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Steenrod Opérations in the Eilenberg-Moore Spectral Séquence

by David L. Rector1)

1. Introduction

Using relative homological algebra, Eilenberg and Moore [6] hâve defined a

spectral séquence which has proven valuable in studying the homology groups of
various fibre spaces. In this paper, we give a more géométrie définition and use it to
introduce Steenrod opérations into the spectral séquence in a natural way.

We study the following géométrie situation. Let

X^X0
[e |e0 (1.1)

B->B0

be a commutative diagram of topological spaces and continuous maps. Assume 0o is

a (Serre) fibration and 9 the induced fibration. Let K be a commutative ring with
unit. If Bo is simply connected, the Eilenberg-Moore spectral séquence, {Er}9
converges in the usual sensé to H*(X; K). If the homology modules of Bo, B, Xo satisfy
certain flatness conditions, in particular if K is a field, E2 is naturally isomorphic to
CotorH*(lî<>'*> (H*(X0; K), H*(B; K)). We will prove the following.

1.2. THEOREM. For K=Z/pZ, p a prime, {Er} may be given the structure of a

spectral séquence of right modules over the mod-/> Steenrod algebra <s#(p) so that
(i) Each dr is <stf(p) linear.

(ii) For <xe*z/(j)) ofdegree i, ai;Erntq->Erntq-i
(iii) £°° is the graded ^(p) module associated to afiltration ofH*(X; K) by <stf(p)

submodules.

(iv) The coproduct Er-*Er ® Er is an ^(p) morphism (Cartan formula).
In addition we will define a natural <stf(p) structure in CotorH*(B°K) ((H*(X0; K),

H*(B; K)) coinciding with the sé(p) structure in E2.

1.3. Remark. If ail spaces hâve homology modules of finite type, a dual spectral

séquence may be defined converging to H*(X; K) and with £2 TorH*(Bo)(#*(X0),
H*(B)),[5],[ll], where Tor is given a natural left s/(p) module structure. The
Cartan formulae hold in Er.

1.4. Note Bene. \îxeEr is ofhomological degree less than zéro, then xp=0 [3,6.4].

*) During the préparation of this work, the author was partially supported by NSF grants at
Princeton and Rice Universities.
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Hence Plx does not in gênerai equal xp in Er unîess x has homological degree zéro,
Thus in H*(X, Z/pZ), the filtration of xp is at least that of x (recall that in the co-
homology spectral séquence, filtration is négative and decreasing).

The construction to be given below was inspired by a construction of D. M. Kan
yielding an unstable Adams spectral séquence (to appear). The author would like to
thank John Moore, D. M. Kan and Larry Smith for several enlightening conversations

and useful suggestions.
Thèse results hâve been proven for the spécial case of 90 the path fibration and

B a point independently by L. Smith, A. Clark, and V. Puppe using algebraic methods
(unpublished). The full resuit may also be proven by another géométrie construction
discovered by Alex Heller (to appear). L. Smith has subsequently discovered another
construction [12].

1.5. The Algebraic Spectral Séquence. To motivate our construction, we recall
the définition of the Eilenberg-Moore spectral séquence. We refer the reader to [6]
for détails.

Let K be a commutative ring with unit. For a space X, let C*X be its normalized
singular chains with coefficients in K. Then C*X is a differential graded AT-coalgebra

by a map

given by the Alexander-Whitney formula. If q> : F-> X is a map of spaces, then C* Y
is a differential graded C#X-comodule via the composition

C*Y > QY0Q7 +C+Y&C+X.

