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Steenrod Operations in the Eilenberg-Moore Spectral Sequence

by DAvID L. RECTOR1)

1. Introduction

Using relative homological algebra, Eilenberg and Moore [6] have defined a
spectral sequence which has proven valuable in studying the homology groups of
various fibre spaces. In this paper, we give a more geometric definition and use it to
introduce Steenrod operations into the spectral sequence in a natural way.

We study the following geometric situation. Let

X—)Xo

Lo Lo (1)
B— B,

be a commutative diagram of topological spaces and continuous maps. Assume 6, is
a (Serre) fibration and 0 the induced fibration. Let K be a commutative ring with
unit. If B, is simply connected, the Eilenberg-Moore spectral sequence, {E"}, con-
verges in the usual sense to H, (X; K). If the homology modules of By, B, X, satisfy
certain flatness conditions, in particular if K is a field, E? is naturally isomorphic to
Cotor?+®o:X) (H, (X, ; K), Hy(B; K)). We will prove the following.

1.2. THEOREM. For K=Z|pZ, p a prime, {E'} may be given the structure of a
spectral sequence of right modules over the mod-p Steenrod algebra s/ (p) so that

(i) Each d" is o (p) linear.
(ii) For ae/(p) of degree i, w.E, ,—E; ,_;
(iii) E® is the graded s/ (p) module associated to a filtration of H,(X; K) by </ (p)
submodules.

(iv) The coproduct E" — E" @ E" is an </ (p) morphism (Cartan formula).

In addition we will define a natural o (p) structure in Cotor®*®oX) ((H, (X,; K),
H, (B; K)) coinciding with the &/ (p) structure in EZ,

1.3. Remark. If all spaces have homology modules of finite type, a dual spectral
sequence may be defined converging to H*(X; K) and with E, =Torg.,, (H* (X)),
H*(B)), [5], [11], where Tor is given a natural left o7(p) module structure. The
Cartan formulae hold in E,.

1.4. Note Bene. If x e E, is of homological degree less than zero, then x?=0 [3, 6.4].

1) During the preparation of this work, the author was partially supported by NSF grants at
Princeton and Rice Universities.
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Hence P'x does not in general equal xP in E, unless x has homological degree zero.
Thus in H*(X, Z[pZ), the filtration of x? is at least that of x (recall that in the co-
homology spectral sequence, filtration is negative and decreasing).

The construction to be given below was inspired by a construction of D. M. Kan
yielding an unstable Adams spectral sequence (to appear). The author would like to
thank John Moore, D. M. Kan and Larry Smith for several enlightening conver-
sations and useful suggestions.

These results have been proven for the special case of 6, the path fibration and
B a point independently by L. Smith, A. Clark, and V. Puppe using algebraic methods
(unpublished). The full result may also be proven by another geometric construction
discovered by Alex Heller (to appear). L. Smith has subsequently discovered another
construction [12].

1.5. The Algebraic Spectral Sequence. To motivate our construction, we recall
the definition of the Eilenberg-Moore spectral sequence. We refer the reader to [6]
for details.

Let K be a commutative ring with unit. For a space X, let C, X be its normalized
singular chains with coefficients in K. Then C,X is a differential graded K-coalgebra
by a map

AX: C*X"') C*X® C*X

given by the Alexander-Whitney formula. If ¢: Y— X is a map of spaces, then C,Y
is a differential graded C,X-comodule via the composition

Y ®*
CoY 25 CY ® Co¥ 2550, Y ® CuX.

For diagram 1.1, Eilenberg and Moore show that
H,(X)= Cotorg*™ (CyxXo, C4B),
where Cotor is a suitable derived functor of cotensor product in the category of

C.B, comodules. Cotor may be defined in terms of a relative version of injective
resolutions. We need only concern ourselves with

1.6. The Cobar Construction [1]. This construction is dual to the bar construction
of Eilenberg and MacLane [8, Ch. X]. Let A be a differential graded X coalgebra, and
let M be a right, N a left A-comodule. The cobar construction on M and N over 4,
to be denoted by F(M, A, N), is a complex

0-FLSFLF ..
of differential graded K-modules defined as follows. Put
FF=MAR - @AQN,
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where the factor A occurs n-times. The coproducts 4,,, 4,, 4y induce (n+ 1)-maps
6;: F*~! > F" given by

4,019 ---®1, i=0
6;=11®1®--®4,®--Q@1®1, 1<i<n-1
1@ Q1Q 4y, i=n
where 4, operates on the i-th factor of 4. Put
5": z (—‘ l)iéi.

