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Analytic Maps Between Tori

by HEINZ G. HELFENSTEIN (University of Ottawa, Canada)?)

1. Introduction

It is well known that the conformal 2-dimensional tori fall in two classes, viz.
those whose elliptic field of functions admit complex multiplication and those which
do not. For short we denote the former as “ample tori”, the latter as ‘““non-ample’.
(For a recent account, with a list of older references, see [1].)

In a different context we show that this dichotomy appears also in the distribution
of the complex analytic maps between two tori. The source of this behaviour is traced
to the structure of certain isotropy groups of hyperbolic motions. It turns out that
both the ample and non-ample tori form dense subsets of the manifold of all confor-
mal tori.

We determine necessary and sufficient conditions for the existence of non-constant
analytic maps between two tori and classify these maps with respect to homotopy.
This amounts to an explicit determination of the bimodule structure of the set of
analytic maps over Z and over the rings of complex multiplication of the given tori.

Our methods indicate that similar splittings into disjoint dense classes may be
expected for other categories of maps; e.g. affine maps between general flat space
forms of arbitrary dimensions, cf. [6].

Some consequences will be discussed elsewhere, cf. [3].

2. Conformal Classes of Tori

We make use of the following two groups:

GL* (2, Q)=group of all 2x2 matrices with real rational entries and positive
determinant; SL(2, Z)=subgroup of all 2 x 2 matrices with real integral entries and
determinant equal to +1 (modular group), and their factor groups:

G=GL™" (2, Q)/{Al:2+#0, rational} with

1=((1): ‘1)) F=SL(, 2)[{+]}.

F can be naturally embedded into G as a subgroup. We denote by H the Poincar¢
half-plane H={z=x+iyeC: Jz>0} with hyperbolic metric g=(1/y?) (dx® dx+ dy

1) Work supported by the National Research Council of Canada. Cf. research announcement
in [2].
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® dy). G and F act effectively on H as subgroups of all isometries by letting

az+b
g(z)= c;—::_:«d for g= (Z’ Z) eGL(2,Q0), zeH.

The conformal classes of tori are in 1:1 correspondence with the surface 7 = H/F,
which is homeomorphic to the Euclidean plane, [5]. A point t€7 represents the
conformal equivalence class of the torus E?/I", where I' is the group of Euclidean
motions generated by the twotranslationst, (z)=z+1,and #,(z)=z+h, het=F(h)<H.

All topological statements concerning subsets of the set of conformal equivalence
classes of tori are understood with respect to the topology of 7.

By a “‘conformal torus’ we will mean for short a conformal equivalence class.

3. Analytic Immersion Classes

In order to formulate necessary and sufficient conditions for the existence of
non-constant analytic maps between two conformal tori we require

DEFINITION 1: Two conformal tori 7, and 7, are called immersion-equivalent,
Ty~ T,, if there exist h;et;, i=1, 2, and TeG such that h, =T (h,).

This definition is justified since it does not depend on the representatives h; of the
given t;. The equivalence classes (orbits mod G) into which J is partitioned will be
called analytic immersion classes.

The group G does not act on the surface .7 in the ordinary sense, since its elements
do not commute with the group F. We obviously have

THEOREM 1: Every analytic immersion class is dense in the manifold of conformal
tori. Every neighbourhood of a conformal torus on J contains representatives of all
analytic immersion classes infinitely often.

THEOREM 2: Two conformal tori t, and t, admit a non-constant analytic map
fity-1,if and only if T, ~ T holds. An analytic map is either a constant or a covering map.

Proof: Choose representatives h;et; and assume that a non-constant analytic
f:E |/l —E,|I', exists. According to the fibre map theorem (cf. [4]) there exists a lift
of fto the universal covering surfaces E;, i.e. an entire function F: E;— E, satisfying
fopy=p,oF, where p;: E;—E;[I'; are the covering projections. Hence there exist two
integer-valued functions n(m, m’) and n’(m, m’) such that

F(z, + m+4 m'h)=F(z;) +n+n'h, (1)

holds identically in z,€E;.
Differentiating with respect to z, we find that F’ is a constant C. Substituting
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F(z)=Cz+D into (1) and letting first m=1, m'=0, then m=0, m’ =1, we recognize
that there are 4 integers a=n(1, 0), b=n'(1, 0), c=n(0, 1), d=n'(0, 1), such that
ah, + b
' ch, + d
holds. Since J(h;)>0, i=1, 2, we have ad—bc>0. Reversing the arguments we see

that the existence of 4 rationals a, b, c, d satisfying ad —bc >0 and (2) is also sufficient
for the existence of a non-constant analytic map. Q.E.D.