For diagram 1.1, Eilenberg and Moore show that

where Cotor is a suitable derived functor of cotensor product in the category of
C*BQ comodules. Cotor may be defined in terms of a relative version of injective
resolutions. We need only concern ourselves with

1.6. The Cobar Construction [1]. This construction is dual to the bar construction
of Eilenberg and MacLane [8, Ch. X]. Let A be a differential graded i^coalgebra, and
let M be a right, N a left yl-comodule. The cobar construction on M and N over A9

to be denoted by F (M, A, N), is a complex

of differential graded X-modules defined as follows. Put
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where the factor A occurs /î-times. The coproducts AM9 AA, AN induce (h+ l)-maps
ôi:Wn~1-+FH given by

where AA opérâtes on the i-th factor of A, Put

Now F is a double complex with differentials ô and d, where d is the internai
differential of F". Given such a double complex, we may form a total complex T, with

r, IIV + « »)• (i-7a)

The differential is given on the factor F~p by

dT d + (-l)«<5. (1.7b)

We hâve

The Eilenberg-Moore spectral séquence of Cotor/4(M, N) is the spectral séquence
of a filtration {Frr}r<0 of T, where

If K is a field, or if H*A, H*M and H*N satisfy appropriate flatness conditions, then
the Kûnnuth theorem may be used to show that

S° E2

Considérable algebraic difficultés hâve arisen in attempts to define Steenrod

opérations in the spectral séquence for the géométrie situation. We will avoid those

difficulties by carrying out ail constructions in the category of spaces. In particular,
the filtered complex Twill be replaced by the homology exact couple of a tower of co-
fibrations. Since ail homomorphisms in the exact couple will be induced by continuous

maps and suspensions, differentials will a priori préserve Steenrod opérations. The
construction to be given will be closely analogous to that above.

2. The Géométrie Cobar Construction

Since several constructions below are duals to standard ones in the category of
simplicial abelian groups, we will find the following language useful.

2.1. Cosimplicial Objects. Let se be a category. A cosimplicial s#-object consists

of the following data:
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(1) Objects A0, A1, A2,..., indexée by the non-negative integers.
(ii) For each «>0, maps

543

called cofaces, and for each n ^ 0, maps

called codegeneracies, satisfying the duals to the simplicial identities. Specifically,

(2.2)

A cosimplicial map f : A -+ B is a collection of maps fn : A" -> B" commuting with co-
faces and codegeneracies. Our pnmary example is

2.3. The Géométrie Cobar Construction. Let A be a space, and let A •%*/

be continuous maps. The géométrie cobar construction on A and B over A, to be de-

noted by G(A, A, B), is defined as follows. Put

G" A x A x ••• x A x B,
where the factor A occurs «-times. As in 1.6, the cofaces are given by

(a, aa, A,,..., AM_l9 b), i 0

(a, A1?..., A,, A,,..., Aw_ l9 b), 1 ^ i < n — 1

(a, Alf..., An_l50fc, ft), i n

^(fl? Al5..., Aw+1, b) (a, A1?..., At_l5..., Aw+1, fc),

where "a" dénotes omission. It is easy to check the cosimplicial identities in G. In a

similar way F is a cosimplicial object in the category of differential graded Â-modules.
Both G and F are functors between the appropriate catégories.

2.4. Notation. We will dénote ail cosimplicial objects by boldface. If Fis a functor,
we dénote by V the induced functor on cosimplicial objects,

(VA)rt=F(Aw).

3. The Spectral Séquence of a Fibre Product

Let
X-+B
ï lP
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be the fibre product of the continuous maps a and /?. Let G=G(A, A, B). Since the

category of spaces is not additive, we cannot define a total differential ô in G by an
alternating sum such as (1.6). We resort therefore to a construction dual to the Moore
normalization of a simplicial group [10].

Let

G& Gpjlmô1 u u Im<5p.

In particular, let G]J G0/$, which is G0 with a disjoint basepoint adjoined. Since
<5o<5i <5i+i<5o, <5o induces a map

so that ôp+1° ôp *, where "*" will be used to dénote ail basepoints. We thus hâve

a complex of spaces

The Eilenberg-Moore spectral séquence of the diagram (3.1) is now derived from the

homology exact couple of a séquence of cofibrations

GZ-+Xp-+SXp-\ p>0, (3.2)

where S dénotes reduced suspension. We define Xp inductively using mapping cônes.