=0
Now F is a double complex with differentials 6 and d, where 0 is the internal
differential of F". Given such a double complex, we may form a total complex T, with

T,=[1F,* (p+4q=n). (1.7a)
The differential is given on the factor F, ? by

T =0+ (—1)4. (1.7b)
We have

Cotorg (M, N) = H,T.

The Eilenberg-Moore spectral sequence of Cotor?(M, N) is the spectral sequence
of a filtration {F,T'},<, of T, where

(FT),=]1¥,% (p+qg=n,p<r).

If K is a field, or if H A, H M and H,N satisfy appropriate flatness conditions, then
the Kiinnuth theorem may be used to show that

E2 ~ H* (F(H*Ma H*A9 H*N));
E? ~ Cotorg**(H,M, H,N).

Considerable algebraic difficulties have arisen in attempts to define Steenrod
operations in the spectral sequence for the geometric situation. We will avoid those
difficulties by carrying out all constructions in the category of spaces. In particular,
the filtered complex T will be replaced by the homology exact couple of a tower of co-
fibrations. Since all homomorphisms in the exact couple will be induced by continuous
maps and suspensions, differentials will a priori preserve Steenrod operations. The
construction to be given will be closely analogous to that above.

SO

2. The Geometric Cobar Construction

Since several constructions below are duals to standard ones in the category of
simplicial abelian groups, we will find the following language useful.

2.1. Cosimplicial Objects. Let o/ be a category. A cosimplicial s/-object consists
of the following data:
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(i) Objects A®, A', A%, ..., indexed by the non-negative integers.
(i1) For each n>0, maps
;A" 1 5A" 0<i<n,

called cofaces, and for each n>0, maps
6 A" S A" 0<i<n,

called codegeneracies, satisfying the duals to the simplicial identities. Specifically,
5j6i=6i5j"'l’ i<j
O'J-O'i=0'i0'j+l, lg]
O'jai = 5,-a'j_.1, i <j (2.2)
5j5i=5i—1aj’ i>j+1.

J
A cosimplicial map f: A — B is a collection of maps f”: A" - B" commuting with co-
faces and codegeneracies. Our primary example is

2.3. The Geometric Cobar Construction. Let A be a space, and let 4 -5 A4, B4 A
be continuous maps. The geometric cobar construction on A and B over A, to be de-
noted by G(4, 4, B), is defined as follows. Put

G"=AxAx%x-xXxAXB,

where the factor A occurs n-times. As in 1.6, the cofaces are given by

(a, aa, Ay ...s Ay—1, ), i=0
6i(a, A’l""’ A”._l, b)= (a, /11,-.., j‘i’ }’i""’ }"n—l’ b), 1 <i<n"— 1
(@, A4, s A_1, Bb, b), i=n

O'i(a, 111, veey An+1, b) = (a, },1, ey Zi—l’ ey A.n_'_ 1s b),

where “ »”’ denotes omission. It is easy to check the cosimplicial identities in G. In a
similar way F is a cosimplicial object in the category of differential graded K-modules.
Both G and F are functors between the appropriate categories.

2.4. Notation. We will denote all cosimplicial objects by boldface. If ¥ is a functor,
we denote by V the induced functor on cosimplicial objects,

(VA)' =V (A").
3. The Spectral Sequence of a Fibre Product

Let
X—B

1 ls
ASA
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be the fibre product of the continuous maps a and . Let G=G(4, 4, B). Since the
category of spaces is not additive, we cannot define a total differential 6 in G by an
alternating sum such as (1.6). We resort therefore to a construction dual to the Moore
normalization of a simplicial group [10].

Let

G} = G’/Imé,u...u Imé,.

In particular, let Gy=G°/¢, which is G° with a disjoint basepoint adjoined. Since
000;=0;4100, 0o induces a map

5%: G5 ' — G}

so that 67 * 1o §7 =, where “*”’ will be used to denote all basepoints. We thus have
a complex of spaces

The Eilenberg-Moore spectral sequence of the diagram (3.1) is now derived from the
homology exact couple of a sequence of cofibrations
Gi—>X?—SX*"', p=>0, (3.2)

where S denotes reduced suspension. We define X? inductively using mapping cones.
Let f: Y — Z be a continuous map of pointed spaces. We denote by C, the mapping

cone of £,
Cr=Y x[0,1]UZ/(y,0) ~*,(y, 1) ~ f(y), (%, 1) ~ *.
Then SY=C,, *: Y=, and there is a cofibration Z— C,— SY. Put X°=Gj.
Suppose X7~ ! is defined and there is given a map
X1 5 G
so that 6?*'o P ==, Then X?=Cj,. The commuting diagram
p, (Appu— ‘

l,,p

Gﬁ sp+1 G§+1
induces the map 67*!: X? —» G&*! so that 6?*20 §?*! =+, The cofibrations (3.2) are
thus obtained.