)

DEFINITION 2: If f is an analytic map with lift F(z)=Cz+ D, the constant C
will be called the complex distortion of f. The set of admissible values of C for two tori
is called the distortion spectrum of the (ordered) pair of tori.

The fact that 7, ~ 7, is an equivalence is worth restating as

THEOREM 3: If there exists an analytic immersion t,—7,, then there exists also
an analytic immersion 1,—7,. (In general the inverse F ! of the lift F of fis, however,
not the lift of an analytic map 7,—1,.)

Theorem 1 entails: Given two conformal tori 7,, 7,, then every neighbourhood
of 7, on J contains a countable infinity of tori which admit analytic immersions
into 7,, and uncountably many tori which do not.

LEMMA 1: If 1y, T, are two conformal immersion-equivalent tori then it is possible
to choose representatives h,et (i=1, 2) such that h, =a h,, where a is a positive integer.

Proof: If hiet; are arbitrary representatives with 7°'eG and k) =T'(h}) then
diagonalization of 7’ leads to three matrices A, Be SL(2, Z) and TeGL™ (2, Q) with
h1=(A—1T’B) (hz)zT(hz) and T=<g’ ?).

Note that none of the three numbers 4,, h,, a in the relation h, =ah, is invariantly
connected with the pair (tq,7,): If e.g. h =h,=i,a=1, hi=(157+i)/17, h,=
(157+1i)/170, a’ =10, then A, and A} represent the same conformal torus 7, because of
hl =P (hrl):

z—-9
PE= 5%
Similarly
, , — 13z + 12
hy=Q(h3) with Q(z)= —_1

4. Ample Tori

In order to determine the complete set of all analytic maps between two tori we
require the following definitions.
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DEFINITION 3: The complex number z is called ample if Rz and |z|? are both

rational. A conformal torus 7 is called ample if there exists an ample representative
het. A planar lattice

wl
L = {ma) +mweC:m,m" integers, J— # O}
1)

is ample if it can be generated by two complex numbers w, ®" with w’/w an ample
point.

These definitions are justified by their independence from the representative A
(invariance under F). The property of a point he H of being ample or non-ample is
invariant even under the action of G; hence we can also speak of ample and non-
ample analytic immersion classes. There are only countably many ample tori, but
uncountably many non-ample ones. Each of the two subsets of 7 corresponding to
these two types of tori is dense in 7, and each consists of whole analytic immersion
classes. The ample tori do not form a single immersion class.

5. The Isotropy Subgroups of G

The determination of all analytic maps between two conformal tori depends to a
large extent on an analysis of the stabilizers of G and their cosets.

DEFINITION 4: Let he H, and let I, denote the isotropy subgroup of G with
respect to A, i.e. the subgroup of all hyperbolic rotations about / belonging to G.

LEMMA 2: The structure of I, is an invariant of the analytic immersion class
G(h). G(h) is in 1:1 correspondence with the coset space G/,

Proof: If h runs through an orbit G(k), then I, varies in a conjugacy class of G.
Since G acts transitively on an orbit, G(h) becomes a homogeneous G-space and is
thus representable as G/I,. Q.E.D.

The structure of I, differs considerably according to whether 4 is ample or
not.

THEOREM 4: If he H is non-ample, then 1, is trivial.

. fa, .
Proof: An arbitrary element Sel, can be represented as a matrix ()’ l;) with

relatively prime integral entries, and ad—fy>0. The relation S(k)=h means:
yh* +(—a)h—B=0. (3

Since §4>0, y=0 entails a=0, =0, i.e. S is the identity. If y#0 then (3) is a
quadratic equation for A with real coeflicients; hence it is satisfied both by 4 and
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h, h+#h. By Vieta’s theorem:

_s
hth=2Rn=""0, (4)

14
B
hh = |h)*> = ——.
|h| ? ()

Since h is not ample, these equations are impossible ; hence I, contains only the identity.

THEOREM 5: Let he H be ample, 2 Rh=p|q, |h|*=r/s, p, ¢>0, r>0, s>0,
integers; g.c.d.(p, 9)=g.cd.(r,s)=1, g.cd.(q,5)=g, ¢'=qlg. s =s/g.
_ pS', —"q'r
Define M= (qs’, 0 )
Then I,= {¢I+0M:g, o rational, #(0, 0)}/{Al: A rational, #0}.

