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Validité dans les algébres de Boole partielles

par GIOVANNI CORAY

Introduction

Les algébres de Boole donnent lieu 4 une interprétation naturelle de la logique
propositionnelle classique; en particulier, on sait qu’une expression propositionnelle
est valide dans toutes les algébres de Boole si, et seulement si, elle est une tautologie.
Par conséquent, certaines propriétés de la déduction dans le calcul propositionnel
classique peuvent étre démontrées a 1’aide d’arguments de caractére algébrique. Les
algébres de Boole partielles (4BP) définies dans [1] permettent, de maniére analogue,
I’étude du calcul propositionnel partiel. Ce dernier est un affaiblissement du calcul
propositionnel classique [2] suggéré par la mécanique quantique.

Il résulte de la semi-simplicité des algeébres de Boole qu’une expression proposi-
tionnelle est universellement valide si elle est valide dans I’algébre de Boole simple Z,.
On ne retrouve pas cette situation privilégiée dans le cas des ABP; en effet, il n’est
pas possible d’établir la validité des expressions propositionnelles (ou des régles de
déduction) par la vérification dans une algébre finie déterminée.

Cependant, on dispose d’un autre procédé de décision pour la validité dans les
algébres de Boole; il consiste A vérifier 'expression propositionnelle donnée a I’aide
d’une seule évaluation dans une algébre libre adéquate. Nous proposons, dans ce
travail, une définition des ABP libres permettant d’étendre ce critére au cas des
ABP.

Ainsi, le probléme central de cette étude est la représentation et la construction
effective de certaines 4BP libres.

La méthode de représentation est basée sur deux faits: d’une part, toute ABP
peut étre caractérisée par une famille d’algébres de Boole finies et d’isomorphismes
partiels; d’autre part, on peut décrire un tel isomorphisme partiel par une relation
binaire définie dans 1’espace dual des algébres de Boole. Cette maniére de représenter
les ABP facilite 1a mise au point d’un algorithme pour la construction d’une 4BP
libre déterminée. L’emploi de cet algorithme conduit toutefois & une suite d’opéra-
tions A I'aide de relations binaires de domaine fini, pour lesquelles ’emploi d’un
ordinateur se révéle judicieux.

Pour chaque expression propositionnelle (et plus généralement pour toute régle
de déduction) donnée, une calculatrice diment programmée peut ainsi construire
' 4BP libre adaptée et exécuter I’évaluation décisive. Les tautologies déduites dans
Principia Mathematica ont été soumises a ce test (sur la machine CDC 1604A du
Centre de Calcul, EPF, Zurich). Il en résulte que seules les trois expressions 2.81,
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3.47 et 4.38 (ainsi que 3.48 et 4.39, obtenues par simple substitution dans 3.47 et 4.38)
ne sont pas valides dans les 4BP.

Il est a2 noter que ces expressions ont quatre variables. D’autre part, on sait que
les identités Booléennes en une ou deux variables sont également valides dans les
ABP [1], alors que les identités a trois variables ont fait jusqu’ici I’objet de conjec-
tures. Nous en démontrons la validité a I’aide d’une classification des ABP libres 2
trois éléments générateurs.

Dans les ABP produites a cet effet, on peut observer la présence fréquente d’une
sous-algébre trés particuliére: ’analyse plus détaillée de ces ABP suggére une démon-
stration «algeébrique» de leur plongeabilité dans une algebre de Boole. Outre cet élé-
ment heuristique, ’ordinateur apporte une information indispensable, par I’énumé-
ration de quelques 60 cas traités isolément, pour la preuve compléte que toute 4BP
libre a trois générateurs est plongeable dans une algébre de Boole.

Le sujet est présenté en trois chapitres. Les ABP ont un trait caractéristique: les
opérations a deux arguments n’y sont définies que pour certaines paires d’éléments.
Cependant, comme les algébres de Boole classiques, elles ont deux unités. Pour les
structures de ce type nous donnons, dans la premiére partie de ce travail, une défi-
nition idoine des notions de satisfaction et de validité. L’usage continuel de ces notions
permet une démonstration concise de quelques propriétés algébriques. Nous déga-
geons de celles-ci plusieurs critéres pratiques pour la plongeabilité dans une algébre
de Boole.

La deuxiéme partie est consacrée & une méthode de représentation des ABP a
I’aide de relations binaires finies. Nous y développons ensuite un procédé de con-
struction pour certaines ABP, sous forme aisément traduite dans un langage de pro-
grammation.

Ce procédé s’applique, en particulier, aux A BP libres introduites dans la troisiéme
partie de cette étude. C’est dans ce dernier chapitre que nous démontrons la validité,
dans les ABP, de certaines régles du calcul propositionnel classique, en particulier
des identités Booléennes en trois variables.

I. Propriétés algébriques des algébres de Boole partielles

I.1. Structures et algébres de Boole partielles
DEFINITION. Une structure (ou structure d’algébre partielle) est un systéme
d’ensembles et de relations du type

A=(S,C,0,I1)

ou S est un ensemble et C une relation ternaire univoque en son dernier argument,
interprétée comme une fonction a deux variables définie sur une partie de Sx S,
tandis que 0 et 1 sont deux éléments distingués de S.
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Par exemple, une algébre de Boole, dont S est I’ensemble de tous les éléments, 0
I’élément minimal, / ’élément maximal et C I’opération définie pour tous a, b dans
S par C(a, b)="1a Vv b, est une structure.

La généralisation suivante des algébres de Boole, ou I’opération C n’est pas par-
tout définie, est proposée dans [1]. Soit D la relation binaire de base S telle que aDb
ssi C(a, b) est définie dans 4. D est la relation de compatibilité entre éléments de A.

DEFINITION. Une algébre de Boole partielle (ABP) est une structure 4=
(S, C, 0, I) telle que

— D est réflexive et symétrique. Pour tout élément a de S:aD! et aDO.

— tout triplet a, b, ¢ de S tel que aDb, bDc, aDc engendre une algébre de Boole

dans A.

Soit 4 une ABP. Une famille quelconque d’éléments de 4 deux a deux compatibles
engendre une algébre de Boole. En particulier, les restrictions de 4 aux parties maxi-
males de S formées d’éléments deux & deux compatibles sont des algébres de Boole;
I’ensemble de ces restrictions induit a son tour I'opération C de A. Cette idée est
développée dans le § I.1, en vue de la représentation des ABP.

D’autre part, on peut caractériser les 4ABP, parmi les structures, par la validité de
certaines régles du calcul propositionnel classique. Une remarque analogue vaut pour
les structures plongeables dans une algébre de Boole. La notion de validité s’avére
ainsi trés efficace pour la construction de nouvelles 4BP et I’établissement de critéres
de plongeabilité. Enfin, le concept d’ABP libre est étroitement lié & 1a notion de satis-
faction. Ces éléments sont introduits, dans le paragraphe suivant, & 'aide de défini-
tions détaillées.

1.2. Validité dans les structures partielles

Soit ¥ un ensemble dénombrable, fini ou vide. Les éléments de V seront appelés
variables et notés x, y, z, X{, X,,.... Le cas le plus fréquent sera V'={x, y, z}. L’en-
semble des expressions propositionnelles, pour ¥V donné, est noté FV. C’est ’ensemble
minimal d’expressions formées avec un alphabet contenant les symboles C, f, ainsi
que les variables, tel que: fe FV, V= FV et Cpqe FV lorsque p, g€ FV. Les expressions
propositionnelles sont notées p, g, r, p;, p,, ... et aussi Cpg pour la «concaténation»
de C avec deux expressions propositionnelles p, g. On utilisera également les «abré-
viations» courantes:

—-1p pour Cpf
pvgq pour CCpfg
PAg pour CCpCqff
p=q pour CpgnaCqp

ainsi que plg pour CfCpyg.
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Soit A=(S, C, 0, I) une structure et ¥ un ensemble de variables. Une valuation
dans A4 est une application v de ¥ dans S, notée v: V> A4.

Une valuation étendue dans A4 est une application © de ¥ dans S, notée o: V— 4,
telle que:

a) VeVcFV

b) pour tous p, ¢ dans FV:Cpge V ssi C est définie pour <&(p), 7(q)> dans 4,

peVet geV.
¢) pour tous p, g dans FV tels que CpgeV: 5(Cpq)=C(3(p), 5(q)).
d) feV et 5(f)=0.

PROPOSITION 1. Pour une valuation v: ¥—A donnée, il existe une valuation
étendue unique o: V> A, dont la restriction & ¥ coincide avec v. Son domaine de
définition ¥ est déterminé univoquement par v.

v sera appelée l'extension de v. La démonstration est ramenée au cas classique si
on ajoute & 4 un élément auxiliaire « et si on donne a C la valeur « chaque fois que
C n’a pas de valeur définie dans 4. On obtient ainsi une application de FV dans
Su{a} dont il suffit de prendre la restriction a S.

Une expression propositionnelle p est satisfaite par une valuation v, ou v satisfait
ap,sipeVeto(p)=1.

Une régle, dans Pacception la plus générale, est un couple d’ensembles M, M’
d’expressions propositionnelles; les éléments de M sont appelés prémisses, ceux de
M’ conclusions.

Une régle est valide dans une structure A si ses conclusions sont satisfaites par
toute valuation dans A qui satisfait & ’ensemble des prémisses. On note 4: M- M’
une régle (M, M'> valide dans 4. Une régle valide dans toutes les ABP est notée
MW-M'; pour M={p,,..., P} fini et M'={q} 'usage est d’écrire p, ..., pl-¢q au lieu
de MI-M'.

THEOREME 1. Une structure 4 = (S, C, 0, I) est une ABP ssi les régles suivantes
y sont valides pour un ensemble ¥ d’au moins trois variables:

R, plFCfp

R, CfCqp I+ Cfp

R, CCpfflrp

R, CfCpqltCpCqp

R; péq, pir, gsriFCCpCqrCCpqCpr
R p, Cpql-q

R, pbq, Cqr, Crql-pér

pour tous p, g, r dans FV, ainsi que
Rg I+Cfp

pour les variables p dans V.
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Démonstration. On vérifie aisément la validité de R,-Rg dans toute 4BP. Réci-
proquement, la validit¢ de Ry dans une structure A4 fait que, pour toute valuation
v:V—A, 5(p) Di(q) ssi v satisfait & plg. Si V a trois variables ou plus, on peut
toujours trouver une valuation v telle que v(p)=a, v(gq)=>b, v(r)=c dans 4; les
propriétés qui définissent les ABP (Déf. fin §I. 1) découlent alors des régles S,,, S,,
Ss, S, et des métarégles M;, M, [3], dérivées de R;-R,.

Le théoréme reste vrai si on remplace p, g, r par des variables x, y, z respective-
ment, avec V'={x, y, z}. La validité¢ de Rg entraine alors celle de R; et R,; on peut
d’ailleurs omettre également R ;. Cependant, le systtme R;,-Rg est complet dans le
sens suivant:

Une régle MIFM’ est valide dans toutes les ABP ssi elle est dérivable de R,—Rg.

La démonstration, donnée dans [3] pour le cas Cfpl-p, consiste & construire une
structure 4 et une valuation v: ¥— A telles que pe FV soit satisfaite par v ssi la régle
Mkp est dérivable de R,—Rg. Elle repose essentiellement sur la régle S,, dérivée de
R,-R; et peut &tre généralisée pour M quelconque. (Cf. § 1.1, Existence de ' ABP
universelle.)

THEOREME 2. Une structure A=(S, C, 0, I) est plongeable dans une algébre
de Boole ssi

A:Cfp,Cfglrp=gq

pour toutes les expressions p et ¢ de FV, V dénombrable, telles que p=gq est une
identité Booléenne (valide dans Z,).

La démonstration donnée dans [4] Th. 4, p. 84 pour les ABP, trouve sa «générali-
sation» naturelle dans le cas des structures. La condition suffisante pour la plonge-
abilité dans une algébre de Boole peut étre affaiblie; il suffit d’examiner les identités
p=gq, valides dans Z,, ol p et g sont des expressions propositionnelles formées a I’aide
de variables et de ’opérateur C uniquement (a I’exclusion de la «constante» f):

COROLLAIRE. Une ABP est plongeable dans une algébre de Boole ssi 4:Cfp,
Cfglkp=gq pour toutes les expressions p et ¢ de FV, qui ne contiennent pas le symbole
f, et pour lesquelles p=gq est valide dans Z,.

