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Les feuilles exceptionnelles ne sont pas exceptionnelles

par H. ROSENBERG et R. ROUSSARIE

Soit ¥ une variété compacte, de dimension », supérieure ou égale a 2, de classe
C*, munie d’un feuilletage F de codimension 1. On dit qu’une feuille L de F est
exceptionnelle si:

— L n’est nulle part dense dans V
— la topologie de L en tant que variété de dimension n—1 est strictement plus fine
que la topologie induite sur L par V.

La notion de feuille exceptionnelle a €té introduite pour la premiére fois par A.
Denjoy pour I’étude des feuilletages définis sur le tore T?>=S" x §!, transverses a
’un des facteurs S* [1]. Dans ce cas particulier I’existence de feuilles exceptionnelles
est liée a la classe de différentiabilité du feuilletage: ainsi, dans [1], A. Denjoy donne
un exemple de feuilletage de classe C! présentant quelques feuilles exceptionnelles
et montre au contraire, qu'aucun feuilletage de classe supérieure ou égale 4 2 ne
posséde de feuille exceptionnelle. Dans [4], G. Reeb a étendu les résultats de A.
Denjoy au cas des feuilletages de la variété T2 x [0, 1], transverses au facteur [0, 1]
et conjectura qu’il devrait en €tre de méme pour tout feuilletage défini dans une
variété de dimension 3, fibrée sur une variété de dimension 2, a la condition que le
feuilletage soit transverse aux fibres. R. Sacksteder, dans [5], donne un contre-exemple
a cette conjecture en construisant un feuilletage de classe C” présentant quelques
feuilles exceptionnelles, défini dans la variété M, x S', ol M, désigne la surface
fermée orientable de genre 2. (Ce feuilletage étant transverse au facteur S*.)

Nous nous proposons ici de généraliser ce résultat, en montrant que:

THEOREME: Toute variété de dimension 3, fermée, orientable et de classe C®,
posséde des feuilletages de classe C® contenant quelques feuilles exceptionnelles.

Signalons tout d’abord qu’il suffit de prouver le théoréme dans le cas de la sphére
S3. En effet, & partir d’un feuilletage défini sur S, on obtient des feuilletages sur
toute autre variété orientable par tourbillonnement et modification le long de trans-
versales fermées. Cependant, la construction donnée plus loin étant la méme pour
toutes les variétés, nous n’avons pas jugé bon de privilégier la sphére S 3 dans I’énoncé
du théoréme.

L’intérét du résultat réside évidemment dans la classe de différentiabilité du
feuilletage construit: en effet, il est facile de construire un feuilletage de classe C! de
S3 possedant quelques feuilles exceptionnelles, en prenant une suspension du feuille-
tage de classe C! du tore T2 cité plus haut, puis en opérant des tourbillonnements et
modifications le long de transversales fermées. L’existence de feuilles exceptionnelles
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dans un feuilletage de variété orientable de dimension 3, est donc indépendante en général
de la classe de différentiabilité du feuilletage; la situation, dans ce cas, est donc bien
différente de celle décrite par A. Denjoy dans le cas du tore T2.

Les feuilles exceptionnelles des feuilletages définis par le théoréme ne sont pas
contenues en général dans un ensemble minimal. Il serait d’un grand intérét de con-
naitre quelles sont les variétés sur lesquelles peuvent €tre définies des feuilletages
possédant des ensembles minimaux exceptionnels. On peut conjecturer raisonnable-
ment, par exemple, que la sphére S> n’est pas de ce type: il en résulterait, grace au
théoréme de Novikov [2], que les seuls ensembles minimaux des feuilletages de S*
sont les feuilles compactes, toutes difféomorphes au tore T2,

Nous rappelons tout d’abord quelques résultats permettant d’obtenir n’importe
quelle variété V, fermée orientable de dimension 3, par modification de M, x S*. On
construit ensuite des feuilletages de ¥ par tourbillonnement et modification de feuille-
tages de M, x S, d’un type analogue au feuilletage décrit par R. Sacksteder dans [5].

I. Quelques résultats standards relatifs aux variétés orientables de dimension 3

Toute variété fermée, orientable, de dimension 3 peut €tre obtenue par modifica-
tion de la sphére S3, comme I'indique le résultat suivant, dt 3 H. Wallace [6]:

LEMME 1: Soit V une variété orientable fermée de dimension 3. Il existe des
ensembles de tores solides disjoints (T,,..., T,) et (14, ..., T,) plongés respectivement dans
Vet S3, tels que V—\JI-, T, soit difféomorphe a S*—\J}_, t;.