Now let K be a commutative ring with unit. Let €X(4, 4, B) be the homology
exact couple with coefficients in K of the sequence (3.2) of cofibrations. Then

b - H(X?;K), p<O0
P27, p>0

e JH(Gi"K), p<O
P40, p>0
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where, for a pointed space Y, H,(Y; K)=H,(Y, *; K). The maps E,— D, are in-
duced by the inclusions Gy — X ~?; each map D,— D, is a composition

Ao (X7 = B (SXTPY)S Ay (X771

where the first map is induced by the identification and s is the suspension isomor-
phism. The map D,,, - E, is induced by 6 ?: X "' - Gz?. Thus, d':E,,, > E,
is induced by 6 P: Gy"~' - G?; that is

E' = A,(Gy; K) (3.3)

as a complex. Clearly

3.4. PROPOSITION. If K=Z/|pZ, p a prime, then € (A, A, B) is an exact couple
in the category of right o/ (p) modules. So d" is &/ (p) linear.

To relate the spectral sequence to Hy (X), we want homomorphisms H,(X; K) —»
D_, of degree p so that

H,(X; K)
v N

D—p_)D-p+1

commutes.
Let X% A4 x B, be the natural inclusion. Then, é,e=4,¢. Hence &: X/¢ —» G and
6'o g=x, From the construction of X? we have maps &”: S?(X/¢)— X? so that

S?(X|$)—E— X*

ll Sep—1 l
SP(X/$p)——SX?!

commutes. From these maps and suspensions we obtain the maps H,(X; K)>D_,.
In the context of 3.4, the maps preserve .7 (p) action.

It remains to consider the functorial properties of €x(4, A4, B). Let f be a map
of squares. That is, let f=(f",f”, f") where

fliA-A
friA-A
f":B->B

so that o' f'= f"a, B’ f”=f"P. Then these maps induce a cosimplicial map f: G- G’,
where G'=G(4’, A', B'). This map in turn induces a map of complexes fy: Gy — Gy,.
Since the mapping cone is functorial, there are maps f?: X? — X'? with the obvious
set of commuting diagrams. There is therefore an induced map

fe:€x(4, 4, B)>%(4', A, B).



546 DAVID L. RECTOR

Suppose two maps f and g of squares are fibre homotopic by a homotopy F=
(F', F", F"), where

F': AxI-> A
F': AxI-> A
F”:BxI—- B

sothata'F'=F"(ax1)and B’'F”=F"(B x1). There is then a homotopy F: GxI -G’
where F*: G" xI -G is given by

F'(a, Ayy .o, Aw b, £) = (F'(a, 1), F" (A4, 1), -+, F" (A, 1), F" (b, 1)).

Now cartesian product preserves identifications in one variable, so (G xI)y=Gy x L.
Hence we have a homotopy Fy: Gy xI - Gy between fy and gy. This in turn yields
homotopies between f? and g?. So

3.5. PROPOSITION. If f and g are fibre homotopic maps of squares, then the
induced maps f, and g, from € (A, A, B) to €x(A’, A’, B’) are equal.

4. Calculation of E?

We shall show that under suitable hypotheses E? = Cotor”*) (H, (4), Hy(B)).
Let A be a cosimplicial object in an abelian category. There is associated to A
a complex rA,

0 A2 A2 A2 -,
where tA"=A" and

6? = Z (—" l)i 6,*.

i=0

There is also a complex Ay, which is dual to the normalization of a simplicial object,
where

Ay =A’Imdé, + - +1ImJ,
and d% is induced by d,. The quotient map tA — Ay is a chain map. The dual of a
standard result is

4.1. PROPOSITION. The induced map

H,(tA) > H,(Ay)

is an isomorphism.
Proof. The standard proof (see e.g. [2, 3.6]) dualizes.
Let G be as in § 3. Then by 3.3, E' = H(Gy; K).
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4.2. LEMMA. H(Gy; K)=(H(G; K))y as a complex.
Proof. We prove by induction that, for p>1,

H,(G"Imd,u...uIm$,) = H,(G")/Imd, + ... + ImJ,.
Note that, since ¢,_,0,=0;_,6,-, for i>p, g,_, induces a continuous map

0,_1: GImd,,, U ...uImd, - G"/Ims, U ... uImé,_,
such that ¢,_;0,=1. Therefore, we have a cofibration

G YImd,u...uImd,_; 3GImd,,;U...uIm s, - G"Im5,u...u Im 5,
The homology exact sequence of this cofibration yields a split exact sequence

0 H,(G" !/Im5,u ... U Imén_l)gH*(G”/ImépHu ...uIm$é,)

- H,(G"/Imd,v...uImé,)-0.
The result now follows easily.

