Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 46 (1971)

Artikel: On p-equivalences and p-universal spaces

Autor: Mimura, Mamoru / Toda, Hirosi

DOI: https://doi.org/10.5169/seals-35507

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 20.08.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

On p-equivalences and p-universal spaces

MAMORU MIMURA and HIROSI TODA

Introduction

Throughout this paper we work in the category \mathscr{C} of simply connected, finite CW complexes.

Let p be a prime or zero. Denote $Z_p = Z/pZ$ for $p \neq 0$ and $Z_0 = Q$. A space X is p-equivalent to a space Y if there exists a map $f: X \to Y$ such that f induces isomorphisms: $H^*(Y; Z_p) \cong H^*(X; Z_p)$. Then f is called a p-equivalence. It is not known if p-equivalence is an equivalence relation, in particular, if it satisfies symmetricity.

Let us recall that a space K is called *p-universal* [6] if, for any given *p*-equivalence $k: X \to Y$ and for an arbitrary map $g: K \to Y$, there is a map $h: K \to X$ and there is a *p*-equivalence $f: K \to K$ such that the following diagram commutes up to homotopy:

$$\begin{array}{ccc}
X & \xrightarrow{k} & Y \\
\downarrow h & & \uparrow g \\
K & \xrightarrow{f} & K
\end{array}$$

or equivalently, if, for any given p-equivalence $k: X \to Z$, and for an arbitrary map $g: X \to K$, there is a map $h: Y \to K$ and there is a p-equivalence $f: K \to K$ such that the following diagram commutes up to homotopy:

$$\begin{array}{ccc}
X & \xrightarrow{k} & Y \\
\downarrow & & \downarrow & h \\
K & \xrightarrow{f} & K
\end{array}$$

Thus, for a given p-equivalence $f: X \to Y$, if one of X and Y is p-universal, there exists a converse p-equivalence $Y \to X$, namely symmetricity holds, and hence p-equivalence is an equivalence relation in the category of p-universal spaces.

The paper is organized as follows: We show that p-universality is "preserved" under a 0-equivalence. More precisely we prove in §1.

THEOREM 1.2. Let $f: X \to Y$ be a 0-equivalence. If X is p-universal, so is Y.

As corollaries of this theorem, we can see that an H-space mod 0 and a co-H-space mod 0 are p-universal for every prime p and for p=0. Some sufficient conditions for p-universality are given in §2.

THEOREM 2.1. Let p be a prime or zero. Let K be p-universal. Suppose $\pi_n(K) \otimes Q = Q$ or 0. Then $K \bigcup_{\alpha} e^{n+1}$ is p-universal.

THEOREM 2.5 Let X satisfy $H^*(X; Q) \cong \bigotimes_i Q[x_i]/\{(x_i)^{n_i+1}\}$. Then X is p-universal for every prime p and p=0.

It is shown in §3 that any 3-cell complex is p-universal for any prime p and p=0. The last section is devoted to show that there is a four cell complex which is not p-universal. At the same time we show that "p-equivalence" is not an equivalence relation in the category \mathscr{C} .

In what follows, a map $f: L \to K$ is often identified with its homotopy class $\{f\} \in [L, K]$. So "the diagram commutes" reads "the diagram commutes up to homotopy". \mathcal{C}_0 denotes the class of finite abelian groups.

§ 1. 0-equivalence and p-universality

THEOREM 1.1. Let p be a prime or zero. Let $K \in \mathcal{C}$ and L its subcomplex with $H_*(K, L; Z)$ finite. If L is p-universal, so is K.

Proof. The case p=0 is obvious by Theorem 3.2 of [6], since the inclusion $L \to K$ is a 0-equivalence.

Let p be a prime for the rest of the proof. Let M(G, n) be a Moore space of type (G, n-1). Put $M_r^n = M(Z_r, n-1)$ for simplicity. Suppose that $H_r(K, L; Z)$ is trivial except $r = n_1, n_2, ..., n_k$ with $n_1 < n_2 < --- < n_k$ and that $H_{n_i}(K, L; Z) \cong G_i$ a finite group. Then by [4] there is a homology decomposition: $L = L_0 \to L_1 \to L_2 \to --- \to L_k = K$, where $L_{i-1} \to L_i$ is a cofibration inclusion with a cofibre $M(G_i, n_i)$. So by the mathematical induction it suffices to show the theorem for the case $K = L \cup_{\alpha} CM_r^n$ with (r, p) = 1 or with $r = p^s$, since $M(A + B, n) = M(A, n) \lor M(B, n)$ for any two abelian groups A and B. Let q be any given prime different from p.

