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The Central Connection Problem at Turning Points of

Linear Differential Equations

WOLFGANG WAsow (University of Wisconsin and Eidgendssische technische
Hochschule, Ziirich)

Abstract

A system of linear differential equations of the vectorial form edy/dx=A(x, &) y
is considered, where ¢ is a positive parameter, and the matrix A (x, &) is holomorphic
in |x| <X, 0<e<ego, with an asymptotic expansion 4 (x, e)~Y 2, 4,(x) &, as e—0.
The eigenvalues of A, (x) are supposed to coalesce at x=0 so as to make this point
a simple turning point. With the help of refinements of the representations for the
inner and outer asymptotic solutions, as ¢ — 0, that were introduced in the articles [9]
and [10] by the author (see the references at the end of the paper), explicit connection
formulas between these solutions are calculated. As part of this derivation it is shown
that only the diagonal entries of the connection matrix are asymptotically relevant.

1. Introduction

In the neighborhood of turning points the asymptotic evaluation of solutions of
linear differential equations involves, in most problems, some ‘“‘matching’ of two
different solutions that have known asymptotic properties in different but overlapping
regions. Only for a very small subclass of such problems has it been possible to avoid
the matching by calculating uniformly valid approximations to the solutions. When
one of the two solutions to be matched is asymptotically known in a region that is
bounded away from the turning point, while the other has a known expansion in a
domain that includes the turning point, the term central connecting problem will be
used for this matching question. The expressions inner (or interior) and outer (or exte-
rior) solutions are sometimes found in the literature.

The first task in the analysis of the central connection problem is to find inner and
outer solutions with expansions whose domains of validity actually do overlap. For
a fairly general class of turning points I have done this in two previous papers [9], [10].
Nishimoto has generalized my results considerably in his articles [4,] [5], [6]. Still
more general turning points have been analyzed in Iwano and Sibuya [3] and in
Iwano [1], [2].

Even with the explicit knowledge of expansions with overlapping regions of valid-
ity the actual matching is not a trivial task if one desires analytic insight into the
structure of the linear relation that connects the inner and outer solutions. In the
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present paper this matching will be carried out for the system of differential equation
treated in my earlier articles [9] and [10].

The matching of an inner with an outer fundamental system of solutions amounts
to the calculation of the linear transformation with constant coefficients which takes
one of these fundamental systems into the other. One result of this paper (Theorem 5.1)
is that for the two fundamental systems calculated in [9], [10] only the diagonal entries
of the transformation matrix are asymptotically significant. In § 7 explicit series for
these diagonal entries are calculated.

I had hoped that the considerable simplification of the differential equation in
question which I achieved in [12] and [14] would also facilitate the matching procedure
This does. however, not seem to be the case. The formulation of the problem here is
therefore essentially the same as in [9], [10]. Some non-trivial refinements of the
results of those papers are needed. They are discussed in §§ 8, 9.

2. Description of the Problem

We consider the differential equation

dz
e—=A(x,¢)z 2.1
I (x, €) 2.1
for an n-dimensional vector z. The small parameter ¢ will be taken positive. The more
general assumption that the domain of ¢ is a — possibly narrow - sector of the e-plane
would involve only superficial technical complications of the arguments of this paper.
The matrix A4 (x, &) is to be holomorphic in |x|<xy, 0<e<¢g, and to have an asymp-

totic expansion
A(x, &)~ ) A (x)¢e, as -0+, (2.2)
r=0

valid uniformly in |x| < x,.

If all eigenvalues of A (0) are distinct the local asymptotic nature of system (2.1) is
completely known (see, e.g., [13]). In the contrary case we shall call x=0 a turning
point of the differential equation (2.1). With the help of a fundamental theorem of
Sibuya [7] (see also [13], §§ 25-27) such turning point problems can be substantially
simplified. In particular, it can be shown that the hypotheses

0 1 0 0..0 0]
0010..00
A©=]. . . ... . (2.3)

()
o
o
o
o
o
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and

2 [det Ao(x)]| = (— 1" .4

dx x=0
are only mildly restrictive, in as much as problems of the form (2.1) with a turning
point at x=0 can “in general”’ be transformed into problems satisfying these assump-
tions. “In general” is to mean that turning point problems not reducible to equations
for which (2.2) and (2.3) hold are characterized by additional identities among the
entries of A (x, €). (See [9].) The hypotheses (2.3), (2.4) will be adopted throughout this
paper. A result of Wasow [11] implies that no further generality is lost by assuming
that A, (x) is a companion matrix. This will be done.

The formulation in [9] does not use condition (2.4), but the equivalent Assumption
IT of [9], § 2. The preliminary transformation of the linear part of 4,(x) in [9] § 2
can be avoided. When this is done the eigenvalues of 4, (x) must be used, as is done
below, instead of those of the linear part of 4, (x), as in [9].