Let/: Y-+ Z be a continuous map ofpointed spaces. We dénote by Cf the mapping
cône of/,

Then SY=C*9 *: F-»*, and there is a cofibration Z-^Cf^>SY. Put X
Suppose Xp~x is defined and there is given a map

so that ôp+1° 8P=*. Then Xp=C%p. The commuting diagram

Xp'x >*

i »p

induces the map 5P+1: XP-+GPN+1 so that ôp+2° 8P+1 *. The cofibrations (3.2) are

thus obtained.
Now let K be a commutative ring with unit. Let ^K(A, A9 B) be the homology

exact couple with coefficients in K of the séquence (3.2) of cofibrations. Then

p>0
_Œq(Gû";K), j><0

p-q \0, p>0
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where, for a pointed space Y, ff*(Y; K) H*(Y,*; K). The maps Ep-+Dp are
induced by the inclusions GùP->X~p; each map Dp-+Dp+1 is a composition

~Çt / ~\r — p\ v /jr / çr ~%r — p — 1 \ ~^_, -rj- / -yr — p — 1 \

where the first map is induced by the identification and s is the suspension isomor-
phism. The map Dp+1-*Ep is induced by S~P:X~P^1 ->G^P. Thus, di:Ep+i-^Ep
is induced by Ô~p: G^p~1 -* G^p; that is

ri^yyjrN9 K) \à.â)

as a complex. Clearly

3.4. PROPOSITION. IfK=ZjpZ,p aprime, then ^K(A, A, B) is an exact couple
in the category ofright ^(p) modules, So dr is ^/(jp) linear.

To relate the spectral séquence to H*{X), we want homomorphisms H*(X; K)-*
D-p of degree p so that

H*(X;K)/ \
commutes.

Let X-^A xB, be the natural inclusion. Then, 50e 518. Hence e: Xj(j)-*G^ and
S1 © e *. From the construction of Xp we hâve maps sp: Sp{Xj(i)) -> Xp so that

commutes. From thèse maps and suspensions we obtain the maps H#(X; K)^D^p.
In the context of 3.4, the maps préserve ^(p) action.

It remains to consider the functorial properties of ^K(A9 A, B). Let / be a map
of squares. That is, let/= {f'J"Jf") where

f:A-+A'
ff"\B-+Bf

so that ot'f'=f"(x, P'f"'=f"P. Then thèse maps induce a cosimplicial map f :G->G',
where G' G (A', Ar, B'). This map in turn induces a map of complexes îN : GN -+ G'N.

Since the mapping cône is functorial, there are maps/p: Xp -+ Xtp with the obvious
set of commuting diagrams. There is therefore an induced map
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Suppose two maps / and g of squares are fibre homotopic by a homotopy F=
(F'9 F\ F'"\ where

F'\ A x I-+A'
F": Ax 1->A'
F'":B x J-*B'

so that <x'F'=F"{aL x 1) and P'F'" F"(p x 1). There is then a homotopy F: G x I-»G'
where F1: G" xI-^G"1 is given by

F*(a, Als..., K, b, t) (F'(a, t)9 F*{XU t)9-, F'd,, t), F'"(b, t)).

Now cartesian product préserves identifications in one variable, so (G x I)N GN x I.
Hence we hâve a homotopy ¥N: GN xï-»G^ between f# and g^. This in turn yields
homotopies between fp and gp. So

3.5. PROPOSITION. Iff and g are fibre homotopic maps of squares, then the

induced mapsf* andg*from ^K{A, A, B) to VK{A\ A\ Bf) are equal.

4. Calculation of £2

We shall show that under suitable hypothèses E2 CotorH*iA) (H+(A), H*(B)).
Let A be a cosimplicial object in an abelian category. There is associated to A

a complex tA,

where /A"=A" and

There is also a complex AN, which is dual to the normalization of a simplicial object,
where

and ôfi is induced by ô0. The quotient map /A -+ AN is a chain map. The dual of a

standard resuit is

4.1. PROPOSITION. The induced map

is an isomorphism.

Proof The standard proof (see e.g. [2, 3.6]) dualizes.

