Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 46 (1971)

Artikel: On p-equivalences and p-universal spaces
Autor: Mimura, Mamoru / Toda, Hirosi

DOl: https://doi.org/10.5169/seals-35507

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 05.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-35507
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

87

On p-equivalences and p-universal spaces

MamorU MIMURA and Hirosi ToDA

Introduction

Throughout this paper we work in the category € of simply connected, finite CW
complexes.

Let p be a prime or zero. Denote Z,=Z/pZ for p#0 and Z,=Q. A space X is
p-equivalent to a space Y if there exists a map f: X — Y such that f induces isomor-
phisms: H*(Y; Z,)~H* (X;Z,). Then f'is called a p-equivalence. It is not known if
p-equivalence is an equivalence relation, in particular, if it satisfies symmetricity.

Let us recall that a space K is called p-universal [6] if, for any given p-equivalence
k:X— Y and for an arbitrary map g:K— Y, there is a map h: K— X and there is a
p-equivalence f: K — K such that the following diagram commutes up to homotopy:

X 25y
b Iz
K. . K

or equivalently, if, for any given p-equivalence k: X — Z, and for an arbitrary map
g:X - K, there is a map A: Y — K and there is a p-equivalence f: K — K such that the
following diagram commutes up to homotopy:

X 2,y
K. 7', K

Thus, for a given p-equivalence f: X — Y, if one of X and Y is p-universal, there
exists a converse p-equivalence Y — X, namely symmetricity holds, and hence p-equi-
valence is an equivalence relation in the category of p-universal spaces. :

The paper is organized as follows: We show that p-universality is ‘“preserved”’
under a 0-equivalence. More precisely we provein §1.

THEOREM 1.2. Letf:X— Y be a0-equivalence. If X is p-universal, so is Y.

As corollaries of this theorem, we can see that an H-space mod 0 and a co- H-space
mod 0 are p-universal for every prime p and for p=0. Some sufficient conditions for
p-universality are given in §2.
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THEOREM 2.1. Letp beaprime or zero. Let K be p-universal. Suppose n,(K)® Q =
Qor0. Then K\, e"* is p-universal.

THEOREM 2.5 Let X satisfy H*(X; Q)=®; Q[x1/{(x)"*'}. Then X is
p-universal for every prime p and p=0.

It is shown in §3 that any 3-cell complex is p-universal for any prime p and p=0.
The last section is devoted to show that there is a four cell complex which is not
p-universal. At the same time we show that “p-equivalence’ is not an equivalence
relation in the category .

In what follows, a map f:L— K is often identified with its homotopy class
{f}e[L, K]. So “the diagram commutes” reads “the diagram commutes up to
homotopy”. €, denotes the class of finite abelian groups.

§ 1. 0-equivalence and p-universality

THEOREM 1.1. Let p be a prime or zero. Let Ke ¥ and L its subcomplex with
H, (K, L; Z) finite. If L is p-universal, so is K.

Proof. The case p=0 is obvious by Theorem 3.2 of [6], since the inclusion L - K
is a O-equivalence.

Let p be a prime for the rest of the proof. Let M (G, n) be a Moore space of type
(G, n—1). Put M!'=M(Z,,n—1) for simplicity. Suppose that H,(K, L; Z) is trivial
except r=ny, n,, ..., m, with n, <n, <---<m, and that H, (K, L; Z)~ G, a finite group.
Then by [4] there is a homology decomposition: L=Ly—L; - L, —»>---—> L, =K,
where L;,_, — L; is a cofibration inclusion with a cofibre M (G, n;). So by the
mathematical induction it suffices to show the theorem for the case K=L |J,CM;
with (r, p)=1 or with r= p°, since M (A + B, n)=M(A4,n)\V M (B, n) for any two
abelian groups A and B. Let g be any given prime different from p.

