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Validité dans les algèbres de Boole partielles

par Giovanni Coray

Introduction

Les algèbres de Boole donnent lieu à une interprétation naturelle de la logique
propositionnelle classique; en particulier, on sait qu'une expression propositionnelle
est valide dans toutes les algèbres de Boole si, et seulement si, elle est une tautologie.
Par conséquent, certaines propriétés de la déduction dans le calcul propositionnel
classique peuvent être démontrées à l'aide d'arguments de caractère algébrique. Les

algèbres de Boole partielles (ABP) définies dans [1] permettent, de manière analogue,
l'étude du calcul propositionnel partiel. Ce dernier est un affaiblissement du calcul
propositionnel classique [2] suggéré par la mécanique quantique.

Il résulte de la semi-simplicité des algèbres de Boole qu'une expression
propositionnelle est universellement valide si elle est valide dans l'algèbre de Boole simple Z2.
On ne retrouve pas cette situation privilégiée dans le cas des ABP; en effet, il n'est
pas possible d'établir la validité des expressions propositionnelles (ou des règles de

déduction) par la vérification dans une algèbre finie déterminée.

Cependant, on dispose d'un autre procédé de décision pour la validité dans les

algèbres de Boole; il consiste à vérifier l'expression propositionnelle donnée à l'aide
d'une seule évaluation dans une algèbre libre adéquate. Nous proposons, dans ce

travail, une définition des ABP libres permettant d'étendre ce critère au cas des

ABP.

Ainsi, le problème central de cette étude est la représentation et la construction
effective de certaines ABP libres.

La méthode de représentation est basée sur deux faits: d'une part, toute ABP
peut être caractérisée par une famille d'algèbres de Boole finies et d'isomorphismes
partiels; d'autre part, on peut décrire un tel isomorphisme partiel par une relation
binaire définie dans l'espace dual des algèbres de Boole. Cette manière de représenter
les ABP facilite la mise au point d'un algorithme pour la construction d'une ABP
libre déterminée. L'emploi de cet algorithme conduit toutefois à une suite d'opérations

à l'aide de relations binaires de domaine fini, pour lesquelles l'emploi d'un
ordinateur se révèle judicieux.

Pour chaque expression propositionnelle (et plus généralement pour toute règle
de déduction) donnée, une calculatrice dûment programmée peut ainsi construire
VABP libre adaptée et exécuter l'évaluation décisive. Les tautologies déduites dans
Principia Mathematica ont été soumises à ce test (sur la machine CDC 1604A du
Centre de Calcul, EPF, Zurich). Il en résulte que seules les trois expressions 2.81,
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3.47 et 4.38 (ainsi que 3.48 et 4.39, obtenues par simple substitution dans 3.47 et 4.38)
ne sont pas valides dans les ABP.

Il est à noter que ces expressions ont quatre variables. D'autre part, on sait que
les identités Booléennes en une ou deux variables sont également valides dans les

ABP [1], alors que les identités à trois variables ont fait jusqu'ici l'objet de conjectures.

Nous en démontrons la validité à l'aide d'une classification des ABP libres à

trois éléments générateurs.
Dans les ABP produites à cet effet, on peut observer la présence fréquente d'une

sous-algèbre très particulière: l'analyse plus détaillée de ces ABP suggère une
démonstration «algébrique» de leur plongeabilité dans une algèbre de Boole. Outre cet
élément heuristique, l'ordinateur apporte une information indispensable, par rénumération

de quelques 60 cas traités isolément, pour la preuve complète que toute ABP
libre à trois générateurs est plongeable dans une algèbre de Boole.

Le sujet est présenté en trois chapitres. Les ABP ont un trait caractéristique: les

opérations à deux arguments n'y sont définies que pour certaines paires d'éléments.

Cependant, comme les algèbres de Boole classiques, elles ont deux unités. Pour les

structures de ce type nous donnons, dans la première partie de ce travail, une
définition idoine des notions de satisfaction et de validité. L'usage continuel de ces notions

permet une démonstration concise de quelques propriétés algébriques. Nous
dégageons de celles-ci plusieurs critères pratiques pour la plongeabilité dans une algèbre
de Boole.

La deuxième partie est consacrée à une méthode de représentation des ABP à

l'aide de relations binaires finies. Nous y développons ensuite un procédé de

construction pour certaines ABP, sous forme aisément traduite dans un langage de

programmation.

Ce procédé s'applique, en particulier, aux ABP libres introduites dans la troisième

partie de cette étude. C'est dans ce dernier chapitre que nous démontrons la validité,
dans les ABP, de certaines règles du calcul propositionnel classique, en particulier
des identités Booléennes en trois variables.

I. Propriétés algébriques des algèbres de Boole partielles

1.1. Structures et algèbres de Boole partielles
DÉFINITION. Une structure (ou structure d'algèbre partielle) est un système

d'ensembles et de relations du type

où S est un ensemble et C une relation ternaire univoque en son dernier argument,

interprétée comme une fonction à deux variables définie sur une partie de Sx5,
tandis que 0 et 1 sont deux éléments distingués de S.
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Par exemple, une algèbre de Boole, dont S est l'ensemble de tous les éléments, 0

l'élément minimal, 1 l'élément maximal et C l'opération définie pour tous a, b dans

S par C(a, b)= ~ia vb, est une structure.
La généralisation suivante des algèbres de Boole, où l'opération C n'est pas partout

définie, est proposée dans [1]. Soit D la relation binaire de base S telle que aDb
ssi C(a9 b) est définie dans A. D est la relation de compatibilité entre éléments de A.

DÉFINITION. Une algèbre de Boole partielle (ABP) est une structure A

(S, C, 0,1) telle que

- D est réflexive et symétrique. Pour tout élément a de S.aDl et aDO.

- tout triplet a, b, c de S tel que aDb, bDc, aDc engendre une algèbre de Boole
dans A,

Soit A une ABP. Une famille quelconque d'éléments de A deux à deux compatibles
engendre une algèbre de Boole. En particulier, les restrictions de A aux parties maximales

de S formées d'éléments deux à deux compatibles sont des algèbres de Boole;
l'ensemble de ces restrictions induit à son tour l'opération C de A. Cette idée est

développée dans le §11.1, en vue de la représentation des ABP.
D'autre part, on peut caractériser les ABP, parmi les structures, par la validité de

certaines règles du calcul propositionnel classique. Une remarque analogue vaut pour
les structures plongeables dans une algèbre de Boole. La notion de validité s'avère
ainsi très efficace pour la construction de nouvelles ABP et l'établissement de critères
de plongeabilité. Enfin, le concept à"ABP libre est étroitement lié à la notion de
satisfaction. Ces éléments sont introduits, dans le paragraphe suivant, à l'aide de définitions

détaillées.

1.2. Validité dans les structures partielles
Soit V un ensemble dénombrable, fini ou vide. Les éléments de V seront appelés

variables et notés x, y, z9xl9x2,.... Le cas le plus fréquent sera V= {x,y, z}.
L'ensemble des expressions propositionnelles, pour F donné, est noté FV. C'est l'ensemble
minimal d'expressions formées avec un alphabet contenant les symboles C, f, ainsi

que les variables, tel que: îeFV, V^FVet Cpqe FV lorsque/?, qeFV. Les expressions
propositionnelles sont notéesp, q, r,px,p2,... et aussi Cpq pour la «concaténation»
de C avec deux expressions propositionnelles p, q. On utilisera également les
«abréviations» courantes:

ip pour Cpf
pvq pour CCpfq

p\q pour CQ?C#ff
p q pour CpqACqp

ainsi que phq pour CfCpq.
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Soit A — (S, C, 0,1) une structure et V un ensemble de variables. Une valuation
dans A est une application v de V dans *S, notée v: V^A.

Une valuation étendue dans /4 est une application v de F dans S, notée t;: P->v4,

telle que:
a) KsPçFK
b) pour tous p, q dans FV:Cpqe V ssi C est définie pour <£(;?), û(#)> dans ,4,

peV etqeV.
c) pour tous p, q dans FF tels que Cpqe V: v(Cpq) C(v(p), v(q)).
d) feVct v(f) 0.

PROPOSITION 1. Pour une valuation v: V-+A donnée, il existe une valuation
étendue unique v: V-+A, dont la restriction à V coïncide avec v. Son domaine de

définition V est déterminé univoquement par v.

v sera appelée l'extension de v. La démonstration est ramenée au cas classique si

on ajoute à A un élément auxiliaire a et si on donne à C la valeur a chaque fois que
C n'a pas de valeur définie dans A. On obtient ainsi une application de TV dans

Su {a} dont il suffit de prendre la restriction à S.

Une expression propositionnelle p est satisfaite par une valuation v, ou v satisfait
àp, sipeVet v(p) l.

Une règle, dans l'acception la plus générale, est un couple d'ensembles M, M1

d'expressions propositionnelles; les éléments de M sont appelés prémisses, ceux de

M' conclusions.
Une règle est valide dans une structure A si ses conclusions sont satisfaites par

toute valuation dans A qui satisfait à l'ensemble des prémisses. On note A'.MWM'
une règle <M, M'} valide dans A. Une règle valide dans toutes les ABP est notée

Mïï-M'; pour M= {pw",pm} fini et M' {q} l'usage est d'écrirepl9 ...,pjrq au lieu

de MWM'.

THÉORÈME 1. Une structure A (S, C, 0,1) est une ABP ssi les règles suivantes

y sont valides pour un ensemble V d'au moins trois variables :

Ri pWCîp
R2 CfCqplhCfp
R3 CCpffft-p
R4 CfCpqlhCpCqp
R5 pi q, ph r, q\> r h CCpCqrCCpqCpr
R6 P,Cpq\hq
R7 phq,Cqr,Crq\Yplr

pour tous p, q, r dans FV, ainsi que
R8 \hCfp

pour les variables p dans V.
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Démonstration. On vérifie aisément la validité de Ri~R8 dans toute ABP.

Réciproquement, la validité de R8 dans une structure A fait que, pour toute valuation

v\V-*A, v(p)Dv(q) ssi v satisfait à plq. Si Va. trois variables ou plus, on peut
toujours trouver une valuation v telle que v(p) a, v(q) b9 v(r) c dans A; les

propriétés qui définissent les ABP (Déf. fin §1. 1) découlent alors des règles S27, Sl9

S8, S2 et des métarègles Ml9 M2 [3], dérivées de Rt-R7.
Le théorème reste vrai si on remplace p, q, r par des variables x, y, z respectivement,

avec V= {x, y, z}. La validité de R8 entraîne alors celle de Rt et R2; on peut
d'ailleurs omettre également R7. Cependant, le système Rj-Rs est complet dans le

sens suivant:
Une règle MWM' est valide dans toutes les ABP ssi elle est dérivable de Ri~R8.
La démonstration, donnée dans [3] pour le cas CîpWp, consiste à construire une

structure A et une valuation v: V-+A telles que peFV soit satisfaite par v ssi la règle

MWp est dérivable de Ri~R8. Elle repose essentiellement sur la règle S40 dérivée de

Ri-R7 et peut être généralisée pour M quelconque. (Cf. § III. 1, Existence de YABP
universelle.)

THÉORÈME 2. Une structure A (S, C, 0,1) est plongeable dans une algèbre
de Boole ssi

A\Cîp,Cîq\Yp=q

pour toutes les expressions p et q de FV, V dénombrable, telles que p==q est une
identité Booléenne (valide dans Z2).

La démonstration donnée dans [4] Th. 4, p. 84 pour les ABP, trouve sa «généralisation»

naturelle dans le cas des structures. La condition suffisante pour la plonge-
abilité dans une algèbre de Boole peut être affaiblie; il suffit d'examiner les identités

p q, valides dans Z2, où/? et q sont des expressions propositionnelles formées à l'aide
de variables et de l'opérateur C uniquement (à l'exclusion de la «constante» f):

COROLLAIRE. Une ABP est plongeable dans une algèbre de Boole ssi A : Cîp,
Cîq\\-p==q pour toutes les expressions p et q de FV, qui ne contiennent pas le symbole
f, et pour lesquelles p q est valide dans Z2.