The eigenvalues of 4, (x) are decisive for all asymptotic theories of systems such
as (2.1). Because of our hypotheses the characteristic polynomial of A,(x) has the
form

(= )" [A"+ xa,_ (x) A"+ + xa,(x) A — x + 0(x%)],

with the a;(x),j=1, 2, ..., n—1, holomorphic in |x| < x,. Hence, the eigenvalues have
the form

Aj(x) =o' "M+ XL (xM),  j=1,2,..,n, (2.5)
where
© = e 2.6)

and the 1 ; () are holomorphic in a region which we may take as |¢| < x3/" by choosing
X, small enough.

3. An Outer Solution

It is a classical result that in the neighborhood of every point in 0 <|x|<x, one
can find fundamental matrix solutions of (2.1) of the form

v 1 T
U(x, ) exp {; J A(&) df} ;
where ’

A(x) = diag (A, (x), 22(x), .5 4n (%)),
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and the matrix fl(x, ¢) has an asymptotic series in powers of &:
b o gt
U(x,e)~ Y U, (x)e", e>0+.
r=0

As x—0, the functions U, (x) become unbounded. In [9], [10] I have strengthened

this result by analyzing the singularities of l};(x) at x=0 in detail. Theorem 3.1 is a
modification of Theorem 1.1 of [10]. Let

Q(1) = diag(1, ¢,..., ")
and denote by S(0,, 0,) the sector

S0y, 6,) = {x | 0, <argx <0,,|x] <xp,0, -0, < l%t—l—} 3.2)
n

THEOREM 3.1. (An Outer Solution.) Corresponding to the sector S(0y, 0,) there
exists a fundamental matric solution U (x, ) of (2.1) of the form

X

1
U(x, &) = Q(x117) (= DxtmA-972 O, 5) exp { |4 dc} (33)
€
with U (x, &) bounded for |ex™ "t V" <&y, xeS(0,, 0,), 0<e<e&,. Furthermore,

O(x,e)=U(x,e) x*@, ¢-0+, (3.9

where B(e) is a diagonal matrix with the expansion

B(e)~ Y, B.s, 3.5)
r=1
and
U(x,e)~ Y O, (x'")(ex™ "Dy as ex™ "D 0. (3.6)
r=0
The matrices U, (¢t) are holomorphic for |t| <xi™ and
11 o | ]
1l o ...o"!
0,000=| 1 o* ..o*" " : (3.7

------------

1 wn—l w(n—l)(n—l)

Remarks:
1) The precise meaning of (3.6) is that

[U(x’ 8) . ic (7,()61/") (8x—(n+1)/n)r] (Ex—(n+l)/n)—(m+1) (38)
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is for every m>0 a bounded function in the domain of the (x, ¢)-space defined by the
inequalities [ex ™"t /" < &, x€S (04, 0,), 0<e<e,. The constant &, is arbitrary, but
the bound depends on &,.

2) By definition, argx*=k argx.

3) The solution U(x, &) is not uniquely characterized by its asymptotic represen-
tation. This is a universal feature of asymptotic expansions for linear differential
equations, as a parameter ¢ tends to zero, since one may always add another solution
that has been multiplied by a scalar function of ¢ alone which tends to zero with suffi-
cient rapidity. Moreover, there are other solutions to which Theorem 3.1 applies
literally, but for which U, (x'/"), r=1, 2, ..., are different functions, also holomorphic
in the variable x. Such a solution can for instance, be obtained by multiplying U (x, ¢)
to the right by a diagonal matrix function of ¢ alone which has an asymptotic expan-
sion in powers of ¢ with the identity matrix as leading term.

The relation of Theorem 3.1 to Theorem 1.1 of [10] will be discussed in § 8.

4. An Inner Solution
As always in the asymptotic theory of differential equations, the inner solutions

are obtained with the help of suitable ““stretching’ and ‘“‘shearing” transformations.
In the present problem it is appropriate to set

s=g M@t (4.1)
and
z=Q(/" D)y, (4.2)

Then equation (2.1) becomes
dv

— =H(s,&)v (4.3)
ds
with
H(s,e)~ Y H(s)e"™* D, e-0+. 4.4)
r=0

The precise meaning of (4.4) when s is large is explained in [9] p. 667.
It is easy to show that the equation (4.3) possesses matrix solutions with asymptotic
expansions of the form

Y V,(s) e’ D, 4.5)
r=0

as ¢ - 0+, valid in any bounded disk |s| <s,. In [9], [10] I have extended the validity
of this expansion to domains that expand indefinitely, as ¢ —0, by analyzing the
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functions V,(s) near s=co. Theorem 4.1 is a more precise, modified version of Theo-
rem 1.2 of [10].