Let G be as in § 3. Then by 3.3, EX Ë(GN; K).
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4.2. LEMMA. Ë(GN; K) (H(G; K))N as a complex.
Proof. We prove by induction that, for p ^ 1,

u ulm<5n) H*(Gn)/lmôp + 4-

Note that, since <rp-idi ôi_i(rp_l for i>p, crp_i induces a continuous map

Gp-ii Gnllmôp+l u vImôn-+Gnllmôpv ulm^^
such that Gp-iàp= 1. Therefore, we hâve a cofibration

Gw"Vlm ôpu u Im ôn_i *-$ C/Im ôp+i u u Im ôn -> G7Im 5pu u Im ôn.

The homology exact séquence of this cofibration yields a split exact séquence

The resuit now follows easily.
An immédiate conséquence of 4.1, 4.2 and 3.3 is that, for the exact couple

4.3. PROPOSITION. E2 H*(tH(G; K)).
We hâve finally,

4.4. THEOREM. // H*(A;K) and either H*(A; K) or H*(B; K) are K-flat,
in particular if K is afield, then there is a natural isomorphism

E2 « Cotor^^^^; K), H*(B; K)).

Proof. Under thèse conditions we may apply the Kûnnuth theorem to obtain

H(G; K) F(H*(,4; K)9 H*(A; K), H*(B; K)).

where F is as in § 1.6. By 4.3 the resuit follows.

5. Comparison with the Algebraic Construction

Let VK(A9 A, B) be as in § 3. We will prove that

5.1. THEOREM. The spectral séquence derived from ^K(A,A9B) is isomorphic
to the Eilenberg-Moore spectral séquence of

Cotorc/A>K\C*(A; K)9 C*(B; K)).
From this and the results of [6] it immediately follows that

5.2. COROLLARY. IfA is connected and simply connected and A-+A or B-+A
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isaSerrefibration, then the spectral séquence derived front tëK(A, A, B) converges
strongly to H*(X; K).

5.3. COROLLARY. IfK is afield, the spectral séquence of &K(A, A, B) has a
natural coproduct structure and ls2 Cotorf*(/l) (H*(A), H*(B)) as a coalgebra.

To prove 5.1, we first obtain ^K(A9 A, B) from a filtered differential module. For
a pointed space Y, let €*Y=C*(Y; K) be its normalized singular chains. From
the double complex

we may form the filtered total complex f=T(C*GN) as in 1.7; the spectral séquence
of fmay then be derived from the exact couple ^(T) with

Ep>t Hp+q(FpflFp_lT).

We want to know that

VK(A9A,B)&V(T). (5.4)

To see this, let

be the cofibrations (3.3). We shall show there is a natural chain homotopy équivalence

TlF,p^f-*C*Xp (5.5)

of degreep. For a: C-* C" a chain map, the mapping cône of a is a complex Ca with

and

for ceCn.u c1 eC'n. Put §C=C0, 0: C-^0. Let/: 7->Z be a map of pointed spaces;
then there is a natural chain homotopy équivalence

where/#:€*Y-+C*Z is induced by/. The long exact homology séquence of the
cofibration Z-^Cf-* SY is exactly that of the exact séquence of complexes

Using thèse facts, an easy induction shows that C*XP is naturally chain homotopy
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équivalent to a complex whose w-chains are

and whose boundary is given on ceCn.iGpN~i by

when />0 and de when /=0. It may be seen that this complex is isomorphic to
_p_{f with a dimension shift oip. Therefore the composition

• e C9G

is the desired chain homotopy équivalence 5.5. It should be noted that the chain
équivalence

{F_pflF_p_xT)q_pïtCqG'N (5.6)

ofdegreep inducedby (5.5) isjust multiplication by (— l)pq. A straightforward diagram
chase establishes 5.4.

We may now relate the complex C*GN to the algebraic cobar construction. Let

f 7Xf C*G) (for notation see § 2.4 and § 4). The identification maps Gn -» GnN induce
a natural transformation f-> f. By 5.4 and 4.2, this induces an isomorphism Ê2 -+Ë2,
where thèse are the E2 terms of the spectral séquences of Tand T.