Démonstration. Soient Cf/?, Cîq\\-p q une règle valide dans Z2 et v\V-*A une
valuation satisfaisant à Cîp, Cfq, mais pas à p q; on a donc v(p)¥:v(q) dans A.
Nous montrons l'existence d'une règle Cf/?', Cfq'\\-p' q' et d'une valuation v' avec
les mêmes propriétés, p' et q' étant des expressions propositionnelles où f n'apparaît
pas. Soient ye V une variable n'apparaîssant pas dans p, q et py l'expression propo-
sitionnelle obtenue en substituant y à f dans p (de même pour qy). pr=^CCpyyy,
q' CCqyyy et la valuation v' : V-+A, où t/ coïncide avec v pour les variables de p et q
tandis que v'(y)=0, ont les propriétés requises.
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D'autres propriétés remarquables des ABP peuvent être définies par la validité de

certaines règles; tel est le cas de la transitivité: une structure A (S, C, 0,1) est transitive

si la relation ^, telle que a^b ssi C(a, b) l, est transitive. Lorsque A est une

ABP,A:Cxy, CyzWCxz est équivalente à A:Cxy, CyzWxlz, Cf. [2]

1.3. Sous-algèbres, centre et idéaux d'une ABP (définitions)
Les termes (en italique) définis dans cette section se réfèrent à une ABP A

(S, C, 0,1).
Une sous-algèbre de A est un système A' (S\ C", 0\ V) tel que S" s S, Cf^C,

0'=0 et V 1. On note A'^A. L'opération C de la sous-algèbre Af est univoque;
A' est une structure. Par contre, A' n'est pas forcément une ABP.

Une sous-algèbre Â ^A est fermée si C" est définie pour tout couple d'éléments
de S' pour lequel C est définie.

Une sous-algèbre fermée A'^A est une restriction de la structure A,C' Cn (S')3.
Toutes les règles valides dans A le sont également dans A'\ en particulier, A' est une

ABP et, si A est transitive, A' l'est également.
Les sous-algèbres fermées de A où l'opération induite est définie partout sont des

algèbres de Boole. L'intersection des sous-algèbres Booléennes maximales de A est

encore une algèbrç de Boole, appelée centre de A et notée ZA. Le centre ZA est

formé des éléments ce S compatibles avec tout élément de A. ZA A ssi A est une

algèbre de Boole.
Le centre ZA contient l'algèbre Z2 à deux éléments 0 et 7, sauf dans le cas où A

est l'algèbre de Boole dégénérée à un seul élément. Lorsque ZA Z2 on dit que A

est une ABP centrale (les éléments idempotents d'une iT-algèbre centrale forment une

ABP centrale, où K est le corps des réels ou des complexes).
Soit D le domaine de définition de l'opération C et ^ la relation binaire telle que

a^-b ssi C(a,b)=l; a, h et c désignent des éléments de YABP A.
Un idéal de A est une partie non vide / de S telle que:

- aDb et beJ entraînent aAbeJ
- aDb et a, beJ entraînent avbeJ.
Dans le cas où aDb pour tout élément b de / et tout a de A, on appelle / un idéal

fermé. Un idéal / est fermé ssi J^ZA.
Un idéal centré de A est une partie non vide / de S telle que:

- a^b et beJ entraînent aeJ,

- pour tous a, 6e/, il existe un élément c dans le centre ZA tel que a*ic, b^c,
ceJ.

Un idéal centré est évidemment un idéal, un idéal fermé est centré.
Pour un élément c du centre ZA l'ensemble (c)={a | a^c} est un idéal centré.

(c) est appelé idéal principal. Dans une ABP transitive, l'ensemble (c) est un idéal

quel que soit c. Ce n'est pas le cas dans les ABP non transitives; d'ailleurs, seul le
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cas de l'idéal centré présente un intérêt dans la suite, de sorte que l'élément «principal»

c sera toujours pris dans le centre.

Un idéal /estpremier si, pour tout élément a de A, a est dans /ssi le complément

~ia n'y est pas.
Les idéaux premiers de A correspondent aux homomorphismes de A à valeurs

dans Z2. A est plongeable dans une algèbre de Boole ssi, pour toute paire d'éléments
distincts a, b dans A, il existe un idéal premier qui les sépare ([4], th. 0, p. 67). Tout
idéal premier est maximal mais la réciproque est fausse, par exemple dans YABP finie
D (Cf. [4], th. 1, p. 70), où il n'existe pas d'idéaux premiers. Par contre, un idéal est

premier s'il induit un idéal maximal dans chaque sous-algèbre Booléenne maximale.

1.4. Quotients
DÉFINITION. La structure A' (S', C, 0', /') est quotient (ou image homo-

morphe) de VABP A s'il existe une relation d'équivalence R, de base S, compatible
avec l'opération C, telle que :

- S' S/R

- C est induite par C

- 0 et 1 appartiennent aux classes 0' et V respectivement.
Dans ce cas, on note A' A/R. A/R est un quotient fermé si, de plus, pour tous a, b, c

dans S, aRb et bDc entraînent aDc.
Un quotient d'une ABP n'est pas, en général, une ABP. Les quotients fermés ont,

par contre, des propriétés moins inattendues.

LEMME 1. Soient A une ABP et A' un quotient fermé de A. Alors:
- une règle valide dans A et dont toutes les prémisses sont de la forme Cf/? est

également valide dans A'.
- une règle valide dans A' et dont les conclusions sont toutes de la forme Cf/? est

également valide dans A.
Démonstration. Toute valuation v\V-±A induit une valuation v'\V-*A' par le

passage aux classes de ^-équivalence. Réciproquement, toute valuation t/: V->A' est
induite par une valuation v: V-+A', qu'on obtient par le choix arbitraire d'un système
de représentants.

On démontre, par induction sur le nombre d'occurences de C dans les expressions

propositionnelles de FV, que, pour les deux extensions v: V-+A et vf: Vf-*A\ on a

De plus, si v satisfait à pe F, il en est de même pour v\ à cause de la compatibilité
de R avec C, 0 et L

Inversement, si v' satisfait à Cf/?, pour p dans FV, on a Cf/?e V'= V donc pe V.

est alors satisfaite par v à cause de la validité de R8 dans YABP A.
Les deux affirmations du lemme découlent de ces diverses remarques.
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PROPOSITION 1. Un quotient fermé d'une ABP est une ABP.
Démonstration. Tout quotient d'une ABP peut être recouvert par des sous-algèbres

de Boole; les règles R1? R3, R6, R7 et R8 y sont donc valides. Le résultat ci-dessus

s'applique aux règles R2, R4, R5 du théorème 1, § 1.2.

PROPOSITION 2. Si une ABP a un quotient fermé transitif, elle est transitive.
Démonstration. Les ABP transitives peuvent être caractérisées par la validité d'une

règle dont la conclusion a la forme Cfp.

PROPOSITION 3. Si une ABP est plongeable dans une algèbre de Boole, ses

quotients fermés le sont également.
Démonstration. Une ABP est plongeable dans une algèbre de Boole ssi toutes les

règles Cfp, Cfq\\-p q valides dans Z2, avec Indénombrable, y sont également valides

(th. 2, §1.2).

LEMME 2. Soient A une ABP et / un idéal centré de A. La relation R, définie

par
aRb ssi il existe c dans / tel que C(a, c) C(b, c)

est une équivalence compatible avec l'opération C.

Démonstration. La symétrie de R est évidente; la réflexivité découle de OeJ. Pour
la transitivité soit: C(a, c) C(a', c), C(a', c') C{a\ c'), c et c' dans /. Il existe donc

un élément c" du centre avec c^c", c'^c" et c"eJ pour lequel C(a, c")=C(ar, c")=
C(a", c"). De même, pour la compatibilité de R avec l'opération C, soit: a" C(a9 a'),
b"=C(b, b'), C(a, c)=C(b, c), C(a', c')=C(b', c')> avec c et c' dans /; on peut
remplacer c et c' par un élément c" du centre, avec c^c\ c'^c" et c"eJ. L'identité
Booléenne CCxyz (CCxzz)A(Cyz), satisfaite pour les trois valeurs compatibles

a, a\ c" (ainsi que b, b', c") données à x, y, z respectivement, fournit alors C(a", c")

C(b\ c").

DÉFINITION. Le quotient de YABP A par la relation R définie (ci-dessus) à

l'aide de l'idéal centré / est appelé quotient de A par J et noté: A/J. Dans le cas où /
est l'idéal principal (c), on l'appelle quotient de A par l'élément c et on note: A/J=
A/(c)=Ac.

Remarques. Les éléments de A appliqués sur 0 dans le quotient A/J sont exactement

ceux de /; on vérifie en effet: aRO ssi aeJ.
A' est un quotient fermé de A ssi il existe un idéal fermé J de A tel que A' A/J.
Certaines propriétés des quotients fermés se retrouvent dans le cas, un peu plus

général, du quotient de A par un idéal centré.

LEMME 3. Soient A une ABP et / un idéal centré de A. Une règle valide dans
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A est également valide dans A/J, si elle a un nombre fini de prémisses, toutes du type
Cfp, où p est une expression propositionnelle dans laquelle f n'apparaît pas.

Démonstration. Soit A:MtM', pour un tel ensemble M de prémisses, et soit

v: V-+A/June valuation satisfaisant à M. Soitpu...,pn une suite d'expressions pro-
positionnelles dans lesquelles f n'apparaît pas, telle que:

- pour chaque prémisse CîpeM,p figure dans la suitePu-->Pn
- pour tout /<« on a^eFou alors Pi Cpjpk pour deux indices y, k<i.

On peut alors trouver, dans A, des éléments ai9 bt et cf(/<«) tels que, pour tout /<«:
- si pte V, l'image de at dans A/J coïncide avec v(pt)
- siPi CpjPk, on a af C(^, ct) et l'image, dans A/J, deaf, b{ et ct coïncide avec

v(Pi), v(pj) et v(pk) respectivement.
Pour tout triplet i,j, k tel que Pi CpjPk on a, par conséquent, biRai et cfitofc; d'où
l'existence d'éléments dt, et dans / tels que

di) C(aJ,di) et

Les deux éléments rf£, et de l'idéal centré / peuvent être remplacés, dans ces deux
équations, par un élément gt du centre ZA, avec d^gi, e^gi et gteJ. Soit g le

suprémum des gf dans ZA ; on a alors

g) C(ajig) et

pour tout i tel que pt Cpjpk. A l'aide de l'élément g du centre, on modifie les valeurs
de ai9 bi9 ct ; pour tout / < n on pose : a • at v g, è • Z?f v g, cj ct v g. Avec ces nouvelles
valeurs on a: afi C{afji a'k), pour tout i^n tel que pi Cpjpk\ en effet, (*) entraîne
b' a'j et Ci ^ tandis que aJ C(éJ, cj) découle de ûf£ C(èf, c4) et de l'identité
Booléenne (Cx^)vz=C(jcvz)(jvz).

On peut finalement construire une valuation t/: K->i4 compatible avec v: V-+A/J,
en posant v'{p^ a[ pour/?feF. L'extension t;': V-+A de i;' est définie, notamment,
pour px et prend la valeur v' {p^)=a\ (pour tout ï </i).

Ainsi Mc p'; la forme particulière des prémisses fait qu'elles sont satisfaites par
y' dans VABP A. Les conclusions sont donc également satisfaites par v', et a fortiori
par t;, dans le quotient. c.q.f.d.

La démonstration des propositions 1 et 3 ci-dessus peut être reprise, pour le
quotient par un idéal centré, en remplaçant le théorème 2, § 1.4, par son corollaire:

PROPOSITION 4. Le quotient d'une ABP par un idéal centré est une ABP.

PROPOSITION 5. Si une ABP est plongeable dans une algèbre de Boole, c'est
également le cas pour son quotient par un idéal centré.
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1.5. Homomorphismes
De manière générale, on distingue deux notions d'homomorphisme.