Case 1. (r, p)=1. By (b) and (c)’ of Theorem 2.1 of [6] there exist p-equivalences
S, f" and f":L—L such that f*H*(L; Z,)=0, f4*1=0 on 7,_,(L)*Z, and fy
®1=0 on n,(L)®Z,. We may assume f=f'=f" by taking their compositions if
necessary. From the Puppe exact sequence associated with the cofibering:

Sn—l __"_’) Sn—l _i,M”l) S"
r bl
we have the following exact and commutative diagram:

0-m,(L)®Z,5 M), L] 5 m,_ (L)+Z, 0

Jf*@l lf* lf**l

0 m,(L)®Z, 5 [M", L15 m,_ (L) Z, — 0 (*)
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Let ae[M;, L]. Then the relation i*f,o=(fy* 1) i*a=0 implies f,a=n*a" for some
' en,(L)RZ,. Also (f2)sa=fx(n*a)=n*(f+®1)a=0. So we have an extension
g:L\J,CM]— L of f2. Since the inclusioni:L— L | J, CM; is a p-equivalence, ifg is
a p-equivalence satisfying (ifg)*H*(L\J,CM;; Z,)=0. By Theorem 2.1 of [6],
L, CM; is p-universal.

Case 2. r=p°. Since f is a p-equivalence, f,®1 and f,* 1 are automorphisms in
the diagram (x) with r=p°. Then f, is an automorphism of a finite group [M;, L] and
satisfies ( /*), = (f )3 =1 for some integer 5. So we have a commutative diagram

inm
n n
M — M,

L -5
and this defines an extension g: L | ) CM;— L | J CM;' of f* which is a p-equivalence.
Sincei*: H*(L\J,CM;; Z,)~H*(L; Z,)andsinceg*H* (L \J,CM;; Z,),L \ J, CM;
is p-universal by Theorem 2.1 of [6]. Q.E.D.
More generally we have

THEOREM 1.2. Let p be a prime or zero. Let f: X — Y be a 0-equivalence. If X
is p-universal, so is Y.

By the mapping cylinder argument one may regard X as a subcomplex Y. Then
H,(Y, X; Z) s finite. Theorem 1.2 follows from the former one.

The converse of Theorems 1.1 and 1.2 seem plausible, but we do not know the
proof. However the following is true.

THEOREM 1.3. Let f:X— Y be a O-equivalence. If Y is p-universal as well as
g-universal withp #q, so is X.

Proof. Case 1. p=0 or ¢=0. Then there exists a converse 0-equivalence g: Y » X
by Theorem 3.2 of [6]. So we can apply Theorem 1.2.

Case 2. p and q are different primes. By Proposition 2.10 of [6], Y is O-universal,
and hence there exists a converse 0-equivalence ¥ — X. Again we can apply Theorem
1.2. Q.E.D.

According to Theorem of [2] the following four conditions are equivalent:

(A) Xisan H-space mod 0.

(B) There exists a 0-equivalencef: [Jf-, %! X.

(©) All k-invariants are of finite order in the Postnikov decomposition of X.

(D) H*(X; Q)= A (Xam 415+ X2me+1)-

The following three conditions are equivalent by Theorem 2.5 of [1]:

(A)' Xisa co-H-space mod 0.
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(B) There exists a 0-equivalence f: X —» /% ™.
(C)' All k'-invariants are of finite order in the homology decomposition of X.

COROLLARY 1.4. If X satisfies one of the seven conditions in the above, X is
p-universal for every prime p and for p=0.

Proof. (i) If X satisfies (B), by Theorem 1.2 X is p-universal for every prime p and
p=0. For []¥., $*"*! is p-universal for every prime p and p=0 by Theorem 3.8 and
Corollary 4.3 of [6].

(ii) Suppose that X satisfies (B)". \/; S™ is p-universal for every prime p and for
p=0 by Theorem 3.8 and Corollary 4.3 of [6]. So X is p-universal for every prime p
and for p=0 by Theorem 1.3. Q.E.D.

EXAMPLE 1.5. All complex and symplectic Stiefel manifolds are p-universal
for every prime p and for p=0.

PROPOSITION 1.6. Let p be a prime or zero.

i) An H-space mod p is an H-space mod 0.
ii) A co-H-space mod p is a co-H-space mod 0.

Proof. (i) Let X be an H-space mod p with a multiplication u: X x X — X and a p-
equivalence h: X — X such that A~ pui, ~pui, where i; and i, are the canonical inclu-
sions. Then by Proposition 2.9 of [6] 4 is a 0-equivalence. Hence X is an H-space
mod 0.
i1) will be proved similarly. Q.E.D.

THEOREM 1.7. Let q be a prime or zero.
1) An H-space mod q is p-universal for every prime p and for p=0.
ii) A co-H-space mod q is p-universal for every prime p and for p=0.
This follows from Corollary 1.4 and Proposition 1.6.