Démonstration. Soient Cfp, Cfgl-p=q une régle valide dans Z, et v:V—A4 une
valuation satisfaisant a Cfp, Cfg, mais pas & p=gq; on a donc 5(p)#7(q) dans 4.
Nous montrons I’existence d’une régle Cfp’, Cfq'I-p’=gq’ et d’une valuation v" avec
les mémes propriétés, p’ et ¢’ étant des expressions propositionnelles o f n’apparait
pas. Soient ye ¥ une variable n’apparaissant pas dans p, g et p, I'expression propo-
sitionnelle obtenue en substituant y A f dans p (de méme pour g,). p'=CCp,yy,
q'= CCq,yy et la valuation v’: ¥— 4, ol v’ coincide avec v pour les variables de p et g
tandis que v’ (y)=0, ont les propriétés requises.
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D’autres propriétés remarquables des A BP peuvent &tre définies par la validité de
certaines régles; tel est le cas de la transitivité: une structure A= (S, C, 0, I) est transi-
tive si la relation <, telle que a<b ssi C(a, b)=1, est transitive. Lorsque A est une
ABP, A:Cxy, CyzIFCxz est équivalente 3 A:Cxy, CyzlFxtz, Cf. [2]

1.3. Sous-algébres, centre et idéaux d’une ABP (définitions)

Les termes (en italique) définis dans cette section se référent & une ABP A=
(S, C,0,1).

Une sous-algébre de A4 est un systéme A'=(S", C’, 0, I') tel que S'< S, C'=C,
0'=0c¢t I'=1. On note A’ 4. L’opération C’ de la sous-algébre A’ est univoque;
A’ est une structure. Par contre, A’ n’est pas forcément une ABP.

Une sous-algébre A" < A est fermée si C’ est définie pour tout couple d’éléments
de S’ pour lequel C est définie.

Une sous-algébre fermée 4’ < A4 est une restriction de la structure 4, C'=Cn (S')>.
Toutes les régles valides dans A le sont également dans A’; en particulier, A" est une
ABP et, si A est transitive, A’ ’est également.

Les sous-algébres fermées de 4 ou I'opération induite est définie partout sont des
algébres de Boole. L’intersection des sous-algébres Booléennes maximales de A4 est
encore une algébrg de Boole, appelée centre de A et notée ZA. Le centre ZA est
formé des éléments ceS compatibles avec tout élément de 4. ZA=A ssi A4 est une
algebre de Boole.

Le centre ZA contient I’algébre Z, a deux éléments 0 et I, sauf dans le cas ou 4
est I’algébre de Boole dégénérée & un seul élément. Lorsque ZA=Z, on dit que 4
est une ABP centrale (les éléments idempotents d’'une K-algébre centrale forment une
ABP centrale, ou K est le corps des réels ou des complexes).

Soit D le domaine de définition de ’opération C et < la relation binaire telle que
a<b ssi C(a, b)=1; a, b et c désignent des éléments de ’4BP A.

Un idéal de A est une partie non vide J de S telle que:

— aDb et beJ entrainent aAbeJ

— aDb et a, beJ entrainent av beJ.

Dans le cas ot aDb pour tout élément b de J et tout a de 4, on appelle J un idéal
fermé. Un idéal J est fermé ssi J= ZA.

Un idéal centré de A est une partie non vide J de S telle que:

— a<b et beJ entrainent aeJ,

— pour tous a, beJ, il existe un élément ¢ dans le centre ZA tel que a<c, b<¢,

cel.

Un idéal centré est évidemment un idéal, un idéal fermé est centré.

Pour un élément ¢ du centre ZA I’ensemble (c)={a [ a<c} est un idéal centre.
(c) est appelé idéal principal. Dans une ABP transitive, I’ensemble (c) est un idéal
quel que soit c. Ce n’est pas le cas dans les ABP non transitives; d’ailleurs, seul le



Validité dans les algébres de Boole partielles 55

cas de I'idéal centré présente un intérét dans la suite, de sorte que I’élément «prin-
cipal» ¢ sera toujours pris dans le centre.

Un idéal J est premier si, pour tout élément a de A, a est dans J ssi le complément
—1a n’y est pas.

Les idéaux premiers de A correspondent aux homomorphismes de 4 a valeurs
dans Z,. A est plongeable dans une algébre de Boole ssi, pour toute paire d’éléments
distincts a, b dans A4, il existe un idéal premier qui les sépare ([4], th. 0, p. 67). Tout
idéal premier est maximal mais la réciproque est fausse, par exemple dans I’4ABP finie
D (Cf. [4], th. 1, p. 70), ou il n’existe pas d’idéaux premiers. Par contre, un idéal est
premier s’il induit un idéal maximal dans chaque sous-algébre Booléenne maximale.

1.4. Quotients

DEFINITION. La structure A’=(S’, C’,0’, I') est quotient (ou image homo-
morphe) de ’ABP A s’il existe une relation d’équivalence R, de base S, compatible
avec I'opération C, telle que:

- 8'=S/R

— C’ est induite par C

— 0 et I appartiennent aux classes 0’ et 1’ respectivement.
Dans ce cas, on note A"=A/R. A/R est un quotient fermé si, de plus, pour tous a, b, ¢
dans S, aRb et bDc entrainent aDc.

Un quotient d’une ABP n’est pas, en général, une 4ABP. Les quotients fermés ont,
par contre, des propriétés moins inattendues.

LEMME 1. Soient 4 une ABP et A’ un quotient fermé de 4. Alors:

— une régle valide dans A et dont toutes les prémisses sont de la forme Cfp est

également valide dans A4’.

— une régle valide dans 4’ et dont les conclusions sont toutes de la forme Cfp est

également valide dans 4.

Démonstration. Toute valuation v: V—A induit une valuation v':V—>A’" par le
passage aux classes de R-équivalence. Réciproquement, toute valuation v": V-4’ est
induite par une valuation v: V—4’, qu’on obtient par le choix arbitraire d’un systéme
de représentants.

On démontre, par induction sur le nombre d’occurences de C dans les expressions
Propositionnelles de F¥, que, pour les deux extensions o: VoAdetv':V' —A,ona
V=7’

De plus, si v satisfait 2 pe ¥, il en est de méme pour v',  cause de la compatibilité
de Ravec C,0 et 1. ‘

Inversément, si v’ satisfait & Cfp, pour p dans FV, on a Cfpe V'=V donc peV.
Cip est alors satisfaite par v & cause de la validité de Rg dans ’ABP A.

Les deux affirmations du lemme découlent de ces diverses remarques.
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PROPOSITION 1. Un quotient fermé d’une 4ABP est une ABP.

Démonstration. Tout quotient d’une ABP peut €tre recouvert par des sous-algébres
de Boole; les régles R, R;, R4, R; et Rg y sont donc valides. Le résultat ci-dessus
s’applique aux régles R,, Ry, R5 du théoréme 1, § I.2.

PROPOSITION 2. Si une ABP a un quotient fermé transitif, elle est transitive.
Démonstration. Les ABP transitives peuvent &tre caractérisées par la validité d’une
régle dont la conclusion a la forme Cfp.

PROPOSITION 3. Si une ABP est plongeable dans une algebre de Boole, ses
quotients fermés le sont également.
Démonstration. Une ABP est plongeable dans une algébre de Boole ssi toutes les

régles Cfp, Cfgl- p=gq valides dans Z,, avec ¥V dénombrable, y sont également valides
(th. 2, § .2).

LEMME 2. Soient 4 une ABP et J un idéal centré de A. La relation R, définie
par

aRb ssi il existe ¢ dans J tel que C(a, ¢)=C(b, c)
est une équivalence compatible avec I’opération C.

Démonstration. La symétrie de R est évidente; la réflexivité découle de OeJ. Pour
la transitivité soit: C(a, c)=C(d’, ¢), C(a’, ¢)=C(a", '), c et ¢’ dans J. 1l existe donc
un élément ¢” du centre avec c<c¢”, ¢'<c” et ¢"eJ pour lequel C(a, ¢")=C(d’, ¢")=
C(a’, ¢"). De méme, pour la compatibilité de R avec I'opération C, soit: a"=C(a, a'),
b"=C(b,b"), C(a, c)=C(b, c), C(da’, ')=C(¥', ¢), avec c et ¢’ dans J; on peut rem-
placer ¢ et ¢’ par un élément ¢” du centre, avec c<c”, ¢'<c¢” et ¢"eJ. L’identité
Booléenne CCxyz=(CCxzz)A(Cyz), satisfaite pour les trois valeurs compatibles
a,a’, ¢” (ainsi que b, b’, ¢”) données a x, y, z respectivement, fournit alors C(a”’, ¢")=
C(d", c").

DEFINITION. Le quotient de ’ABP A par la relation R définie (ci-dessus) &
’aide de I'idéal centré J est appelé quotient de A par J et noté: A/J. Dans le cas ou J
est I’idéal principal (c), on I’appelle quotient de A par I’élément c et on note: A/J=
A/(c)=A.. '

Remarques. Les éléments de A appliqués sur 0 dans le quotient 4/J sont exacte-
ment ceux de J; on vérifie en effet: aRO ssi aeJ.

A’ est un quotient fermé de A ssi il existe un idéal fermé J de A4 tel que 4'=A/J.

Certaines propriétés des quotients fermés se retrouvent dans le cas, un peu plus
général, du quotient de A par un idéal centré.

LEMME 3. Soient 4 une ABP et J un idéal centré de A. Une régle valide dans
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A est également valide dans A4/J, si elle a un nombre fini de prémisses, toutes du type
Cfp, ou p est une expression propositionnelle dans laquelle f n’apparait pas.
Démonstration. Soit A: MIFM’, pour un tel ensemble M de prémisses, et soit
v: V> A/J une valuation satisfaisant & M. Soit p,, ..., p, une suite d’expressions pro-
positionnelles dans lesquelles f n’apparait pas, telle que:
- pour chaque prémisse Cfpe M, p figure dans la suite py, ..., p,
— pour tout i<n on a p;eV ou alors p;=Cp,p, pour deux indices j, k <i.
On peut alors trouver, dans A, des éléments a;, b; et ¢;(i<n) tels que, pour tout i<n:
- si p;e ¥V, 'image de g; dans 4/J coincide avec v(p;)
- si p;=Cp;p, on a a;=C(b;, ¢;) et 'image, dans A/J, de a;, b; et ¢; coincide avec
v(py), 9(p;) et v(p,) respectivement.
Pour tout triplet i, j, k tel que p,=Cp;p, on a, par conséquent, b;Ra; et c;Ra,; d’olt
I'existence d’éléments d,, e; dans J tels que

C(bi, dl) = C(aj, dl) et C(C,-, ei) = C(ak, ei)'

Les deux éléments d,, e; de 1'idéal centré J peuvent étre remplacés, dans ces deux
équations, par un élément g; du centre ZA, avec d;,<g;, ¢;<g; et g;eJ. Soit g le
suprémum des g; dans ZA4; on a alors

C(b,g)=C(aj,g) et C(c;,8)=C(arg) ™*

pour tout i tel que p;=Cp;p,. A I'aide de I’élément g du centre, on modifie les valeurs
de a;, b;, ¢;; pour touti<n onpose: a:=a;v g, bi=>b;v g, c;=c; Vv g. Avec ces nouvelles
valeurs on a: a;=C(aj}, @), pour tout i<n tel que p;=Cp;p,; en effet, (*) entraine
b'=aj et ¢;=a; tandis que a;=C(b;, ¢;) découle de a;=C(b;, c;) et de I'identité
Booléenne (Cxy)vz=C(xvz)(yv2).

On peut finalement construire une valuation v': V—A compatible avec v: V—A/J,
en posant v’ (p;)=aq; pour p;e V. L’extension #’': ¥'—>A4 de v’ est définie, notamment,
pour p; et prend la valeur ¥’ (p;)=a; (pour tout i<n).

Ainsi M< V’; 1a forme particuliére des prémisses fait qu’elles sont satisfaites par
v" dans L’ABP A. Les conclusions sont donc également satisfaites par v’, et a fortiori
par v, dans le quotient.  c.q.f.d.