DÉFINITION. Un homomorphisme h:A->Ar entre les ABP A et A' est une
application de S dans S' qui conserve les éléments distingués 0 et 7, ainsi que la relation
ternaire C. h est un homomorphisme fermé si, pour chaque paire d'éléments a, b dans

S, on a:
C" est définie pour h {a), h(b) ssi C est définie pour a, b.

Ainsi une sous-algèbre A^A' est fermée ssi l'injection Sç*S" est un homomorphisme

fermé; le quotient A' AjR de A est fermé ssi l'application canonique S-+S/R
est un homomorphisme fermé; une application h:S-+S' est un homomorphisme
fermé de A vers A' ssi l'image de A par h est un quotient fermé de A et une sous-

algèbre fermée de Ar.

Un homomorphisme à'ABP h:A-*A' est fermé ssi la préimage de toute sous-

algèbre Booléenne de A' par h est une sous-algèbre Booléenne de A. En particulier,
dans un quotient fermé A' de YABP A, les parties Booléennes maximales de A et de

A' se correspondent de manière biunivoque. Par conséquent, le centre de A' est l'image
du centre de A,

1.6. Produit d'ABP
Le produit cartésien d'une famille de structures Ah ieJ, avec l'opération définie

par composantes, est évidemment une structure; on la note fliej ^t (ou ^i x ^2>s'^
y a deux facteurs).

LEMME. Toute règle valide dans chaque facteur A(,ieJ, d'un produit A

Yliej ^i est également valide dans A.
Réciproquement, toute règle valide dans A, dont l'ensemble des prémisses n'est

pas contradictoire (satisfait par une valuation dans Z2), est également valide dans

chacun des facteurs Ai9 ieJ.
Démonstration. Toute valuation v: V-*A se décompose en une famille de valua-

tions vt: V^A^ Une expression propositionnelle de FF est satisfaite par v ssi elle est

satisfaite par chaque vi9 ieJ. La première partie du théorème en découle immédiatement.

Pour la seconde, soit M l'ensemble des prémisses d'une règle valide dans A et

soit v: V-ïAi une valuation dans At satisfaisant à M. On peut alors construire une

valuation v'\ V->A, satisfaisant à M et telle que v\ v\ il suffit de donner à la i-ème

composante de v' les valeurs de i?. A toutes les autres composantes, on donne des

valeurs dans Z2 qui satisfont à M.

PROPOSITION 1. Un produit de structures est une ABP ssi chaque facteur est

une ABP.
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PROPOSITION 2. Un produit <TABP est une ABP transitive ssi c'est le cas pour
chacun des facteurs.

PROPOSITION 3. Un produit d'ABP est plongeable dans une algèbre de Boole
ssi c'est le cas pour chacun des facteurs.

Les démonstrations découlent immédiatement du lemme et du § 1.2.

La suite de ce § 1.6 permet d'établir un critère de plongeabilité dans une algèbre
de Boole (Prop. 5), qui généralise la proposition 3.

PROPOSITION 4. Soient A une ABP et Ju..., Jn des idéaux centrés dont l'intersection

est /. Alors AjJ peut être plongé dans le produit ^' n*=i -^M*
Démonstration. J est un idéal centré; soit g'.A-^AjJ l'épimorphisme induit par /.

D'autre part, soit h:A-*A' l'homomorphisme dont la i-ème composante est donnée

par la projection de A sur A/Jt (i= 1,..., n). Alors A=/og, pour une application bi-
univoque/: A/J-+A'. En effet, pour a et b dans A avec g(a)=g(b) il existe c dans /
tel que C(a, c) C(b, c); dans ce cas ceJt pour /= 1,..., n d'où h(a) h(b).

Réciproquement h (à) h (b) entraîne l'existence de c^Ji tels que C(a, ct) C(b, ct),

pour i 1,...,«. L'intersection ct a c2 a • • • a cn est alors un élément de / et g (a)=g (b)
découle de l'identité Booléenne Cx(z± a ••• Azn) Cxz1 a ••• ACxzn. /est un homo-
morphisme défini sur A/J puisque g est épimorphe.

COROLLAIRE 1. Pour tout élément c du centre d'une ABP A, on peut plonger
A dans le produit AcxAnc. Dans le cas d'une ABP transitive, on & A£êAcxA-,c.

Démonstration. Les idéaux principaux (c) et (~ic) sont évidemment centrés et
leur intersection est (0). Pour montrer que h:A-*Ac x A-,c est surjectif pour A transitive,

soit (a, a')eAc x A^c. Il existe donc b et b' dans A, dont les images sont a et a'
dans les quotients respectifs par (c) et (~ic). Puisque A est transitive, on peut former

ac)v(6a -ic); on vérifie alors C(b, c) C(d, c) et C(b', -\c) C(d, ~ic), d'où

PROPOSITION 5. Une ABP finie est plongeable dans une algèbre de Boole ssi

c'est le cas pour chacun de ses quotients A^c, où c parcourt les atomes du centre.
Démonstration. Soit A une ABP dont chaque quotient Anc est plongeable dans

une algèbre de Boole. L'algèbre A ^A/(0) peut être plongée dans le produit des A-,c,
puisque l'intersection des idéaux (ne), pour tous les atomes c de ZA, est nulle. La
réciproque est contenue dans la proposition 5, § 1.4.

Remarque. Cette proposition peut être généralisée aux ABP infinies complètes
atomiques. Dans le cas des ABP transitives, elle est alors équivalente à la proposition
3; en vertu du corollaire 1, telle ABP est, en effet, le produit d'autant à'ABP centrales
qu'il y a d'atomes dans le centre.
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1.7. Isomorphisme partiel et somme d'ABP
DÉFINITION. Un isomorphisme partiel h:Ai->A2 est une application biuni-

voque, définie sur une sous-algèbre Booléenne B de YABP Al9 à valeurs dans YABP
A2, qui conserve l'opération induite par At.

L'application réciproque et le composé d'isomorphismes partiels sont encore des

isomorphismes partiels. Soient Ax et A2 des sous-algèbres d'une ABPA; si

l'intersection B A1nA2 est une algèbre de Boole, la restriction de l'identité à B est un
isomorphisme partiel.

DÉFINITION. Pour un isomorphisme partiel h\Ax-+A2 on appelle somme de

At et A2 modulo h la structure A obtenue en identifiant, dans la réunion disjointe de

S± et S2, les éléments correspondants de l'application h. Les opérations de A sont-
induites par At et A2 de manière univoque, puisque h est homomorphe.

On note A=A1+A2(modh). Lorsque h identifie les seuls éléments 0 et 1 de At
et A2, on appelle A la somme directe et on note A=Al+A2.

Remarques. Si h est défini sur Al9 alors A2=A1 +A2(modh); en particulier
A2 Z2+A29 pour A1=Z2. Si At est formée d'un seul élément, alors A A±=A2.

La somme directe d'ABP est commutative et associative. La somme directe d'une

famille quelconque d'algèbres de Boole peut toujours être plongée dans une algèbre
de Boole assez grande.

At et A2 sont des sous-algèbres fermées de A=At +A2(modh); par conséquent,
toutes les règles valides dans A sont valides dans A1 et A2. La réciproque est fausse;

on vérifie cependant que la somme d'ABP est une ABP et que la somme directe d'ABP
transitives est transitive. De plus, on a la propriété d'amalgamabilité suivante:

THÉORÈME. Soit h:Al-+A2 un isomorphisme partiel et A At +A2(modh).
Alors A est plongeable dans une algèbre de Boole ssi c'est le cas pour At et A2.

Démonstration. On peut supposer que At et A2 sont des algèbres de Boole. Dans

le cas contraire, on plongerait Ax et A2 dans les algèbres de Boole respectives B± et

B2, de sorte que A^Bt +B2(modh). Il s'agit de construire, pour deux éléments
distincts a, b de A, un idéal premier / qui les sépare.

Si a et b se trouvent tous deux dans la même algèbre de Boole Ax (par exemple), il
existe un idéal maximal Jt de Ax séparant a de 6. L'intersection Jx nA2 est un idéal

propre de Alc\A2 et peut donc être étendu à un idéal maximal J2 de A2, suivant un

raisonnement classique. /= Jt uJ2 est un idéal de A, premier et séparant a de b.

Reste le cas où a$A2 et b^Av Soit A0=A1nA2. Un lemme de A. Daigneault [1]

affirme l'existence d'un idéal maximal Jo de Ao tel que l'idéal Jl9 engendré par Jo dans

Al9 ne contient ni a, ni son complément. Soit alors J2 un idéal maximal de A2
contenant Jo.

Si beJ2 on construit J[= {C(a, c) \ ceJj. J[ est un idéal propre de Ax; sinon on
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aurait C(a9 c) l pour un élément c de Jl9 donc a^c et ae Jt; contradiction. D'autre

part J[ contient —\a, puisque Oe Jx; il en est de même pour l'idéal maximal J'[ de Ax

contenant J[. J'[ ne contient donc pas a et /=Jj'uJ2 a les propriétés requises.
Si b$J2 on remplace a et b par leurs compléments.

COROLLAIRE. Si une ABP est recouverte par trois algèbres de Boole, elle est

plongeable dans une algèbre de Boole.
Démonstration. Soit A une ABP avec trois parties Booléennes maximales Al9 A2

et A3. On a alors AinA2^A39 avec une permutation éventuelle des indices. Sinon

il y aurait trois éléments al9 a2, a3 deux à deux compatibles, tels que a{eAk ssi /^k;
l'algèbre de Boole engendrée par al9 a2 et a3 n'est contenue dans aucune des Ai
(i 1, 2, 3), ce qui est contraire à l'hypothèse. Ainsi (A1uA3)n(A2uA3) A3 est une
algèbre de Boole et le théorème s'applique à YABP A (Aiv A3) +(A2u A3) (mod/z),
où h est l'identité sur A3.

Remarque. Les quotients A-,c de la proposition 5, § 1.6, sont en général beaucoup
plus simples que YABP finie A ; on peut souvent leur appliquer le théorème ci-dessus

ou son corollaire. De plus, leur construction est immédiate, elle revient à biffer
certaines lignes et colonnes dans les matrices représentant A (Cf. Remarque à la fin des

§ II.3 et II.4). Nous disposons ainsi d'un critère de plongeabilité très pratique, employé
systématiquement dans les cas 1 à 60 du § III.3.

II. Représentation des ABP

II. 1. Généralisation de la somme d'ABP
La notion de somme peut être utilement étendue à certaines familles à'ABP et

d'isomorphismes partiels. Soit Ai9 ieJ9 une famille d'ABP et hik:Ak->Ai9 i et keJ9 une
famille d'isomorphismes partiels telle que:

1. pour tout / de /: hu est l'identité de At
2. pour tous /, k de /: hik est la réciproque de hki
3. pour tous ij k de /: hik^hijohjk

Alors la relation R9 telle que aRb ssi il existe i, k dans / avec a hik(b), est une
relation d'équivalence sur la réunion disjointe des St(ieJ); réflexivité, symétrie et

transitivité de R découlent directement des conditions 1,2 et 3 ci-dessus. D'autre
part, les applications hik sont homomorphes, de sorte que R est compatible avec
les opérations des At. Le quotient par R est donc une structure, avec l'opération
induite par les ABP de la famille. On l'appelle somme de la famille {At \ ieJ} modulo
{hik | /, keJ}.