Case 1. (r, p)=1. By (b) and (c)' of Theorem 2.1 of [6] there exist p-equivalences f, f' and $f'': L \to L$ such that $f *H*(L; Z_r)=0$, $f'_**1=0$ on $\pi_{n-1}(L)*Z_r$ and f''_* $\otimes 1=0$ on $\pi_n(L)\otimes Z_r$. We may assume f=f'=f'' by taking their compositions if necessary. From the Puppe exact sequence associated with the cofibering:

$$S^{n-1} \xrightarrow{r_i} S^{n-1} \xrightarrow{i} M_r^n \xrightarrow{\pi} S^n,$$

we have the following exact and commutative diagram:

$$0 \to \pi_{n}(L) \otimes Z_{r} \xrightarrow{\pi^{*}} [M_{r}^{n}, L] \xrightarrow{i^{*}} \pi_{n-1}(L) * Z_{r} \to 0$$

$$\downarrow f^{*} \otimes 1 \qquad \qquad \downarrow f^{*} \qquad \qquad \downarrow f^{*} * 1$$

$$0 \to \pi_{n}(L) \otimes Z_{r} \xrightarrow{\pi^{*}} [M_{r}^{n}, L] \xrightarrow{i^{*}} \pi_{n-1}(L) * Z_{r} \to 0$$

$$(*)$$

Let $\alpha \in [M_r^n, L]$. Then the relation $i^*f_*\alpha = (f_**1)$ $i^*\alpha = 0$ implies $f_*\alpha = \pi^*\alpha'$ for some $\alpha' \in \pi_n(L) \otimes Z_r$. Also $(f^2)_*\alpha = f_*(\pi^*\alpha') = \pi^*(f_*\otimes 1)\alpha = 0$. So we have an extension $g: L \bigcup_{\alpha} CM_r^n \to L$ of f^2 . Since the inclusion $i: L \to L \bigcup_{\alpha} CM_r^n$ is a p-equivalence, ifg is a p-equivalence satisfying $(ifg)^*H^*(L \bigcup_{\alpha} CM_r^n; Z_q) = 0$. By Theorem 2.1 of [6], $L \bigcup_{\alpha} CM_r^n$ is p-universal.

Case 2. $r=p^s$. Since f is a p-equivalence, $f_*\otimes 1$ and f_**1 are automorphisms in the diagram (*) with $r=p^s$. Then f_* is an automorphism of a finite group $[M_r^n, L]$ and satisfies $(f^s)_* = (f)_*^s = 1$ for some integer s. So we have a commutative diagram

$$M_r^n \xrightarrow{1_M} M_r^n$$

$$\downarrow \alpha \qquad \qquad \downarrow \alpha$$

$$L \xrightarrow{f^s} L$$

and this defines an extension $g: L \cup CM_r^n \to L \cup CM_r^n$ of f^s which is a p-equivalence. Since $i^*: H^*(L \cup_{\alpha} CM_r^n; Z_q) \cong H^*(L; Z_q)$ and since $g^*H^*(L \cup_{\alpha} CM_r^n; Z_q), L \cup_{\alpha} CM_r^n$ is p-universal by Theorem 2.1 of [6]. Q.E.D.

More generally we have

THEOREM 1.2. Let p be a prime or zero. Let $f: X \to Y$ be a 0-equivalence. If X is p-universal, so is Y.

By the mapping cylinder argument one may regard X as a subcomplex Y. Then $H_*(Y, X; Z)$ is finite. Theorem 1.2 follows from the former one.

The converse of Theorems 1.1 and 1.2 seem plausible, but we do not know the proof. However the following is true.

THEOREM 1.3. Let $f: X \to Y$ be a 0-equivalence. If Y is p-universal as well as q-universal with $p \neq q$, so is X.

Proof. Case 1. p=0 or q=0. Then there exists a converse 0-equivalence $g: Y \to X$ by Theorem 3.2 of [6]. So we can apply Theorem 1.2.

Case 2. p and q are different primes. By Proposition 2.10 of [6], Y is 0-universal, and hence there exists a converse 0-equivalence $Y \rightarrow X$. Again we can apply Theorem 1.2. Q.E.D.

According to Theorem of [2] the following four conditions are equivalent:

- (A) X is an H-space mod 0.
- (B) There exists a 0-equivalence $f: \prod_{i=1}^k S^{2n_i+1} \to X$.
- (C) All k-invariants are of finite order in the Postnikov decomposition of X.
- (D) $H^*(X; Q) \cong \wedge (x_{2n_1+1}, ..., x_{2n_k+1}).$

The following three conditions are equivalent by Theorem 2.5 of [1]:

(A)' X is a co-H-space mod 0.

- (B)' There exists a 0-equivalence $f: X \to \bigvee_{i=1}^{k} S^{n_i}$.
- (C)' All k'-invariants are of finite order in the homology decomposition of X.

COROLLARY 1.4. If X satisfies one of the seven conditions in the above, X is p-universal for every prime p and for p=0.

