O (1) denotes a quantity which is bounded independently of n. Thus if x, exceeds the
valuesin I, I, (1=<n<=<v), we obtain from (6),

nu(x, + inf2) — ax, =k + (0,41 — 1) X,

; Z [B(Bus1 = 02) — Ta(the s — o0)]

; o(Z (10 = Bol + Iy = «m)zn)

— = Z J'dv(i) log(1 + *¢7*9) d¢
n=11, (7)

= = Z J‘dv(é)log(1+e2("2 ) d¢

n=v+1 I,

LV [ do(¢ + i) I
ZZJTIOg(1+e ) d¢

n=11I,

1 dv(¢ + im) -

— %1 1 2(x2—§) dE .
+2 f it og(l+e ) dé

n=v+1 I,

3. Preliminary results and estimate of 8, — 7y,

Since S is semi-conformal (for definition, see e.g. [8]) at Re(w)= + o0, we know
that

w'(z) > 1(Re(z) >+ with 0<o=Sy=<mn-—o: ®
see e.g. [8], p. 87)
sup |u(x +iy,) —u(x+iyy)l >0 9)

O0<yi,y2¥n

(x— +o0: thisis implied by e.g. [3], p. 629 or [8], p. 92).
From (8), (9) and u,,, —u,=d>0 (all n), it follows that (ot,+; —o,)/(Up+1—Uy)
tends to 1 as n — o0 and so we eventually have «, , ; —,=d/2 whence

Y elel < 4(d) (10)

n=1
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where A (d) denotes some positive constant depending only on d. Let &, be the real
number for which |x,—&,]=4, and no points of I, lie between «, and &,. Define
B.. 9., 8, analogously. Then &, ., ; — &, =d/2 eventually and so

]

1
Z cosh(o; — &,) — 1

j=1
J#n

<A@d). (n=1,2..) (11)

Similar results to (11) holding for the 8;, y;, 6.
We also need ([9], Lemma 1)

Aoty = Buls Ay Hvw = 8al <4 (n=1,2,...). (12)

where A4 is some absolute constant.

LEMMA 1. (i) u(p, + in/2) —u(B,) = 7—t1—(v,,+1 —v,) log4,

[>)

o1, + ) 2 : ! ) (n —c0)
( a Z j(cosh(ﬁj——ﬁ,,) -1t cosh(a; — @,) — 1) " ’

j=1
j#n

.. 1
(11) u(?n + ”t) —u (yn + 1712/2) =~ (U:H"l - Ul,l) 10g ln
T

o2 A ! ! (n =)
+ ("+Z j(cosh(yj-?,,)-l+cosh(6j—-5,,)-1)) " '

j=1
Jj¥n

Proof. We prove (i), (ii) being similar. From (4), we obtain

n/2
R
d 5 2ﬂn+ 25
_ 1 ZJ o), ( . —-e2e’"+g)d€ 13

=11

RN dv(¢ + in) e 4 e

2 X J 4 log(ez"" + e + 2e‘+”") ds.
ji=11y
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dv (&) et (dv @) sty
Now — J- lo ((e Bn)z)df— j 7 log|e* ™% — 1| d¢
In

r

_ 1) 228w
2J ac log(1+e ) dé

In

E=PBn _ 1
= (Vp+1 — v,) log 4, +J d(;) (le . |) dé

In

dv(£) 2(3-Bn)
J‘ Qe log(1+e ) dE.

In

If £e1,, then (12) shows that A ! |4~ — ]| takes values lying between two absolute
positive constants. Also 1<1+e2¢~# <] te4 independently of » and so the con-
tribution to the nth term in the first sumin (13) is

(vn+1 - vn) logln + O(A’n) (n _’OO)

If j#n, then for (€1, and as n — o0,

2P 4 o2 1 1
log( T T )=log(1+ 5 )< %
e2Pr 4 26 — et T hn cosh(¢ —B,)—1/ cosh(¢—-p,)—1
o(1)
~cosh(B; - ) — 1

The logarithm in the integrand of the second sum of (13) can be similarly estimated
and combining our remarks we obtain

o0

u(B,,+%) u(B,) = (v,,+1 vn)logl,.+0(2msh(ﬁjl1 B,,)—1H")'