THEOREM 4.1. (An Inner Solution.) Let

k(s) = {0, Is] < so @.6)

1, |S|>S0,

0(s) = n%—l Q(w) sV, @.7)

Equation (2.1) admits a fundamental matrix solution Y (x, &) of the form
Y (x, &) = Q(g"/"* Ds¥O)/m) KOA=MI2Y (5 &) exp Q(s) (4.8)

with ¥ (s, ¢) bounded for |e!/("*1) §x@ (+D/n| <y 0<e<e,y, SEX, where X is the
sector

5 {s|largs| < nmn/2(n+ 1)}, ifnisodd 49)
“{s|—ni2<args<(n—1)n/2(n+ 1)}, ifniseven. '

Furthermore,
P(s,e) = Y (s, ¢) s°@, (4.10)

where D (€) is a diagonal matrux with the expansion
- ]
D(e)~ Y D™D, £-0+, 4.11)
r=1
and, for |s| = s, SEZ,

Y(S, 8)~ i ?,.(S)(Sll("+1)s(n+2)/n)', as 81/("+1)S("+2)/"—+0. (412)
r=0

The matrices Y,(s) have asymptotic expansions

Y ()~ Y Y57, as s—o0in}, (4.13)
v=0
and
700 = Uo (0). (4.14)
Remarks:

1) The precise meaning of (4.12) is that

[7(8, £) — rg:o #.(s) (M l)s(n+2)/n)r] (g1 + D+ 2)imy=(m+ 1) (4.15)
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is for every m >0 a bounded function in the domain of the (s, £)-space defined by the
inequalities

|81/(H+1)s(n+2)/'l| <o, Is| = 5o, SEZa O0<e<g,.

2) The solution Y (s, €) is not uniquely characterized by its asymptotic representa-
tion. Moreover, there are other solutions for which Theorem 4.1 is true with different
functions ¥,(s). One may, for instance multiply Y (x, ¢) to the right by an arbitrary
diagonal matrix function of ¢ alone which has an asymptotic series in powers of
g!/**1) with the identity matrix as leading term.

3) By symmetry considerations, explained in [8] analogous theorems can be stated
for each of a number of sectors, which, together cover all directions in the s-plane.

The proof of Theorem 4.1 on the basis of Theorem 1.2 of [10] will be discussed
in § 9. There, one will also find a description of methods by means of which the series
expansions for ¥(s, &) can be calculated.

5. The Structure of the Matching Matrix

The matrix solutions U and Y are related by an identity of the form
U(x,e)=Y(x,€) I'(¢e) 5.1)

with a matrix I' (¢) that is independent of x. Since the regions of validity of our exran-
sions for U and Y overlap, I' (¢) can be calculated asymptotically by substituting any
fixed point of that common domain into the relation

r(e)=Y '(x,e) U(x,e) (5.2)

and applying Theorems 3.1 and 4.1. The fact that all values of x must yield the same
matrix I’ (¢) will now be exploited to get more precise information on the structure of
I (¢).

We shall write y;, (¢) for the (j, k)-entry of I' (¢) and use an analogous notation for
all matrices designated by capital letters.

Let 6, and 0, be chosen so that the bounding rays of the sector S(6;, 6,) in (3.2)

are inside the sector ), of (4.9), i.e.,

nn nn
0, =— d, 0,= -0, ifnisodd,
R Tea 252+ 1) Rnise
(n—1) (5.3)
/[ n-— 1w . :
61=—5+5, 92=2(n—_;—1—)—5, if n is even,

with 6 >0 and sufficiently small.
We shall have to distinguish repeatedly between the regions of applicability of
Theorem 3.1 and Theorem 4.1. The definition below is therefore useful.
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DEFINITION 5.1. Let £,>0, no>0 begiven. Consider the set of the (x, ¢)-space
where, with argx =0, the inequalities (3.2), (5.3) and 0 <e<¢g, are true. We donete by
S; (interior domain) its subset defined by the inequality

l81/(n+ l)sx(s)(n+2)/nl < 7. (54)
and by S, (exterior domain) the subset defined by the inequality
lex ™D L & (5.5

The set S,,=S;n S, will be called the intermediate domain.
It is convenient to set

so =& MY, (5.6)
for then |s| > s,, i.e., k (s)=1, precisely when (5.5) holds. We also take
go < TPt (5.7)

which has the advantage that then there are points in S, for every ¢ in 0 <e<¢,. This
follows from the observation that, given ¢, the inequalities (5.4), (5.5) together are
equivalent to

(éo—ls)n/(n+1) < le <(n08)n/(n+2).

LEMMA 5.1:

I'(e) =exp[— Q(s)] I'(x, &) exp Q(s) (5.8)
with I (x, €) bounded in S,,.