La démonstration des propositions 1 et 3 ci-dessus peut &tre reprise, pour le
quotient par un idéal centré, en remplagant le théoréme 2, § 1.4, par son corollaire:

PROPOSITION 4. Le quotient d’une ABP par un idéal centré est une 4BP.

, PROPOSITION 5. Si une ABP est plongeable dans une algébre de Boole, c’est
€galement le cas pour son quotient par un idéal centré.
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1.5. Homomorphismes
De mani¢re générale, on distingue deux notions d’homomorphisme.

DEFINITION. Un homomorphisme h: A— A’ entre les ABP A et A’ est une appli-
cation de S dans S’ qui conserve les éléments distingués 0 et 1, ainsi que la relation
ternaire C. h est un homomorphisme fermé si, pour chaque paire d’éléments a, b dans
S, on a:

C' est définie pour h(a), h(b) ssi C est définie pour a, b.

Ainsi une sous-algébre 4= A’ est fermée ssi I'injection S=.S’ est un homomor-
phisme fermé; le quotient A’=A/R de A est fermé ssi I’application canonique S— S/R
est un homomorphisme fermé; une application 4:S—S’ est un homomorphisme
fermé de A vers A’ ssi 'image de A4 par % est un quotient fermé de A4 et une sous-
algébre fermée de A'.

Un homomorphisme d’ABP h:A—A’ est fermé ssi la préimage de toute sous-
algébre Booléenne de A’ par 4 est une sous-algébre Booléenne de A. En particulier,
dans un quotient fermé A’ de 'ABP A, les parties Booléennes maximales de A4 et de
A’ se correspondent de maniére biunivoque. Par conséquent, le centre de A’ est I'image
du centre de 4.

1.6. Produit d’ABP

Le produit cartésien d’une famille de structures A,, ieJ, avec I'opération définie
par composantes, est évidemment une structure; on la note [[;.; 4, (ou 4; x 4,, s’il
y a deux facteurs).

LEMME. Toute régle valide dans chaque facteur A4,, ieJ, d’'un produit 4=
[1ics A; est également valide dans 4.

Réciproquement, toute régle valide dans A4, dont I’ensemble des prémisses n’est
pas contradictoire (satisfait par une valuation dans Z,), est également valide dans
chacun des facteurs A4, ieJ.

Démonstration. Toute valuation v: V— A4 se décompose en une famille de valua-
tions v;: V- A4,. Une expression propositionnelle de FV est satisfaite par v ssi elle est
satisfaite par chaque v;, ieJ. La premiére partie du théoréme en découle immédiate-
ment. Pour la seconde, soit M I'ensemble des prémisses d’une régle valide dans A et
soit v: V- A, une valuation dans A, satisfaisant 3 M. On peut alors construire une
valuation v": V— A, satisfaisant & M et telle que v;=v; il suffit de donner a la i-éme
composante de v’ les valeurs de v. A toutes les autres composantes, on donne des
valeurs dans Z, qui satisfont 3 M.

PROPOSITION 1. Un produit de structures est une ABP ssi chaque facteur est
une ABP.
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PROPOSITION 2. Un produit d’4BP est une 4 BP transitive ssi c’est le cas pour
chacun des facteurs.

PROPOSITION 3. Un produit d’ABP est plongeable dans une algébre de Boole
ssi c’est le cas pour chacun des facteurs.

Les démonstrations découlent immédiatement du lemme et du § I.2.

La suite de ce § 1.6 permet d’établir un critére de plongeabilité dans une algébre
de Boole (Prop. 5), qui généralise la proposition 3.

PROPOSITION 4. Soient 4 une ABP et J,,..., J, des idéaux centrés dont I’inter-
section est J. Alors 4/J peut étre plongé dans le produit A'=[];-; 4/J;.

Démonstration. J est un idéal centré; soit g: 4— A/J I’épimorphisme induit par J.
D’autre part, soit h: 4— A’ ’lhomomorphisme dont la i-éme composante est donnée
par la projection de A4 sur A/J; (i=1,..., n). Alors h=f.g, pour une application bi-
univoque f: 4/J—A’. En effet, pour a et b dans 4 avec g(a)=g(b) il existe ¢ dans J
tel que C(a, c)=C(b, c); dans ce cas ceJ; pour i=1,..., n d’ol h(a)=h(b).

Réciproquement 4 (a) = (b) entraine I’existence de c;eJ; tels que C(a, ¢;)=C (b, c,),
pour i=1,..., n. L’intersection ¢; A ¢, A -+ A, est alors un élément de J et g(a)=g(b)
découle de I'identité Booléenne Cx(zy A+ Az,)=Cxz; A -+ ACxz,. f est un homo-
morphisme défini sur 4/J puisque g est épimorphe.

COROLLAIRE 1. Pour tout élément ¢ du centre d’une ABP A, on peut plonger
A dans le produit A, x A-,.. Dans le cas d’une ABP transitive, on a A=A xA_,..

Démonstration. Les idéaux principaux (c) et (—1c) sont évidemment centrés et
leur intersection est (0). Pour montrer que h: A— A, x A, est surjectif pour A transi-
tive, soit (a, a’)e A, x A-,.. 1l existe donc b et b’ dans 4, dont les images sont a et a’
dans les quotients respectifs par (c) et (—1c). Puisque A est transitive, on peut former
d=(b"Ac)v (b A ic); on vérifie alors C(b, ¢)=C(d, ¢) et C(b', 71c)=C(d, —1¢), d’o
h(d)=(a, a).

PROPOSITION 5. Une ABP finie est plongeable dans une algébre de Boole ssi
C’est le cas pour chacun de ses quotients 4_, ., ol ¢ parcourt les atomes du centre.

Démonstration. Soit A une ABP dont chaque quotient A_,, est plongeable dans
une algebre de Boole. L’algébre A = 4/(0) peut étre plongée dans le produit des 4,
puisque I'intersection des idéaux (—ic), pour tous les atomes ¢ de Z4, est nulle. La
réciproque est contenue dans la proposition 5, § 1.4.

Remarque. Cette proposition peut étre généralisée aux 4BP infinies complétes
atomiques. Dans le cas des 4 BP transitives, elle est alors équivalente 3 la proposition
3; en vertu du corollaire 1, telle ABP est, en effet, le produit d’autant d’4 BP centrales
qU'il y a d’atomes dans le centre.
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1.7. Isomorphisme partiel et somme d’ABP

DEFINITION. Un isomorphisme partiel h: A,—A, est une application biuni-
voque, définie sur une sous-algébre Booléenne B de ’ABP A,, a valeurs dans I’4BP
A5, qui conserve I’opération induite par 4,.

L’application réciproque et le composé d’isomorphismes partiels sont encore des
isomorphismes partiels. Soient 4, et 4, des sous-algébres d’une ABP A; si linter-
section B=A, N4, est une algébre de Boole, la restriction de I'identité & B est un
isomorphisme partiel.

DEFINITION. Pour un isomorphisme partiel h:A;—A, on appelle somme de
Ay et A, modulo h la structure 4 obtenue en identifiant, dans la réunion disjointe de
S; et S,, les éléments correspondants de I’application 4. Les opérations de A sont-
induites par A, et A, de maniére univoque, puisque 4 est homomorphe.

On note A=4, +A4,(mod#). Lorsque 4 identifie les seuls éléments 0 et I de 4,
et 4,, on appelle 4 la somme directe et on note A=A, +A4,.

Remarques. Si h est défini sur A4,, alors A,=A4,+A4,(modh); en particulier
A,=Z,+A,, pour A;=2Z,. Si A, est formée d’un seul élément, alors A=A4,=A4,.

La somme directe d’4BP est commutative et associative. La somme directe d’une
famille quelconque d’algébres de Boole peut toujours étre plongée dans une algebre
de Boole assez grande.

A, et A, sont des sous-algeébres fermées de A=A, +4,(mod#); par conséquent,
toutes les régles valides dans 4 sont valides dans 4, et 4,. La réciproque est fausse;
on vérifie cependant que la somme d’4BP est une ABP et que la somme directe d’ABP
transitives est transitive. De plus, on a la propriété d’amalgamabilité suivante:

THEOREME. Soit h:A4,—A, un isomorphisme partiel et A=A, +A,(modh).
Alors A est plongeable dans une algebre de Boole ssi c’est le cas pour A4, et 4,.

Démonstration. On peut supposer que A4, et 4, sont des algébres de Boole. Dans
le cas contraire, on plongerait 4, et A, dans les algébres de Boole respectives B et
B,, de sorte que A< B, +B, (mod#). 11 s’agit de construire, pour deux éléments dis-
tincts a, b de A4, un idéal premier J qui les sépare.

Si a et b se trouvent tous deux dans la méme algébre de Boole A, (par exemple), il
existe un idéal maximal J, de A, séparant a de b. L’intersection J, N A4, est un idéal
propre de 4, n A, et peut donc étre étendu & un idéal maximal J, de 4,, suivant un
raisonnement classique. J=J, U J, est un idéal de A4, premier et séparant a de b.

Reste le cas ol a¢ A, et b¢ A,. Soit Ay=A4, " A,. Un lemme de A. Daigneault [1]
affirme I’existence d’un idéal maximal J, de A4, tel que I'idéal J;, engendré par J, dans
A;, ne contient ni @, ni son complément. Soit alors J, un idéal maximal de A4, con-
tenant J,.

Si beJ, on construit J;={C(a, ¢) I ceJ,}. Ji est un idéal propre de 4, ; sinon on



Validité dans les algébres de Boole partielles 61

aurait C(a, ¢)=1 pour un élément ¢ de J;, donc a<c et ae J;; contradiction. D’autre
part J; contient —1a, puisque O€J;; il en est de méme pour 'idéal maximal J{ de 4,
contenant J{. J{ ne contient donc pas a et J=J] U J, a les propriétés requises.

Si b¢J, on remplace a et b par leurs compléments.

COROLLAIRE. Si une 4ABP est recouverte par trois algebres de Boole, elle est
plongeable dans une algébre de Boole.

Démonstration. Soit A une ABP avec trois parties Booléennes maximales 4,, 4,
et A;. On a alors 4; " A4, < 4,, avec une permutation éventuelle des indices. Sinon
il y aurait trois éléments a,, a,, a; deux a deux compatibles, tels que a;e A4, ssi i#k;
I'algébre de Boole engendrée par ay, a, et a; n’est contenue dans aucune des 4;
(i=1, 2, 3), ce qui est contraire a I’hypothése. Ainsi(4; UA4;)N (A, A3)=A; est une
algébre de Boole et le théoréme s’applique 8 'ABP A=(A4; U A;)+(A4, U 4;) (modh),
ou & est I'identité sur 4.

Remarque. Les quotients A, de la proposition 5, § .6, sont en général beaucoup
plus simples que I’4BP finie A; on peut souvent leur appliquer le théoréme ci-dessus
ou son corollaire. De plus, leur construction est immédiate, elle revient a biffer cer-
taines lignes et colonnes dans les matrices représentant 4 (Cf. Remarque a la fin des
§ I1.3 et I1.4). Nous disposons ainsi d’un critére de plongeabilité trés pratique, employé
systématiquement dans les cas 1 & 60 du § IIL.3.

II. Représentation des ABP

IL1. Généralisation de la somme d’ABP

La notion de somme peut étre utilement étendue & certaines familles d’4ABP et
d’isomorphismes partiels. Soit A4, ieJ, une famille ’4BP et h;: A,—A;, i et keJ, une
famille d’isomorphismes partiels telle que:

1. pour tout i de J: h;; est I'identité de 4;
2. pour tous i, k de J: h;. est la réciproque de A,;
3. pour tous i, j, k de J:  hy2h;;0hy.

Alors la relation R, telle que aRb ssi il existe i, k dans J avec a=hy (b), est une
relation d’équivalence sur la réunion disjointe des S;(ieJ); réflexivité, symétrie et
transitivité de R découlent directement des conditions 1,2 et 3 ci-dessus. D’autre
part, les applications k; sont homomorphes, de sorte que R est compatible avec
les opérations des A,. Le quotient par R est donc une structure, avec ’opération
induite par les 4BP de lafamille. On I'appelle somme de la famille {4, | ieJ} modulo
{ha | i, ke).