§ 2. A sufficient condition for p-universality

THEOREM 2.1. Let pbe aprimeorzero. Let K be p-universal. Suppose r,(K)® Q =
Qor 0. Then K\ J, e"** is p-universal for any a.en,(K).
Proof. (i) The case p is a prime. We decompose 7, (K) as follows:

m(K)2FOT,® T,

where F is the free part, (hence F=Z or 0), T, the p-torsion part, and T the other
torsion part of m,(K). There exist integers r and s such that r7T=p*T,=0. By (C) and
(C)' of Theorem 2.1 of [6], for a given prime q different from p, there exists a p-equiva-
lence g: K— K such that g* and g,®1 are trivial on H*(K; Z ) and on 7,(K)®Z,,
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respectively. Note that g,(7)=0 and g, (F)=F@®T,, since we have T®Z, =T.
As g4 ®1 is an automorphism of a finite group =, (K)®Z,s, there exists an integer ¢
such that (g'),®1 is an identity on 7, (K)®Z,s=FQ®Z,s+ T,® Z,s, where T,® Z s
>~ T,. So we have g} | T, =identity, g} (7)=0and gi (F) = F. Let u be a generator of F.
(u=0 if F={0}.) Put g, (u)=ku with k an integer. Then k is a multiple of rg and
k=1 (p®). An arbitrary element of «,(K) is of the following form: a=nu+ y+z with
aninteger n, ye T, and zeT. So we have
(g)h(@)=knu+y+z
= knu + ky + kz
= ka

That is, the following diagram is commutative:
kin

Sn___‘) S"

-

K— K
g

Sothemap g:K |, e"*' - K |, e"*! obtained from the commutativity of the diagram
is a p-equivalence and satisfies (C) of Theorem 2.1 of [6], and hence K| J,e" ! is
p-universal.

(ii) The case p=0. The proof is similar and easier, and so omitted Q.E.D.

COROLLARY 2.2. Any simply connected 2-cell complex is p-universal for every
prime p and for p=0.

Let (S™),, be the James’ reduced product space of S™ which is homotopy equiv-
alent to 25™*! and let (S™), be the nm skeleton of (S™),,.

LEMMA 2.3. Let n be even. Then n;((S™),) is finite for i#¥m,(n+1)m—1 and
Tiw+1ym—-1((S™n)/(01) is finite where 01 is the attaching class of """ =(§™), 4, —
—(S™),. Thus (S™), U, €* for any aen,_,((S™),) is p-universal for any prime p and
p=0. In particular (S™), +, is p-universal for any prime p and p =0.

Proof. Consider a map of (S™),4, onto S"*1™ smashing (S™), to a point
and let A:((S™, (S™,)— ((S™*P™),,*) be its combinatorial extension. Then
H*((S™o; Q)= H*((S™*P™),; QO)QH*((S™),; Q) and by the same argument as
in the proof of Theorem 2.4 of [8] we can get that 4 induces a €,—isomorphism
P : 7 ((S™) 05 (S™),) = 7, (ST ™) %) for all i. Since 7;((S™),,)7;4,(S™*1) and
7 ((SCTY™ Yw;y (STHD™FY) are finite unless i=m and j=(n+ 1)m respectively,
we have easily that 7;((S™),) is finite for i#£m,(n+ 1)m—1 and 7, 4 1y m—y ((S™),)/Im. Ay
is finite, where Im. A, is generated by di. Applying Theorem 2.1 inductively we have
that (S™), is p-universal and so is (S™), |, e for any a. - Q.E.D.
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LEMMA 2.4. If i# (n+1)m, there exists a 0-equivalence h of ((S™)., (S™),) into
itself such that hy =0 0n 7;((S™) e, (S™)n)-

Proof. Since 7,,((S™), (S™),)=0, we may assume that i is different from m.
Since (S™),, is a free monoid complex, a map of S™ of degree g is extended over a
cellular map £,:(S™),, = (S™),, such that 4] is an endomorphism of H*"((S™),; Z)
with degree ¢*. By use of these maps hy’s, (S™) is a O-universal space by Theorem 1.1
of [6]. For given positive integers j, k and r there exists a 0-equivalence A, of (S™),
into itself such that /,,®1=0 on 7;((S™),)®Z,. Remark that the map A, is given
compositions of /,’s as is seen in the proof of the theorem. Thus 4, is defined on the
whole of (S™),. Let j=i—1 for k=n. By Lemma 2.3, n;_, ((S™),) is finite. Let r be
the order of z;_; ((S™),), and then we have h, such that 4,,®1=0 and hence

hmx=0 on m;_; ((S™),). Similarly, for sufficiently large N(e.g. N >L) we have
m

Ay such that Ay, =0 on m;((S™)y), and hence on 7;((S™),,). Put #'=h, hy,, and
consider the exact sequence:

Ti((5™e0) > T5((S™)os (S™) > -1 ((S™)).-

For an arbitraty element a.e7,((S™) 0, (S™),), the relation Ay = hy 00t =y (B 0) =0
implies the existence of fen;((S™),) such that i,f=hya. Then hihi(0)="hyif=
ix (M P)=1i4(0)=0. Thus h="h'h’ satisfies the required conditions. Q.E.D.

THEOREM 2.5. Let X satisfy H*(X; Q)=®;Q[x]/{(x)"""'}. Then X is
p-universal for every prime p and p=0.

Proof. 1t is sufficient to show that there exists a map f;: X — (S™),, such that
fi* (w)=x; up to non-zero coefficient for the fundamental class u; of H™(S™; Q),
since the composite of the maps

X5 X x - x X =25 [1(S™)a,

is a 0O-equivalence, and since [];(S™),, is p-universal as a product of p-universal
spaces by Lemma 2.3 and by Theorem 3.8 of [6]. For simplicity we omit the indexes
of x;, u;, m;, n; and f;.

If m is odd, then by the Serre’s theorem [7] there exists a map f: X — S™ such
that x=f*(u) up to non-zero coefficient. So we suppose that m is even. Consider
the suspension SX of X and let a: H'(X;Q)— H'*'(SX; Q) be the suspension
isomorphism (i>0). Since m+1 is odd, there exists a map F:SX— S™"! such that
ox=F*(ou) up to non-zero coefficient. Consider the adjoint map f,:X— (5™), =
QS™*! of F. Then fu(u)=0"" F*(ou)=x. Let g:(X, X" ™ D)5 (5, 45> (S™,)
be a cellular approximation of f,,. Then it is sufficient to prove:

(*) Ifamap g: (X, X" D)= ((S™), (S™),) satisfies g* (1) = x up to non-zero coefficient
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for izm(n+1) and if x"*'=0 in H*(X; Q), then there exists a O-equivalence 4 of
((S™)w> (S™),) into itself such that Ag is homotopic to amap g":(X, X?) = ((S™)y+n
(S™)n)-

The obstruction y(g) to deform g to a map g’ belongs to H'(X; 7;_;((S™),
(S™),)) and represented by the following cocycle;

c:Ci(X) = H(X?, X7Y; Z) = m (XD, X" ) 5 7,((5™), (™))

Assume that i=m(n+ 1), then 7;((S™), (S™),) = H;((S™) s, (S™),) and c is equiva-
lent to g4:C;(X)=H;(X®, XUV, Z) 5 H,((5™ > (S™); Z)= H,((S™; Z). Thus
y(g)=g*(¢) for a generator ¢ of H""*D((S™),.~; Z). Up to non-zero coefficient,
e=u""tand g*(e)=g* (" )=x""1=0in H™"*V(X; Q). Thus y(g)is of finite order,
say g. The map 4, in the proof of Lemma 2.4 induces /,. having degree g"*! on the
m(n+1)-dimensional cohomology group, i.e., k. (g)=¢""'e. Then y(h,g)=h,y(g)=
=hpg*(e)=g* (hpe)=q"""g*(e)=¢"""7(g)=0, and hence (x) is proved for h=Ah,,
Next let i>m(n+1), then by use of a 0-equivalence 4 in Lemma 2.4, we have that
y(hg)=hsy(g)=0 and (x) is proved. Q.E.D.

COROLLARY 2.6. H*(X; Q)= ®;Q [x.1/{(x)"™'} if and only if there is a
0-equivalence X > [ [;(S™),, m;=deg x;.

This is a generalization of the result due to Arkowitz-Curjel that (D) implies (B)
in§l.

EXAMPLE 2.7. The following spaces are p-universal for every prime p and for
p=0.
(1) The complex projective space CP" foranyn>1.
(i1) The quarternionic projective space QP" for any n> 1.
(1i1) The Cayley projective plane I1.

§ 3. Some further examples of a p-universal space

THEOREM 3.1. Let A and B be co-H-spaces mod 0. Let f: A — B be any map. If
there is a O-equivalence from the mapping cone C, of f into Y, then Y is p-universal for
any prime p and p=0.