- *Proof.* (i) If X satisfies (B), by Theorem 1.2 X is p-universal for every prime p and p=0. For $\prod_{i=1}^k S^{2n_i+1}$ is p-universal for every prime p and p=0 by Theorem 3.8 and Corollary 4.3 of [6].
- (ii) Suppose that X satisfies (B)'. $\bigvee_i S^{n_i}$ is p-universal for every prime p and for p=0 by Theorem 3.8 and Corollary 4.3 of [6]. So X is p-universal for every prime p and for p=0 by Theorem 1.3. Q.E.D.

EXAMPLE 1.5. All complex and symplectic Stiefel manifolds are p-universal for every prime p and for p=0.

PROPOSITION 1.6. Let p be a prime or zero.

- i) An H-space mod p is an H-space mod 0.
- ii) A co-H-space mod p is a co-H-space mod 0.
- *Proof.* (i) Let X be an H-space mod p with a multiplication $\mu: X \times X \to X$ and a p-equivalence $h: X \to X$ such that $h \simeq \mu i_1 \simeq \mu i_2$ where i_1 and i_2 are the canonical inclusions. Then by Proposition 2.9 of [6] h is a 0-equivalence. Hence X is an H-space mod 0.
- ii) will be proved similarly.

Q.E.D.

THEOREM 1.7. Let q be a prime or zero.

- i) An H-space mod q is p-universal for every prime p and for p = 0.
- ii) A co-H-space mod q is p-universal for every prime p and for p = 0. This follows from Corollary 1.4 and Proposition 1.6.

§ 2. A sufficient condition for p-universality

THEOREM 2.1. Let p be a prime or zero. Let K be p-universal. Suppose $\pi_n(K) \otimes Q = Q$ or 0. Then $K \bigcup_{\alpha} e^{n+1}$ is p-universal for any $\alpha \in \pi_n(K)$.

Proof. (i) The case p is a prime. We decompose $\pi_n(K)$ as follows:

$$\pi_n(K) \cong F \oplus T_p \oplus T,$$

where F is the free part, (hence F=Z or 0), T_p the p-torsion part, and T the other torsion part of $\pi_n(K)$. There exist integers r and s such that $rT=p^sT_p=0$. By (C) and (C)' of Theorem 2.1 of [6], for a given prime q different from p, there exists a p-equivalence $g:K\to K$ such that g^* and $g_*\otimes 1$ are trivial on $H^*(K; Z_q)$ and on $\pi_n(K)\otimes Z_{rq}$

respectively. Note that $g_*(T)=0$ and $g_*(F) \subset F \oplus T_p$, since we have $T \otimes Z_{rq} = T$. As $g_* \otimes 1$ is an automorphism of a finite group $\pi_n(K) \otimes Z_p s$, there exists an integer t such that $(g^t)_* \otimes 1$ is an identity on $\pi_n(K) \otimes Z_p s = F \otimes Z_p s + T_p \otimes Z_p s$, where $T_p \otimes Z_p s \cong T_p$. So we have $g_*^t \mid T_p = \text{identity}, g_*^t(T) = 0$ and $g_*^t(F) \subset F$. Let u be a generator of F. $(u=0 \text{ if } F=\{0\}.)$ Put $g_*^t(u)=ku$ with k an integer. Then k is a multiple of $k \in T$ and $k \in T$. An arbitrary element of $\pi_n(K)$ is of the following form: $\alpha = nu + y + z$ with an integer $n, y \in T_p$ and $z \in T$. So we have

$$(g^{t})_{*}(\alpha) = knu + y + z$$

$$= knu + ky + kz$$

$$= k\alpha$$

That is, the following diagram is commutative:

$$S^n \xrightarrow{k \iota_n} S^n$$

$$\downarrow^{\alpha} \qquad \downarrow^{\alpha}$$

$$K \xrightarrow{\sigma^t} K$$

So the map $\bar{g}: K \bigcup_{\alpha} e^{n+1} \to K \bigcup_{\alpha} e^{n+1}$ obtained from the commutativity of the diagram is a *p*-equivalence and satisfies (C) of Theorem 2.1 of [6], and hence $K \bigcup_{\alpha} e^{n+1}$ is *p*-universal.

(ii) The case p = 0. The proof is similar and easier, and so omitted Q.E.D.

COROLLARY 2.2. Any simply connected 2-cell complex is p-universal for every prime p and for p=0.

Let $(S^m)_{\infty}$ be the James' reduced product space of S^m which is homotopy equivalent to ΩS^{m+1} and let $(S^m)_n$ be the nm skeleton of $(S^m)_{\infty}$.