_]*n (n-*OO)-
Similarly
in 1 &
8+ — | — (&) = = (Vys1 — v,) log 4, + O : )
u("+2) u(&,) n(vn+1 v) log 4, + (Z cosh(ozj—&n)'“1+ )
i=1
j#n (n'—)w)-

These two relations enable us to deduce (i) since the difference between u(ﬁn +in/2)
and u (&, +in/2) is approximately that between &, and j, (by (8)) which is O(4,) by (12).
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LEMMA 2. Asn—o0,

Bu=Ya =" {orss = 0+ Oy = )} 1082, + Ol + £,

where X, denotes the four sums which appear in Lemma 1, andlim,,_, , u,=1.

Proof. Let I'=T,ul',uI'y where I',(1<k<3) are straight line segments in X
joining respectively g, to B,+in/2; B,+in/2 to y,+in/2; y,+in/2 to y,+in. The
change in u(z) as z describes I" is 0. From (8),

ol ) = ot
u(?n"’?) u(ﬂn"— 2)"'#71 (Yn ﬁn)

where u, — 1 as n—00. Now Lemma 2 follows from Lemma 1.
4. Continuation of proof of Theorem

Suppose x, satisfies max (o, By, ¥y, 0,) <X, <min(y4+1, By+15> Pv+15 Oy+1). Then
all the integrals in (7) may be estimated by

0

O(Z exp(lx):— ,.|))

n=1

which is bounded independently of x,, by (10). Using (12) we find

nu(x, + in/2) — nx, = (0,41 — ) x, + Zv: {Bs(Vyr1 —v,)
"= (14)
~Pu(Uprr =)} +O(L+ X A7),
n=1

Now B, (vn+1—a) = ¥n(vp+ 1 —vy) is equal to

(ﬁn - Yn) (vn+ 1 vn) - 'yn(en+ 1= on) and (ﬂn - ’Yn) (v:n+ 1 vrll) - ﬂn(0n+ 1~ On) .

We substitute the first of these expressions if |v,,, —v,| =4, and the second otherwise.
Noting that (v,., —v,+v,+,; —v;) has, if not zero, the same sign as the v-difference
with absolute value 4,, we obtain from (14) and Lemma 2,

v

7u"(xZ + 171'/2)"‘ X2 =(Gv+1 - ﬂ)xZ + Z %Ivn+1 — U, + v:l+1 - U::l /‘ln log)“n

n=1

=Y (i1 —0)+O(L+ X 224 Y (AZ),
n=1 n=1 n=1
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where t, is B, if |v, +; — v,;| <A, and y, otherwise. Thus
nu(x, + inf2) — nx, = (x; — ,) (0,41 — @)

v

- Z a [Og41 = Up + Upyq — 0| A, 10g 4,
T

n=1

¥ Z (tres =1 (Oes — 1)

v

oo f 1+ o).

5. Estimationof 7, , —¢,

Let T, be either g, or y, +in according to whether #, is §, or y,. Then
th+1
Oou(x + in/2
Upp1 — U, = J —‘E'—-'/—)dx
0x

+nu(tn + i7'C/2) - u(Tn) + u(Tn+1) - u(tn+1 + 171'/2)
From (5),

th+1 th+1

i J ou(x ;—xin/Z) e J {01 Z Jdv(c)( ezxefezc) 2

dv(§) &
Z J dé e2x+e2€d€

j=n+11;
- dv (€ + in) e?*
+ Z J dé (1 -er_'_eZ{) dé
j=11y
3 dv(E+in) [ €%
L) )
j=n+11y
d
= 9n+1(tn+1 t )+ Z {j 1;(56)

j=1 I

1+ez(§ tn)
X log(l S2G- ‘n+1)) dg

(15)

(16)

(17)



Comparison Domains for the Problem of the Angular Derivative 107

dv(é +in 1+ 267
- ( )log R dé
d& 1+ e n+1
Iy
1 dv (&) 1+ e*=9
+5 2 ” T log(*wl PPEICNEr dg (17)
j=ntt1 Iy
dv(é+ in 1+ &*t9
- ( )log 2= | 96
dé 1 4 e**!
Ij'
If1<j<n, then
d 1+ 2(&—t,) d + » 1+ez(¢"‘n)
_BSQ log "‘—i—:—— df - Mlog 2(E—tnh+1) df
dé 1 + 2671 d¢ 1+e Atk
K 2ty
14 %7t
= IOg(l + eZ(aj—th)).(ej - 9j+1)
1+ez(¢—t,,) 1+ez(a,—tn+x) 18
+ 0<ﬁ.j g:lljlgj’ 108(1 +e2(aj—z,,)'1 +e2(¢—tn+1)>) (18)