Ici encore chaque ABP de la famille apparaît dans la somme comme sous-algèbre
fermée; par contre, la somme n'est pas, en général, une ABP.
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THÉORÈME. Une structure est une ABP ssi elle est la somme d'une famille
d'algèbres de Boole Ai9 ieJ, modulo une famille d'isomorphismes partiels hik, i et

keJ9 telle que:

4. pour tous ij, k il existe / dans / avec hij hilohlj, hjk hjlohlk et hki hklohh

Démonstration, Soient A (S, C, 0,1) une ABP et St{ieJ) les parties maximales
de S dont les éléments sont deux à deux compatibles. Si Ai (Si, CnS?, 0,1) est

l'algèbre de Boole obtenue par restriction de A à St et hik l'identité de A restreinte à

Str\Sk(i9keJ), on obtient une famille d'algèbres de Boole pour laquelle on vérifie

1., 2. et 3. La condition 4. est remplie parce que, pour i,j,k dans /, l'ensemble

(SinSj)u(SjnSk)u(SknSi) est formé d'éléments deux à deux compatibles; il est

de ce fait contenu dans une partie maximale St.

Pour la réciproque, soit A la somme d'une famille d'algèbres de Boole At(ieJ)
remplissant les conditions 1. à 4. Si on considère At comme sous-algèbre de A9 la

relation de compatibilité D dans la structure A revient à: aDb ssi il existe ieJ avec

a, beAt. A a les propriétés caractérisant les ABP (§ 1.1): par exemple, pour a, b et c

dans A, deux à deux compatibles, il existe i,j9 k dans / avec a et b dans Ai9 a et c dans

Aj9 c et a dans Ak\ 4. entraîne alors l'existence d'une sous-algèbre Booléenne Ax

contenant a, b et c.

Au lieu des parties Booléennes maximales on aurait pu prendre, dans la
démonstration, toutes les restrictions de A qui sont des algèbres de Boole finies. Toute ABP

se laisse ainsi représenter comme somme d'une famille ayant les propriétés 1. à 4.

ci-dessus, ainsi que

5. pour tout i de /: At est une algèbre de Boole finie.

Pour décrire une ABP finie, il suffit de numéroter ses sous-algèbres Booléennes

maximales Al9...9An et de donner les isomorphismes partiels hik\Ak-j*'Ai pour
1 ^ ï <k < w. Une telle description est compliquée à cause du nombre élevé d'éléments ;

elle gagne à être remplacée par une représentation «duale» qui fait intervenir, au

lieu d'une algèbre de Boole, l'ensemble de ses atomes et, au lieu d'un isomorphisme

partiel, une relation binaire qui le caractérise (§ II.2).

II.2. Représentation d'un isomorphisme partiel par une relation binaire
DÉFINITION. Soient E9 Ef deux ensembles et jR une partie du produit cartésien

ExE\ Nous écrirons a'Ra au lieu de <a, a'}€R.
R est surjective si, pour tout a de E, il existe a' dans E' (et réciproquement) de

sorte que a'Ra.
R est droite si, pour tous a9 b dans E et à\ b' dans E'9 tels que a'Ra, b'Rb on a:

a'Rb ssi b'Ra.
R est une équivalence de E vers E' si R est surjective et droite.
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Nous noterons R* la transposée de R, R(X) l'ensemble des areEf tels que a'Ra

pour au moins un élément a de l'ensemble X et id(E) la relation d'égalité sur E. Une
relation binaire R est une équivalence de E vers Er ssi R(E) E', R*(E') E et
RoR*oR R.

Dans le cas où E' — E et id(E)^R, R est dite réflexive. Une relation réflexive est

droite ssi elle est symétrique et transitive.
Une relation R^ExE' est droite ssi on peut trouver deux familles d'ensembles

disjoints, Et^E(ieJ) et Ei^E'(ieJ), telles que R= (JieJ Et x E[.
Le choix des termes définis ci-dessus est suggéré par ces remarques.

PROPOSITION 1. Soient R une équivalence de E vers £', P(E) et P(E') l'algèbre
Booléenne des parties de E et E' respectivement. Soit h l'application définie par
h(X) R(X) pour les éléments X de P(E) tels que R*oR(X) X. Alors h est un iso-

morphisme partiel h\P(E)-*P(E'). On écrira: h P(R).
Démonstration. Il suffit de démontrer que h est univoque et définie sur une algèbre

de Boole.
a) Le domaine de définition de h est une algèbre de Boole ; il est fermé par rapport à

la réunion, puisque R (lu Y) R (X) \jR( Y), et par rapport au complément. En effet
R*oR est réflexive, symétrique et transitive, donc R*OR(X) X ssi X qsî la réunion
d'un certain nombre de classes de R*o^-équivalence; il en est alors de même pour
le complément de X dans E.

b) h est biunivoque; soit Z=h(X) h(Y) avec R*oR(X) X et R*OR(Y)=Y.

L'image de l'isomorphisme partiel h :P(E)-+P(E') est formée des parties Y= R (X)
de E' telles que X=R*GR(X). Ce sont exactement les Fç£" tels que RoR*(Y)= Y;
l'isomorphisme /z* réciproque de h est induit par l'équivalence R* de E' vers E:P(R)*
=P(R*).

L'isomorphisme partiel h P(R) est défini sur une sous-algèbre Booléenne complète

de P(E) et il conserve évidemment le supremum d'une famille non vide
quelconque d'éléments pris dans ce domaine. Ces conditions s'avèrent suffisantes pour
l'existence d'une équivalence R «duale» de h.

DÉFINITION. Un isomorphisme partiel h\A-+A' est complet si A et A' sont des

algèbres de Boole complètes atomiques et si le domaine et l'image de h sont des sous-
algèbres complètes de A et A' respectivement.

PROPOSITION 2. Un isomorphisme partiel h:P(E)->P(E') est complet ssi h

provient d'une équivalence de E vers E'.
Démonstration. Pour la construction de l'équivalence R duale de h on considère

p{E\P{E') comme sous-algèbres de Az=P(E)+P(E') (modh), avec l'intersectionB(c^; tandis que E et E1 sont traités comme l'ensemble des atomes
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de P(E) et P(E') respectivement. Soit R^ExE' définie par: a'Ra ssi il existe un
atome b de B tel que a^b et a'^b.

La relation R est droite. Pour a'Rc, cRc, c'Ra il existe en effet trois atomes

bi,b2,b3 de B avec a'^b^c, c^b2>c', c'^b3^a. D'où b1Ab2>c dans /*(£) et

b2Ab3^cf dans P (£"), les atomes 6t, b2,63 de B sont donc confondus et on a a' ^ 6X ^ a,
soit a'ita.

La relation R est surjective. Soit a un atome de P(£). B est une sous-algèbre
complète de P(E) et de ce fait totalement distributive et atomique ([6], p. 86). Il existe

un atome b de B tel que b^a; sinon on aurait aAb 0 pour tout atome b de B et le

supremum des a a b, où Z> parcourt les atomes de £, serait également 0. Or, le supré-

mum de l'ensemble des atomes b vaut 1 et, par distributivité, le supremum des a a b

est a7*0. Finalement, il existe a' dans £" tel que a^b^a' du fait que P{Ef) est

atomique.
La relation R est duale de h, h P(R). Il suffit de remarquer que tout élément de

B est le supremum de l'ensemble des atomes qu'il couvre, aussi bien dans P(E) que
dans P(E').

Tout isomorphisme partiel entre algèbres de Boole finies est complet; il peut être

représenté par une équivalence d'un ensemble d'atomes vers l'autre.
Toute sous-algèbre complète d'une algèbre de Boole complète atomique peut être

donnée par une partition de l'ensemble des atomes. Par exemple, pour E= {1, 2, 3,

4, 5} la partition (12/34/5) représente la sous-algèbre engendrée par les éléments {1,2},
{3, 4} et {5} de P(E).

COROLLAIRE. Un homomorphisme h\P{E)->P{Ef) est complet (conserve les

suprema de familles quelconques: [6], p. 70), ssi il existe une application g\E'-*E
telle que h(X)=g*(X), pour tout X^E, où g* est la relation binaire transposée (ou

réciproque) de g.
Pour la démonstration, remarquer que, si h est complet, l'image h(P(E)) est une

sous-algèbre complète de

IL3. Représentation d'une ABP par une famille de relations binaires
Soient R une équivalence de E vers E' et R' une équivalence de Er vers E". La

composition habituelle R'oR (produit relatif) ne donne pas, en général, une
équivalence de E vers E"; on peut cependant «rectifier» R'oR do manière à avoir P(Rf i- R)

P(R')oP(R) pour l'isomorphisme partiel P(R' ± R) associé au produit droit R' 1R-

DÉFINITION. On appelle produit droit R' ±R la relation binaire droite
minimale, de E vers E\ contenant R'oR.

L'existence de Rf _L R est évidente, puisque E x E" est une relation droite et
l'intersection d'une famille non vide de relations droites est encore droite. Le produit droit
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d'équivalences R et R' contient la relation surjective R1 o R, c'est donc une équivalence.
R'±R peut être construit comme réunion d'une suite Rn(n 0, 1, 2,...) de parties

deExE":

Ro R'oR, Rn+1 RnoRn oRn.

Si E ou £"' est de cardinal c fini, onai?'li? i?n pour n suffisamment grand (n tel

que 3"^2-c). On a également

K'JL£ U R'oRo(R*oR'*oReoR)n
n 0

où la «-ième puissance est l'identité lorsque n 0, le produit relatif avec n facteurs

identiques, lorsque n^l.
Les trois lemmes suivants aboutissent à la démonstration de P(R'±R)

P(R')oP(R). Pour les deux premiers, on fait les hypothèses et conventions suivantes.
Soient C une algèbre de Boole complète atomique, A et B des sous-algèbres

complètes de C et d un atome de l'intersection D Ar\B. Soit S l'ensemble des atomes
de A bornés par d et T l'ensemble des atomes de B bornés par d. Pour X^ S et Fe T
on conviendra que :

- X' est le complément de Xdans S, tandis que F' est le complément de F dans T.

- XY est l'ensemble des produits a a b dans C des éléments a de Z et b de F.

- X- Y= 0 ssi a a b 0 pour tout a dans X et b dans F; X et Y peuvent être vides.

LEMME 1. Pour deux ensembles XçzS et YçzT tels que X- F' 0 et X'• F=0,
onal=7=0oul'=r 0.

Démonstration. Les algèbres A, B Qt C sont complètement distributives en vertu
du théorème 25.2 [6], p. 86.

Soit XY' 0, X'-Y=0 et c Sxxp{aAb \aeXet beY}. On a évidemment c^d
puisque J=Sup5r=Sup7T=Sup{flAZ? | aeSetbeT}.

Ovc Sup{aAb \aeXetbeY} Sup{aAb \ aeXetZ?er} Sup{aASupr| aeX}
Sup {a a d | aeX} SupZe^, puisque, par hypothèse, aAb 0 pour aeXQtbeY';

de même c=Sup YeB et par conséquent ceD.
d étant un atome, c^d entraîne c 0 ou c d. Dans le premier cas, XY=0;

X-Y' 0 et X'- F=0 ne sont alors possibles qu'avec X= F=0. Dans le second cas
soit c^Sup^AZ? | aeX' et beY'}; on a évidemment c'^d, d'où:

{a a b\aeX, beY} ASup{a' a V \ a'eX\ V eY'}
Sup {a a b a a' a b' \ aeX, beY, a'eX', b1 eY'} 0

Puisque, par hypothèse, aAb' 0 et a' Ab 0 pour aeX, b'eY', a'eX' et be F. Donc
X'' Y' 0; on en déduit, comme dans le premier cas, X'= F' 0.



66 GIOVANNI CORAY

LEMME 2. Pour tout atome a dans S et tout b dans Til existe un entier ^,
des atomes a0,..., an dans S et des atomes b0,..., bn dans T tels que ao a, bn b,

Démonstration. On peut construire les suites de familles d'atomes suivantes :

Sn+i {eeS'n\{e}-Tn*0}
{e g -S | e $ Sn et il existe e' dans Tw avec e a ef =£ 0},

Ta+1 {eeT;\Sn+1-{e}*0}
{ee T | e$ Tn et il existe e' dans Srt+ x avec eAe'/O}.

w=0 n=0

Par construction on a: Ar/s(S'IluSrll+1)/ SIî\Sïl+1, donc Ar/-TII 0, pour tout n;

par conséquent Z' • Y= 0,

D'autre part fç(rBurn+1)' f\TB'+1, donc SH+1-Y' 09 pour tout n. De plus

F' S Tq, donc 50 • F 0 et par conséquent X- Y' 0.