Supposons que V et V' soient deux variétés orientables, fermées, de dimension 3.
Désignons par (T,..., T,) et (zy,..., 7,) les tores plongés dans ¥ et S* d’une part, et
par (T, .15+ Tyii) €t (Thygs---» Tory) les tores plongés dans V' et S° d’autre part,
définis dans le lemme 1.

Soient ¢ et ¢’ des difféomorphismes de V—|J!_, T; dans S*—(J]-, 7; et de
V'—\ ., T),; dans S*—| %, 1/, respectivement.

Dans S3, il existe une isotopie envoyant I’ensemble de tores plongés (Jr_; ©h+:
dans la complémentaire de | J}., 7;. Désignons encore par (7, ,..., Tn+x) l€8 NOU-
veaux tores obtenus apres cette isotopie et par ¢’ le difféomorphisme en résultant.
Posons: T4 j=¢ ' (1,,;) pour 1<j<k
et T/ =¢' (1) pour 1<i<n.

Alors ¢’ - définit un difféomorphisme de ¥V —J?X* T, sur V' —JI2¥* T/. On a donc
le résultat suivant:

COROLLAIRE 1: Soient V et V' deux variétés fermées, orientables de dimensior
3. 1l existe des ensembles de tores solides disjoints (T,..., T,,) et (T},..., T,;) plongés
vespectivement dans V et V' tels que V—\J™, T; soit difféomorphe a V'—\ i, T;-
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Clairement les tores solides 7} et T intervenant dans le corollaire 1 peuvent étre
choisis d’étre des voisinages tubulaires arbitraires de systémes de lacets disjoints
P=(py, .... pw) €t P = (p), ..., p.) plongés respectivement dans Vet V'.

Supposons maintenant que V=M x S* ol M est une surface fermée orientable.
Désignons par F, le feuilletage dont les feuilles sont les sous-variétés M x {0} pour
feS'. On peut alors préciser le corollaire 1 de la fagon suivante:

LEMME 2: le systéme de lacets P< V, défini ci-dessus, peut étre choisi transverse
au feuilletage F.

Ce lemme est a rapprocher d’un résultat de J. Wood (lemme 4.3 de [7]) concernant
I’obtention des variétés de dimension 3, fermées, non-orientables par modification
de E, fibré non trivial sur S! de fibre S?: J. Wood montre que le systéme de lacets de
E, le long desquels se font les modifications, peut étre choisi transverse aux fibres S2.
La méthode se transpose sans changement aucun si E est remplacé par n’importe
quel fibré sur S' de fibre une surface fermée de dimension 2. Aussi le lecteur doit se
reporter a I'article de Wood cité plus haut, et faire la transcription évidente pour
obtenir la démonstration du lemme 2.

II. Construction de feuilletages possedant des feuilles exceptionnelles

Dorénavant V=M, x S! ou M, désigne la surface fermée, orientable de genre 2.
Soit V' une variété quelconque, fermée, orientable, de dimension 3. Soit P le systéme
de lacets transverses au feuilletage F, de V, relatif a Vet V' comme il a été défini dans
le lemme 2.

On considére tout feuilletage de ¥ comme la donnée d’une section C®, complete-
ment intégrable, du fibré des 2 plans au-dessus de V. On munit ’ensemble 9) (V) des
feuilletages de ¥ de la C°-topologie de la convergence uniforme des sections. Il existe
alors un ouvert U de F, dans ) (V), tel que pour tout feuilletage Fe U, le systtme P
soit transverse a F. La méthode classique du tourbillonnement [4], y permet de
modifier F en un feuilletage F’ de V', possédant une composante de Reeb le long de
chaque lacet p’ de P’. Le but de ce qui suit est de montrer qu’il existe de tels feuille-
tages F avec des feuilles exceptionnelles. Le feuilletage F’ posseédera également des
feuilles exceptionnelles provenant de celles de F, et nous aurons fini.