A logh;t 4+ %)
=(w"j_w"+1’i)(9i—0j+1)+0(/11- max(-l > J

exp(2o; — t,])°
Ajeylog Ay + 2}:-}))
exp(2lo; — t,44])

where ,;=log (1 +e~21%-"™I), since a;<t, if j<n and n is large enough. If j=r and
a, < t,, then (18) holds before and if «, > ¢, we introduce an error of order of magnitude
at most A2 log A, * +4,%. in the first term in (18) which can be accommodated by the
second term. Thus (18) is valid if 1<j<n. A similar calculation shows that the jth
term in the second sum in (17) can also be estimated by the expression in (18).

Thus, from (16), (17), (18), we find as n — o0,

n {upey — uy + u(tyeq +inf2) — u(t, + in/2)

bhor — by = )
n+1

1 00
—u(T,.) +u(T)} - T Z (nj — @psy, ;) (8; — 0;11) (19)
i=1

[ o]

A; logllj_l + 25 A1 loglj;ll + 241
+ 0 }»j maX 9 -
eXP(ZI“j —t,])’ exp(2 loc; — 24 )

Jj=1
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6. Completion of proof of Theorem

From (15)5 (19) we obtain for max (dv, ﬁv, Pvs 5v)<x2 <min (av+ls ﬁv+1’ Pv+1s 5v+l),

v

. 1
nu(xy + inf2) — nx, = (x5 — 1,) (0,41 — 7) + - z P | On 4 1

n=1
v—1
n—0,
_vn+v:t+1—vr,1l }'nlog'{n_n Z ( +1)(un+1—un)
o 0n+1

v—1 o

-2, ) (i) e
] (5

n=1

—u(11,+1)+u(T,.))+0(1 + Z As + z (&.&:))
vo( L)

1
Ajr1 IOSI

=)
- n+1|) .

wn+1,j) (91 - 0

j+1)

)(u(t,,+1 + inf2) — u(t, + in/2)

n=1 j=1

j+1

exp(2|a

v—1 o

!ZZ(«» 0re1,) (0 - )()

n+1 — T

1
Z 2 ( i;log -+ Z;
2 (00r1 — i,
A Y ey

0,—n

[o-snf] -l
rolt) o5
] ) e

B0rey T

0,

n+1

01_75
0,

J=

Z 22.1-(1)1}' =}
j=1

(20)

)
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since |0;—0;.1]|<24;. But w,;~exp(—2|a;~1,]) (In—j] > 0) and so the single sums
converge. A simple calculation on the sum over j (using 24,4;< A% +12) shows that

v—1 o

v—1
Y, Y Adjw,; is O ( Y Af) + 0(1),(v > ). Similarly, using (11),
=1j=1 n=1

:; (AZ) is O (g A,f) + o(1), (v »0).

Next

v—1

Z (9 — ”) Wty 1 + in/2) = u(t, + in)2) — u (T, ) + u(T)

=n Z (0,41 (u(ty + im)2) — u(tyyy + in/2) + u(T,,,) — u(T,))}

+ [u(t, + in/2) — u(T)] + [u(Ty) — u(ty + inf2)]

v—1

=nZ(61— ! )(u(T,,)——u(t,,+in/2))+O(l) (v > 0)

n 0n+1

- _ |0n+1 g_];
0 0n+1 " A’

+0<1+212 Z(ix)) (v > ),

taking the part of Lemma 1 for which the v-difference is 4,,.
Finally in our discussion of (20) we look at the last term. This is bounded by

[s) v—1
1 1 16,41 — 7l
A%1 ,,1 lo
Zma"( BRI gi,-ﬂ) Z exp(2 min(la; — 1), [&; — tre 1))
A 21)
DY
+0(Z Z ( 2|aj—-t,.| 2|ajj"tn+1|))
n=1j=1

If j< v, the coefficient of A7 log 1/4; in the first term of (21) is at most

2 10,41 — 7|
exp (2 min(|o; — t,l, Jot;— 1 — tl, Jor; — tnials lotj— g — ths 1))

n=1
a function of j which tends to 0 as j — co.