Proof: Substitution of formulas (3.3) and (4.8) into (5.2) yields, after a few
cancelations

X

r'(e)=exp[—Q(s)] ¥ '(s,¢) U(x,¢) exp{le(cf) dé} : (5.9)

&

which is of the form (5.8) with

X

F(x,e)=TY7(s,¢) U(x,¢) exp{1 J A(E) dE — ;_’:_—1 Q(w) s("“)/”}. (5.10)

&

The first two factors in the right member are bounded in S,,, because of Theorems 3.1
and 4.1. To appraise the last factor we re-write formula (2.5) in the form

A(x) = x'"Q(w) + x*"A(x'™),
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where A(t) is a diagonal matric holomorphic for || < x,'/". Hence,

X

n ~
| 4@t = 2w xrom g o),
0

with A(¢) diagonal and holomorphic in |¢|<x}/" Therefore, the last facor in (5.10) is
equal to

exp {e” x"* P (x1")} . (5.11)
As

ie—lx(n+2)/n| — Iel/(n+ I)S(n+2)/n| < l81/(n+ l)sx(s)(n+2)/n|sgl+2)/n

<MeSo in S,

the lemma is proved.
COROLLARY 5.1: §u(x, &) =7 (e), k=1, 2, ..., n.

LEMMA 5.2. If &, and &, are taken sufficiently small then y;, (x, €)#0 in S,

Proof: By (4.13), (4.14) and (3.7) all entries of ¥, (s) are different from zero in the
part of S,, in which s in sufficiently large. As |ex™ "*V/"| €, is equivalent to |s| > &; 7,
we may make &, so small that no entry of ¥, (s) vanishes in S,,. By Theorem 4.1 the
matrix ¥ (s, ¢), and hence Y (x, ¢), has then the same property for all sufficiently small e.

THEOREM 5.1. If &, and ¢, are sufficiently small then, for j, k=1, 2, ..., n,

, _ (%, &) (ruc(e) + mp(x, €)),  (x,€)€Sy }
up(x,e)= {yjk(x, &) Y (€) + p(x, €), (x,€)€S; — Sn (5.12)
with

pi(x,8)~0, as e—>0+. (5.13)

Remark: Relation (5.13) is to mean that for every m >0 there is a constant c,,
such that |u;, (x, &)l < c,e™, for (x, g)€S;. The two formulas cannot be combined into
one, because y; (x, €) may have zeros in S;—S,,.

Proof of Theorem 5.1. Let x;,=x; () be such that (xj;, )€ S, forallein 0<e<eg,
and denote by s;, the corresponding value of s. If (x, €)€S,, then by Theorem 4.1 and
Lemmas 5.1, 5.2,

(%, ) = ¥ €) Vs (e} = 2, V(% ) vue(e)

= yiu(x, &) [Pu(s, €)1 l;k (s> &) P (xu> €) (5.14)

n k-1 =1\ f(n+1)/n  (n+1)/n
x exp{—— (0" —w s -5 :
P{n T 1( ) (sik )
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We choose for x;, a value for which

n k—1 1—1\ (n+1)/n
ex o ' —w s
P{n n 1( ) Ik

is as small as possible. To that end, let

1 .
Bx= min Re {" * (' = 'Y e"'("“’/"} (5.15)

0:<0<0; n
and denote by 0, a value of 6 for which the minimum is assumed. Observe that
ﬂ"‘<0, l,k=1,2,...,n, l#k, (5,16)

in consequence of (5.3), provided ¢ is taken small enough. For given ¢ the maximum of
|s] in S,, is y*/(r*+2)g=n/(r+1)(n+2) Hence, we choose

S = ’13/("+2)8—n/(n+ 1)(n+2)ei9n¢. (5.17)

Let us restrict (x, €) temporarily to the subset of S,, obtained by replacing the bound
o with a smaller one, 7, <#,. For such values one has

Red — " (@1 = ™) g+ Dim
n

=— Re n (wk—l _ a)l"l) Ot D/l | gt 1)/m (5.18)
n+1
L~ ﬂlkn(ln+1)/(n+2)8—1/(n+2) )
On the other hand,
n
Re {n T (wk-l _ a)'_l) sl(;:+1)/n} = Byt VIt D=1+ 2) (5.19)

Returning to (5.14) one concludes from (5.16), (5.18) and (5.19 that the right member
of (5.14) tends to zero with exponential order of magnitude, as ¢ »0+, uniformly in
the subdomain of S,, obtained by replacing n, with »,. Since n, was arbitrary, the
proof of the first relation in (5.12) is complete.

To prove the relation (5.12) that pertains to (x, &)eS;—S,,, we replace (5.14) by

(%, &) — yu(x, €) Y ()

B Z )’jz(xs e) P (Xu» €) €XP{— (a’k“1 - wl—l) 51(:+1)/" '
I#k n+2
Since y;;(x, ¢) is bounded in S;—3S,, as is 9, (xy, €), the conclusion of Theorem 5.1
follows from the fact, proved before, that the exponential factor in the right member
decays, as e—>0+.
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6. Digression on Asymptotic Series of Several Variables

The notation in this section is independent of that of the rest of the paper. The
customary multiindex symbolism will be used:

Let x=(x, X5, ..., X;) be a vector with complex components. A multiindex is
defined as a vector with nonnegative integral components. By definition, if r is a
multiindex,

d
x'= 1] x¥.
j=1
The norm |x| is defined by |x|= Y }., Ix;l.