LEMMA 2.3. Let n be even. Then $\pi_i((S^m)_n)$ is finite for $i \neq m$, (n+1) m-1 and $\pi_{(n+1)m-1}((S^m)_n)/(\partial i)$ is finite where ∂i is the attaching class of $e^{(n+1)m}=(S^m)_{n+1}-(S^m)_n$. Thus $(S^m)_n\bigcup_{\alpha}e^k$ for any $\alpha\in\pi_{k-1}((S^m)_n)$ is p-universal for any prime p and p=0. In particular $(S^m)_{n+1}$ is p-universal for any prime p and p=0.

Proof. Consider a map of $(S^m)_{n+1}$ onto $S^{(n+1)m}$ smashing $(S^m)_n$ to a point and let $h:((S^m)_{\infty},(S^m)_n)\to ((S^{(n+1)m})_{\infty},*)$ be its combinatorial extension. Then $H^*((S^m)_{\infty};Q)\cong H^*((S^{(n+1)m})_{\infty};Q)\otimes H^*((S^m)_n;Q)$ and by the same argument as in the proof of Theorem 2.4 of [8] we can get that h induces a \mathscr{C}_0 -isomorphism $h_*:\pi_i((S^m)_{\infty},(S^m)_n)\to\pi_i((S^{(n+1)m})_{\infty},*)$ for all i. Since $\pi_i((S^m)_{\infty})\cong \pi_{i+1}(S^{m+1})$ and $\pi_j((S^{(n+1)m})_{\infty})\cong \pi_{j+1}(S^{(n+1)m+1})$ are finite unless i=m and j=(n+1)m respectively, we have easily that $\pi_i((S^m)_n)$ is finite for $i\neq m,(n+1)m-1$ and $\pi_{(n+1)m-1}((S^m)_n)/\mathrm{Im}.h_*$ is finite, where $\mathrm{Im}.h_*$ is generated by ∂i . Applying Theorem 2.1 inductively we have that $(S^m)_n$ is p-universal and so is $(S^m)_n \bigcup_{\alpha} e_k$ for any α . Q.E.D.

LEMMA 2.4. If $i \neq (n+1)m$, there exists a 0-equivalence h of $((S^m)_{\infty}, (S^m)_n)$ into itself such that $h_* = 0$ on $\pi_i((S^m)_{\infty}, (S^m)_n)$.

Proof. Since $\pi_m((S^m)_{\infty}, (S^m)_n)=0$, we may assume that i is different from m. Since $(S^m)_{\infty}$ is a free monoid complex, a map of S^m of degree q is extended over a cellular map $h_q:(S^m)_{\infty}\to (S^m)_{\infty}$ such that h_q^* is an endomorphism of $H^{km}((S^m)_{\infty};Z)$ with degree q^k . By use of these maps h_q 's, $(S^m)_k$ is a 0-universal space by Theorem 1.1 of [6]. For given positive integers j, k and r there exists a 0-equivalence $h_{(k)}$ of $(S^m)_k$ into itself such that $h_{(k)*}\otimes 1=0$ on $\pi_j((S^m)_k)\otimes Z_r$. Remark that the map $h_{(k)}$ is given compositions of h_q 's as is seen in the proof of the theorem. Thus $h_{(k)}$ is defined on the whole of $(S^m)_{\infty}$. Let j=i-1 for k=n. By Lemma 2.3, $\pi_{i-1}((S^m)_n)$ is finite. Let r be the order of $\pi_{i-1}((S^m)_n)$, and then we have $h_{(n)}$ such that $h_{(n)*}\otimes 1=0$ and hence $h_{(n)*}=0$ on $\pi_{i-1}((S^m)_n)$. Similarly, for sufficiently large $N\left(e.g. N>\frac{i}{m}\right)$ we have $h_{(N)}$ such that $h_{(N)*}=0$ on $\pi_i((S^m)_N)$, and hence on $\pi_i((S^m)_{\infty})$. Put $h'=h_{(n)}h_{(N)}$, and consider the exact sequence:

$$\pi_i((S^m)_{\infty}) \stackrel{i_*}{\to} \pi_i((S^m)_{\infty}, (S^m)_n) \stackrel{\partial}{\to} \pi_{i-1}((S^m)_n).$$

For an arbitraty element $\alpha \in \pi_i((S^m)_\infty, (S^m)_n)$, the relation $\partial h'_*\alpha = h'_*\partial\alpha = h_{(n)*}(h_{(N)*}\partial\alpha) = 0$ implies the existence of $\beta \in \pi_i((S^m)_\infty)$ such that $i_*\beta = h'_*\alpha$. Then $h'_*h'_*(\alpha) = h'_*i_*\beta = i_*(h'_*\beta) = i_*(0) = 0$. Thus h = h'h' satisfies the required conditions. Q.E.D.

THEOREM 2.5. Let X satisfy $H^*(X; Q) \cong \bigotimes_i Q[x_i]/\{(x_i)^{n_i+1}\}$. Then X is p-universal for every prime p and p=0.