Ici encore chaque 4BP de la famille apparait dans la somme comme sous-algébre
fermée; par contre, la somme n’est pas, en général, une ABP.
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THEOREME. Une structure est une ABP ssi elle est la somme d’une famille
d’algébres de Boole A;, ieJ, modulo une famille d’isomorphismes partiels 4, i et
kelJ, telle que:

4. pour tous i, j, k il existe / dans J avec h;;=hyohy;, hy,=hjohy et by =hyoh,

Démonstration. Soient A=(S, C, 0, 1) une ABP et S;(i€J) les parties maximales
de S dont les éléments sont deux a deux compatibles. Si 4;=(S;, CnS?,0, I) est
I’algébre de Boole obtenue par restriction de 4 4 S; et 4, I'identité de A4 restreinte a
S;n S, (i, keJ), on obtient une famille d’algébres de Boole pour laquelle on vérifie
1., 2. et 3. La condition 4. est remplie parce que, pour i, j, k dans J, I’ensemble
(S;nSHU(S; NS )U(SynS;) est formé d’éléments deux & deux compatibles; il est
de ce fait contenu dans une partie maximale S,.

Pour la réciproque, soit 4 la somme d’une famille d’algeébres de Boole 4;(ieJ)
remplissant les conditions 1. & 4. Si on considére A; comme sous-algébre de 4, la
relation de compatibilité D dans la structure A revient a: aDb ssi il existe ieJ avec
a, beA;. A a les propriétés caractérisant les ABP (§ I.1): par exemple, pour a, b et ¢
dans 4, deux a deux compatibles, il existe i, j, kK dans J avec a et b dans A4,, a et ¢ dans
A;, c et a dans A4,; 4. entraine alors I'existence d’une sous-algébre Booléenne 4, con-
tenant a, b et c.

Au lieu des parties Booléennes maximales on aurait pu prendre, dans la démon-
stration, toutes les restrictions de A qui sont des algebres de Boole finies. Toute 4BP
se laisse ainsi représenter comme somme d’une famille ayant les propriétés 1. a 4.
ci-dessus, ainsi que

5. pour tout i de J: A, est une algebre de Boole finie.

Pour décrire une ABP finie, il suffit de numéroter ses sous-algébres Booléennes
maximales A4,,..., 4, et de donner les isomorphismes partiels #4;:4,—A; pour
1<i<k<n. Une telle description est compliquée a cause du nombre élevé d’éléments;
elle gagne a étre remplacée par une représentation «duale» qui fait intervenir, au
lieu d’une algébre de Boole, I’ensemble de ses atomes et, au lieu d’un isomorphisme
partiel, une relation binaire qui le caractérise (§ I1.2).

I1.2. Représentation d’un isomorphisme partiel par une relation binaire

DEFINITION. Soient E, E’ deux ensembles et R une partie du produit cartésien
Ex E’. Nous écrirons a’Ra au lieu de {a, a’)€R.

R est surjective si, pour tout a de E, il existe a’ dans E’ (et réciproquement) de
sorte que a’Ra.

R est droite si, pour tous a, b dans E et a’, b’ dans E’, tels que a'Ra, b'Rb on a:
a'Rb ssi b’ Ra.

R est une équivalence de E vers E' si R est surjective et droite.
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Nous noterons R* la transposée de R, R(X) I’ensemble des a'€E’ tels que a’Ra
pour au moins un élément a de ’ensemble X et id(E) la relation d’égalité sur E. Une
relation binaire R est une équivalence de E vers E’ ssi R(E)=E’, R*(E')=FE et
RoR*oR=R.

Dans le cas ou E'=E et id(E)< R, R est dite réflexive. Une relation réflexive est
droite ssi elle est symétrique et transitive.

Une relation RS Ex E’ est droite ssi on peut trouver deux familles d’ensembles
disjoints, E;< E(ieJ) et E/ < E’(ieJ), telles que R=J;., E; X E;.

Le choix des termes définis ci-dessus est suggéré par ces remarques.

PROPOSITION 1. Soient R une équivalence de E vers E’, P(E) et P(E’)’algébre
Booléenne des parties de £ et E’ respectivement. Soit A4 Iapplication définie par
h(X)=R(X) pour les éléments X de P(E) tels que R*- R(X)=X. Alors 4 est un iso-
morphisme partiel 4: P(E)—P(E"). On écrira: h=P(R).

Démonstration. 1l suffit de démontrer que 4 est univoque et définie sur une algébre
de Boole.

a) Le domaine de définition de % est une algébre de Boole; il est fermé par rapporta
la réunion, puisque R(Xu Y)=R(X)U R(Y), et par rapport au complément. En effet
R* o R est réflexive, symétrique et transitive, donc R*o R(X)=X ssi X est la réunion
d’un certain nombre de classes de R*. R-équivalence; il en est alors de méme pour
le complément de X dans E.

b) h est biunivoque; soit Z=h(X)=h(Y) avec R*oR(X)=X et R*R(Y)=Y.
Alors X=R*,R(X)=R*(Z)=R*-R(Y)=7Y.

L’image de ’isomorphisme partiel 4: P(E)— P(E’) est formée des parties Y=R(X)
de E’ telles que X=R*. R(X). Ce sont exactement les Y< E” tels que RoR*(Y)=1Y;
Pisomorphisme h* réciproque de % est induit par I’équivalence R* de E’ vers E: P(R)*
=P(R¥).

L’isomorphisme partiel A= P(R) est défini sur une sous-algébre Booléenne com-
pléte de P(E) et il conserve évidemment le supremum d’une famille non vide quel-
conque d’éléments pris dans ce domaine. Ces conditions s’avérent suffisantes pour
Pexistence d’une équivalence R «duale» de 4.

DEFINITION. Un isomorphisme partiel #: 4— A’ est complet si A et A’ sont des
algébres de Boole complétes atomiques et si le domaine et I'image de A sont des sous-
algebres complétes de A4 et A’ respectivement.

PROPOSITION 2. Un isomorphisme partiel h:P(E)—P(E’) est complet ssi A
provient d’une équivalence de E vers E’'.

Démonstration. Pour la construction de I’équivalence R duale de 4 on considére
P(E), P(E") comme sous-algébres de A=P(E)+P(E’) (mod#), avec I'intersection
B=p (E)nP(E")cA4; tandis que E et E’ sont traités comme ’ensemble des atomes



64 GIOVANNI CORAY

de P(E) et P(E’) respectivement. Soit R E x E’ définie par: a'Ra ssi il existe un
atome b de B tel que a<b et a’'<b.

La relation R est droite. Pour a’'Rec, ¢'Re, ¢’Ra il existe en effet trois atomes
by, by, by de B avec a'<by>c, c<by,>¢', ¢'<bsy=a. D’ou by Ab,>c dans P(E) et
b, Aby>=c' dans P(E"),les atomes by, b,, b3 de B sont doncconfondusetonaa’<b, >a,
soit @' Ra.

La relation R est surjective. Soit @ un atome de P(E). B est une sous-algébre com-
pléte de P(E) et de ce fait totalement distributive et atomique ([6], p. 86). II existe
un atome b de B tel que b>a; sinon on aurait a A b=0 pour tout atome b de B et le
supremum des a A b, ou b parcourt les atomes de B, serait également 0. Or, le supré-
mum de ’ensemble des atomes b vaut [ et, par distributivité, le supremum des aA b
est a#0. Finalement, il existe a’' dans E’ tel que a<b>d’ du fait que P(E’) est
atomique.

La relation R est duale de A, A=P(R). Il suffit de remarquer que tout élément de
B est le suprémum de I’ensemble des atomes qu’il couvre, aussi bien dans P(E) que
dans P(E’).

Tout isomorphisme partiel entre algébres de Boole finies est complet; il peut €tre
représenté par une équivalence d’un ensemble d’atomes vers ’autre.

Toute sous-algébre compléte d’une algébre de Boole compléte atomique peut €tre
donnée par une partition de ’ensemble des atomes. Par exemple, pour E={l, 2, 3,
4, 5} la partition (12/34/5) représente la sous-algébre engendrée par les éléments {1, 2},
{3, 4} et {5} de P(E).

COROLLAIRE. Un homomorphisme A:P(E)—P(E’) est complet (conserve les
suprema de familles quelconques: [6], p. 70), ssi il existe une application g:E'—~E
telle que £(X)=g*(X), pour tout X< E, ou g* est la relation binaire transposée (ou
réciproque) de g.

Pour la démonstration, remarquer que, si 4 est complet, I'image #(P(E)) est une
sous-algébre compléte de P(E’).

I1.3. Représentation d’une ABP par une famille de relations binaires

Soient R une équivalence de E vers E’ et R’ une équivalence de E’ vers E”. La
composition habituelle R'-R (produit relatif) ne donne pas, en général, une équi-
valence de E vers E”; on peut cependant «rectifier» R’ « R de maniére 4 avoir P(R’ L R)
=P(R')o P(R) pour I'isomorphisme partiel P(R’ L R) associé au produit droit R' L R.

DEFINITION. On appelle produit droit R’ LR la relation binaire droite mini-
male, de E vers E”, contenant R’ o R.

L’existence de R’ L R est évidente, puisque E x E” est une relation droite et 'inter-
section d’une famille non vide de relations droites est encore droite. Le produit droit
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d’équivalences R et R’ contient la relation surjective R’ R, ¢’est donc une équivalence.
R’ L R peut €tre construit comme réunion d’une suite R,(n=0, 1, 2,...) de parties
de EXE":

R0=RIOR, Rn+1=R"oR:oRn.

Si E ou E" est de cardinal ¢ fini, on a R'.L R=R, pour »n suffisamment grand (n tel
que 3">2-c). On a également

R,_LR == U RIORO(R*OR’*ORIOR)n
n=0

ou la n-iéme puissance est I'identité lorsque n=0, le produit relatif avec n facteurs
identiques, lorsque n>1.

Les trois lemmes suivants aboutissent & la démonstration de P(R'LR)=
P(R")oP(R). Pour les deux premiers, on fait les hypothéses et conventions suivantes.

Soient C une algebre de Boole compléte atomique, 4 et B des sous-algébres com-
plétes de C et d un atome de l’intersection D=4 N B. Soit S I’ensemble des atomes
de 4 bornés par d et T I’ensemble des atomes de B bornés par d. Pour X Set YT
on conviendra que:

- X’ est le complément de X dans S, tandis que Y’ est le complément de Y dans 7.

— XY est 'ensemble des produits aA b dans C des éléments a de X et b de Y.

- X-Y=0ssi anb=0 pour tout a dans X et b dans Y; X et Y peuvent &tre vides.

LEMME 1. Pour deux ensembles X< S et Y<T tels que X-Y'=0et X'-Y=0,
onaX=Y=0Q0ouX'=Y=0.

Démonstration. Les algébres A, B et C sont complétement distributives en vertu
du théoréme 25.2 [6], p. 86.

Soit X+ Y'=0, X'-Y=0 et c=Sup{anb|acX et beY}. On a évidemment c<d
puisque d=SupS=Sup7=Sup{anb | aeS et beT}.

Orc=Sup{anb|aeXetbeY}=Sup{anb |acXetbeT}=Sup{anr SupT | aeX}
=Sup{and | ae X} =Sup XeA, puisque, par hypothése, aAb=0 pour aeX et beY’;
de méme c=Sup YeB et par conséquent ceD.

d étant un atome, ¢<d entraine ¢=0 ou c=d. Dans le premier cas, X-Y=0;
X-Y'=0 et X’- Y=0 ne sont alors possibles qu’avec X=Y=0. Dans le second cas
soit ¢’=Sup {anbd l acX' et beY'}; on a évidemment ¢’ <d, d’ou:

¢’=dac=cnc=Sup{anb|laeX,beY} ASup{a' Ab' |adeX' beY’}
=Sup{anbaa Ab |aeX,beY,aeX ,beY'}=0

puisque, par hypothése, a A b’ =0 et a’ Ab=0 pour acX, b'eY’,a’'eX’ et be Y. Donc
X'-Y'=0; on en déduit, comme dans le premier cas, X'=Y'=0.
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LEMME 2. Pour tout atome a dans S et tout b dans 7 il existe un entier n>0,
des atomes a,,..., a, dans S et des atomes b,..., b, dans T tels que ao=a, b,=b,

a;nb;#0 (0<i<n),

anb,_ #0 (1<i<n).