DEFINITION 6.1. Let f be a complex valued scalar function of x. Let R be a
point set in the x-space whose closure contains the origin and which is in the domain of
f. If for every nonnegative integer k,

f(x)= Y fx"+w(x)|x*, with lim w,(x)=0, 6.1
r] <k

x—0
xeR

the function f (x) is said to have the asymptotic expansion Y , f,x", as x — 0 in R. This fact
will be expressed by writing

fxX)~Y fx", as x->0 in R. (6.2)

THEOREM 6.1: Let
fx)~Y fx", as x->0 in R, g(x)~>Y fx', as x—>0 in S.
Then ' s
f(x)g(x)~2( Y fsg,> x", as x—»0 in RnS. (6.3

st+t=r

The proof is immediate and is therefore omitted. Theorem 6.1 is vacuous unless
R~ S has the origin as accumulation point.

THEOREM 6.2: Let f be a function of two vectors x, y defined for xeR, yeS. If
)~y f,(»)x", as x>0 in R, (6.4)
r

uniformly for yeS and

(M ~Yey', as y—»0 in S, (6.5)
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then
f(x,y)~> gy, as (x,y)-»0 in RxS. (6.6)

Proof: Formula (6.6) is, of course, understood as an asymptotic relation in
the sense of definition 6.1 for the 2d-dimensional product space of the vectors
(%15 X25 +oes Xay V1, Y25 ---5 Ya)- TO prove it we write

f(x,y)= Z<k £(0) X"+ wy(x, y) Ix[*

f(y) = lZ gy + 0p(y) Iyl*
with w;(x, y)2 0, as x—0 in R, uniformly for y €S, and w,,(y)—0, as y—0in S.
It follows that

f(x,y)= | |<k( Y 8sVs + 0p(y) Iyl"> X"+ o (x, y) 1x]*

s| <k

= &X'V + Y gX) +< ) wrk(y)x> "+ o (x, y) IxI*.

|r+s| <k 'l';li'-lss|lskk Ir[<k
It must be shown that each of the last three terms after being divided by (]x| +|y|)*
tends to zero as (x, y)— 0 in RxS. For the last two terms this is obvious. To prove it
for the third-to-last term it suffices to observe that the expansion of (|x|+|y|)*=
=( Y4, (Ix;] +1y;]))* by the multinomial theorem implies (|x| +|y|)*>]x*/?| for any
two multiindices a, b with |a]+|b|=j. It follows that for given multiindices r, s
with |r+s|>k,

| %"y
(Ixl + Iyl

where a, b can be chosen such that r—a, s—b are multiindices, not both zero. This
completes the proof of Theorem 6.2.

),,\I x|yl

COROLLARY': Under the assumptions of Theorem 6.2

f(x,x)~2( ga,,)x', as x>0 in RNS
r \atb=r

7. Calculation of the Connecting Coefficients

The principal importance of Theorem 5.1 is that it reduces the asymptotic calcula-
tion of the outer solution in the inner domain to the calculation of the » products
Vi (%, €) uyx (x, €) at one point. This is immensely simpler than the calculation of the
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whole matric ¥ ™! (x, ¢) U(x, €). For simplicity of notation the subscript “kk’’ will be
dropped in this section.
By means of Theorems 3.1 and 4.1 as well as formulas (5.10), (5.11) one obtains
the relation
1 ~
v (x, e) u(x, ) = x*@s @57 1(5, &) ii(x, &) exp {— x(””)/”l(x””)}. (7.1
3
Here, b(¢), d(e), 1 (x'/") stand for b, (s), dy (), 71,‘ (x/™), the kth entries in the diago-

nals of the matrices B(e), D (), A (x!/") respectively.
For the asymptotic evaluation of (7.1) in the set S, we introduce the auxiliary vector

q=q(x,8) =(q:(x ¢, q2(x, &), 45(x, €)) (7.2)
where
g, = xl/n g, = 81/(n+ l)x—I/n — s_l/", gs = 8—1x(n+2)/n — 81/(n+1)s(n+2)/n.
(7.3)
Then
exp{e™'x™* D7 (x")} = exp {g34(q,)} - (7.4)

This is a function of the vector g with a convergent — and hence asymptotic — series
in multiindex powers of g in the subset of three-dimensional g-space defined by
lg.| <xg/". Thus

1 ~
exp {— X2 l(x”")} ~ Aqiqs, as q—0. (7.5)
€ r,v

The formulas (7.2), (7.3) map the domain S,, of (x, ¢)-space into a set R of the
g-space whose closure contains the point g=0. From Theorem 3.1 we see that

a0

i(x,e)~ ) #.(q,) 97, as g—0inR (7.6)
r=0

i,(x'")~ Y, #,q1, as ¢—0inR. (7.7)
v=0

The Corollary to Theorem 6.2 implies then that
i(x,e)~Y #9197, as q—-0inR. (7.8)
r,v
The terms of this series have to be ordered according to increasing values of v+rn.

