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Les feuilles exceptionnelles ne sont pas exceptionnelles

par H. Rosenberg et R. Roussarie

Soit V une variété compacte, de dimension n, supérieure ou égale à 2, de classe

C00, munie d'un feuilletage F de codimension 1. On dit qu'une feuille L de F est

exceptionnelle si:

- L n'est nulle part dense dans V

- la topologie de L en tant que variété de dimension n — 1 est strictement plus fine

que la topologie induite sur L par F.

La notion de feuille exceptionnelle a été introduite pour la première fois par A.
Denjoy pour l'étude des feuilletages définis sur le tore T2 Sl xSl, transverses à

l'un des facteurs S1 [1]. Dans ce cas particulier l'existence de feuilles exceptionnelles
est liée à la classe de différentiabilité du feuilletage: ainsi, dans [1], A. Denjoy donne

un exemple de feuilletage de classe C1 présentant quelques feuilles exceptionnelles
et montre au contraire, qu'aucun feuilletage de classe supérieure ou égale à 2 ne

possède de feuille exceptionnelle. Dans [4], G. Reeb a étendu les résultats de A.
Denjoy au cas des feuilletages de la variété T2 x [0, 1], transverses au facteur [0, 1]
et conjectura qu'il devrait en être de même pour tout feuilletage défini dans une
variété de dimension 3, fibrée sur une variété de dimension 2, à la condition que le

feuilletage soit transverse aux fibres. R. Sacksteder, dans [5], donne un contre-exemple
à cette conjecture en construisant un feuilletage de classe C00 présentant quelques
feuilles exceptionnelles, défini dans la variété M2XS1, où M2 désigne la surface

fermée orientable de genre 2. (Ce feuilletage étant transverse au facteur S1.)

Nous nous proposons ici de généraliser ce résultat, en montrant que:

THÉORÈME: Toute variété de dimension 3, fermée, orientable et de classe C00,

possède des feuilletages de classe C°° contenant quelques feuilles exceptionnelles.

Signalons tout d'abord qu'il suffit de prouver le théorème dans le cas de la sphère
S3. En effet, à partir d'un feuilletage défini sur S3, on obtient des feuilletages sur
toute autre variété orientable par tourbillonnement et modification le long de

transversales fermées. Cependant, la construction donnée plus loin étant la même pour
toutes les variétés, nous n'avons pas jugé bon de privilégier la sphère S3 dans l'énoncé

du théorème.

L'intérêt du résultat réside évidemment dans la classe de différentiabilité du

feuilletage construit: en effet, il est facile de construire un feuilletage de classe C1 de

S3 possédant quelques feuilles exceptionnelles, en prenant une suspension du feuilletage

de classe C1 du tore T2 cité plus haut, puis en opérant des tourbillonnements et

modifications le long de transversales fermées. L'existence de feuilles exceptionnelles
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dans unfeuilletage de variété orientable de dimension 3, est donc indépendante en général
de la classe de dijférentiabihté du feuilletage, la situation, dans ce cas, est donc bien

différente de celle décrite par A. Denjoy dans le cas du tore T2.

Les feuilles exceptionnelles des feuilletages définis par le théorème ne sont pas
contenues en général dans un ensemble minimal II serait d'un grand intérêt de
connaître quelles sont les variétés sur lesquelles peuvent être définies des feuilletages
possédant des ensembles minimaux exceptionnels. On peut conjecturer raisonnablement,

par exemple, que la sphère S3 n'est pas de ce type: il en résulterait, grâce au
théorème de Novikov [2], que les seuls ensembles minimaux des feuilletages de S3

sont les feuilles compactes, toutes difféomorphes au tore T2.