Proof. It is sufficient to show that there exists a map $f_i: X \to (S^{m_i})_{n_i}$ such that $f_i^*(u_i) = x_i$ up to non-zero coefficient for the fundamental class u_i of $H^{m_i}(S^{m_i}; Q)$, since the composite of the maps

$$X \xrightarrow{\Delta} X \times \cdots \times X \xrightarrow{\Pi f_i} \prod_i (S^{m_i})_{n_i}$$

is a 0-equivalence, and since $\prod_i (S^{m_i})_{n_i}$ is *p*-universal as a product of *p*-universal spaces by Lemma 2.3 and by Theorem 3.8 of [6]. For simplicity we omit the indexes of x_i , u_i , m_i , n_i and f_i .

If m is odd, then by the Serre's theorem [7] there exists a map $f: X \to S^m$ such that $x = f^*(u)$ up to non-zero coefficient. So we suppose that m is even. Consider the suspension SX of X and let $\sigma: H^i(X; Q) \to H^{i+1}(SX; Q)$ be the suspension isomorphism (i>0). Since m+1 is odd, there exists a map $F: SX \to S^{m+1}$ such that $\sigma x = F^*(\sigma u)$ up to non-zero coefficient. Consider the adjoint map $f_\infty: X \to (S^m)_\infty = \Omega S^{m+1}$ of F. Then $f_\infty^*(u) = \sigma^{-1} F^*(\sigma u) = x$. Let $g: (X, X^{(mn+m-1)}) \to ((S^m)_{n+N}, (S^m)_n)$ be a cellular approximation of f_∞ . Then it is sufficient to prove:

(*) If a map $g:(X, X^{(i-1)}) \to ((S^m)_{\infty}, (S^m)_n)$ satisfies $g^*(u) = x$ up to non-zero coefficient

for $i \ge m(n+1)$ and if $x^{n+1} = 0$ in $H^*(X; Q)$, then there exists a 0-equivalence h of $((S^m)_{\infty}, (S^m)_n)$ into itself such that hg is homotopic to a map $g':(X, X^{(i)}) \to ((S^m)_{N+n}, (S^m)_n)$.

The obstruction $\gamma(g)$ to deform g to a map g' belongs to $H^i(X; \pi_{i-1}((S^m)_{\infty}, (S^m)_n))$ and represented by the following cocycle;

$$c: C_i(X) = H_i(X^{(i)}, X^{(i-1)}; Z) \cong \pi_i(X^{(i)}, X^{(i-1)}) \xrightarrow{g_*} \pi_i((S^m)_\infty, (S^m)_n).$$

Assume that i=m(n+1), then $\pi_i((S^m)_\infty, (S^m)_n)\cong H_i((S^m)_\infty, (S^m)_n)$ and c is equivalent to $g_*\colon C_i(X)=H_i(X^{(i)}, X^{(i-1)}; Z)\to H_i((S^m)_\infty, (S^m)_n; Z)\cong H_i((S^m)_\infty; Z)$. Thus $\gamma(g)=g^*(\varepsilon)$ for a generator ε of $H^{m(n+1)}((S^m)_{n+N}; Z)$. Up to non-zero coefficient, $\varepsilon=u^{n+1}$ and $g^*(\varepsilon)=g^*(u^{n+1})=x^{n+1}=0$ in $H^{m(n+1)}(X; Q)$. Thus $\gamma(g)$ is of finite order, say q. The map h_q in the proof of Lemma 2.4 induces h_{q^*} having degree q^{n+1} on the m(n+1)-dimensional cohomology group, i.e., $h_{q^*}(\varepsilon)=q^{n+1}\varepsilon$. Then $\gamma(h_qg)=h_{q^*}\gamma(g)=h_{q^*}g^*(\varepsilon)=g^*(h_{q^*}\varepsilon)=q^{n+1}g^*(\varepsilon)=q^{n+1}\gamma(g)=0$, and hence (*) is proved for $h=h_q$.

Next let i > m(n+1), then by use of a 0-equivalence h in Lemma 2.4, we have that $\gamma(hg) = h_* \gamma(g) = 0$ and (*) is proved. Q.E.D.

COROLLARY 2.6. $H^*(X; Q) \cong \bigotimes_i Q[x_i]/\{(x_i)^{n_i+1}\}$ if and only if there is a 0-equivalence $X \to \prod_i (S^{m_i})_{n_i}$, $m_i = \deg x_i$.

This is a generalization of the result due to Arkowitz-Curjel that (D) implies (B) in §1.

EXAMPLE 2.7. The following spaces are p-universal for every prime p and for p=0.

- (i) The complex projective space $\mathbb{C}P^n$ for any $n \ge 1$.
- (ii) The quarternionic projective space QP^n for any $n \ge 1$.
- (iii) The Cayley projective plane Π .