Similarly, one shows that, as a consequence of Theorem 4.1,

J(s, &)~ 3 74392, as q—0inR. (7.9)
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Formulas (3.7) and (4.14) imply that §,,#0. By an argument that resembles the proof
in the one-dimensional case (see, e.g., [13] Ch. III) one can show that j~1(s, ) also
has an asymptotic expansion, say

F (s, )~ w4595, as g—>O0inR. (7.10)

Multiplication of the series in (7.5), (7.8) and (7.10) leads to a multiple asymptotic
of the form

1 ~

F71(s, &) fi(x, ) exp {; x+2m ) (x“”)} ~Y ¢,q°(x, €)in S,, (7.11)
p

where p=(p;, P, p3) is a multiindex. Returning to (7.1) and remembering formula

(5.12) we conclude that

() = 7(e) ~ x5O Y ¢ g% (x,¢), as e—0, (7.12)
p

for (x, £)eS,,. The coefficients c, can be calculated explicitly from the 4,,, #,, and 7,,.
Now we take advantage of the fact that y(¢) in (7.12) is independent of x by setting

=x(g)=¢% ie, s=g MOy =g MED

and vary « in the interval

n n
<<

. 7.13
n+2 n+1 ( )

As one verifies immediately, (x(e), €)€S,,, and lim,_, g(x(¢), €)=0. With this value
of x formula (7.12) becomes

(&) ~ M@t Dgaf () ; c,gt? TP as £-0, (7.14)
where
b(e)—d(e)~ Y £V, as -0, (7.15)
r=1

fr={ —d,, ifr#k(n+1) k an integer ,

be—d,, ifr=k(n+1)’

1
Ap=n+1P2"‘P3s B,=p,—p,+(n+2)p;. (7.16)

It is very plausible that, as y (¢) is independent of «, the right member of (7.14) must
be termwise independent of a. One has, indeed, the following lemma, whose proof
will be postponed to the end of this section to avoid an interruption of the main
argument.
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LEMMA 7.1:

@) f(e)~0.i.e., b(e)~d(e), as e>0+;

(b) ¢,=0, whenever B,#0.

Note that, in consequence of this Lemma, D, differs from zero only if  is a mul-
tiple of n+1.

When B,=0, the p-term of the summation in (7.14) becomes, in a more explicit
notation, ¢, ,, ,,& 72" "IV with p=p,—(n+2)ps. As p; >0 this shows
that also p, —(n+1) p; >0 for all nonzero tertas of the summation in (7.14). Collecting

the finitely many terms for which p,—(n+1) p;=r and steting p;=v, we can write

@
Yot~ Y 9D as -0+

r

v

yr= z cr—v,r+(n+1)v,v'
v=0

Summarizing the arguments of this section we can state the theorem below, in which
the letter k£ has again been introduced to indicate that there are n such formulas, one
for each diagonal element y,, (¢) of I' (¢).

THEOREM 7.1. The connecting coefficients v, (&) in Theorem 5.1 have the asymp-
totic form

a0
,ykk(s)Nenbk(e)/(n-*-l) Z ,)\;kk’rgr/(n+1)’ as 8—)0+ ,
r=0

where b, (¢) is the kth diagonal element of the matrix B(g) in Theorem 3.1, and

r

A4
k —
Yk, r = Cr—v,r+(n+1)v,vs k=1,2,....,n
v=0

The coefficients c* =c, were defined in (7.11) and (7.3).

pPip2p3
Proof of Lemma 71.1. Assume the lemma is false. If both (a) and (b) are false there

exists a first coefficient f, in the series Y ;2 f, ¢”""!) and a first positive integer,
say u, such that for some multiindex p=p one has |p|=pu, B,#0 and c,#0. There
cannot be a second multiindex p with the same three properties for which also

A+2B =4,+%B
P np—ﬁ nﬂ’

identically in «. For then the three equations

1
n+1
for py, P2, P

P2 — P3 = 4p, pi—pa+(n+2)ps=By, pi+p,+p3=4u
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would have to have more than one solution, which is not the case. Hence, the assump-
tion that

o o
Ay+-B,<A,+-B,, forall p
n n

with |p|=pu, p#p, in some open subinterval of (7.13) entails no loss of generality. It
then follows from (7.14) that, in this a-interval,

() €MD = 1 + af 2" Dloge + 0(e2* 1 loge)]
X [@,(e) + cpe? TP + o(e4PFPIMY] = @, (e) + adh,, (e) (7.17)
X faso/(n+1) 10g8 + cpeAﬁthp/n + 0(89/(n+ 1) |10g8l + 8Aﬁ+aBﬁ/n )

Here ¢, (¢) is independent of « and ¢ (0)=1, because of (3.7) and (4.14). The formula
remains valid if only (b) is false, if one then sets f,=0 and permits ¢ to be taken as
large as one pleases. Similarly, if only (a) is false one may set c,=0 and permit
A,+aBy/n to be arbitrarily large. Let o, a, be two values of a for which (7.17) is true
and (a, —a,) B,>0. Then subtraction of (7.17) for the two values of « leads to

0=_(0; — ;) 9, () f,£7" "V loge
+ cﬁSAﬁHxBﬁ/n (aaz—-al()Bﬁ/n _ 1) + 0(89/(n+ 1) |1083| + EAﬁ+axBﬁ/n)'

This is possible, if and only if all three terms vanish identically, contrary to our as-
sumption.