Proof. As in §1, there exist O-equivalences s :A4— VjS™ and hg:B— V[S™.
Since V ;8™ and V;S™ are both O-universal, there are converse 0-equivalences
kq:V;S™— A and kg: V;S"—B. Consider the composite a;: S™< V;§™ — 4 and
the homotopy class fi{a;} of n, (B). The cokernel of the homomorphism kg.:7,,
(V;8™)—m,, (B) is finite, since kp is 0-equivalence.

Hence there exists a number N; such that f,N;{a;} is in the image of kg.. Put
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g=V;ajNi:V ;8™ — A. Then we have a commutative diagram:

A—L.B

t

VS™— v S

J
It follows from the commutativity that there exists a map C, — C which is a 0-equiva-
lence. So, if C, is p-universal, so is C,, and X is p-universal too. Thus it suffices to show
that C, is p-universal for any prime p and p=0. We put «;={g | S™}. By the well
known theorem of Hilton there exists an integer N; such that Na; is a linear com-
bination of some higher Whitehead product [1,,---, 1,], where 1; is the homotopy
class of the inclusion S¥— V/;S, and {k;,..., k,} is a subset of {n,...,n}. Note
that m;=)s_(k,—1)+1. Then there exists a O-equivalence from M= Vj_, S™
Up C(V§=18™) with f= V Nja;to K= V- S U, C(V;S™). By Theorem 1.1, K is
p-universal if so is M. So we will show that M is p-universal. By the linearity of the
higher Whitehead product, we have a commutative diagram:

\s/ SMJ qufll </ S"lj
j=1 i=1
! !
\/ Sm —_— V Sm

Vet Ly

-
-

where a;=n;—1 and b;=m;—1. By choosing a prime ¢ different from p, we can see
that the map f: M — M derived from the above commutative diagram is a p-equiva-
lence and satisfies Theorem 2.1, (b) of [6] Q.E.D.

THEOREM 3.2. Every simply connected three cell complex K=S'Je™e",
I<m<n, is p-universal for any prime p and p=0.

Proof. Let B=S"'{Je™ and let fen,_, (B) and Ben,,_, (S*) be the attaching elements
of the cells e” and e™ respectively. We devide into three cases:

Case 1: The order of f is finite. Let ¢ be the order of f, then there exists a map
S™ — B which is of degree ¢ by smashing S*. This map and the inclusion of S’ define a
0-equivalence S'v S™— B. Then by Theorem 3.1, K is p-universal as a mapping cone
of f.

Case2: m=I+1. We may assume that # is non-trivial in =, _,(S')~Z. Then
H*(K; Q)= H*(S"; Q)= A(x,). Thus 4 is p-universal by Corollary 1.4.

Case 3: The order of f is infinite and m#1+1. By [7], if m#I+1 and 7,,_, (S*) is
infinite, then /=2m and we have an exact sequence:

“zt-—z(sl—l) — 21—y (Sl) S2Z.
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Since 7,,_,(S'™!) is finite and H([1, 1,])= +2, there exist non-zero integers » and s
such that rB=s[y, 1;]. Let C=S'{Je*' be a mapping cone of s[i, 1;], and then there
exists a 0-equivalence B — C which extends the identity of S*and is of degree r on S?'.
Similarly we have a 0-equivalence (S*), — C; where (S*), is a mapping cone of [3, 1].
Thus #,_, (B) and 7,_;((S"),) are ¥,-isomorphic. By Lemma 2.3 =,_, ((S",) is
finite or it has only one free summand Z. The same is true for z,_, (B). Thus X is p-
universal by Corollary 2.2 and Theorem 2.1. Q.E.D.

COROLLARY 3.3. A4ny simply connected sphere bundle over sphere is p-universal
for every prime p and p=0.

§ 4. A counter example for p-universality and for the symmetricity of p-equivalence

Consider a complex L=S>v CP2. Let (L, 3) be the 2-connective fibre space over
L. We have a fibering: S* — (L, 3)-—'3L, and hence we have the Gysin exact sequence:
c-o H"2(L; Z)S H*(L; Z)5H*((L, 3); Z)~ H*" ' (L; Z)—--- where ¥ (u)=uv
for a generator ve H?(L; Z). Thus we have
@4.1) H'((L,3); Z)=Z fori=3,4,5

=0 other wise.