Proof: Let S= (a’ ‘g) represent an element of I, with integral entries and
ad—pBy>0. b

As in the proof of Theorem 4, y=0 leads to the identity map. Assume now y#0.
Then we have again the relations (4) and (5). Since g.c.d.(p, ¢)=1, (4) entails the
existence of an integer ¢ such that

d"'é"—‘(ﬂp,
and
?=0q. (6)

Substituting (6) into (5) we deduce from g.c.d.(r, s)=1 the existence of an integer ¥/
satisfying

ﬂ == d‘ra
and
©q = ys. (7

From (7), g=gq’, s=gs’, and g.c.d.(¢’,s)=1, we find an integer v such that
¥=vq’, and ¢=vs'. Solving for a, f, vy, 4, we find

S=0I+VM. ®)

Conversely, for an arbitrary choice of the integers J, v, except d = v=0, we gather
S(h)=h, and det S becomes a quadratic form in 6 and v with discriminant —4gs’?
x (3h)* <0, hence it is positive definite. Thus the above matrix is the most general form
representing an element of I,. The group operations can be easily read off from the
relation M?= —rs'qq'I+ps’M. Q.E.D.
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For every ample s the group I, is a countably infinite, not finitely generated
Abelian group which is dense in the group of all hyperbolic rotations about A. Its finer
structure depends on number theoretical properties of k; e.g. every I, contains

exactly one element of order 2, but for h, =2i/,/3 and h, =i, I, does and I,, does not
contain elements of order 3.

Combining theorems 4 and 5 we obtain the following characterization of ample
points.

THEOREM 6: he H is ample if and only if there exists in G a hyperbolic rotation
about h different from the identity.

6. Cosets of G mod I,

In this paragraph a will denote a positive integer which will be identified in § 7
with the quantity introduced in lemma 1.
If 4 is non-ample then each coset of I, consists of a single element of G, by theorem 4.

LEMMA 3: Let he H be ample, and define the integers p,q,r,s, g, q',s as in
theorem 5. Furthermore we introduce

’

g! — g.C.d.(a, q), a = a/gl’ qu — q/g”,

” "

g —_ g.C.d.(a', Sl)’ a’ = a’/gn’ S” — S'/g”,

, 0 1 ai sll, _ all rr
Tl = 4 ’ T2 = T TIM = up” 1 )'
0, 1 gg’ qs’, 0

Then the most general integral matrix which represents an element of the left
coset of Gmod I, containing the hyperbolic translation T=T, is given by

L= KlTl + K2T2 ’ (9)

where (k,, k,)#(0, 0) denote arbitrary integers.

Proof: Using (8) we find TS=0T+vIM with arbitrary integers (3, v)#(0, 0).
Since we work in the factor group G of GL™ (2, Q) we still have to determine all
rationals A#0 and all integers (9, v)#(0, 0) such that

L =A(0T + vTM) (10)

becomes integral.
Let 4, §, v be such a triple, and define

A(5,v) = g.cd. {ald + ps'vl, ag'rlvl, as'IV], 181}, & =A4(9,v).
Substituting A=¢/4(3, v) into A(6T+ vT'M) we see that this matrix assumes the



536 HEINZ G.HELFENSTEIN

form ¢- L', where L is an integer valued matrix whose four entries are relatively prime.
Since £L must be integer valued and £ is rational, it follows that £ is an integer #0.

Conversely, given an integer ¢ #0 and a pair of integers (6, v) #(0, 0), the quantity
A=E[A(0, v) is rational, #0, and A(6T+ vI'M) becomes an integral matrix.

Hence this procedure yields all desired triples 4, §, v and all matrices L. The cor-
respondence between the triples 4, 4, v and the matrices L is, however, not 1:1, since
two different triples can lead to the same matrix. In order to settle this problem we
first determine the admissible values for the elements of the last row of L, viz.

0 , s'qv
——, Ky = .
A6, v) 2 A5, v)
Assume that &, 8, v are given. If v=0, we have A(J, v)=|6| and L=«T with an

arbitrary integer x #0.
Let now v#0, hence k,#0, and

Ky =¢

(11)

K'
0= -,1 qs'v. (12)
K3
Noting that for every integer j#0 A(jd, jv)=jA(d, v) holds, we obtain from (11)
and (12):
K2
=—A(0,v) =
¢ s'qr (3) qs
Since this must be an integer, inspection of A(k}'gs’, k3) reveals that gs” must be
a factor of the two quantities

alpl s'|x5] and  aq'ri;].