8. Remarks on Theorem 3.1.

Theorem 3.1 differs from Theorem 1.1 of [10] in four respects. First, formula (3.3)
contains the constant scalar factor e~ ~"/2(**1 " which does not appear in [10]. It
has been introduced to simplify the matching formulas. Second, Theorem 3.1 deals
only with the special case of Theorem 1.1 of [10] obtained by setting A=1 in the latter
theorem. The remaining two points require a more detailed analysis, which will now
be given.

Formula (3.3) contains a factor x! ~®/2% which appears in [9], [10] only in the
less precise form x€, where C is some unspecified diagonal matrix (see [9], p. 666,
formula (5.11); the notation there is different). To calculate C one has to carry out
the diagonalization process described in [9]§§ 3, 4 through the first two terms and to
compute the contribution of the form Cx~ !¢ that appears in the second term. One
finds — we omit some details — that C is the diagonal matrix formed with the diagonal
entries of

— lim {xM_l(x) dM(x)}, 8.1)

x=0 dx
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where
1 1 1

M(x) = A1(x) A(x) ... A(x) . 8.2)
B BT )
(The matrix M, here differs from the matrix with the same name in [9], (3.7) in its

higher order terms, but his does not affect the limit in (8.1).)
A short calculation shows that

lim {xM‘l(x) @3@} =T 'ST,

x—0 X

where T is the Vandermonde matric called U, (0) in (3.7), and

0 o)
s=! 1 2 . (8.3)
n .
Hence N "o
C = — diag(T™'ST). 8.4

The symbol ‘““diag” here means that one forms the diagonal matrix with the same
diagonal entries as 7~ 'ST. To calculate C we observe that

TP=Q(w) T,
if P is the permutation matrix

(0 0 0...0 1)
10 0..0 0
P={0 1 0..0 0].

0 0 0...1 0
Therefore,
— P'CP = P~ ' diag(T~'ST) P = diag(P™' T~ 'STP)
= diag(T ™ 'Q(w) SQ(w) T) = diag(T~'ST) = - C.
This means that the diagonal of C is unchanged under a cyclic permutation of its

entries. These entries must therefore, be all equal. Their sum, the trace of C is the
same as the trace of —S, by (8.4). The trace of S, according to (8.3), is (n—1)/2. It
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follows, that, indeed,

n—1

C=- I.

2n

After division by ¢ and integration of the diagonalized differential equation, this
term Cx ™ !e gives rise to the factor x€.

The fourth new feature of Theorem 3.1 is the factoring of x?( in the series repre-
sentation for U(x, ¢). The series appearing in Theorem 1.1 of [10] can be obtained
from (3.4) by writing ‘

1
xP® = exp {B(e)logx} = Z — (B(e) logx)
r.
r=0

and expanding everything in powers of e.

To derive the factored form of U(x, ¢) in (3.4), (3.5), (3.6) one follows the presen-
tation of [9] as far as Theorem 4.1 of [9]. The formally transformed differential
equation presents itself then as

dZ* n el -n—1_\r 7% i/n
“E‘i— =t ZO C,(t) (t 8) Z s t=Xx (8.5)
1/n

with diagonal matrices C,(¢) holomorphic in |f|<xy". (Again the notation differs
from that in [9].) A formal expression for a solution Z* is

Z*(t, &) = exp{ i et f C,(r)t e~ Dr dt} (8.6)
r=0

where the choice of the indefinite integrals still has to be defined. If also each C,(¢)
is expanded in powers of ¢, there will arise in the integrand terms of the form Fye*t ™1,
k=1, 2, .... We deviate from the procedure in [9] by collecting and integrating these
terms separately. This gives us, at least formally, a factor of the form

= X, B 1
exp { (kzl st"> log t} = X , By= . F,.

The remaining terms in the integrands of (8.6) are then integrated as in [9], p. 665.
This leads to formulas (3.4), (3.5), (3.6) as formal results. The proof that the formal
expansion represents asymptotically a true solution differs only insignificantly from
the one in [10].