Démonstration. On peut construire les suites de familles d’atomes suivantes:

So={a}, To={eeT|ane#0},
Snr1={eeS, |{e}- T, #0} =
= {eeS | e¢S, et il existe ¢’ dans T, avec e A €' # 0},
Tn+1={eETnI|Sn+1.{e}7&0}=
= {eeT | e¢ T, etil existe ¢ dans S, avece A ¢ # 0}.
X=Us,ss, Y=UT<eT.

n=0

Par construction on a: X' =(S,US,+1) =S,\S,+1, donc X'+ T, =0, pour tout n;
par conséquent X' Y=0.

D’autre part Y'=(T,uT,,)=T\T, +1, donc S,.,* Y =0, pour tout n. De plus
Y’ =Ty, donc Sy Y’ =0 et par conséquent XY’ =0.

Le lemme 1 s’applique ainsi 3 X et Y; on a X=Y=0 ou alors X'=Y'=0. Or
So S X n’est pas vide, donc X'=Y'=0 et T=7Y. Pour tout b dans T il existe par con-
séquent un n>0 avec beT,.

Ceci permet de trouver une suite d’atomes a;€S;, b;e T;(0<i<n) par le procédé
récursif suivant:

- b,=b est dans T,

- soit b,_; dans T,_; pour 0<i<n, alors il existe un atome e€S,_; tel que

e Ab,_;#0 (définition de T,_;), on prendra a,_;=e.
— soit a,_; dans S,_; pour 0<i<n, alors on peut trouver un b,_;_; dans T, _;—1
tel que a,_;Ab,_;_, #0 (définition de S,_)).

Pour i=n on aboutit & g, dans S,, or Sy={a}, d’ou a=q,. D’autre part, aucun

des produits a; A b; ou a; A b;_; ne s’annulle.

LEMME 3. Pour deux équivalences R de E vers E’ et R’ de E’ vers E”, on a
P(R'LR)=P(R).P(R).

Démonstration. Soit h=P(R), k' =P(R’) et h"=h -h. D’aprés la proposition 2,
§ I1.2, il existe une équivalence R” de E vers E” telle que A" =P(R"). Pour montrer
R"=R’ 1 R on construit ’'ABP

P={P(E)+ P(E')(mod h)} + P(E") (modh’)
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plongeable dans une algébre de Boole selon le théoréme du §1.7. P(E), P(E’) et
P(E") peuvent alors étre considérées comme sous-algébres de P avec I'intersection
A=P(E)nP(E'), B=P(E')NnP(E") et D=AnB=P(E)nP(E"); les relations R,
R’ et R” sont caractérisées, comme précédemment, par I’existence d’atomes dans
A, B et D respectivement.

a) R"L RS R". Puisque R” est une équivalence, il suffit de montrer R’ RS R".
Soient aeE, a’eE’, a"eE" tels que a"R'a’ et a’Ra; on adonc: a<b>ad' eta’' <b' >a’,
pour deux atomes, b dans A4 et b’ dans B. Il existe dans D deux atomes d et d’ tels que
d=b et d'=b" (Cf. démonstration de la proposition 2, § I1.2). Puisque dAd’'=a’, les
atomes d et d’ sont confondus; donc a”"<d>a et a"R"a.

b) R"<R LR. Avec R" L R=|J;_oR cRo(R*sR'*s R's R)" cela revient & mon-
trer que, pour ee E, "€ E” tels que e<d>e” pour un atome d de D, il existe un entier
n et des éléments

eg, ..., e, dans E

n
ey, ..., e, dans E’
g, ..., €, dans E”
K
er,...,eS dans E

tels que e=e,, e"=e, et

- e;<a;>e; pour 0<i<n et un atome q; de 4
e;<h;>e! pour 0<i<n et un atome b; de B
"

~ el_,<bf>el pour 1<i<n et un atome b; de B
~ ef<af>e;  pour 1<i<n et un atome a; de 4.

Si ’on prend pour a un atome de A4 tel que e<a et pour b un atome de B tel que
e"<b (existence assurée du fait que R et R’ sont surjectives) le lemme 2 ci-dessus
fournit n, ay, ..., a, et b, ..., b,. Le choix de af=a,, b=b,_, pour 1<i<n donne:

- a;Ab;#0  d’oll I’existence de e; dans E’, 0<i<n,
— af AbF#0 d’ou I'existence de e dans E’, 1<i<n.

L’existence de e;<a} =a, et de e/_, <b;=b,_;, 1 <i<n provient du fait que P(E) et

—
P(E") sont atomiques. Restent e, <a, et e,<b, que ’'on peut poser e,=e et e, =e’,
puisque ag=a et b,=b.

COROLLAIRE 1. Le produit droit d’équivalences est associatif.

OCROLLAIRE 2. Si R, et R, sont deux équivalences de E vers E’ et h, =P(R,),
h,=P(R,) les isomorphismes partiels associés, on a

hl & hz ssi R1 =2 R2.
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Démonstration. hy Sh,<>h, oh%oh; =h,<>R, L R% 1 R, =R, ; un simple calcul mon-
tre que cette derniére égalité a lieu ssi R, S R;.

THEOREME. Toute ABP est la somme d’une famille d’algébres P(E)), ieJ,
modulo une famille d’isomorphismes partiels P(R;), i et keJ, telle que

pour i, k dans J: R, est une équivalence de E, vers E,
pour i dans J: R;; est 'identité sur E;
pour i, k dans J: R,; est la transposée de R;;

pour i, j, k dans J: R;<R;;L Ry

et, pour tout triplet i, j, k, il existe / dans J tel que:

Rij =Ryl sz
‘Rjk = R]l ..L le
Rki=Rkl i Rli'

Réciproquement, une telle somme est toujours une ABP.

La preuve découle du § 1.1, du lemme 3 et du corollaire 2 ci-dessus.

Pour représenter une 4BP finie comme somme d’algébres P(E;) on prendra tou-
jours les parties Booléennes maximales numérotées a I’aide de J={1, 2,..., n}. Pour
i<n on prendra E;={1, 2,..., d;}, (d;=dimension de la i-¢éme partie Booléenne maxi-
male) de sorte que R, est décrite & I’aide d’une matrice dont les d x d; éléments ont
les valeurs 0 ou 1. Dans le cas d’'une ABP infinie, il suffit de prendre la famille de
toutes les restrictions finies Booléennes. Ce n’est cependant pas toujours nécessaire;
par exemple ’ABP B(U*) des sous-espaces fermés de I'espace d’Hilbert U® (Cf. [4],
p. 65) est la somme de la famille d’algeébres P (E;) modulo les isomorphismes partiels
P(R;,), i et k dans J, lorsque:

— J est un ensemble indexant les bases orthonormées de U®,

— pour chaque i de J, E, est ’ensemble des vecteurs de la base d’indice i.

— pour i et k dans J, R;, est la relation telle que aR;b ssi les vecteurs a et b appar-
tiennent au méme sous-espace invariant, irréductible, de la transformation uni-
taire qui amene la base E; sur E,.

I1.4. Représentation d’'un homomorphisme par une famille d’applications

Pour la construction d’4BP universelles (§ II.1), il est nécessaire d’étendre aux
homomorphismes le procédé de représentation «duale» donné, dans le théoréme
précédent, pour les ABP. On est ainsi conduit 4 considérer des familles d’homomor-
phismes compatibles avec les identifications imposées par certains isomorphismes
partiels.

DEFINITION. Soit @ une famille d’algébres de Boole 4; et d’isomorphismes
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partiels hy:A,—A; (i et k dans J); de méme pour @', 4; et h; (i, keJ'). Un homo-
morphisme de ® dans @', noté f:®— @', est une famille d’homomorphismes f;: 4,— A
i dans J, avec une application j:J—J', tels que, pour tous i, k dans J:

4
J@e

Jiohic S Mgy sy o S (1)
Deux homomorphismes f, f' de @ dans @’ sont équivalents si, pour tout i dans J:
fi € Wy o S 2)

Dans le cas ol les familles @ et @’ ont les propriétés 1. a 4. du § I1.1, on peut en
former les sommes respectives 4 et A’. Les conditions (1.) expriment alors le fait que
les valeurs de f; et f; dans 4" coincident sur la partie identifiée par 4, dans 4. L’exten-
sion commune des f; est un homomorphisme de 4 dans A4’

Réciproquement, tout homomorphisme d’4BP peut €tre décomposé en une fa-
mille d’homomorphismes d’algébres de Boole finies, en conséquence du § I1.1. Cette
décomposition n’est pas toujours unique; en fait, deux homomorphismes f et f’, de
& dans @', induisent le méme homomorphisme d’4BP, de A dans A’, ssi ils sont
équivalents.

La composition «naturelle» d’homomorphismes f: ®— @’ et f': ' —>P” conserve
la propriété (1.). On notera f' o f: ®—@"” 'homomorphisme composé. Dans le cas ou
les familles considérées ont les propriétés 1. a 4. (§ IL.1), cette composition coincide
avec celle des homomorphismes d’4BP pour les sommes respectives.

LEMME. Soit R une équivalence de E; vers E, et h=P(R); de méme pour
R'cE{xE; et h'=P(R'). Soient f;: P(E})—>P(E/) deux homomorphismes complets
tels que (d’aprés le corollaire fin § 11.2) £;(X)=g; (X) pour X< E,(i=1, 2). Alors

fzoh_c_hlofl ssi gzoR,ERogl

Démonstration. On peut remarquer tout d’abord qu'on a g,cR' S Rog; ssi
R.gicgisR, ou g* est la relation binaire transposée de I’application g;(i=1, 2).
Soitg, s R'S Rog et X' =f, (X)pourun X< Etelque R*o R(X)=X.AlorsR'* - R' (X')=
=R*(R.gT(X))=R*(g5(R(X))=g*s R*(R(X))=X"; ainsi R*-R'(X")=X' puis-
que R’ est surjective. Donc 4’ est défini pour X' S E{ et on a #'of; (X)=f,.h(X) car,
d’une part R'(g}(X))<=g3(R(X)) et, d’autre part, g3 (R(X))SR o R*og*-R(X)<S
SR (X)=R'(gf(X)). On a ainsi montré f,oh<h'of;. Pour la réciproque soit

JaohSH of, cest 4 dire g% (R(X))=R’ (g7 (X)) pour tout X< E, tel que R*o R(X)=X.

Pour X quelconque, on prend X’=R*,R(X) de sorte que X<X’, R(X)=R(X")

et R*oR(X')=X". On a alors

R'(g7(X)) = R' (g7 (X)) = g5 (R(X")) = g5 (R(X))

pour X< E; quelconque, par conséquent R g} =g5oR.
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Ce lemme contient I’essentiel de la demonstration du théoréme suivant.

THEOREME. Soit @ une famille d’algébres de Boole P(E,) et d’isomorphismes
partiels P(R;), avec i et k dans J; de méme pour @', P(E;) et P(R}), avec i et k
dans J'.

a) Alors tout homomorphisme f:®—®’ peut étre représenté par une famille
d’applications g;: Ej;,— E;, j:J-J', telles que f;(X)=g{ (X), pour tout X< E;(ieJ),
et

pour i, kdans J: g;o R jay S Rixo & 3.)

Réciproquement, les conditions (3.) sont suffisantes pour que la famille d’appli-
cations g;(i€eJ) détermine un homomorphisme de @ dans &’

b) Si @ et @’ ont les propriétés 1.-4. (§ I1.1), deux homomorphismes f et f”, de
& dans @', sont équivalents ssi les applications g; et g; (i€J) qui les représentent sont
telles que

gioRjiy iy S 8i 4.)

¢) D’autre part, la composition f’'of de deux homomorphismes f: PP’ et
f':®'>Pd" est représentée par la famille des applications composées giogj'(i)
et j'oj:J—J" (Pordre des facteurs est inversé).

Remarque. Tout homomorphisme d’4BP peut étre ainsi représenté, en utilisant
les résultats du § I1.1. Le quotient d’une ABP finie A est représenté d’une maniere
particuliérement simple: si P(E;) est une sous-algébre Booléenne maximale de 4, son
image dans A’ est P(E;), avec E; < E;. Les applications g;(ieJ) sont simplement les
injections E; < E;; les conditions (3.) deviennent: R} = R (i, keJ).