Nous nous appuierons sur I’article de R. Sacksteder déja cité, article dont nous
conservons d’ailleurs les notations.

a) Difféomorphismes de S'

Dans [5], R. Sacksteder construit un couple de difféomorphismes de .S Y (S 8)
tel que le groupe de difféomorphismes engendré, G (f;, g;), admette pour ensemble
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minimal un ensemble de Cantor C,. Rappelons bri¢vement la construction de C,, f
et g,.

S! est représentée comme [0, 2] avec les extrémités identifiées. L’ensemble C,
est défini comme suit: & la premiére étape les intervalles (1, £), (1, $) et (£, 2) sont
enlevés de [0, 2]. A la k., étape, le tiers-moyen de chaque intervalle fermé qui reste
apres la (k — 1),,,,. €tape est enlevé, comme dans la construction usuelle d’un ensemble
de Cantor. L’ensemble C; est ’ensemble restant quand toutes les étapes ont été
accomplies. C; est parfait et nulle part dense. On définit maintenant:

filx)=x+%  (mod.2)

x
gl(x)=§ si0<x<1

g (x)=3x-1> sif<x<1
g1 (x) est défini ailleurs sur [0, 2] de fagon a &tre un difféomorphisme de classe C*
avec g(2)=2.

On peut alors démontrer que C, est un ensemble minimal du groupe G(fi, g,).
(voir [5]).

Désignons maintenant par n,, n> 1, application de revétement de degré n de S*
sur S définie par:

n,(x) = nx (mod. 2).
Désignons par C,=mn, ' (C,) et par f,, g, les diffomorphismes de S* tels que:

nnfn = flﬂm 7’:ngn = glnn
astreints aux conditions:
2
fn(o)=§_ et gn(0)=0
n
Comme =, est une application de revétement, f, et g, sont définis et uniques, par les
conditions ci-dessus.

Désignons enfin par G,=G(f,, g,) le groupe de difféomorphismes engendrés par
Saet gy, nz1.

LEMME 3: C, est un ensemble de Cantor minimal pour l'action du groupe G,.
De plus (f,, 8,) tend vers (1dg:, 1dg:) dans la topologie C° lorsque n— + oo.

Démonstration: le groupe des transformations du revétement n, est engendré par
la translation o (x)=x+2/n (mod. 2).

Notons que a=f;. Cela signifie que G, contient comme sous-groupe, le groupe
des transformations de revétement de 7,. Il en résulte que si x,eS! et xem, * (xo);
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alors:

Gy (x) = m; " (G1(x0)) (D

ou G,(y) désigne la G,-orbite de y, pour yeS* et n>1.

Supposons que C,=mn, '(C,) ne soit pas G,-minimal: il existe alors F<,C,, F
fermé, G,-invariant, non vide, de méme: n,(F)< C, est fermé, G, invariant, non vide
et de plus: =,(F)#C, car n, '[n,(F)]=F d’aprés (1) puisque F est G,-invariant.

Mais ceci est impossible puisque C; est minimal. Donc C, est G,-minimal.

La seconde assertion suit des considérations suivantes:

2
(x) — x =— d’une part
fa(x) W p
et d’autre part g,(0)=0 entraine que:

ga(x) = _ £:(n%) (mod. 2)
d’ou
()= x = (g1(x) %)

soit encore:

1
lgn — Idsull < llgy — Idsu]

en notant:

If —gll = sup |f (X)—g(X)].

XeSt

b) Construction de feuilletages sur M, x S*:

Suivant Sacksteder, nous allons associer maintenant a tout couple ( £, g) de difféo-
morphismes de S un feuilletage @ (f, g) de M, x S*.

M, est une sphére S? avec 2 anses attachées et peut étre considérée comme I'union
disjointe de 3 ensembles: 4, B et C, o 4 est une «bande » difféomorphe a §* x [0, 1]
enlagant 1 fois une des anses, B est une bande analogue enlagant ’autre anse, et dis-
jointe de A.

On pourra définir un feuilletage quelconque de M, xS 1 par ses restrictions sur
les 3 ensembles T,=AxS', Ty=BxS' et To=CxS". Soit ¢ une fonction de
ve[0, 1] a valeurs réelles, avec les propriétés suivantes:

(a) ¢ est croissante et C*.
(b) 9(0)=0ct p(1)=1.
(c) Toutes les dérivées de ¢ s’annulent pour v=0 et v=1.
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Si (f, g)eDiff (S') x Diff (S') on construit le feuilletage @ (£, g) de la fagon suivante:

On associe A (f, g) les fonctions h, k suivantes de S'x[0, 1] dans S':(S'=
~[0, 2]/0~2)

h(x,v)=x+(f(x)—x)@(v) (mod.2) }
k(x,v)=x+(g(x)—x) ¢(v) (mod.2).