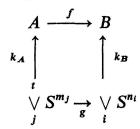
§ 3. Some further examples of a p-universal space

THEOREM 3.1. Let A and B be co-H-spaces mod 0. Let $f: A \to B$ be any map. If there is a 0-equivalence from the mapping cone C_f of f into Y, then Y is p-universal for any prime p and p=0.

Proof. As in §1, there exist 0-equivalences $h_A: A \to \bigvee_j^t S^{m_j}$ and $h_B: B \to \bigvee_i^r S^{n_i}$. Since $\bigvee_j S^{m_i}$ and $\bigvee_i S^{n_i}$ are both 0-universal, there are converse 0-equivalences $k_A: \bigvee_j S^{m_j} \to A$ and $k_B: \bigvee_i S^{n_i} \to B$. Consider the composite $a_j: S^{m_j} \subset \bigvee_j S^{m_j} \to A$ and the homotopy class $f_*\{a_j\}$ of $\pi_{n_j}(B)$. The cokernel of the homomorphism $k_{B^*}: \pi_{m_j}(\bigvee_i S^{n_i}) \to \pi_{m_j}(B)$ is finite, since k_B is 0-equivalence.

Hence there exists a number N_j such that $f_*N_j\{a_j\}$ is in the image of k_{B^*} . Put

 $g = \bigvee_{i} a_{i} N_{i} : \bigvee_{i} S^{m_{i}} \rightarrow A$. Then we have a commutative diagram:



It follows from the commutativity that there exists a map $C_g \to C_f$ which is a 0-equivalence. So, if C_g is p-universal, so is C_f , and X is p-universal too. Thus it suffices to show that C_g is p-universal for any prime p and p=0. We put $\alpha_j = \{g \mid S^{m_j}\}$. By the well known theorem of Hilton there exists an integer N_j such that $N_j\alpha_j$ is a linear combination of some higher Whitehead product $[\iota_1, \dots, \iota_s]$, where ι_j is the homotopy class of the inclusion $S^{k_j} \to \bigvee_i S_{n_i}$ and $\{k_1, \dots, k_s\}$ is a subset of $\{n_1, \dots, n_r\}$. Note that $m_j = \sum_{e=1}^s (k_e - 1) + 1$. Then there exists a 0-equivalence from $M = \bigvee_{i=1}^r S^{n_i} \bigcup_g C(\bigvee_j S^{m_j})$ with $\beta = \bigvee_j N_j \alpha_j$ to $K = \bigvee_{i=1}^r S^{n_i} \bigcup_g C(\bigvee_j S^{m_j})$. By Theorem 1.1, K is p-universal if so is M. So we will show that M is p-universal. By the linearity of the higher Whitehead product, we have a commutative diagram:

$$\begin{array}{c}
\stackrel{s}{\vee} S^{m_j} \xrightarrow{\vee q^b_{j!j}} \stackrel{s}{\vee} S^{m_j} \\
\downarrow j=1 & \downarrow \\
\downarrow r & \downarrow r \\
\vee S^{n_i} \xrightarrow{\vee q^{a_{i!i}}} \bigvee_{i=1} S^{n_i}
\end{array}$$

where $a_i = n_i - 1$ and $b_j = m_j - 1$. By choosing a prime q different from p, we can see that the map $f: M \to M$ derived from the above commutative diagram is a p-equivalence and satisfies Theorem 2.1, (b) of [6] Q.E.D.

THEOREM 3.2. Every simply connected three cell complex $K=S^1 \cup e^m \cup e^n$, l < m < n, is p-universal for any prime p and p = 0.

Proof. Let $B = S^l \cup e^m$ and let $f \in \pi_{m-1}(B)$ and $\beta \in \pi_{m-1}(S^l)$ be the attaching elements of the cells e^n and e^m respectively. We devide into three cases:

Case 1: The order of β is finite. Let t be the order of β , then there exists a map $S^m \to B$ which is of degree t by smashing S^l . This map and the inclusion of S^l define a 0-equivalence $S^l \vee S^m \to B$. Then by Theorem 3.1, K is p-universal as a mapping cone of f.

Case 2: m=l+1. We may assume that β is non-trivial in $\pi_{m-1}(S^l) \cong Z$. Then $H^*(K; Q) \cong H^*(S^n; Q) = \bigwedge (x_n)$. Thus A is p-universal by Corollary 1.4.

Case 3: The order of β is infinite and $m \neq l+1$. By [7], if $m \neq l+1$ and $\pi_{m-1}(S^l)$ is infinite, then l=2m and we have an exact sequence:

$$\pi_{2l-2}(S^{l-1}) \to \pi_{2l-1}(S^l) \xrightarrow{H} Z$$
.