I1.5. Construction d’une famille minimale

DEFINITION. Soit @ une famille d’algébres de Boole et d’isomorphismes par-
tiels donnés. Une famille @’ ayant les propriétés 1. & 5. (§ IL.1) est minimale sur P
§’il existe un homomorphisme f: @— @’ avec la propriété suivante:

pour toute famille ” qui a les propriétés 1. & 5. et pour tout homomorphisme

f":®—®" il existe un homomorphisme f”:®'-»®”" tel que f"=f"of, déterminé

a I’équivalence prés.

La famille &’ minimale sur @ n’est pas déterminée univoquement; toutefois, @’
est caractérisée & I'isomorphie prés, si 'on impose aux isomorphismes partiels 4j de
ne pas étre surjectifs (c’est 3 dire 4, 4,). L’existence de &’ n’est assurée que dans
le cas ol les algdbres A, de @ sont finies; au lieu d’en donner une démonstration
générale, nous préférons décrire un procédé itératif qui, dans les cas qui nous inté-
ressent, permet la construction effective de ®’. Ce procédé s’applique aux 4BP uni-
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verselles (§ ITL.2) et aux successeurs d’'une ABP finie (§ III.3), grace a la propriété
évidente:

PROPOSITION. Soit @ une famille d’algébres de Boole finies 4;(ieJ) et d’iso-
morphismes partiels 4, (i, k€J). Soient @' la famille minimale sur @ et 4’ la somme
de @'. Alors A’ est une ABP et il existe une famille d’homomorphismes f;: 4;,— A4’
avec

fiohy € f, pour tous i, k dans J

telle que, pour toute ABP A" et toute famille d’homomorphismes f;': 4, A" avec la
propriété analogue, il existe un homomorphisme d’4 BP unique 4: A’— A" pour lequel

=I’Io_fi(l'€.]).

THEOREME. Soit @ une famille d’algébres finies P(E,) et d’isomorphismes par-
tiels P(R;;), avec 1 <i, k<n pour un entier n.

Soient E’(ieJ’) des ensembles finis, R; < E; x E; des relations droites et gy,..., g,
une suite d’applications g;:E;;—E;, ou j(i)eJ' pour 1<i<n, avec les propriétés
suivantes:

1*) pour tout i de J’ R};=id(E))

2*) pour tous i, k de /'  Rj = (Ré)*

3*) pour tous 7, j, k de /' Ry SRy LR,

4*) pour tous i, j, k de J' il existe / dans J' tel que

Rj; =Ry LR
R}, = R} L R},
Rk: - Rkl J— Rll

5*) pour i'=j(i), k' =j(k) et 1<i, k<n:

gioRiw S Ryo gy

6*) pour toute famille d’ensembles finis E;’ (ieJ "), de relations droites Rj, < E} x E{’
(i et k dans J”) et d’applications g; : Ej.;,— E; (1 <i<n) satisfaisant aux mémes con-
ditions (1* 3 5*), on peut trouver une famille d’applications

g‘ E”(i) - Ei (iEJ/), jl:JI 3 Jr/ ,

telle que pour i'=j’(i), k'=j'(k) et i, k dans J':gjoR"\ S Rjxog; €t pour 1<i<n:

g gl°g1(t)
De surcroit, 1a famille g;: Ej.;,— E; (ieJ'), j':J'—J" est déterminée & I'équivalence

PIes; pour un autre choix d’applications

gi:E_,;(i)—)E; (iEJ’), ]-:JI"')J”,
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avec les mémes propriétés, on a, pour tout ieJ’:

8io Rjiy iy S 8i -

Alors la famille d’algébres P(E;) et d’isomorphismes partiels P(Rj), i et k dans
J', est minimale sur .

Démonstration. Les relations R, sont des équivalences; elles sont droites par
hypothése, d’out R}, L (R} )*=Rj;o(R})*. Les conditions 1*, 2* et 3* entrainent alors
id(E{)=R;<S Ry, L Ri;= Rjyo(R})*, soit Rj, (E,)=E;. Le reste est conséquence immé-
diate du théoréme du § I1.4.

La famille minimale sur @ se trouve ainsi caractérisée d’une maniére qui permet
de I'«approcher» par une suite de modifications apportées a &.

Si les ensembles E; et les relations R;, 1<i, k<n, de @ ont les propriétés 1* a 4%,
alors @ est minimale elle-méme; les conditions 5% et 6* sont trivialement satisfaites
par le choix g;=id(E;), i<n. Si I'une des conditions 1* & 4* n’est pas remplie, nous
modifions n, E;, R, (i, k<n)enn’, E{, R, (i, k<n') et nous donnons des applications
8:i:Ej;—E;, avec j(i)<n’ pour i<n, qui ont les propriétés 5* et 6*.

ler cas: R, #id(E;) pour un indice i<n.

n'=n;
E/={acE, l aR;a}, E,=E, pour k+#1i;
Ri=id(E};), Rix=(E,xE/)n Ry et R,;=(E{xE)NR,; pour k#i, Ry=Rj
pour j#iet k#i;
g E/ < E, g,=id(E,) pour k#i.
2me cas: R, £(R,;)* pour un couple d’indices i, k<n.
n'=n;
E,=E, pour tout m<n;
Ry=R, "R}, R),,=R;, pour tous j, m<n tels que (j, m)#(i, k);
gn=I1d(E,) pour tout m<n.

3me cas: R; ¢ R;; L R, pour trois indices i, j et k.

n'=n;
E,=F,, pour tout m<n,

ax=RyN(R;; L Ry), Ri,=R,, pour tous [, m<n tels que (I, m)#(i, k);
gn=1d(E,) pour tout m<n.

4me cas: pour les trois indices i, j et k il n’existe pas d’indice / tel que R, =Ry L Ryj;
Ry=R; LRy et Ry;=R,; LR,

n=n+1;

E,=E, pour tout m<n;

Pour construire E,. définissons 'ensemble E et la relation RcExE de la
maniére suivante:

E={(a,b,c)|aR;b, bRuc et cR,a}<E;xE;xE,

(a,b,c)R(a’,b',c") ssi aRb', bR;c et cRya';
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R est évidemment réflexive et droite, c’est donc une relation d’équivalence de
base E (début § I11.2). On peut former I’ensemble des classes d’équivalence:
E, =FE/R;

R;,=R,, pour tous I, n<n; R, =id(E,);

R, =E,xE, pour tout m<n tel que m+#i, m#jet m#k;

Ry, R}, et Ry, sont définies comme suit, pour acE, beE;, ceE, et XeE/R:
aR;, X ssiil existe (a', b’, c")eX tel que aR;;b’" et ¢'Rya;

bR, X ssi il existe (¢, b, ¢")eX tel que bR;c’ et a’R;;b;

cRiX ssi il existe (@', b', ¢’)e X tel que cRa’ et b'Rjc;

R;..=(R,,)* pour tout m<n;

gn=1d(E,) pour tout m<n.

Remarques. Les nouveaux ensembles E,, ainsi formés sont finis, les relations R;,
sont droites (la démonstration utilise seulement le fait que les R;, sont droites).

Les modifications apportées rétablissent, dans chacun des cas, la propriété qui
faisait défaut, éventuellement aux dépens de I'une des autres propriétés (1* a 4%)
recherchées.

Toutefois, les applications g; définies, dans chacun des cas traités ci-dessus, ont
les propriétés 5* et 6*. De surcroit, lors de deux modifications successives, la com-
position des applications g; correspondantes conserve ces deux propriétés.

On peut ainsi chercher a réaliser toutes les conditions 1* a 4* en réitérant les
diverses opérations indiquées; si un nombre fini de pas y suffit, on aboutit, en vertu
du théoréme précédent, a la représentation duale de la famille minimale sur ®.

Si, au contraire, on obtient une suite infinie de transformations, le procédé n’est
pas utilisable pour la construction effective de la famille minimale; cette situation
ne s’est jamais présentée dans les applications. D’autre part, si I’on se borne a
réaliser les conditions 1* a4 3*, un nombre fini de transformations élémentaires est
suffisant (dans les trois premiers cas ces modifications sont «monotones»: n’'=n,
E, <E, et R),<R,,, pour tous [, m<n).

Nous résumons ces faits dans la conjecture suivante, équivalente a la décidabilité
du calcul propositionnel partiel: toute suite de transformations décrites dans les cas
1 & 4, effectuées sur une famille finie d’ensembles finis E; et de relations droites
Ry (i, k<n), est finie.

Si, pour deux indices différents i, k<n, la relation R, est univoque (id(E;)=
2Ry o (Ry)*) on peut éliminer E; de la famille, sans perdre les propriétés 1* a 6*,
A cet effet soit j: {1,..., n}—>{1,..., n—1} I'application surjective dont les valeurs sont
données par:

Jj(m)=m pour m<i, j(m)=m—1 pour i<m<n et j(i)=j(k).

n=n-—1;

Ej((,,,)=E,,, pour m#i (en particulier E;; = E,);

Riw)jimy= R, pour l#i et m#i;
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gn=1d(E,) pour m#i, g;: E,—E, est donnée par g,= R;,.

L’¢élimination de ces redondances permet un gain de place et de temps lorsqu’on
réitere les transformations indiquées a I’aide d’un ordinateur. Dans ce but, on peut
encore améliorer les techniques décrites; par exemple, pour le 4me cas, il suffit de
parcourir les triplets d’indices 7, j, k tels que 1 <i<j<k<n.

II1. ABP libres et validité des identités classiques

II1.1. ABP universelle et ABP libre

La notion d’4BP universelle est liée a celles de satisfaction et d’homomorphisme;
elle répond a I'idée de ’ABP «la plus générale» qui, munie d’une valuation déter-
minée, satisfait & un ensemble donné d’expressions propositionnelles. En particulier,
elle fournit une définition plausible des ABP libres.

DEFINITION. Soit M < FV. On appelle ABP universelle relativement & M, et on
noteU(M), une ABP pour laquelle il existe une valuation u: V— U(M) satisfaisant
a M et telle que, pour toute ABP A et toute valuation v: V— A satisfaisant a M, il
existe un homomorphisme 4: U(M)— A unique, tel que hou=v.

THEOREME. Pour tout M donné, il existe une 4BP universelle relativement a
M, déterminée univoquement a 1’isomorphie prés.

Démonstration. L’existence de U(M ) est prouvée par «l’algébre de Lindenbaum»
U(M)=E/R ol E= {peFVI MI-Cfp} et R={(p, q) | Mltp=gq}. R est évidemment
une relation d’équivalence sur E, compatible avec I’opération qui associe Cpg au
couple {p, g» dans E. U(M) est ainsi une structure dont les éléments distingués 0 et /
sont les classes de R-équivalence contenant f et Cff respectivement. La valuation
u:V—->U(M), ou u(p) est la classe de R-équivalence contenant peV, est telle que

MiFp ssi usatisfait & p
pour tout p dans FV. Par conséquent:

a) la régle Ry est trivialement satisfaite dans U(M). La validité de R;-R; en
trois variables se démontre par substitution; d’aprés le théoréme 1, § 1.2, U(M) est
donc une ABP; .

b) I’extension de u:V— U(M) est définie exactement pour les expressions p de
E, u:E->U(M).

Pour une ABP A et une valuation v: V— A4 satisfaisant 4 M on a Ec V. Si @(p)=
=1i(q) dans U(M) pour deux expressions p, g de E, la régle MI-p=gq est valide dans
toute 4BP, d’ott #(p)=0(q) dans A. Ceci permet de construire une application
h: U(M)— A avec h(ii(p))=19(p) pour tout p de E. h est évidemment un homomor-
phisme, ses valeurs sont déterminées par celles que v attribue aux variables; les pro-
priétés de I’4 BP universelle sont ainsi vérifiées.
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D’autre part, pour deux ABP U et U’ universelles relativement & M il existe deux
homomorphismes A: U—- U’, h’: U'—> U conservant les valeurs des variables; &' - h et
hoh' ont également cette propriété et sont, de ce fait, confondus avec I'identité sur U
et U’ respectivement. / et A’ sont donc des isomorphismes.