An immediate consequence of 4.1, 4.2 and 3.3 is that, for the exact couple
€x(A4, A, B) of § 3,

4.3. PROPOSITION. E?=H,(tH(G; K)).
We have finally,

4.4, THEOREM. If H,(A; K) and either H,(A; K) or H,(B; K) are K-flat,
in particular if K is a field, then there is a natural isomorphism
E? ~ Cotori*™ X (H,(4; K), Hy(B; K)).
Proof. Under these conditions we may apply the Kiinnuth theorem to obtain
H(G; K) = F(H,(4; K), Hy(4; K), Hy(B; K)).
where F is as in § 1.6. By 4.3 the result follows.

5. Comparison with the Algebraic Construction
Let €x(A, A, B) be as in § 3. We will prove that

5.1. THEOREM. The spectral sequence derived from €y(A, A, B) is isomorphic
to the Eilenberg-Moore spectral sequence of

Cotorg 4 ®(C,(4; K), C4(B; K)).
From this and the results of [6] it immediately follows that

5.2. COROLLARY. If A is connected and simply connected and A— A or B— A
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is a Serre fibration, then the spectral sequence derived from €y (A, A, B) converges
strongly to H,(X; K).

5.3. COROLLARY. If K is a field, the spectral sequence of €x(A, A, B) has a
natural coproduct structure and E*=Cotory*“ (H, (A), H,(B)) as a coalgebra.

To prove 5.1, we first obtain € (4, A, B) from a filtered differential module. For
a pointed space Y, let C,Y=C,(Y; K) be its normalized singular chains. From
the double complex

0- C,Gy - C,Gy - C,GE— -

we may form the filtered total complex T'=T(C,Gy) as in 1.7; the spectral sequence
of T may then be derived from the exact couple % (T°) with

D,,,= p+q(T/Fp-IT)
Epq= p+q(FpT/Fp— 7).

We want to know that
€x(A, A, B)~€(T). (5.4)
To see this, let
G} - X? > Sx?1
be the cofibrations (3.3). We shall show there is a natural chain homotopy equivalence
TIF_,_,T- C,Xx? (5.5)
of degree p. For a: C— C' a chain map, the mapping cone of « is a complex C, with
(Ch=Co1 ®C,
and
d(c,c")=(0c,dc" + (— 1)t ac)

forceC,_,, ¢’ €C.. Put SC=C,, 0: C—>0. Let f: Y— Z be a map of pointed spaces;
then there is a natural chain homotopy equivalence

C,,— Cu(Cy)

where fy: C,Y—C,Z is induced by /. The long exact homology sequence of the
cofibration Z— C,— SY is exactly that of the exact sequence of complexes

0-CyZ > C;, > 8C,Y —0.

Using these facts, an easy induction shows that C, X? is naturally chain homotopy
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equivalent to a complex whose #n-chains are
Cn—pGg DD C‘nGIIN,I:

and whose boundary is given on ce C,_ ;G5 by
dc+ (— 1) i onmir1e

when i>0 and dc when i=0. It may be seen that this complex is isomorphic to
T/F_ p_IT with a dimension shift of p. Therefore the composition

(—1)ra
(T/F-,-1T),- ,,—_-»C Gy ® - @ C,Gt - C X?

is the desired chain homotopy equivalence 5.5. It should be noted that the chain
equivalence

(F_,TIF_,_,T),_,~ CG? (5.6)

of degree p induced by (5.5) is just multiplication by (—1)??. A straightforward diagram
chase establishes 5.4.

We may now relate the complex C,Gy to the algebraic cobar construction. Let
T=T(tC,G) (for notation see § 2.4 and § 4). The identification maps G” — G% induce
a natural transformation T— 7. By 5.4 and 4.2, this induces an isomorphism £2 — £2,
where these are the E? terms of the spectral sequences of T'and 7.

By the Eilenberg-Zilber theorem, there is an associative, natural chain equivalence
E:Ce(YXZ) > Cyu(Y)RC(Z) for two spaces Y and Z (the Alexander-Whitney map).
There is then a cosimplicial map

C4G - F(Ca(4), Cy(4), C4(B))
which induces an isomorphism
HG - HF.