Le lemme 1 s'applique ainsi à Jet Y; on a Z= 7=0 ou alors X' Y' Q. Or

S0^X n'est pas vide, donc Af'= F'=0 et r= 7. Pour tout b dans Til existe par
conséquent unn^O avec beTn.

Ceci permet de trouver une suite d'atomes ateSi9 biET^O^i^n) par le procédé

récursif suivant:

- bn b est dans Tn9

- soit £„_, dans Tn_t pour 0</^/i, alors il existe un atome eeSn-t tel que

e a Z?n _ t t* 0 (définition de Tw _ f), on prendra an _ f e.

- soit an_£ dans 5B_f pour 0<z<«, alors on peut trouver un bn_i_l dans Tn_t_i
tel que an-{ AiB_^1#0 (définition de Sw_f).

Pour ï=w on aboutit à a0 dans So, or S0={a}9 d'où a a0. D'autre part, aucun

des produits at Abt ou aiAbi^i ne s'annulle.

LEMME 3. Pour deux équivalences R de E vers .£' et Rf de £' vers E\ on a

Démonstration. Soit h=P(R), h'=P(R') et h" h'oh. D'après la proposition 2,

§ II.2, il existe une équivalence R" de £ vers £" telle que h"=P(R"). Pour montrer

R" R'1.R on construit I'

P {P(E) + P(E')(modfc)} + P(JS") (mod/i')
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plongeable dans une algèbre de Boole selon le théorème du §1.7, P(E), P(Ef) et

P(E") peuvent alors être considérées comme sous-algèbres de P avec l'intersection

A=P(E)nP(Ef), B P(E')nP(E") et D AnB P(E)nP(E"); les relations R9

R' et R" sont caractérisées, comme précédemment, par l'existence d'atomes dans

A, B et D respectivement.
a) Rr ±R^R". Puisque R" est une équivalence, il suffit de montrer R'oR^R".

Soient aeE, aeE\ a"eE" tels que a'R'a! et a'Ra; on a donc: a^b^a' et a'^b'^a",
pour deux atomes, b dans A et b' dans JB. Il existe dans D deux atomes d et d'tels que

^& et d'^b' (Cf. démonstration de la proposition 2, § II.2). Puisque dt\d'^a\ les

atomes */ et d' sont confondus; donc a"<^d^a et a"R"a.

b) R"^R'±R. Avec ^li?=(Jîî=o^oi?o(i?*oiî'*o^oi?)" cela revient à montrer

que, pour eeis, q"eE" tels que e^d^e" pour un atome d de D, il existe un entier
n et des éléments

eo,...,eH dans E
e'09...,e'n dans £'
e'o,...,< dans E"
e*,...,e* dans JET

tels que e e0, e" é'n et

- e^a^e'i pour 0</<« et un atome at de ^4

- e\ < 61 ^ ej' pour 0 < / < « et un atome èf de B

- e'l_ t < bf ^ c* pour K /< « et un atome bf de jB

- ef^af^et pour UKn et un atome af de y4.

Si l'on prend pour a un atome de A tel que e<a et pour b un atome de B tel que
e"<è (existence assurée du fait que R et R' sont surjectives) le lemme 2 ci-dessus

fournit n,ao,...,an et bo,...9bn. Le choix de af ai9 6f ô,_1 pour l<i<n donne:

- diAbi^O d'où l'existence de e- dans £
- af Abf^O d'où l'existence de e* dans £",

L'existence de eI<af al- et de e"-l^bi=bi_1, l^i^n provient du fait que P(E) et

P(E") sont atomiques. Restent eo^ao et ^<én que l'on peut poser eo e et é'n e\
puisque ao a et 6B i.

COROLLAIRE 1. Le produit droit d'équivalences est associatif.

OCROLLAIRE 2. Si Rt et i^2 sont deux équivalences de E vers E' et Aj
^2=P(R2) les isomorphismes partiels associés, on a
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Démonstration. hx ç= h2ohl oh*ohl= h1oR1 _L R* _L Rx R± ; un simple calcul montre

que cette dernière égalité a lieu ssi R2^Rx.

THÉORÈME. Toute ABP est la somme d'une famille d'algèbres P(E-)9 ieJ,
modulo une famille d'isomorphismes partiels P(Rik), i et keJ, telle que

pour i9 k dans /: Rik est une équivalence de Ek vers Et

pour i dans /: Ru est l'identité sur Et

pour /, k dans /: i?w est la transposée de Rik

pour /, 7, fc dans /: i?/fc ç i?f7 ± Rjk

et, pour tout triplet i,j, k, il existe / dans / tel que:

Réciproquement, une telle somme est toujours une ABP.

La preuve découle du §11.1, du lemme 3 et du corollaire 2 ci-dessus.

Pour représenter une ABP finie comme somme d'algèbres P(E^) on prendra
toujours les parties Booléennes maximales numérotées à l'aide de /= {1, 2,..., n}. Pour

f<«on prendra Ei={l929...9di}9 {dt — dimension de la /-ème partie Booléenne
maximale) de sorte que Rik est décrite à l'aide d'une matrice dont les dk x dt éléments ont
les valeurs 0 ou 1. Dans le cas d'une ABP infinie, il suffit de prendre la famille de

toutes les restrictions finies Booléennes. Ce n'est cependant pas toujours nécessaire;

par exemple YABP BiU0*) des sous-espaces fermés de l'espace d'Hilbert U" (Cf. [4],

p. 65) est la somme de la famille d'algèbres P(Et) modulo les isomorphismes partiels

P(Rik), i et k dans /, lorsque:

- / est un ensemble indexant les bases orthonormées de IIe0,

- pour chaque / de /, Et est l'ensemble des vecteurs de la base d'indice /.

- pour / et k dans /, Rilc est la relation telle que aRikb ssi les vecteurs a et b

appartiennent au même sous-espace invariant, irréductible, de la transformation
unitaire qui amène la base Et sur Ek.

II.4. Représentation d'un homomorphisme par une famille d'applications
Pour la construction à*ABP universelles (§111.1), il est nécessaire d'étendre aux

homomorphismes le procédé de représentation «duale» donné, dans le théorème

précédent, pour les ABP. On est ainsi conduit à considérer des familles d'homomor-

phismes compatibles avec les identifications imposées par certains isomorphismes

partiels.

DÉFINITION. Soit # une famille d'algèbres de Boole At et d'isomorphismes
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partiels hik\Ak-±Ai (i et k dans /); de même pour #', A\ et h'ik(i, keJ'). Un homo-

morphisme de # dans #', notéf:<I>-+<I>', est une famille d'homomorphismes/1^-»/*}^,
/ dans /, avec une application j:J->J', tels que, pour tous /, k dans /:

fiohik^hfmmofk. (1.)

Deux homomorphismes/, /' de <ï> dans <&' sont équivalents si, pour tout / dans /:
f! (2.)

Dans le cas où les familles # et <&' ont les propriétés 1. à 4. du § II. 1, on peut en

former les sommes respectives A et A'. Les conditions (1.) expriment alors le fait que
les valeurs de/ ctfk dans A' coïncident sur la partie identifiée par hik dans A. L'extension

commune des/ est un homomorphisme de A dans A'.
Réciproquement, tout homomorphisme d'ABP peut être décomposé en une

famille d'homomorphismes d'algèbres de Boole finies, en conséquence du §11.1. Cette

décomposition n'est pas toujours unique; en fait, deux homomorphismes/et/', de

0 dans #', induisent le même homomorphisme d'ABP, de A dans A', ssi ils sont
équivalents.

La composition «naturelle» d'homomorphismes/:£>->#' et/':<&'-><&" conserve
la propriété (1.). On notera/'o/:#-»#" l'homomorphisme composé. Dans le cas où
les familles considérées ont les propriétés 1. à 4. (§ II. 1), cette composition coïncide
avec celle des homomorphismes d'ABP pour les sommes respectives.

LEMME. Soit R une équivalence de Et vers E2 et h P(R); de même pour
R'^ElxE^ et h' P(R'). Soientfi:P{E^P{El) deux homomorphismes complets
tels que (d'après le corollaire fin § 11.2) fi(X)=gf(X) pour Xç=:Ei(i=l, 2). Alors

f2oh ^ h'ofl ssi g2oRr ^ Rogl

Démonstration. On peut remarquer tout d'abord qu'on a g2oR'^Rogl ssi

R'og*Ç:g*oR, où g* est la relation binaire transposée de l'application gt(/=l,2).

R'* (R' ogî (X))sRf* (g* (R(X)))çg* oR* (R(X)) X' ; ainsi Rf*oR' {X') X' puisque

R! est surjective. Donc h' est défini pour X'^E[ et on a h'oft (X)=f2oh(X) car,
d'une part R'(gî(X))cg*(R(x)) et, d'autre part, g^(i?(JST))çJR/oi?/*og*oJR(Z)c
^R'(X') R'(g*(X)). On a ainsi montré /2o/*ç/z'o/i- Pour la réciproque soit

f2ohç:h' o/j c'est à dire g*2 (R (X)) R' (g? (X)) pour tout ^c e1 tel que i?* o R (X) X.
Pour X quelconque, on prend X' R*oR(X) de sorte que X<=JT,

i**) jr. On a alors

pour ZcjE1! quelconque, par conséquent R'og*cg*oRm
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Ce lemme contient l'essentiel de la démonstration du théorème suivant.

THÉORÈME. Soit ^ une famille d'algèbres de Boole P(Et) et d'isomorphismes
partiels P(Rik), avec / et k dans /; de même pour &', P(E-) et P(R'ik), avec i et k
dans /'.

a) Alors tout homomorphisme/:#-?#' peut être représenté par une famille
d'applications gi:Ejii)-*Ei,j:J->Jf, telles que ft(X)=gf (X), pour tout X^E^ieJ),
et

pour U k dans J: gi o R'm m s Kifc o gk (3.)

Réciproquement, les conditions (3.) sont suffisantes pour que la famille d'applications

gi{ieJ) détermine un homomorphisme de <P dans <P'.

b) Si # et #' ont les propriétés 1.-4. (§11.1), deux homomorphismes/et/', de

# dans <P', sont équivalents ssi les applications gt et g[{ieJ) qui les représentent sont

telles que

gtoR'mm<=gl (4.)

c) D'autre part, la composition /'o/ de deux homomorphismes /:#-*£>' et

f''.&'-*&" est représentée par la famille des applications composées gtogj^
et j'oj'.J^J" (l'ordre des facteurs est inversé).

Remarque. Tout homomorphisme à'ABP peut être ainsi représenté, en utilisant
les résultats du §11.1. Le quotient d'une ABP finie A est représenté d'une manière

particulièrement simple: si P(Et) est une sous-algèbre Booléenne maximale de A, son

image dans A' est P(E[), avec E(^Et. Les applications gt(ieJ) sont simplement les

injections El^Et; les conditions (3.) deviennent: R'ikGRik(i9 keJ).

ÏI.5. Construction d'une famille minimale

DÉFINITION. Soit <P une famille d'algèbres de Boole et d'isomorphismes
partiels donnés. Une famille #' ayant les propriétés 1. à 5. (§11.1) est minimale sur $
s'il existe un homomorphisme/:#-><P' avec la propriété suivante:

pour toute famille #" qui a les propriétés 1. à 5. et pour tout homomorphisme

/":#-?#" il existe un homomorphisme/.&-»$" tel que/"=/'o/, déterminé

à l'équivalence près.