COROLLAIRE. Pour deux ensembles M, M’ d’expressions de FV les trois pro-
priétés sont équivalentes:

- MM’

~ M’ est satisfait par u: V- U(M)

— il existe un homomorphisme (nécessairement unique) A: U(M')—» U(M) qui

conserve les valeurs attribuées aux variables.

Exemples. Soit ¥V un ensemble de n variables et V*={CfCpq l p, qeV'}; alors
U(V)=Z,, U(V*) est I'algébre de Boole libre & 22" éléments, tandis que U(D) est
la somme directe de n facteurs isomorphes & Z2.

DEFINITION. Une ABP A est libre s’il existe V et un ensemble M d’expressions
de la forme Cfp, p dans FV, tels que 4= U(M).

Remarques. Une algeébre de Boole est libre selon cette définition ssi elle est libre
dans I’acception courante.

Une ABP universelle U(M) est plongeable dans une algébre de Boole ssi ’homo-
morphisme U(M)— U(M U V*) est biunivoque. En particulier U(0) est toujours une
somme directe d’algébres de Boole Z2 et se trouve donc plongée dans I’algébre de
Boole libre U(V*).

PROPOSITION. Toute ABP est le quotient fermé d’une ABP libre. Cette ABP
libre a le méme nombre d’éléments générateurs que son quotient.

Démonstration. Soit A une ABP, V un ensemble d’indices et v: V— A ’énuméra-
tion d’un ensemble d’éléments générateurs de 4. v est considérée comme une valuation
de V dans A et son extension : ¥— 4 permet de construire M= {Cfp | peV}. Ainsiv
satisfait & M dans ’ABP A; il existe donc un homomorphisme #: U(M)— A tel que
v="hou. De plus, on remarque que I’extension @ est définie exactement sur ¥ et que
U=hod. Par conséquent, & est surjective et, pour tout p, ge ¥ tels que 'opération C
de A est définie pour #(p), 5(g), on a Cpge V; ii(p) et i(q) peuvent ainsi &tre com-
posés dans U(M). h est donc un épimorphisme fermé.

Avec la proposition 2, § I.4, on a le corollaire suivant: toute 4BP transitive est
quotient fermé d’une ABP libre transitive.

L2. Construction effective des ABP libres
Soient ¥ un ensemble fini de variables, M < FV un ensemble fini d’expressions



76 GIOVANNI CORAY

propositionnelles de la forme Cfp et U(M) I’ABP libre correspondante. Nous voulons
former une famille @ d’algébres de Boole finies et d’isomorphismes partiels, telle que
la somme de la famille minimale sur @ soit isomorphe & U(M).

Soit py,..., p, une suite d’expressions de FV telle que:

- pour tout Cfpe M I’expression p figure parmi les termes de la suite,

— pour tout i<n on a p;eV, p;=f ou alors p;=Cp;p, pour deux indices j et k

inférieurs a i.

Pour tout i<# I’algébre de Boole 4; et les éléments a;, b;, ¢; de A; sont définis de
la maniére suivante:

— si p;=fon prend 4,2 Z, et a;,=0;

— si p;eV on prend A4;=Z3, l'algébre de Boole libre & un générateur, ot a; est

justement I’élément générateur;

~ si p;=Cp;p, on prend A4;= 3, I'algébre de Boole libre & deux générateurs, b,

et ¢; sont deux éléments générateurs et a;=C(b;, ¢;) dans 4;.

Pour tout triplet i, j, k tel que p;=Cp;p, on prend, pour #;;: 4;,— A, 'isomorphisme
partiel qui identifie I’élément a; de 4; avec b; de 4, (ainsi que les compléments res-
pectifs et les unités), et, pour A : A, — A4,, 'isomorphisme partiel qui identifie I’é1ément
a, de A, avec c; de A; (ainsi que les compléments et les unités). Les autres isomor-
phismes partiels de @ sont choisis de maniére a n’identifier que les unités (0 et 1)
entre les diverses algébres de Boole.

La propriété caractéristique des algebres de Boole libres permet alors d’étendre
toute valuation v: V—A’, satisfaisant & M dans ’ABP A’, a une famille d’homomor-
phismes f;: 4, A’ (avec f;(a;)=7(p;), i<n) compatibles avec les identifications im-
posées par hy (i, k <n). Réciproquement, une telle famille induit une valuation qui
satisfait 4 M. La définition de U(M) est donc équivalente a la propriété qui, dans la
proposition du § IL.5, caractérise la somme de la famille minimale sur ®.

Le procédé décrit au § 11.5 permet ainsi de construire directement la représentation
duale de U(M). La valuation u: V- U(M) est donnée par I'image f;(a;) des généra-
teurs g; tels que p;e V; dans la représentation duale de U(M) la valeur u(p;) est la
préimage de qg; par g, (avec A;=P(E,) et a;= E,).

Pour examiner la validité d’une régle MIFM’, on peut évaluer les conclusions
ge M’ directement dans la représentation duale de U(M); il suffit de tenir compte des
identifications produites par les 4;: Y="h; (X) ssi Ryo Ry (X)X et Y= Ry (X).

La composition des ensembles E; et des relations Ry, (i, kK <n) correspondant a la
famille @, la construction de la famille minimale (duale) sur & et I’évaluation des
expressions de M’ A laide de la valuation particuliére # ont été programmées, en
Algol, pour la machine CDC 1604-A de I’Ecole Polytechnique Fédérale. La validité
des régles CfplFp a été ainsi vérifiée pour toutes les expressions propositionnelles p
déduites dans «Principia Mathematica», a ’exception de 2.81, 3.47, 3.48, 4.38 et
4.39. A noter que 3.48 et 4.39 sont obtenues de 3.47 et 4.38 respectivement, en rem-
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plagant les variables par leur négation. D’autre part, on utilise 3.47 (3.48) dans la
déduction classique de 4.38 (4.39).

Remarque. Les ABP universelles U(M), ou M est un ensemble fini d’expressions
propositionnelles quelconques, peuvent &tre construites de maniére analogue.

On remplace, tout d’abord, M par M= {Cfp l peM} pour former la suite p,, ..., p,
et la famille @ avec les éléments a;, b;, ¢; dans 4; (comme pour la construction de
U(M)). 1l y a alors correspondance biunivoque entre les valuations v: V—A’', satis-
faisant & M dans une ABP A', et les familles d’homomorphismes f;: 4,~A’, compa-
tibles avec les h;, et prenant la valeur f;(a;)=1 pour tout i<n tel que p;e M.

Les conditions f;(a;)=1, pour p,e M, sont remplies ssi g/ (a;)=E dans la repré-
sentation duale de 4’ (g; est considéré comme une partie de E;, P(E;)=A,); elles sont
donc équivalentes a g;o R, S R;;08;, si on prend R;=id(a;) au lieu de id(E;). La con-
struction du § I1.5 fournit, en partant de ces donnees, la représentation duale de
I’ ABP universelle U(M).

II1.3. ABP engendrées par trois éléments

La validité, dans les ABP, des identités Booléennes 4 une ou deux variables a été
prouvée dans [2]. Avec quatre variables ou plus, il existe de nombreux contre-exem-
ples: le cas ou V est formé de trois variables restait ouvert. Le but de ce paragraphe
est de montrer la validité des identités Booléennes en trois variables. Ce résultat est
atteint par la classification des 4BP libres & trois générateurs, qui s’avérent toutes
plongeables dans 1’algébre de Boole finie Z5.

LEMME 1. Soit V= {x, y, z}. Alors les trois énoncés suivants sont équivalents.

1. Pour tous p et g dans FV l'identité Cfg, CfplFp=gq est valide dans les ABP si
P=gq est valide dans Z,.

2. Pour tout ensemble fini M d’expressions propositionnelles de la forme Cfp,
U(M) est plongeable dans Z5.

3. Toute ABP engendrée par trois éléments est plongeable dans une algébre de
Boole.

Démonstration. Montrons les implications 1.=2., 2.=3. et 3.=1.:

1.=2.) La forme particuliére de M dans I’énoncé 2. fait que V*I- M. 1l existe de
ce fait un homomorphisme 4: U(M)— U(V*) ot U(V*) est l'algébre de Boole libre
Z3. Le contenu de 1. est précisément la biunivocité de h.

2.=3.) Si, pour tout M fini, ' 4BP libre U(M) est plongeable dans Z 8, il en est
de méme pour M infini; il suffit de former une suite croissante M 1EM,c -+ d’en-
sembles finis M; < FV dont la réunion est M. Les homomorphismes correspondants
UM)-U (M;,,) (i=1,2,...) sont tous compatibles avec le plongement dans Z :
puisqu’ils conservent les valeurs des variables x, y, z. La réunion des U(M;) dans Z$
¢st une 4 BP dont on vérifie les propriétés caractérisant U(M). Ainsi, 2. a pour consé-



78 GIOVANNI CORAY

quence que toute ABP libre avec V= {x, y, z} est plongeable dans une algébre de
Boole. 3. découle alors de la proposition du § III.1.

3.=1.) Pour tous p et g de FV I’ABP universelle U(Cfp, Cfq) est engendrée par
trois éléments; selon 3. les identités Booléennes y sont donc valides. En particulier
p=q Yy sera satisfaite si c’est une tautologie.

DEFINITION. Soient 4 et A’ deux ABP. A’ est successeur de A, s’il existe un
homomorphisme /:4—A’ et deux éléments non compatibles a, b dans A4, avec h(a)
et h(b) compatibles dans A4, tels que:

1. pour tout homomorphisme 4':4—A4" dans une ABP A" ou i’ (a) et 4’ (b) sont
compatibles, il existe un homomorphisme unique 42”: A’ A" tel que A'=h"oh.

2. si A est plongeable dans une algébre de Boole, la paire d’éléments a, b est
minimale; pour a’ et b’ non compatibles dans 4, tels que A(a’) et £(b") sont compa-
tibles dans A’, @’ <a et b’ <b entrainent a’=a et b’ =b.

LEMME 2. Tout successeur d’'une 4BP libre est une ABP libre; réciproquement,
pour toute ABP libre U(M) ou V et M sont finis, il existe une suite finie d’4 BP libres
dont chaque terme est successeur du précédent, le premier étant U(Q) et le dernier
U(M).

Démonstration. Soient A=U(M) une ABP libre avec la valuation canonique
u:V—A et A" un successeur de A. Il existe alors p, g dans FV avec ii(p)=a, i(q)=>b
tels que plq ainsi que M soient satisfaits par la valuation h.u dans 4'. La condition
1. revient alors a la définition de I’4 BP universelle relativement 3 MU {plq}.

Pour la réciproque, soit U(M) une ABP libre; on peut faire apparaitre toutes les
expressions pe FV pour lesquelles Cfpe M dans une suite finie p;,..., p, telle que,
pour tout i<n: p;=f, p;eV ou alors p;=Cp;p, pour deux indices j, k inférieurs
ai

Soit My=0, M;=M,_, U {Cfp,} pour 1<i<n, de sorte que U(M,)= U(M). Pour
1<i<n il existe un homomorphisme #;: U(M;_,)— U(M,) puisque M;IFM;_;. Si
Cfp,,..., Cfp;,_,I-Cfp, on a U(M;)=U(M;_,) et on peut omettre le i-éme terme de la
suite. Supposons ces répétitions éliminées. Pour tout i<n il y a, dans U(M;_,), deux
éléments non compatibles a, b dont les images dans U(M,) sont compatibles; en effet,
Cfp, est satisfaite dans U(M,) mais pas dans U(M;_,), p;=f ou p;e V sont ainsi exclus;
reste p;=Cp;p, et on peut prendre pour a, b les valeurs de p;, p;. La condition 1. pour
le successeur de U(M,;_,) découle de la définition de '4BP universelle U(M;-1V
v {p;ip)=U(M,)).