Therefore, the spectral sequence of T is the Eilenberg-Moore spectral sequence for
Cotor®*4(C,A4, C, B) (see construction in § 1).

6. Steenrod Operations in E?

Assume our ground ring K is a field. We recall some definitions and facts from
[6] and [9]. Let I' be a graded cocommutative Hopf algebra over K. If M and N are
graded right I-modules, then M®N is a right I'-module via the diagonal of I'. A
graded K-coalgebra, X, which is also a I-module is a I'-coalgebra if the structure
morphisms

Ay EZ®Z,
8222—>K
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are I'-linear. If M is a left (or right) 2 comodule which is also a I'-module, we will say
it is a ¥ —I'-comodule if the structure morphism

AyM->I@M

is I'-linear. If M is a right and N a left ¥ —I'-comodule, then M[];N has a natural
I'-module structure since M[J;N is the kernel of the I'-morphism

M@N-M@R@ILQ®N

given by 1®4y—4,®1.

We now define Cotor 7(M, N) to be the right derived functor of [1; in the category
of X —TI'-modules in the following relative sense [4]. As in [6], let a comodule M be
injective if it is the direct summand of an extended X — I'-comodule. Let a sequence of
2 —TI'-comodules

0O-M>M->-M"' -0

be exact if is split exact as a sequence of I'-modules. By arguments identical to those
of [6, § 3], the class of exact sequences in the above sense is an injective class [4] relative
to the class of injectives. Thus the right derived functor Cotorf.(M, N) exists. We
note that '

6.1. LEMMA. Cotori(M, N) is isomorphic to Cotorg(M, N) by a map which is
natural with respect to K-morphisms.

Proof: Aninjective resolution of a comodule M in the category of ¥ — I'-comodules
is an injective resolution in the category of Z-comodules by forgetting I'-structure.

6.2. Example. The cobar construction F(M, Z, N) has a I'module structure
since each F" is a tensor product. Thus

Cotorz(M, N) = H,tF(M, Z, N).
It is now easy to see that

6.3. THEOREM. Let { E"} be the spectral sequence of § 3. Let K=Z[pZ, p a prime.
Then

E* = Cotoriyy, (HyA, HyB).

where H,=H, ( ; K).
Proof: By the Cartan formulae,

Hy(Y x Z)=H,Y @ H,Z
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as 7 (p) modules for any spaces Y and Z. Hence H,G=F(H,A, H A, H,B) as &/ (p)
modules. The rest follows as in 4.4.

It remains to prove

6.4. PROPOSITION (Cartan formula). If E" is given the coproduct structure
implied by 5.3, then the structure morphism

ApE' > E QE

is an S (p) morphism when K=127/pZ.

Proof: Since the comultiplication in E" is induced by that in E?2, it suffices to
prove this proposition for E2. Now E*=H,(tF(H.A, HeA, H,B)). Our coproduct
structure in E? is defined by identification with that of [6; § 18]. It is straightforward
to check that this coproduct may be defined as follows. We first have a map

F(4,, 44, 45):F(HA, HeA, H,B)
- F(H,A ® H,A, H,A ® HyA, H,B ® H,B).

By the Cartan formulae, this map is an o/ (p)-morphism. Now since &7 (p) is cocom-
mutative, for any 7 (p) modules M and N the isomorphism

T MN-NQQM

given by T(x®y)=(—1)¥m*4imr(y®x) is o/ (p)-linear. Thus T defines an .« (p)
isomorphism
7:F(H,A® H A, H,A® HyA, H,B® HyB)
— F(H,A, H A, H,B) ® F(H,A, H,A, H,B),
where, for two cosimplicial objects M and N, (M®@N)"=M"Q@N".

Now if M and N are cosimplicial objects in an abelian category, the obvious dual
to the Eilenberg-Zilber theorem [2, 2.9] states that there is a chain equivalence

(t(M@N)->M® IN.

given on m@ne(M®N), by
{(m®n)=2(-1)y®o0;,...00m®0c;, ...0;n

where the sum is taken over all r, s shufles a=(iy,..., i, j;,..., j;) of the integers
0,1,...q—1, r+s=gq, and s(«) is the usual sign associated to a shuffle. If M and N
are cosimplicial 2/ (p)-modules, { is clearly </ (p)-linear. The coproduct in E? is
now the 7 (p) morphism induced by (o 1o F(d4,, 4,, 4p).
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