La famille <&' minimale sur £> n'est pas déterminée univoquement; toutefois, $'
est caractérisée à l'isomorphie près, si l'on impose aux isomorphismes partiels h'ik de

ne pas être surjectifs (c'est à dire Ak^At). L'existence de <P' n'est assurée que dans

le cas où les algèbres At de # sont finies; au lieu d'en donner une démonstration

générale, nous préférons décrire un procédé itératif qui, dans les cas qui nous
intéressent, permet la construction effective de #'. Ce procédé s'applique aux ABP uni-
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verselles (§ III.2) et aux successeurs d'une ABP finie (§ III.3), grâce à la propriété
évidente:

PROPOSITION. Soit # une famille d'algèbres de Boole finies At(ieJ) et d'iso-
morphismes partiels hik(i, keJ). Soient <P' la famille minimale sur # et A' la somme
de #'. Alors A' est une ABP et il existe une famille d'homomorphismes/;:^-^'
avec

fi o hik s fk pour tous i, k dans J

telle que, pour toute ABP A" et toute famille d'homomorphismes//':^--^'' avec la

propriété analogue, il existe un homomorphisme à'ABP unique h: A'^A" pour lequel

fî hoft(ieJ).

THÉORÈME. Soit <P une famille d'algèbres finies P(Et) et d'isomorphismes partiels

P(Rik), avec 1 </, k^n pour un entier n.
Soient Ef{ieJ') des ensembles finis, R{k^EkxE( des relations droites et #!,...,#„

une suite d'applications g^E^-tE^ où j{i)eJ' pour 1<i</i, avec les propriétés
suivantes :

1 *) pour tout i de /' R'u W

2*) pour tous /, k de /' R'^)
3*) pour tous i, j, k de /' R'ik £ jR^. 1 jR^
4*) pour tous i,j, k de /' il existe / dans /' tel que

5*) pour ï=j{ï), k'=j(k) ctl^
gt o R'Vk, c £ .fc o gfc

6*) pour toute famille d'ensembles finis E- (ieJ"), de relations droites R"k c £^ x £:/'

(i et & dans /") et d'applications gï:Ej',,(i)-+Eî(l^i^:n) satisfaisant aux mêmes
conditions (1* à 5*), on peut trouver une famille d'applications

g; :£;(o-JE,' (îeJ'), j':J'-*J\
telle que pour ï=j'(i), k'=j'(k) et /, fc dans J'^oir^^Sfe et pour

De surcroît, la famille g[ : EJV)~>E; {ieJ')Jr : ./'-?/" est déterminée à l'équivalence
près; pour un autre choix d'applications

Ëi^E'^El (ieJ% j:J'-*J\
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avec les mêmes propriétés, on a, pour tout ieJf :

Alors la famille d'algèbres P{E() et d'isomorphismes partiels P(R[k), i et k dans

/', est minimale sur 0.
Démonstration. Les relations R[k sont des équivalences; elles sont droites par

hypothèse, d'où i^±(i4)* i?;fco(i^)*. Les conditions 1*, 2* et 3* entraînent alors

id(E() Rfii^R'ik±Rki — R'iko(R'ik)*, soit Rfik{Ek) El. Le reste est conséquence immédiate

du théorème du § II.4.
La famille minimale sur # se trouve ainsi caractérisée d'une manière qui permet

de P«approcher» par une suite de modifications apportées à <P.

Si les ensembles Et et les relations Rik, 1</, k^n9 de # ont les propriétés 1* à 4*,
alors # est minimale elle-même; les conditions 5* et 6* sont trivialement satisfaites

par le choix gi id(Ei)9 /<«. Si l'une des conditions 1* à 4* n'est pas remplie, nous
modifions n, Ei9 Rik(i, k^ri) en ri, E[9 R'ik(i, k^ri) et nous donnons des applications

gi:Ejii)-+Ei, a.vecj(i)^ri Pour *^W> ^ ont ^es propriétés 5* et 6*.
1er cas: Rii^id(Ei) pour un indice /

ri=n;
E[ {aeEi \ aRua}, E'k Ek pour
R'u id{Elù R[k (EkxE!)nRik et R'ki (E; xEk)nRki pour
pour,/#/et k^i;
gt'.Elç:Ei9 gk id(Ek) pour k#L

2me cas : Rik $ (Rki)* pour un couple d'indices /, k < n.

ri n;
E'm Em pour tout m^n;
Rik RiknRM9 R'jm RJm pour tous y, m^n tels que (j, m)^(i, k);
gm id(Em) pour tout m^n.

3me cas: Rik^RiJ±.Rjk pour trois indices i,j et k.

E'm JE^ pour tout
Rik=Rikn(Rij-LRjk)> R'im^Rim P°ur tous l,m^n tels que (/,
gm id(Em) pour tout m<«.

4me cas : pour les trois indices /, j et k il n'existe pas d'indice / tel que Rtj Ru i- Rip

k ^j/ -L i^ifc et Rki i?fci ± RH.

ri=n + l;
E'm=-Em pour tout m<«;
Pour construire E^ définissons l'ensemble E et la relation R^ExE de la

manière suivante:
E= {(a, b9 c) | aRijb, bRjkc et ci^a} s E% x Es x Ek9

(a9b,c)R(a\b',cf) ssi aRtjb\ bRjhc' et cRkia'';
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R est évidemment réflexive et droite, c'est donc une relation d'équivalence de

base E (début § III 2). On peut former l'ensemble des classes d'équivalence

K E/R,
R'im Rim Pour tous /, m<«, Rrnn =id(E'n),
Rrmn —Emy,E'n pour tout m^n tel que m^i, m^j et m^k,
R'in, R'jn et R'kn sont définies comme suit, pour aeEt, beEp ceEk et XeE/R
aR'm X ssi il existe (a\ b\ cr)eX tel que aRtJb' et c'Rkla,
bR'jn X ssi il existe (a, b\ c)eX tel que bRjkc' et a'RtJb9

cRknX ssi il existe (a\ b', c)eXtd que cRkla' et b'Rjkc,
Km (Kn )* pour tout m < n,
gm id(Em) pour tout m^«

Remarques Les nouveaux ensembles £^ ainsi formés sont finis, les relations R'lk

sont droites (la démonstration utilise seulement le fait que les Rlk sont droites).
Les modifications apportées rétablissent, dans chacun des cas, la propriété qui

faisait défaut, éventuellement aux dépens de l'une des autres propriétés (1* à 4*)
recherchées

Toutefois, les applications gt définies, dans chacun des cas traités ci-dessus, ont
les propriétés 5* et 6* De surcroît, lors de deux modifications successives, la
composition des applications gt correspondantes conserve ces deux propriétés

On peut ainsi chercher à réaliser toutes les conditions 1* à 4* en réitérant les

diverses opérations indiquées, si un nombre fini de pas y suffit, on aboutit, en vertu
du théorème précédent, à la représentation duale de la famille minimale sur 4>.

Si, au contraire, on obtient une suite infime de transformations, le procédé n'est

pas utilisable pour la construction effective de la famille minimale, cette situation
ne s'est jamais présentée dans les applications D'autre part, si l'on se borne à

réaliser les conditions 1* à 3*, un nombre fini de transformations élémentaires est
suffisant (dans les trois premiers cas ces modifications sont «monotones». n' n,
E^ c£m et R'lm^Rlm, pour tous /, m^n).

Nous résumons ces faits dans la conjecture suivante, équivalente à la décidabihté
du calcul propositwnnel partiel toute suite de transformations décrites dans les cas
1 à 4, effectuées sur une famille finie d'ensembles finis Et et de relations droites
R* (hk^n), est finie

Si, pour deux indices différents i,k^n, la relation Rlk est umvoque (id(Et)^.
^Rlko(Rlk)*) on peut éliminer Ex de la famille, sans perdre les propriétés 1* à 6*
A cet effet soitj {1, ,«}->{l, ,«—1} l'application surjective dont les valeurs sont
données par

j{m)=m pour m<i,j(m) m-l pour Km^n etj(i)=j(k).
n' n-l;
Ejim^Em pour m^i{$n particulier Erj{l) Ek),
Rt Rim pour l^i
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gm id(Em) pour m^i, gi:Ek-^Ei est donnée par gt Rlk.
L'élimination de ces redondances permet un gain de place et de temps lorsqu'on

réitère les transformations indiquées à l'aide d'un ordinateur. Dans ce but, on peut
encore améliorer les techniques décrites; par exemple, pour le 4me cas, il suffit de

parcourir les triplets d'indices /,/, k tels que K/</<&<«.

III. ABP libres et validité des identités classiques

III. 1. ABP universelle et ABP libre
La notion à9ABP universelle est liée à celles de satisfaction et d'homomorphisme;

elle répond à l'idée de YABP «la plus générale» qui, munie d'une valuation
déterminée, satisfait à un ensemble donné d'expressions propositionnelles. En particulier,
elle fournit une définition plausible des ABP libres.

DÉFINITION. Soit M^FV. On appelle ABP universelle relativement à M, et on
note U(M)9 une ABP pour laquelle il existe une valuation u: V-^U(M) satisfaisant
à M et telle que, pour toute ABP A et toute valuation v: V-+A satisfaisant à M, il
existe un homomorphisme h: U(M)^A unique, tel que hou v.

THÉORÈME. Pour tout M donné, il existe une ABP universelle relativement à

M, déterminée univoquement à l'isomorphie près.
Démonstration. L'existence de U(M) est prouvée par «l'algèbre de Lindenbaum»

U(M) E/R où E={peFV\ MlhCf/?} et R {(p, q) \ M\\-p q}. R est évidemment

une relation d'équivalence sur E, compatible avec l'opération qui associe Cpq au

couple </?, g> dans E. U(M) est ainsi une structure dont les éléments distingués 0 et 1

sont les classes de ^-équivalence contenant f et Cff respectivement. La valuation

u: V-+U(M), où u(p) est la classe de ^-équivalence contenant peV, est telle que

MWp ssi u satisfait à p
pour tout/? dans FV. Par conséquent:

a) la règle R8 est trivialement satisfaite dans U(M). La validité de R!-R7 en

trois variables se démontre par substitution; d'après le théorème 1, § 1.2, U(M) est

donc une ABP;
b) l'extension de u: V-+U(M) est définie exactement pour les expressions p de

E, û:E-*U(M).
Pour une ABP A et une valuation v: V-+A satisfaisant àMona£cK. Si û{p)

û{q) dans U(M) pour deux expressions/?, q de E, la règle M\Yp q est valide dans

toute ABP, d'où v(p)=v(q) dans A. Ceci permet de construire une application
h: U(M)-+A avec h(ù(p))=v(p) pour tout/? de E. h est évidemment un homomorphisme,

ses valeurs sont déterminées par celles que v attribue aux variables; les

propriétés de YABP universelle sont ainsi vérifiées.
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D'autre part, pour deux ABP U et U' universelles relativement à M il existe deux

homomorphismes h: U-*U\ h': U'-^ U conservant les valeurs des variables; h' oh et
h oh' ont également cette propriété et sont, de ce fait, confondus avec l'identité sur U
et U' respectivement, h et h' sont donc des isomorphismes.

COROLLAIRE. Pour deux ensembles M, M' d'expressions de FV les trois
propriétés sont équivalentes :

- MWM'
- M' est satisfait par u: V-+ U(M)
- il existe un homomorphisme (nécessairement unique) h:U(M')-+U(M) qui

conserve les valeurs attribuées aux variables.

Exemples. Soit V un ensemble de n variables et V* {CfCpq \p, qeV}; alors

U(V) Z2, U(V*) est l'algèbre de Boole libre à 22" éléments, tandis que U(0) est

la somme directe de n facteurs isomorphes à Z\.

DÉFINITION. Une ABP A est libre s'il existe V et un ensemble M d'expressions
de la forme Cïp,p dans FV, tels que A= U(M).

Remarques. Une algèbre de Boole est libre selon cette définition ssi elle est libre
dans l'acception courante.

Une ABP universelle U(M) est plongeable dans une algèbre de Boole ssi l'homo-
morphisme (7(M)-> U{M\j F*) est biunivoque. En particulier (7(0) est toujours une
somme directe d'algèbres de Boole Z\ et se trouve donc plongée dans l'algèbre de

Boole libre C/(F*).

PROPOSITION. Toute ABP est le quotient fermé d'une ABP libre. Cette ABP
libre a le même nombre d'éléments générateurs que son quotient.