By the Eilenberg-Zilber theorem, there is an associative, natural chain équivalence
£>'.C^(YxZ)-^C^{Y)®C^{Z) fortwospaces FandZ(theAlexander-Whitneymap).
There is then a cosimplicial map

which induces an isomorphism

HG->HF.
Therefore, the spectral séquence of f is the Eilenberg-Moore spectral séquence for
Cotorc*A (C*A, C* B) (see construction in § 1).

6. Steenrod Opérations in E2

Assume our ground ring K is a field. We recall some définitions and facts from
[6] and [9]. Let F be a graded cocommutative Hopf algebra over K. If M and N are
graded right T-modules, then M®N is a right T-module via the diagonal of F. A
graded Z-coalgebra, I, which is also a T-module is a F-coalgebra if the structure
morphisms
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are F-linear. If M is a left (or right) I comodule which is also a JH-module, we will say
it is a I—F-comodule if the structure morphism

is F-linear. If M is a right and N a left I—F-comodule, then MOEN has a natural
F-module structure since M\3SN is the kernel of the F-morphism

given by l<g>AN-AM(g)l.
We now define Cotor*(M, N) to be the right derivedfunctorof Di in the category

of I1—F-modules in the following relative sensé [4]. As in [6], let a comodule M be

injective if it is the direct summand of an extended I—F-comodule. Let a séquence of
I—F-comodules

be exact if is split exact as a séquence of F-modules. By arguments identical to those

of [6, § 3], the class ofexact séquences in the above sensé is an injective class [4] relative
to the class of injectives. Thus the right derived functor Cotorf (M, N) exists. We
note that

6.1. LEMMA. Cotorp(M, N) is isomorphic to Cotor^(M, N) by a map which is

natural with respect to K-morphisms.
Proof: An injective resolution of a comodule M in the category ofI— F-comodules

is an injective resolution in the category of I-comodules by forgetting F-structure.

6.2. Example. The cobar construction F (M, X, N) has a F-module structure
since each F1 is a tensor product. Thus

Cotorf (M, N) H*tF(M, I, N).

It is now easy to see that

6.3. THEOREM. Let {Er} be the spectral séquence of § 3. Let K= Z/pZ, p a prime.
Then

m H*( ; K).
Proof: By the Cartan formulae,
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as ^{p) modules for any spaces Y and Z. Hence H*G F(H*A, H*A, H*B) as

modules. The rest follows as in 4.4.

It remains to prove

6.4. PROPOSITION (Cartan formula). If Er is given the coproduct structure
implied by 5.3, then the structure morphism

is an *s&(p) morphism when K=Z/pZ.
Proof: Since the comultiplication in Er is induced by that in E2, it suffices to

prove this proposition for E2. Now E2 H*(tF(H#A, H*A, H*B)). Our coproduct
structure in E2 is defined by identification with that of [6; § 18]. It is straightforward
to check that this coproduct may be defined as follows. We first hâve a map

® H*A9 H*A ® H*A, H*B ® HtB).

By the Cartan formulae, this map is an <£/(/>)-morphism. Now since £&{p) is cocom-
mutative, for any stf{p) modules M and N the isomorphism

T:M®N-*N®M

given by T(x®y) (-l)àimxdimy(y®x) is ^(/?)-linear. Thus T defines an

isomorphism

t: (*
-> F^A, H*A, H*B) ® F(H*A, H*A, H*B),

where, for two cosimplicial objects M and N, (M®N)" M"®Nn.
Now if M and N are cosimplicial objects in an abelian category, the obvious dual

to the Eilenberg-Zilber theorem [2, 2.9] states that there is a chain équivalence

given on m®«e(M®N)a by

C(m ® n) I{- l)s(a) <rh oirm ® ah ahn

where the sum is taken over ail r, s shuffles oc (iu...,inju...,js) of the integers
0, 1,... q-1, r+s=q, and s(<x) is the usual sign associated to a shuffle. If M and N
are cosimplicial j/(^-modules, Ç is clearly j/(/?)-linear. The coproduct in E2 is

now the s&(p) morphism induced by C° i°F(AA, AA, AB).
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