[e]
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The total contribution to the first term in (21) from the terms with j> v is bounded
independently of v. A typical triple sum in the second term of (21) is

v=1 o

Z 2 Z exp (2[a; — t,])- (cosh(a 8;) — 1) (22)

n=1 j=1 m=1
m#j

and we now show that thisis O(}»Z1 42) + O (1), O(1) independent of v as v — co.
By using (8), (9) as in section 3 we find that

exp(2la; — 1,) = A exp(lj — nl d)
cosh(a,, —&;) — 1= Aexp(lm — jldf2) (m# ))
where A denotes a positive absolute constant which need not necessarily be the same

each time it occurs.
Thus (22) is of order of magnitude at most

v—=1 o v=1 o
2 Z Z 7= nra =717z Z Z X 7= nldelm a7z - 23)
n=1 j=1 m=1 n=1 j=1m=1

The first triple sum in (23) is bounded by

v—1 o0 v—=1v—1 v—1 o

o] T amsof) T3 sl a0

If g= v, then the coefficient of ,12 in the second triple sumin (23) is

v—1v-1 v—1 o

5 D oretemasno s

n=1 j=1 n=1 j=v

@

A Z 1 < A(d) A(g—v+1)  A(d)

V1A la=j1a2 = J@=v+1)dj2 @ v+ a2 ga—v¥na’

j=v

since |g—j| +|j—v+1|=q—v+1 if v<j=Zgq.
Ifg<v, lf has coefficient

v—1 o

X 2 la— Jld/2+|f "IdSA(d)E e jld/z—A(d)

n=1 j=1
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Thus the triple sum in (23) (and so expression (22)) is bounded by

A(d)(Z 2+ Z e ”v?ii.?fz) < 4(d) Z 2+ A(d).

Similarly for each of the triple sums in the second term of (21).

Thus (20) gives
mu(xy + inf2) — nxy =(x, — 1,) (0,41 — )
v—-1
1 {u,
- Z Ay log — {ﬂ [Un41 = Un + Vpsq — vy
A (T
n=1
Bn "Bn My
+m " # — |oy11 — 0y + 054 — 0] 4, log4,
0n0n+1 T
v—-1 v—-1 v
n—4, ! 1
-7 P Ny —u) + O 1+ +0 e, A2 log — |.
0n+1 l"
n=1 n=1 n=1

where ¢, — 0(n—o0) and £”,Z | denotes a sum which is bounded by

A(d) ii A2+ A(d).

Either |v,,; —v,+V,4 1 —v,| o1 |0,,,—0,| is at least A, and both are less than 24,. Also
0,0, +1 — n*(n—0), so we obtain

v—-1
0,,, — 1 1
u(x, +inf2) — x, =(x, — t,) (~—+17—t-_7—z) = Z @A log)»—
n=1 s (24)
Z (m— "+l)(u,,+1——u,,)+0(1+2),
n+1 ey

where 4 <@, <3 for all n sufficiently large. Also (24) is valid whenever o, <x,<a, 44
using (9), and the first term on the r.h.s. of (24) is, in absolute value, no greater than
2ln—0,.40, " (4,4 —u,) if v is large enough. Suppose now that S has an angular
derivative at Re(w)= +oo. In particular, this implies that u(x,+in/2)—x, has a
finite limit as x, — 00. Thus if either (1) or (2) is a convergent series then it is necessary
that the other series also converges.

To show the convergence of (1) or (2) implies that the convergence of the other
sum is sufficient for S to have an angular derivative at Re(w)= 4o we note that in
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either case (24) implies that
u(xy, +inf2) —x,=0(1) (x, »0). (25)

Since we are assuming the convergence of (1) we may apply theorem 3 of [1] to deduce
from (25) that

lim (u(x + iy) — x)

X~ o0

exists finitely for 0 <o <y <m— o, i.e. S has an angular derivative at Re (w)= + co0. This
completes the proof of the theorem.
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