Démonstration. Soit A une ABP, V un ensemble d'indices et v: V-*A l'énuméra-
tion d'un ensemble d'éléments générateurs de A. v est considérée comme une valuation
de Vdans A et son extension v\V-*A permet de construire M= {Cfp |pe V}. Ainsi v

satisfait à M dans YABP A; il existe donc un homomorphisme h: U(M)-+A tel que
v=hou. De plus, on remarque que l'extension ù est définie exactement sur F et que
v-hoû. Par conséquent, h est surjective et, pour tout p, qeV tels que l'opération C
de A est définie pour v(p), v{q), on a CpqeV; û{p) et û{q) peuvent ainsi être
composés dans U(M). h est donc un épimorphisme fermé.

Avec la proposition 2, §1.4, on a le corollaire suivant: toute ABP transitive est

quotient fermé d'une ABP libre transitive.

III.2. Construction effective des ABP libres
Soient V un ensemble fini de variables, M^FV un ensemble fini d'expressions
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propositionnelles de la forme Cfp et U(M) YABP libre correspondante. Nous voulons
former une famille <P d'algèbres de Boole finies et d'isomorphismes partiels, telle que
la somme de la famille minimale sur # soit isomorphe à U(M).

Soitp1,...,pn une suite d'expressions de FF telle que:

- pour tout CîpeM l'expression p figure parmi les termes de la suite,

- pour tout i^n on a pteV, pt=f ou alors Pi Cpjpk pour deux indices j et h
inférieurs à /.

Pour tout /<« l'algèbre de Boole At et les éléments ai9 bu ct de At sont définis de

la manière suivante :

- si/?! f on prend Ai^Z1 et at 0;

- si pteV on prend At^Z%9 l'algèbre de Boole libre à un générateur, où at est

justement l'élément générateur;

- si Pi CpjPk on prend A^Z^ l'algèbre de Boole libre à deux générateurs, bt

et ct sont deux éléments générateurs et ^ C(Z>f, ct) dans At.
Pour tout triplet /, j, A: tel que/?£ Cpjpk on prend, pour /z^- : Aj-+A i9 l'isomorphisme

partiel qui identifie l'élément aj de Aj avec é,- de At (ainsi que les compléments
respectifs et les unités), et, pour hik\Ak-*Ai, l'isomorphisme partiel qui identifie l'élément

ak de Ak avec ct de At (ainsi que les compléments et les unités). Les autres isomor-

phismes partiels de # sont choisis de manière à n'identifier que les unités (0 et 1)

entre les diverses algèbres de Boole.

La propriété caractéristique des algèbres de Boole libres permet alors d'étendre

toute valuation v: V-*A\ satisfaisant à M dans YABP A\ à une famille d'homomor-

phismes/f:^-^' (aycc fi(ai) v(pi), i^ri) compatibles avec les identifications
imposées par hik(i,k^n). Réciproquement, une telle famille induit une valuation qui
satisfait à M. La définition de U(M) est donc équivalente à la propriété qui, dans la

proposition du § IL5, caractérise la somme de la famille minimale sur 4*.

Le procédé décrit au § IL5 permet ainsi de construire directement la représentation
duale de U(M). La valuation u: V-+ U(M) est donnée par l'image ft{a^ des générateurs

at tels que pte V; dans la représentation duale de U(M) la valeur u(pt) est la

préimage de at par gt (avec Ai=P(Ei) et a^E^.
Pour examiner la validité d'une règle M\YM\ on peut évaluer les conclusions

qeMr directement dans la représentation duale de U(M); il suffit de tenir compte des

identifications produites par les hik: Y=hik(X) ssi RikoRik(X)çX et Y=Rik(X).
La composition des ensembles Ei et des relations Rik{U k^ri) correspondant à la

famille #? la construction de la famille minimale (duale) sur # et l'évaluation des

expressions de M1 à l'aide de la valuation particulière û ont été programmées, en

Algol, pour la machine CDC 1604-A de l'Ecole Polytechnique Fédérale. La validité

des règles CîpWp a été ainsi vérifiée pour toutes les expressions propositionnelles p
déduites dans «Principia Mathematica», à l'exception de 2.81, 3.47, 3.48, 4.38 et

4.39. A noter que 3.48 et 4.39 sont obtenues de 3.47 et 4.38 respectivement, en rem-



Validité dans les algèbres de Boole partielles 77

plaçant les variables par leur négation. D'autre part, on utilise 3.47 (3.48) dans la
déduction classique de 4.38 (4.39).

Remarque. Les ABP universelles U(M), où M est un ensemble fini d'expressions
propositionnelles quelconques, peuvent être construites de manière analogue.

On remplace, tout d'abord, Mpar M= {Cîp | peM} pour former la suitepl9 pn
et la famille 3> avec les éléments al9 bn ct dans Ax (comme pour la construction de

U(M)). Il y a alors correspondance biumvoque entre les valuations v: V->A\
satisfaisant à M dans une ABP A', et les familles d'homomorphismes//^-»^', compatibles

avec les hlk et prenant la valeur ft(at) 1 pour tout i^n tel que pteM.
Les conditions/,(#,) 1, pour pteM, sont remplies ssi g*(a) E't dans la

représentation duale de A' (at est considéré comme une partie de Ev P(El) Al), elles sont
donc équivalentes à gtoR[ t ^Rllogl, si on prend Rn id(al) au heu de id{E). La
construction du § II 5 fournit, en partant de ces données, la représentation duale de
YABP universelle U(M).

III 3 ABP engendrées par trois éléments

La validité, dans les ABP, des identités Booléennes à une ou deux variables a été

prouvée dans [2]. Avec quatre variables ou plus, il existe de nombreux contre-exemples

le cas où V est formé de trois variables restait ouvert. Le but de ce paragraphe
est de montrer la validité des identités Booléennes en trois variables. Ce résultat est
atteint par la classification des ABP libres à trois générateurs, qui s'avèrent toutes
plongeables dans l'algèbre de Boole finie Z\

LEMME 1 Soit V= {x, y, z}. Alors les trois énoncés suivants sont équivalents.
1 Pour tous p et q dans FV l'identité Cfq, Cfp\\-p q est valide dans les ABP si

p q est valide dans Z2.
2 Pour tout ensemble fini M d'expressions propositionnelles de la forme Cfp,

U(M) est plongeable dans Z\.
3 Toute ABP engendrée par trois éléments est plongeable dans une algèbre de

Boole.

Démonstration. Montrons les implications l.=>2., 2.=>3. et 3.=>1.
1 =>2.) La forme particulière de M dans l'énoncé 2. fait que F* \YM. Il existe de

ce fait un homomorphisme h U(M)-+ U(V*) où U(V*) est l'algèbre de Boole libre
Z2- Le contenu de 1. est précisément la biumvocité de h.

2 =>3.) Si, pour tout M fini, YABP libre U(M) est plongeable dans Zf, il en est
de même pour M infini; il suffit de former une suite croissante M1^M2^"
d'ensembles finis Mt^FV dont la réunion est M. Les homomorphismes correspondants
U(Mt)-+U(Ml+1) (j=l,2,.. sont tous compatibles avec le plongement dans Z\
puisqu'ils conservent les valeurs des variables x, y, z. La réunion des U(M) dans Z\
est une ABP dont on vérifie les propriétés caractérisant U(M). Ainsi, 2. a pour consé-
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quence que toute ABP libre avec V= {x, y, z} est plongeable dans une algèbre de

Boole. 3. découle alors de la proposition du § III. 1.

3.=> 1.) Pour tous p et q de FV YABP universelle U(Cfp, Cfq) est engendrée par
trois éléments; selon 3. les identités Booléennes y sont donc valides. En particulier

p=q y sera satisfaite si c'est une tautologie.

DÉFINITION. Soient A et A' deux ABP. A1 est successeur de A, s'il existe un

homomorphisme h:A-*A' et deux éléments non compatibles a, b dans A, avec h{a)
et h(b) compatibles dans A\ tels que:

1. pour tout homomorphisme h!\A-*A" dans une ABP A" où h'(a) et h'{b) sont

compatibles, il existe un homomorphisme unique hn\A'-*A" tel que h' — h"oh.
2. si A est plongeable dans une algèbre de Boole, la paire d'éléments a, b est

minimale; pour a' et b' non compatibles dans ^4, tels que h{a') et /*(&') sont compatibles

dans A', a'^a et b'^b entraînent af a et è' ô.

LEMME 2. Tout successeur d'une ABP libre est une ABP libre; réciproquement,

pour toute ABP libre U(M) où Vet M sont finis, il existe une suite finie à'ABP libres

dont chaque terme est successeur du précédent, le premier étant U(0) et le dernier

U(M).
Démonstration. Soient A U(M) une ^.SP libre avec la valuation canonique

u: V-*A et A' un successeur de A. Il existe alors p, q dans FF avec û(p) a, ù(q) b

tels que /?A# ainsi que M soient satisfaits par la valuation hou dans A'. La condition
1. revient alors à la définition de YABP universelle relativement à Mu {pi q}.

Pour la réciproque, soit U(M) une ABP libre; on peut faire apparaître toutes les

expressions peFV pour lesquelles CîpeM dans une suite finie /?!,...,/?„ telle que,

pour tout /<«: pt f, pteV ou alors Pi CpjPk pour deux indices 7, & inférieurs

à 1.

Soit Mo 0, Mi=Mi.l u {Cîpi} pour 1 </<«, de sorte que *7(Mn)= U(M). Pour

il existe un homomorphisme hi:U(Mi^l)-^U(Mi) puisque MjlhMj-i. Si

CÇpf^lhCf/?; on a U(Mt)= U{Mt^i) et on peut omettre le z'-ème terme de la

suite. Supposons ces répétitions éliminées. Pour tout i^n il y a, dans U(Mi-1), deux

éléments non compatibles a, b dont les images dans U{M^) sont compatibles; en effet,

Cîpt est satisfaite dans U(Mt) mais pas dans U(Mi^1),pt=îoup(eVsont ainsi exclus;

reste Pi=CpjPk et on peut prendre pour a, b les valeurs depj9pk. La condition 1. pour
le successeur de U{Mi_1) découle de la définition de YABP universelle

M)()Si la condition 2. n'est pas satisfaite, par exemple pour les éléments a et b de

(i^.i), on peut modifier la suite à9ABP libres en intercalant de nouveaux termes

entre V{Mt^ et U(Mt). V{Mi^l) est alors plongeable dans une algèbre de Boole

et il existe deux éléments a'<a et b'^b, non compatibles, tels que h^a') est compa-
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tible avec h^b'). Soient/? et q des expressions de FV9 prenant les valeurs a' et b' dans

U(Mi-i); soit U= U(Mi_1 u {pl>q}). Par définition, Uremplit la condition 1. pour les

éléments a\V de U{Mi-1)\ ilexiste notamment deux homomorphismes h : {/(M^)-* U
et h':U->U(Mi) tels que ht hfoh. Si la condition 2. n'est pas encore remplie par
a\ b' et h, on remplace le couple a\ b' par un couple strictement inférieur, on aboutit
ainsi à un successeur de YABP finie U(Mi_1). D'autre part, la condition 1. est également

vérifiée par h' et les éléments h (a), h (b) de U; si la condition 2. n'y est pas remplie,

la construction peut être recommencée en remplaçant U(Mi_1) par U. On
obtient, par itération, une suite d'ABP libres et d'homomorphismes conservant les

éléments générateurs. Cette suite est finie car chaque terme est plongeable dans VABP
finie U(V*).