Since $\pi_{2l-2}(S^{l-1})$ is finite and $H([\iota_l, \iota_l]) = \pm 2$, there exist non-zero integers r and s such that $r\beta = s[\iota_l, \iota_l]$. Let $C = S^l \cup e^{2l}$ be a mapping cone of $s[\iota_l, \iota_l]$, and then there exists a 0-equivalence $B \to C$ which extends the identity of S^l and is of degree r on S^{2l} . Similarly we have a 0-equivalence $(S^l)_2 \to C$; where $(S^l)_2$ is a mapping cone of $[\iota_l, \iota_l]$. Thus $\pi_{n-1}(B)$ and $\pi_{n-1}((S^l)_2)$ are \mathscr{C}_0 -isomorphic. By Lemma 2.3 $\pi_{n-1}((S^l)_2)$ is finite or it has only one free summand Z. The same is true for $\pi_{n-1}(B)$. Thus K is p-universal by Corollary 2.2 and Theorem 2.1.

COROLLARY 3.3. Any simply connected sphere bundle over sphere is p-universal for every prime p and p=0.

§ 4. A counter example for p-universality and for the symmetricity of p-equivalence

Consider a complex $L = S^3 \vee CP^2$. Let (L, 3) be the 2-connective fibre space over L. We have a fibering: $S^1 \to (L, 3) \xrightarrow{p} L$, and hence we have the Gysin exact sequence: $--- \to H^{s-2}(L; Z) \xrightarrow{\Psi} H^s(L; Z) \xrightarrow{p^*} H^s((L, 3); Z) \to H^{s-1}(L; Z) \to ---$ where $\Psi(u) = uv$ for a generator $v \in H^2(L; Z)$. Thus we have $(4.1) \ H^i((L, 3); Z) \cong Z \ for \ i = 3, 4, 5$

=0 other wise.

Consider the inclusions $S^3 \subset L$ and $S^2 \subset L$ and denote by ι_3 and ι_2 their homotopy classes. Let $h: S^5 \to CP^2 \subset L$ be the composite of the Hopf map and the inclusion. Put $\omega = [\iota_3, \iota_2] \in \pi_4(L)$ the Whitehead product of ι_2 and ι_3 . By G. W. Whitehead [9], $\pi_i(S^3 \vee CP^2) \cong \pi_i(S^3) \oplus \pi_i(CP^2) \oplus \partial \pi_{i+1}(S^3 \times CP^2, S^3 \vee CP^2)$, and we see that the map $g_0 = \iota_3 \vee \omega: S^3 \vee S^4 \to S^3 \vee CP^2$ induces isomorphisms of π_i for i = 3, 4. Consider a lift $g: S^3 \vee S^4 \to (L, 3)$ of g_0 , then g induces isomorphisms of π_i and H_i for $i \leq 4$. Since $h: S^5 \to CP^2$ is a 2-connective fibering, the inclusion $i: CP^2 \to L$ and the projection $\pi: L \to CP^2$ induce $i: S^5 \to (L, 3)$ and $\bar{\pi}: (L, 3) \to S^5$ such that $\bar{\pi}I = \text{identity}$. Thus $I_*: H_i(S^5; Z) \to H_i((L, 3); Z)$ is a split monomorphism. Then $f = g \vee I$ induces an isomorphism $H_*(S^3 \vee S^4 \vee S^5; Z) \to H_*((L, 3); Z)$ and f is a homotopy equivalence. Obviously I is a lift of I. Going back to I, we have isomorphisms:

(4.2) $(\iota_3 \vee \omega \vee h)_* : \pi_i(S^3 \vee S^4 \vee S^5) \cong \pi_i(S^3 \vee CP^2) = \pi_i(L)$ for $i \neq 2$.

For example, $\pi_2(L) \cong Z$, $\pi_3(L) \cong Z$, $\pi_4(L) \cong Z \oplus Z_2$ and $\pi_5(L) \cong Z \oplus Z_2 \oplus Z_2$, and generators of each free part are ι_2 , ι_3 , ω and h respectively.

Consider a map $f': L \to L$ and put $f'_*i_2 = ri_2$ and $f'_*i_3 = si_3$. By the linearity of the Whitehead product, we have that $f'_*\omega = rs\omega$. Put $f'_*h \equiv th$ modulo 2-torsion. We consider i_2 and h in $\pi_5(CP^2)$ and replace f' by $f'' = \pi f'i$: $CP^2 \subset L \xrightarrow{f'} L \xrightarrow{\pi} CP^2$, then $f''_*i_2 = ri_2$ and $f''_*h = th$. Since $CP^3 = CP^2 \bigcup_h e^6$, f'' has an extension $F: CP^3 \to CP^3$ such that the degree of F^* on $H^6(CP^3; Z)$ is t. By the linearity of the cup product we have $t = r^3$. Thus we get

(4.3) $f'_{*}i_{2} = ri_{2}$ and $f'_{*}i_{3} = si_{3}$ imply that $f'_{*}\omega = rs\omega$ and $f'_{*}h \equiv r^{3}h$ modulo 2-torsion.