Si la condition 2. n’est pas satisfaite, par exemple pour les éléments a et b de
U(M;_,), on peut modifier la suite d’4ABP libres en intercalant de nouveaux termes
entre U(M,_,) et U(M,). U(M;_,) est alors plongeable dans une algébre de Boole
et il existe deux éléments a'<a et b'<b, non compatibles, tels que 4;(a’) est compa-
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tible avec h;(b"). Soient p et g des expressions de FV, prenant les valeurs @’ et b’ dans
U(M;_,); soit U= U(M;_, U {plq}). Par définition, U remplit la condition 1. pour les
éléments a’, b’ de U(M; _,); ilexiste notamment deux homomorphismes 4: U(M;_,)— U
et B':U—->U(M,) tels que h;=Hh -h. Sila condition 2. n’est pas encore remplie par
a’, b’ et h, on remplace le couple a’, b’ par un couple strictement inférieur, on aboutit
ainsi & un successeur de ’ABP finie U(M,_,). D’autre part, la condition 1. est égale-
ment vérifiée par 4’ et les éléments 4 (a), ~(b) de U; si la condition 2. n’y est pas rem-
plie, la construction peut étre recommencée en remplagant U(M;_,) par U. On
obtient, par itération, une suite d’4BP libres et d’homomorphismes conservant les
éléments générateurs. Cette suite est finie car chaque terme est plongeable dans I’4 BP
finie U(V'*).

Remarque. La définition des «successeurs» convient donc a I’énumération des
ABP libres U(M) ou M est fini. Les algébres de Boole n’ont pas de successeur, le
nombre des successeurs d’une 4 BP plongeable dans une algébre de Boole est rela-
tivement petit (moins de vingt lorsque V= {x, y, z}). La construction des successeurs
d’une ABP finie A peut se faire a I'aide du procédé exposé au § II.5. Pour chaque
paire d’éléments a, b de 4, on forme une famille @ contenant, en plus des sous-algébres
Booléennes maximales de 4, une algébre de Boole libre engendrée par deux éléments.
Ces derniers sont identifiés a a et b respectivement par des isomorphismes partiels
adéquats. La somme de la famille minimale sur @ remplit alors la condition 1. Si 4
est plongeable dans une algébre de Boole, on élimine les paires a, b qui ne sont pas
minimales; dans la plupart des cas, cette élimination peut s’effectuer sans la con-
struction de @ et de la famille minimale.

LEMME 3. Soit 4 ’ABP telle que A=A4, +A4,(modk) ou A4,, A, sont deux al-
gébres de Boole isomorphes 4 Z et h: 4, > A, est 'isomorphisme partiel qui identifie
un atome ¢ de 4, avec le complément d’un atome de 4, (Cf. liste en appendice).
Alors toute ABP A’, contenant A et engendrée par A, est plongeable dans Z3.

Démonstration. A, et A, sont deux sous-algébres de 4’ dont l'intersection est
formée des éléments 0, 1, c et —1¢ (identifiés par 4). On vérifie que c est dans le centre
de 4’ et que, pour tout aeA’,

a=(an1c)v(anc) avec aA—1ced; et anced,

par induction sur le nombre d’occurrences de C dans les expressions propositionnelles
dont les valeurs parcourent A’:
— pour ae A, par exemple acA;, on a ce A, et an 1ceA,. D’autre part, a A ¢ vaut
0 ou ¢ puisque c est un atome de A4, ; dans les deux cas a A ce4d,.
= pour a=C(a’, a") avec @’ A —ic, a" A1ceA; et a’' Ac, a" Ac€A,, ¢ est évidem-
ment compatible avec a et on a:
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anc=cAC(a Ac,a" Ac)EA,
anTic="1cAC(a A—1¢,a” A1 c)eA,

a cause de l'identité Booléenne (Cxy)Az=zAC(xAz) (yAz).
Chaque élément a de A’ se laisse ainsi décomposer en deux «composantes» a A "¢
dans A; et a A c dans A4,; ceci a pour conséquence:

AL =A4,)() et AL =A/(c).

Or A,/(c) et A,/(—1c) sont isomorphes au quotient de Z; par un atome, soit Z4.
Avec le corollaire 1, § 1.6, on a finalement 4'S Z5x Z5=2Z35.

THEOREME. Toute ABP engendrée par trois éléments est plongeable dans une
algébre de Boole.

La démonstration résulte naturellement (Cf. Lemmes 1 et 2) de la classification de
toutes les ABP libres U(M) avec M fini, obtenue par la construction itérée des
successeurs de U(0).

On réduit sensiblement le nombre de ces constructions en retenant un seul repré-
sentant de chaque classe d’4BP isomorphes ainsi obtenues. Le nombre de ces ABP
dépasse largement la centaine; il convient donc de présenter la démonstration du
théoréme sous la forme d’une liste d’4BP, numérotées de 1 a 60 (Cf. appendice) et
satisfaisant aux conditions suivantes:

— U(0) est la premiére ABP de la liste;

— toute ABP de la liste, sauf la premicre, est le successeur d’une 4 BP précédente;

— tout successeur d’une 4BP de numéro inférieur a 58 est isomorphe a I'une des

60 ABP de la liste compléte;

— chacune des trois ABP 58, 59 et 60 est engendrée par ’4BP A (sans numéro)

donnée en fin de liste.

L’application systématique du critére de plongeabilité (fin § I.7) montre que
chacune des ABP de 1 4 60 est plongeable dans Z5. On peut donc décrire une telle
ABP par I'image dans Z3 de ses sous-algébres Booléennes maximales, soit par les
partitions correspondantes de I’ensemble des atomes de Z5 (numérotés de 1 2 8).

Restent les successeurs itérés de 58, 59 et 60. Un raisonnement par induction
montre que ceux-ci sont tous engendrés par une sous-algébre isomorphe a 4 et
tombent ainsi sous les hypothéses du lemme 3.

Remarque. La seule ABP transitive engendrée par 4 est Z5; elle figure dans la
liste sous le numéro 11. Les autres ABP transitives de la liste sont 1, 2, 42, 51 et 54;
on peut les «décomposer» en produit d’ABP centrales (§ I.3), dans le méme ordre:
234724272 Z5+Z2, Zix(Z2+22), Z2x (Z2+Z3) et (Z2+Z2)x (2% + Z3).

Les quotients fermés de ces 6 ABP fournissent une classification compléte des 20
ABP transitives engendrées par 1, 2 ou 3 éléments.
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Appendice

Liste de 60 ABP libres a trois générateurs
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ABP Succes- Partitions de {1, 2, 3, 4, 5, 6, 7, 8}, correspondant aux

No: seur de sous-algébres Booléennes maximales de I’ABP

1 - (1357/2468) (1256/3478) (1234/5678)

2 1 (15/26/37/48)  (1234/5678)

3 2 (15/26/37/48)  (234/1/678/5)

4 3 (15/26/37/48)  (234/1/678/5)  (15/2/6/34/78)

5 4 (234/1/678/5)  (15/2/6/34/78) (15/26/3/7/4/8)

6 5 (15/2/6/34/78) (15/26/3/7/4/8) (234/1/6/78/5)

7 6 (1/5/2/6/34/78) (15/26/3/7/4/8)

8 7 (1/5/2/6/34/78) (15/26/3/7/4/8) (1/5/26/34/7/8)

9 8 (15/26/3/7/4/8) (1/5/2/6/34/7/8)

10 9 (1/5/26/3/7/4/8) (1/5/2/6/34/7/8)

11 10 (1/2/3/4/5/6]7/8)

12 8 (1/5/2/6/34/78) (15/26/3/7/4/8) (1/5/26/34/7/8) (15/2/6/3/4/78)
13 6 (15/26/3/7/4/8) (234/1/6/78/5) (15/2/6/3/4/78)

14 13 (234/1/6/78/5)  (15/2/6/3/7/4/8)

15 14 (234/1/6/7/8/5) (15/2/6/3/7/4/8)

16 13 (15/26/3/7/4/8) (1/5/24/6/3/78) (15/2/6/3/4/78)

17 16 (15/26/3/7/4/8) (1/5/24/6/3/78) (15/2/6/3/4/78) (1/5/246/3/7/8)
18 13 (15/26/3/7/4/8) (234/1/6/78/5) (15/2/6/3/4/78) (1/5/2346/7/8)
19 6 (15/26/3/7/4/8) (234/1/6/78/5) (15/2/6/34/7/8)

20 19 (15/26/3/7/4/8) (1/5/234/6/7/8) (15/2/6/34/7/8)

21 20 (15/26/3/7/4/8) (1/5/234/6/7/8) (15/2/6/34/7/8) (1/5/236/7/4/8)
22 19 (15/26/3/7/4/8) (234/1/6/78/5) (15/2/6/34/7/8) (1/5/246/3/78)
23 6 (15/2/6/34/78) (15/26/3/7/4/8) (234/1/6/78/5) (1/5/246/3/78)
24 23 (15/2/6/34/78)  (15/26/3/7/4/8) (234/1/6/78/5) (1/5/246/3/7/8)
25 6 (15/2/6/34/78) (15/26/3/7/4/8) (234/1/6/78/5) (1/5/2346/7/8)
26 5 (234/1/678/5)  (15/26/3/7/4/8) (15/2/6/34/7/8)

27 26 (234/1/678/5)  (15/2/6/3/7/4/8)

28 26 (15/26/3/7/4/8) (15/2/6/34/7/8) (234/1/67/8/5)

29 28 (15/26/3/7/4/8) (15/2/6/34/7/8) (234/1/67/8/5) (1/5/2467/3/8)
30 28 (15/26/3/7/4/8) (15/2/6/34/7/8) (234/1/67/8/5) (1/5/246/37/8)
31 26 (234/1/678/5)  (15/26/3/7/4/8) (15/2/6/34/7/8) (24678/3/1/5)
32 26 (234/1/678/5)  (15/26/3/7/4/8) (15/2/6/34/7/8) (236/478/1/5)
33 26 (234/1/678/5)  (15/26/3/7/4/8) (15/2/6/34/7/8) (2468/37/1/5)
34 5 (234/1/678/5)  (15/2/6/34/78) (15/26/3/7/4/8) (23467/8/1/5)
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35 34 (234/1/678/5)  (15/2/6/34/78)  (15/26/3/7/4/8) (1/5/2467/3/8)
36 34 (234/1/678/5)  (15/2/6/34/78)  (15/26/3/7/4/8) (1/5/236/47/8)
37 5 (234/1/678/5)  (15/2/6/34/78)  (15/26/3/7/4/8) (2368/47/1/5)
38 5 (234/1/678/5)  (15/2/6/34/78)  (15/26/3/7/4/8) (478/236/1/5)
39 4 (234/1/678/5)  (15/2/6/34/78)  (15/2/6/37/48)

40 39 (15/2/6/34/78)  (15/2/6/37/48) (234/1/6/78/5)

41 40 (15/2/6/37/48)  (1/2/34/5/6/78)

42 41 (1/5/2/6/37/48) (1/5/2/6/34/78)

43 40 (15/2/6/34/78)  (15/2/6/37/48) (234/1/6/78/5) (1/5/6/237/48)
4 39 (234/1/678/5)  (15/2/6/34/78) (15/2/6/37/48) (2367/48/1/5)
45 39 (234/1/678/5)  (15/2/6/34/78) (15/2/6/37/48) (248/367/1/5)
46 4 (15/26/37/48)  (15/2/6/34/78) (234/1/6/78/5)

47 46 (15/26/37/48)  (1/5/2/6/34/78)

48 46 (15/26/37/48)  (15/2/6/34/78) (234/1/6/78/5) (1/5/2367/48)
49 4 (15/26/37/48)  (234/1/678/5)  (15/2/6/34/78) (1/5/2367/48)
50 3 (15/26/37/48)  (234/1/678/5)  (1/5/26/3478)

51 50 (234/1/678/5)  (1/5/26/37/48)

52 2 (15/26/37/48)  (34/12/78/56)

53 52 (15/26/37/48)  (34/12/78/56)  (15/26/34/78)

54 53 (15/26/37/48)  (34/12/78/56)  (15/26/34/78)  (12/56/37/48)
55 52 (15/26/37/48)  (34/12/78/56)  (1/5/2/6/3478)

56 55 (34/12/78/56)  (1/5/2/6/3478) (1/5/26/37/48)

57 56 (1/5/2/6/3478)  (1/5/26/37/48)  (34/1/2/78/56)

58 57 (1/5/2/6/3478)  (1/5/26/37/48) (34/1/2/78/56) (3/4/1/256/7/8)
59 56 (34/12/78/56)  (1/5/2/6/3478) (1/5/26/37/48) (3/4/1256/7/8)
60 55 (15/26/37/48)  (34/12/78/56)  (1/5/2/6/3478)  (1256/3/7/4/8)
A (1/2/5/6/3478)  (1256/3/4/7/8)
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