Remarque. La définition des «successeurs» convient donc à l'énumération des

ABP libres U(M) où M est fini. Les algèbres de Boole n'ont pas de successeur, le
nombre des successeurs d'une ABP plongeable dans une algèbre de Boole est
relativement petit (moins de vingt lorsque V— {x9 y, z}). La construction des successeurs
d'une ABP finie A peut se faire à l'aide du procédé exposé au § II.5. Pour chaque
paire d'éléments a, b de A, on forme une famille <P contenant, en plus des sous-algèbres
Booléennes maximales de A, une algèbre de Boole libre engendrée par deux éléments.
Ces derniers sont identifiés à a et b respectivement par des isomorphismes partiels
adéquats. La somme de la famille minimale sur 4& remplit alors la condition 1. Si A
est plongeable dans une algèbre de Boole, on élimine les paires a, b qui ne sont pas
minimales; dans la plupart des cas, cette élimination peut s'effectuer sans la
construction de # et de la famille minimale.

LEMME 3. Soit A YABP telle que A AX +A2(modh) où Ai9 A2 sont deux
algèbres de Boole isomorphes à Z\ eth:Ai-+A2 est l'isomorphisme partiel qui identifie
un atome c de Ât avec le complément d'un atome de A2 (Cf. liste en appendice).
Alors toute ABP A\ contenant A et engendrée par A, est plongeable dans Z\.

Démonstration. At et A2 sont deux sous-algèbres de A' dont l'intersection est
formée des éléments 0, 7, c et ~ic (identifiés par h). On vérifie que c est dans le centre
de A' et que, pour tout aeA',

a (a a ~i c) v (a a c) avec a a -i ceAt et a a ceA2

par induction sur le nombre d'occurrences de C dans les expressions propositionnelles
dont les valeurs parcourent A':

- pour aeA, par exemple aeAt, on a ceAl etaA-iceAv D'autre part, a a c vaut
0 ou c puisque c est un atome de Ax ; dans les deux cas a a ce A2.

- pour a=C(a', a") avec a' a -ic, a" a ~iceA1 et a' a c, a!' a ceA2, c est évidemment

compatible avec a et on a:
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a a c c a C(ar a c, a" a c)eâ2
a a i c ~i c a C(V Ane, a" a ~i ^e^j
à cause de l'identité Booléenne (Cxy)az=zaC(xaz)(j;az).

Chaque élément a de Ar se laisse ainsi décomposer en deux «composantes» a a ~i c

dans ^ et a a c dans ^42 '•> ceci a pour conséquence:

A'c Atl(c) et 4 ^c).
Or AJfc) et A2/(~~\c) sont isomorphes au quotient de Z\ par un atome, soit Z\.
Avec le corollaire 1, § 1.6, on a finalement A'^Z2xZ\ Z\.

THÉORÈME. Toute ABP engendrée par trois éléments est plongeable dans une

algèbre de Boole.
La démonstration résulte naturellement (Cf. Lemmes 1 et 2) de la classification de

toutes les ABP libres U(M) avec M fini, obtenue par la construction itérée des

successeurs de U((fr).

On réduit sensiblement le nombre de ces constructions en retenant un seul
représentant de chaque classe à'ABP isomorphes ainsi obtenues. Le nombre de ces ABP
dépasse largement la centaine; il convient donc de présenter la démonstration du

théorème sous la forme d'une liste à*ABP, numérotées de 1 à 60 (Cf. appendice) et

satisfaisant aux conditions suivantes :

- U(0) est la première ABP de la liste;

- toute ABP de la liste, sauf la première, est le successeur d'une ABP précédente;

- tout successeur d'une ABP de numéro inférieur à 58 est isomorphe à l'une des

60 ABP de la liste complète;

- chacune des trois ABP 58, 59 et 60 est engendrée par YABP A (sans numéro)
donnée en fin de liste.

L'application systématique du critère de plongeabilité (fin § 1.7) montre que
chacune des ABP de 1 à 60 est plongeable dans Z\. On peut donc décrire une telle

ABP par l'image dans Z\ de ses sous-algèbres Booléennes maximales, soit par les

partitions correspondantes de l'ensemble des atomes de Z\ (numérotés de 1 à 8).

Restent les successeurs itérés de 58, 59 et 60. Un raisonnement par induction
montre que ceux-ci sont tous engendrés par une sous-algèbre isomorphe à A et

tombent ainsi sous les hypothèses du lemme 3.

Remarque. La seule ABP transitive engendrée par A est Z\\ elle figure dans la

liste sous le numéro 11. Les autres ABP transitives de la liste sont 1, 2, 42, 51 et 54;

on peut les «décomposer» en produit à'ABP centrales (§ 1.3), dans le même ordre:

Zl+Z22+Zl Z\+Z229 ZÎx(Z22+Z22), Z22x(Z22+Zl)et(Z22+Z22)x(Z22+Z22).
Les quotients fermés de ces 6 ABP fournissent une classification complète des 20

ABP transitives engendrées par 1, 2 ou 3 éléments.
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Appendice

Liste de 60 ABP libres à trois générateurs
ABP Succès- Partitions de {1, 2, 3, 4, 5, 6, 7, 8}, correspondant aux

No:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

seur de

—

1

2

3

4

5

6

7

8

9

10

8

6

13

14

13

16

13

6

19

20
19

6

23

6

5

26

26

28

28

26

26

26

5

sous-algèbres Booléennes maximales de YABP

(1357/2468)

(15/26/37/48)
(15/26/37/48)
(15/26/37/48)
(234/1/678/5)
(15/2/6/34/78)
(1/5/2/6/34/78)
(1/5/2/6/34/78)
(15/26/3/7/4/8)
(1/5/26/3/7/4/8)
(1/2/3/4/5/6/7/8;
(1/5/2/6/34/78)
(15/26/3/7/4/8)
(234/1/6/78/5)
(234/1/6/7/8/5)
(15/26/3/7/4/8)
(15/26/3/7/4/8)
(15/26/3/7/4/8)
(15/26/3/7/4/8)
(15/26/3/7/4/8)
(15/26/3/7/4/8)
(15/26/3/7/4/8)
(15/2/6/34/78)
(15/2/6/34/78)
(15/2/6/34/78)
(234/1/678/5)
(234/1/678/5)
(15/26/3/7/4/8)
(15/26/3/7/4/8)
(15/26/3/7/4/8)
(234/1/678/5)
(234/1/678/5)
(234/1/678/5)
(234/1/678/5)

(1256/3478)
(1234/5678)
(234/1/678/5)
(234/1/678/5)
(15/2/6/34/78)
(15/26/3/7/4/8)
(15/26/3/7/4/8)
(15/26/3/7/4/8)
(1/5/2/6/34/7/8)
(1/5/2/6/34/7/8)

(15/26/3/7/4/8)
(234/1/6/78/5)
(15/2/6/3/7/4/8)
(15/2/6/3/7/4/8)
(1/5/24/6/3/78)
(1/5/24/6/3/78)
(234/1/6/78/5)
(234/1/6/78/5)
(1/5/234/6/7/8)
(1/5/234/6/7/8)
(234/1/6/78/5)
(15/26/3/7/4/8)
(15/26/3/7/4/8)
(15/26/3/7/4/8)
(15/26/3/7/4/8)
(15/2/6/3/7/4/8)
(15/2/6/34/7/8)
(15/2/6/34/7/8)
(15/2/6/34/7/8)
(15/26/3/7/4/8)
(15/26/3/7/4/8)
(15/26/3/7/4/8)
(15/2/6/34/78)

(1234/5678)

(15/2/6/34/78)
(15/26/3/7/4/8)
(234/1/6/78/5)

(1/5/26/34/7/8)

(1/5/26/34/7/8)
(15/2/6/3/4/78)

(15/2/6/3/4/78)
(15/2/6/3/4/78)
(15/2/6/3/4/78)
(15/2/6/34/7/8)
(15/2/6/34/7/8)
(15/2/6/34/7/8)
(15/2/6/34/7/8)
(234/1/6/78/5)
(234/1/6/78/5)
(234/1/6/78/5)
(15/2/6/34/7/8)

(234/1/67/8/5)
(234/1/67/8/5)
(234/1/67/8/5)
(15/2/6/34/7/8)
(15/2/6/34/7/8)
(15/2/6/34/7/8)
(15/26/3/7/4/8)

(15/2/6/3/4/78)

(1/5/246/3/7/8)
(1/5/2346/7/8)

(1/5/236/7/4/8)
(1/5/246/3/78)
(1/5/246/3/78)
(1/5/246/3/7/8)
(1/5/2346/7/8)

(1/5/2467/3/8)
(1/5/246/37/8)
(24678/3/1/5)
(236/478/1/5)
(2468/37/1/5)
(23467/8/1/5)
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35

36

37

38

39

40
41

42

43

44

45
46

47
48

49

50

51

52

53

54

55

56

57

58

59

60

A

34

34

5

5

4
39

40
41

40
39

39

4

46

46
4
3

50

2

52

53

52

55

56

57

56

55

BIBLIOGRAPHIE

(234/1/678/5)
(234/1/678/5)
(234/1/678/5)
(234/1/678/5)
(234/1/678/5)
(15/2/6/34/78)
(15/2/6/37/48)
(1/5/2/6/37/48)
(15/2/6/34/78)
(234/1/678/5)
(234/1/678/5)
(15/26/37/48)
(15/26/37/48)
(15/26/37/48)
(15/26/37/48)
(15/26/37/48)
(234/1/678/5)
(15/26/37/48)
(15/26/37/48)
(15/26/37/48)
(15/26/37/48)
(34/12/78/56)
(1/5/2/6/3478)
(1/5/2/6/3478)
(34/12/78/56)
(15/26/37/48)
(1/2/5/6/3478)

GIOVANNI CORAY

(15/2/6/34/78)
(15/2/6/34/78)
(15/2/6/34/78)
(15/2/6/34/78)
(15/2/6/34/78)
(15/2/6/37/48)
(1/2/34/5/6/78)
(1/5/2/6/34/78)
(15/2/6/37/48)
(15/2/6/34/78)
(15/2/6/34/78)
(15/2/6/34/78)
(1/5/2/6/34/78)
(15/2/6/34/78)
(234/1/678/5)
(234/1/678/5)
(1/5/26/37/48)
(34/12/78/56)
(34/12/78/56)
(34/12/78/56)
(34/12/78/56)
(1/5/2/6/3478)
(1/5/26/37/48)
(1/5/26/37/48)
(1/5/2/6/3478)
(34/12/78/56)
(1256/3/4/7/8)

(15/26/3/7/4/8)
(15/26/3/7/4/8)
(15/26/3/7/4/8)
(15/26/3/7/4/8)
(15/2/6/37/48)
(234/1/6/78/5)

(234/1/6/78/5)
(15/2/6/37/48)
(15/2/6/37/48)
(234/1/6/78/5)

(234/1/6/78/5)
(15/2/6/34/78)
(1/5/26/3478)

(15/26/34/78)
(15/26/34/78)
(1/5/2/6/3478)
(1/5/26/37/48)
(34/1/2/78/56)
(34/1/2/78/56)
(1/5/26/37/48)
(1/5/2/6/3478)

(1/5/2467/3/8)
(1/5/236/47/8)
(2368/47/1/5)
(478/236/1/5)

(1/5/6/237/48)
(2367/48/1/5)
(248/367/1/5)

(1/5/2367/48)
(1/5/2367/48)

(12/56/37/48)

(3/4/1/256/7/8)
(3/4/1256/7/8)
(1256/3/7/4/8)

[1] A. Daigneault, Théorie des modèles en logique mathématique, Uni. de Montréal (1963).
[2] S. Kochen and E. Specker, Logical structures arising in Quantum Theory, Proc. Model Theory

Symp., Berkeley (1963).
[3] S. Kochen and E. Specker, The calculus of partial propositional fonctions, Proc. of the 1964

internat. Congress for Logic, Methodology and Philosophy of Science.

[4] S. Kochen and E. Specker, Theproblem ofhidden variables in Quantum Mechanics, Journal of
Mathematics and Mechanics, 17, No. 1 (July 1967).

[5] G. W. Mackey, The mathematical foundations of quantum mechanics (Benjamin, New York
1963).

[6] R. Sikorski, Boolean Algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete (N.F.) H. 25

(1960).

Reçu le 17 avril 1969


	Validité dans les algèbres de Boole partielles.