Let us consider the element

 $\alpha = [[\omega, \iota_3], \omega], \iota_3] + [[\iota_3, h], h] + [[\omega, h], \omega]$ of $\pi_{11}(S^3 \vee CP^2)$. For simplicity we put $\alpha_1 = [[\omega, \iota_3], \omega], \iota_3], \alpha_2 = [[\iota_3, h], h]$ and $\alpha_3 = [[\omega, h], \omega]$. The mapping cone of $q\alpha$ is denoted by K_q .

LEMMA 4.1. Let $f: K_1 \to K_1$ be a p-equivalence. Then $f_*: H_*(K_1; Z) \to H_*(K_1; Z)$ is the identity.

Proof. Denote by $f' = f \mid L: L \to L$. By (4.3) and by the linearity of the Whitehead product we have

 $(4.4) f'_*(\alpha) \equiv r^2 s^4 \alpha_1 + r^6 s \alpha_2 + r^5 s^2 \alpha_3$ modulo 2-torsion.

Let $f_*: H_{12}(K_1; Z) \to H_{12}(K_1; Z)$ be of degree t and consider the following diagram

$$\begin{array}{cccc}
\pi_{11}(L) & \xrightarrow{f_{\star}'} & \pi_{11}(L) \\
\uparrow^{\partial} & & \uparrow^{\partial} \\
\pi_{12}(K_{1}, L) & \xrightarrow{f_{\star}} & \pi_{12}(K_{1}, L) \\
\downarrow^{\mathscr{H}} & & \downarrow^{\mathscr{H}} \\
H_{12}(K_{1}, L; Z) \xrightarrow{f_{\star}} & H_{12}(K_{1}, L; Z) \\
\uparrow^{j_{\star}} & & \uparrow^{j_{\star}} \\
H_{12}(K_{1}; Z) & \xrightarrow{f_{\star}} & H_{12}(K_{1}; Z)
\end{array}$$

where j_* and the Hurewicz homomorphism \mathscr{H} are isomorphisms. Hence $f'_*(\alpha) = t\alpha$. It follows that $r^2s^4 = r^6s = r^5s^2 = t$. If r and s are non-zero, we get r = s = t = 1. Thus $f_*: H_i(K_1; Z) \to H_i(K_1; Z)$ is the identity unless $i \neq 4$. For i = 4 this is shown by use of the ring structure of $H^*(K_1; Z)$. Q.E.D.

Let q be a positive integer with (q, p)=1. Then the following diagram is commutative:

$$S^{11} \xrightarrow{q_{11}} S^{11}$$

$$\downarrow q_{\alpha} \qquad \downarrow \alpha$$

$$X \xrightarrow{1_{X}} X$$

So we obtain a p-equivalence $h: K_q \to K_1$. Suppose that K_1 is p-universal. Then by Theorem 3.2 of [6], there exists a converse p-equivalence $k: K_1 \to K_q$. Then $f = hk: K_1 \to K_q \to K_1$ is a p-equivalence and the degree of f_* on $H_{12}(K_1; Z)$ is a multiple of q. On the other hand, it follows from the above lemma that f_* is of degree 1. This is a contradiction. We have proved:

THEOREM 4.2. There exists a 4-cell complex which is not p-universal.

THEOREM 4.3. The p-equivalence is not an equivalence relation in the category of simply connected finite CW-complexes.

REFERENCES

- [1] M. ARKOWITZ and C. R. CURJEL, The Hurewicz homomorphism and finite homotopy invariants, Trans. Amer. Math. Soc. 110 (1964), 538-551.
- [2] —, Zum Begriff des H-Raumes mod F, Archiv der Math. XVI (1965), 186-190.
- [3] P. J. HILTON, On the homotopy groups of the union of spheres, J. London Math. Soc. (1955), 154-172.
- [4] —, Homotopy theory and duality (Gordon-Breach, 1965).
- [5] I. M. JAMES, Reduced product spaces, Ann. of Math. 62 (1955), 170-197.
- [6] M. MIMURA, R. C. O'NEILL and H. TODA, On p-equivalence in the sense of Serre Japanese J. Math. (to appear).
- [7] J-P. Serre, Groupes d'homotopie et classes de groupes abéliens, Ann. of Math. 58 (1953), 258–294.
- [8] H. Toda, Composition methods in homotopy groups of spheres, Ann. Math. Studies No. 49 (1962).
- [9] G. W. WHITEHEAD, A generalization of the Hopf invariant, Ann. of Math. 51 (1950), 192-237.

Kyoto University and Michigan State University;

Kyoto University and Northwestern University.

Received June 10, 1970