Notons que h(x, 0)=x=h(x, 0)
et que h(x,1)=f(x) et k(x, 1)=g(x).

Si (u,v), ueS* et ve[0, 1] représente un point de 4, (x, u, v), avec xeS", repré-
sente un point de 7 ,.

Nous définissons le feuilletage @ (f, g) sur T, par la convention que la feuille
contenant le point (x, u, 0) est formée de tous les points de la forme (h(x, v), v', v).
Le feuilletage & ( f, g) est défini sur Ty de la méme fagon, en remplagant 4 par k, et
sur T, par la condition que x est constant sur chaque feuille.

I est aisé de voir que les feuilletages ainsi définis sur T,, Ty, T, se recollent pour
définir un feuilletage C*:®(f, g) sur M, x S, dont les feuilles sont transverses en
chaque point & S! dans le produit M, x S'. La propriété de transversalité que nous
venons de noter a pour conséquence que tout lacet y de M,, dont les extrémités sont
en b, a un relévement unique dans le feuilletage @ (f, g) en un chemin commencant
au point (b, x) (xeS') contenu dans la feuille par (b, x). Notons (b, T(y, x)) I'autre
extrémité de ce chemin.

T(y, x), y étant fixé est un difféomorphisme de S', qui ne dépend que la de classe
d’homotopie de y dans 7, (M,, b). On a ainsi une représentation de =, (M,, b) dans
le groupe des difféomorphismes de S*. L’image de cette représentation est précisément
le groupe G(f, g). D’autre part, il est clair que 2 points (x, b), (y, b) (x, yeS') sont
sur une méme feuille de @ (£, g) si et seulement si les deux points x et y appartiennent
a la méme orbite de G (f, g). En particulier a tout ensemble minimal (respectivement
exceptionnel) de G(f, g) correspond biunivoguement un ensemble minimal (resp. ex-
ceptionnel) du feuilletage @ ( f, g) par l'application xeS'~(b, x)e{b} x S'cM, x S".

On se reportera utilement 4 Darticle de Sacksteder pour trouver les détails de ce
qui précede.

On a le résultat suivant & propos de ’application & que nous venons de décrire:

)

LEMME 4: l'application ®:Diff(S"')x Diff (S')>9) (M, x S") décrite ci-dessus est
continue lorsque Diff (S') et Y (M, x S*) sont munis de leurs C°-topologies. De plus
@ (Idg: x Idg1)=F,.

La derniére assertion est évidente par construction de ®. Supposons que (f; g)
soit un couple quelconque de difféomorphismes de S*. Soit (x, u, v) un point quel-
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conque de T,. En raison des tormules (2), les 2 vecteurs suivants:

dp 0 @
vi(x, u,v)=(f(x)—x -d—v—g);-{-é;
et
0
vz(x, u, V)——’a“l;

sont tangents a la feuille de ¢ (f; g) au point (x, u, v).
Si (f’, &) est un autre couple auquel sont associés les vecteurs v et v, comme
ci-dessus, on a les relations suivantes:

0
(v —v'l)':~!< If = f1 sup lo"(v)l
ox: ve[0,1]
) ©)
TNCA

Ces relations impliquent que le feuilletage @ ( f; g) restreint & T, dépend continuement
de (f, g). La méme considération s’applique a ¢ ( f, g)'TlB en remplagant f par g. Enfin,
par construction @ (f, g)|r.=F,|.. D’o le résultat.

c) Démonstration du théoréme

Les lemmes 3 et 4 impliquent que le feuilletage ®(f,, g,) tend vers F, dans la
topologie C°, si n— +00. Donc pour n assez grand @ (f,, g,)€ U et est donc transverse
au systéme de lacets P de la partie I. Chaque feuilletage @ (f,, g,) possédant un en-
semble minimal exceptionnel en vertu d’une remarque faite ci-dessus, les feuilletages
de la variété ¥’ obtenus par tourbillonnement le long de P posséderont également des
feuilles exceptionnelles.
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