9. Remarks on Theorem 4.1.

We outline a method of proof which leads to formulas (4.10) through (4.14)
instead of the somewhat less precise Theorem 1.2 of [10].
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Let the matrix form of equation (4.3), i.e.,
av

= H(s, )V 9.1)

be transformed by setting
V = Ws"®, 9.2)

where D (g) is a diagonal matric with an asymptotic expansion

D(e)~ Y D™D, (9.3
r=1
Suitable choices for the matrices D, will be described below. Equation (9.1) becomes
aw
= = H(s,e) W —WD(e)s . (9.4
s

It possesses formal solutions

W = i W,(s) &/ (9.5)
with

dw,

E-‘l = Hy(s) W,, (9.6)

ddl:,' = Hy(s) W, + G,(s) — Wo(s) D,s™ !, 9.7

G,(5) = ¥, (H(5) W, (5) = Wy (5) Dys™") + H (5) Wa(9)- ©98)

In [9], § 7 there is described a paricular V; (s) of the differential equation (9.6),
whose asymptotic expansion in the whole s-plane are known thanks to the work of
Turrittin [8]. In particular,

Vo(s) = s ™2 Q(s1/") Wy (s5) €2, .9
where
Wo(s)~ Y Wos @™ as s—»o00in ). (9.10)
r=0

(The notation differs slightly from that in [9].) We take W, =V, (s). The integral

W,(s) = Vo(s) f Vs (0) [G,(6) — Vo(o) Do~ '] do ©.11)

I'(s)
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represents a solution of (9.7) if I' (s) is any path in the o-plane ending at 6 =s, or even
a set of n? such paths, one for each entry of the matrix in the integrand (see [9], p. 670).
With this integral one can repeat the arguments of [9], § 8:

We define W, (s), G(s),r=1,2, ..., by

W,(s) = Q(s"'") W, (s) 2

G,(s) = 2(s''") G,(s5) €2® (9.12)
and recall from [9], formula (6.8), that

H,(s)=s"*V"Q(s"™) H¥ (s) (s~ ') (9.13)
with

HX(s)= fo H.,s~ ", (9.14)

The last series has only finitely many terms. Formula (9.8) shows that

n—1
Gr(s) = '21 (s(j+1)/an(3) Wr—j(s) - Wr—j(s) D;s™) + s(r“)/nH;k (s) Vo(s)-
J=

(9.15)
The integral representation (9.10) becomes
W,(s) =V, (s) f €29~ 2@ [17'0_1 (o) G,(G) — D,671] 272 gg. (9.16)

I'(s)

The W,(s) can now be successively calculated.
For the same choice of paths as in [9] Theorems 8.1, 8.2, and by the same method,
one proves successively that

W (S) — }“f'r(s) S(n+2)r/n—(1-n)/2n
r

with ¥, (s) bounded, as s — oo in Z. Beyond that, a simple inductive argument shows
that the Y, (s) have an asymptotic representation involving asymptotic series in pow-
ers of s~'/" and polynomials in log s. However, the appearance of logarithmic terms
can be prevented by choosing the D, successively in a suitable way. In fact, logarith-
mic terms are introduced by the integrations whenever the series for a diagonal entry
in the matrix ¥; *(o) G,(¢)— D,0 ™1, appearing in (9.16) contains a term in ¢~*, and
in no other way. Hence, the proper choice of D, is the one which makes these terms
Zero.

With the D, determined in this way the existence of a formal series solution of
(9.4), and hence of equation (2.1), with the properties of Theorem 4.1 is this established.
The proof of the analytic validity of the expansions (4.12), (4.13) also resembles
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closely the reasoning in the proof of Theorem 1.2 of [10]. This completes the proof
of Theorem 4.1.

Theorem 4.1, as stated, leaves one important question unanswered, viz., the com-
putation of Y (x, ¢) when |s|<s,. It is true that, thanks to the knowledge of V; (s) in
the whole plane through the work of Turrittin in [8] the functions W,(s) in (9.16) can
be calculated for 0 <|s| <s,, as well as for large s in X, but at s =0 these functions have
singularities so that the series ia (9.5) cannot be expected to represent a solution of
(9.4) asymptotically in regions containing the origin. The series (4.5), however, can
be used for such a representation in the whole disk |s| <.

THEOREM 9.1. Let

V,(s) e’ 9.17)

M8

0

1

r

be the formal solution of the differential equation (9.1) for which
v,()=WwW,(1), r=12,...

Then the solution Y (x, €) of equation (2.1), as given in Theorem 4.1 has, uniformly for
|s| <89, the asymptotic expansion

Y(x,8)~QE"D)Y V,(s) "D, as g0 +.
r=0

Proof: An elementary argument shows that the series (9.17) represents asymptotic-
ally in |s|<s, a solution of (9.1) with initial values at s=1 that are asymptotic to
2o W, (1)e/"*1) By (9.2) the same is true for the solution W (s, ) s®® of (9.1).
Hence those two solutions are asymptotically equal in |s| <so. As Y (x, &)=Q(e!/"* 1)
W (s, ¢) s”®, by definition, the proof of the theorem is at hand.
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