Consider the inclusions S* < L and S < L and denote by 15 and 1, their homotopy
classes. Let £:S° — CP? < L be the composite of the Hopf map and the inclusion. Put
w=[13, 1,]€en, (L) the Whitehead product of 1, and 1;. By G. W. Whitehead [9],
7;(S?v CPH)=n;(S*)®n;(CP*)@dn; ., (S* x CP?, S*v CP?), and we see that the
map go=1; vw:S3vS*—S?v CP?induces isomorphisms of ; for i=3, 4. Consider
a lift g:S?v §*~ (L, 3) of g, then g induces isomorphisms of n; and H; for i<4.
Since 4:S8° — CP? is a 2-connective fibering, the inclusion i: CP2? — L and the projec-
tion n:L— CP? induce I:S°—(L,3) and @:(L,3)—S> such that 7/=identity.
Thus 7,:H;(S°; Z) > H;((L, 3); Z) is a split monomorphism. Then f=g v / induces
an isomorphism H, (S*v S*v S*; Z)—> H,((L, 3); Z) and f is a homotopy equiva-
lence. Obviously 7is a lift of 4. Going back to L, we have isomorphisms:

(4.2) (13vovh),:n,(S*vS*v S3)xn,(S?v CP*)=nr,(L) fori#2.

For example, 7, (L)=Z, ny(L)2Z, n, (L)X Z@Z, and n5(L)=ZDZ,DZ,, and
generators of each free part are 1,, 15, @ and 4 respectively.

Consider a map f':L— L and put f41, =r1, and f,13=s1,. By the linearity of the
Whitehead product, we have that fiw=rsw. Put fih=th modulo 2-torsion. We
consider 1, and 4 in n5(CP?) and replace /' by f"=nf"i: CPZ;L'!-;L—NP CP2, then

far,=r1, and fyh=th. Since CP3=CP? | J,e® f” has an extension F:CP>*- CP?
such that the degree of F* on H®(CP?; Z) is t. By the linearity of the cup product we
have t=r3. Thus we get

4.3) fi,=r1, and f{13=s15 imply that fyw=rsw and fyh=r>h modulo 2-torsion.
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Let us consider the element
a=[[w, 13], ®], 131+ [[13, 4], A+ [[w, h], ®] of =, (S>v CP?). For simplicity we
puta, =[[w, 13], @], 13], 2, =[[13, 4], k] and a3 =[[w, k], ®]. The mapping cone of gu
is denoted by K.

LEMMA 4.1. Let f:K, — K, be a p-equivalence. Then f,,:H,(K,; Z) > H,(K; Z)
is the identity.
Proof. Denote by f'=f | L:L— L. By (4.3) and by the linearity of the Whitehead

product we have
(4.4) fr () =r2s*0; +r Ssa, +r 35?03 modulo 2-torsion.
Letfy:H,,(K{; Z)—H;,(K,; Z) be of degree ¢ and consider the following diagram

S+’
my1 (L) — my1 (L)
? )

e

n12(Ky, L) ——  m,(Ky, L)
x P
v f* A 4
H,,(K;, L; Z)— Hy,(K;, L; Z)
IF A

Jx Jx

I*
H12(K1;Z) _— sz(K1§Z)

where j, and the Hurewicz homomorphism ¢ are isomorphisms. Hence f} («)=1a.
It follows that r2s*=r%s=r>s%=t¢. If r and s are non-zero, we get r=s=t=1. Thus
S+« H;(K;; Z)—> H;(K,; Z) is the identity unless i#4. For i=4 this is shown by use
of the ring structure of H* (K, ; Z). Q.E.D.

Let g be a positive integer with (g, p)=1. Then the following diagram is com-
mutative:

qii1
Sll Sll

X — X
1x

So we obtain a p-equivalence h:K,— K,. Suppose that K, is p-universal. Then by
Theorem 3.2 of [6], there exists a converse p-equivalence k:K; — K,. Then f=hk:K; —
— K, — K, isa p-equivalence and the degree of f, on H,,(K;; Z)is a multiple of g. On
the other hand, it follows from the above lemma that f, is of degree 1. This is a
contradiction. We have proved:
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THEOREM 4.2. There exists a 4-cell complex which is not p-universal.

THEOREM 4.3. The p-equivalence is not an equivalence relation in the category of
simply connected finite CW-complexes.
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