In the following g,, g,, ... g¢ Will denote suitable integers. Then the first condition
can be written as

L (13

q alxy
the second as

aq'r |k5|

— =2 (14)
qs

Since the left hand side of (13) is in the lowest terms there is a g5 such that

g =glpl, (15)
and

alxs| = g1q. (16)
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Dividing (16) by g’ we recognize that there exists g, with
%2l = 849", (17)
and
g3 =840 . (18)
Substituting (17) into (14) we obtain

’

82 q
a'g,r T (19)

Here the right hand side is in the lowest terms; hence

82=8s4, (20)
and
a'gyr =gss'. #3))

Dividing (21) by g” we obtain a"g,r=gss". Because of g.c.d.(a”, s")=g.c.d.(r, 5)=1,
we have g.c.d.(@"r, s")=1. Thus there is g with

g4=865", 22
g5 =86a'T. (23)

Combination of (17) and (22) yields |«k}|=gsq"s". Finally letting x, =k’ and
K, =SgNK3'ge, We obtain L=x, T} +«,T, from (10).

Conversely, for an arbitrary choice of the integers (xy, k,)#(0, 0), we can find a
corresponding triple &, 8, v; viz. =kqs’, v=k,q"s", E=A(k,qs’, k2q"5")/qs .
(The last expression is easily seen to be an integer.) Q.E.D.

7. The Distortion Spectrum

For given tori t,, 7, with representatives h;e1; chosen according to lemma 1 we
identify now A =h, in lemma 3.

LEMMA 4: Each integral matrix L representing an element of the coset TI,,
determines an admissible complex distortion for an analytic map t,— t,, and all analytic
maps are obtained in this way.

Proof: Writing t;=E,/T'; the lift F(z)=Cz 4+ D must satisfy the commutation rela-
tion C(z+m+m'h)+D=Cz+D+n+n'hy,ie. I', must contain a subgroup conjugate
to I'; in the group of all conformal equivalences of the Euclidean plane.

Letting m=1, m’ =0, then m=0, m'=1 and dividing we obtain h; =T'(h,)=L(h,)
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with

w0, 1), n(0, 1)\ .
L=(n’(1, 0), n(1, 0))EGL (2, 0)-

Hence T 'L represents an element of I,,, or L belongs to the left coset of
Gmod]l,, containing T.

Conversely, if we pick all integer valued matrices L representing the same element
Tl,, of G/I,, as T, then we obtain all possible complex distortions as

C=n(1,0)+n'(1,0)h, =n(0,1) + n'(0,1) h,. Q.E.D. (24)

THEOREM 7: Let t, and t, be two conformal tori in the same analytic immersion
class A. Then the distortion spectrum is given by
a) the one-dimensional real lattice

C(k)=x, k=0,+1,+2, (25)

if A is non-ample;
b) the 2-dimensional lattice

C(ky, K2) =K1 + K2q"5"h,

for A ample, with x, and x, running independently through all integers. (Notations of
lemma 3 applied to h=h,.)

Proof: a) By theorem 4 the coset T1,, contains only 7, and L can be any integral
matrix representing the same element of G as T'; hence L =«T with an arbitrary integer
k. Thus we obtain (25) from (24).

b) Substitute (9) into (24).

8. Some Consequences

A. Although proportional pairs of integers (k;, x,) and (xx,, kx,) yield the same
element «; T} +x, T, of the coset T1,,, the corresponding maps are different.

B. In the ample case there always exist sublattices of real and purely imaginary
distortions, but the full distortion spectrum is in general larger than the lattice gener-
ated by these two sublattices. The full distortion spectrum is an ample lattice.

C. The distortion spectrum depends on the representatives /;, not only on the
surfaces 7;. If h; with h, =ah, are used as representatives to compute the maps 7, =15,
then one can use the representatives (— 1)/h; with the same integer a for the deter-
mination of the maps 7, — 1, (cf. theorem 3). In this case the latter distortion spectrum
is the image of the former under reflexion in the imaginary axis.

D. The fact that the distortion spectrum is in both cases a discrete set implies
that maps corresponding to different lattice points are not analytically homotopic. It
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can be shown that they even belong to different ordinary homotopy classes. Only
constant maps are analytically null-homotopic, and two tori are of the same analytic
homotopy type if and only if they are conformally equivalent.
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