Nous rappelons tout d'abord quelques résultats permettant d'obtenir n'importe
quelle variété F, fermée orientable de dimension 3, par modification de M2 x S1. On

construit ensuite des feuilletages de F par tourbillonnement et modification de feuilletages

deM2 x S1, d'un type analogue au feuilletage décrit par R. Sacksteder dans [5]

I. Quelques résultats standards relatifs aux variétés orientables de dimension 3

Toute variété fermée, orientable, de dimension 3 peut être obtenue par modification

de la sphère S3, comme l'indique le résultat suivant, dû à H. Wallace [6]

LEMME 1 : Soit V une variété orientable fermée de dimension 3. Il existe des

ensembles de tores solides disjoints (Tl9 Tn) et {xi, xn)plongés respectivement dans

Vet S3, tels que V- [Jnl= t Tt soit difféomorphe à S3-\Jnl t xv

Supposons que V et V soient deux variétés orientables, fermées, de dimension 3

Désignons par (Ti9 Tn) et (t19 xn) les tores plongés dans V et S3 d'une part, et

par (Tn'+1,.. Tn'+k) et (x'n+k, xfn+k) les tores plongés dans V et S3 d'autre part,
définis dans le lemme 1.

Soient (p et q>' des difféomorphismes de V— U"=i Tt dans S3 — U?=iTi et de

V - \J% T;+l dans S3- (Jf= î Tn+i respectivement
Dans S3, il existe une isotopie envoyant l'ensemble de tores plongés Uf=i Tn+*

dans la complémentaire de U?=i Tr Désignons encore par {x'n+1?..., xfn+k) les

nouveaux tores obtenus après cette isotopie et par q>' le difféomorphisme en résultant

Posons: TB+J ç)"1«+J) pour l^j^k
et T/ q>' (x) pour 1 < i ^ n.

Alors cp'ocp définit un difféomorphisme de V- {Jntl\ T, sur V - U"=î T/. On a donc

le résultat suivant:

COROLLAIRE 1: Soient V et V deux variétés fermées, orientables de dimension

5. // existe des ensembles de tores solides disjoints (Tl5..., Tm) et (T/, T^) plonges

respectivement dans V et V tels que V-\Jfsl Tt soit difféomorphe à F'-lJ^i Tî
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Clairement les tores solides T. et T[ intervenant dans le corollaire 1 peuvent être
choisis d'être des voisinages tubulaires arbitraires de systèmes de lacets disjoints
P (pt, pm) et P' (p'l9 prm) plongés respectivement dans F et V.

Supposons maintenant que V=MxSx où M est une surface fermée orientable.
Désignons par Fo le feuilletage dont les feuilles sont les sous-variétés M x {9} pour
OeS1. On peut alors préciser le corollaire 1 de la façon suivante:

LEMME 2: le système de lacets PaV, défini ci-dessus, peut être choisi transverse

au feuilletage Fo.

Ce lemme est à rapprocher d'un résultat de J. Wood (lemme 4.3 de [7]) concernant
l'obtention des variétés de dimension 3, fermées, non-orientables par modification
de E, fibre non trivial sur S1 de fibre S2 : J. Wood montre que le système de lacets de

E, le long desquels se font les modifications, peut être choisi transverse aux fibres S2.

La méthode se transpose sans changement aucun si E est remplacé par n'importe
quel fibre sur S1 de fibre une surface fermée de dimension 2. Aussi le lecteur doit se

reporter à l'article de Wood cité plus haut, et faire la transcription évidente pour
obtenir la démonstration du lemme 2.

II. Construction de feuilletages possédant des feuilles exceptionnelles

Dorénavant V=M2 x S1 où M2 désigne la surface fermée, orientable de genre 2.

Soit V une variété quelconque, fermée, orientable, de dimension 3. Soit P le système
de lacets transverses au feuilletage Fo de F, relatif à F et F' comme il a été défini dans
le lemme 2.

On considère tout feuilletage de F comme la donnée d'une section C00, complètement

intégrable, du fibre des 2 plans au-dessus de F. On munit l'ensemble 3) (F) des

feuilletages de F de la C°-topologie de la convergence uniforme des sections. Il existe

alors un ouvert U de Fo dans $) (K), tel que pour tout feuilletage Fe U9 le système P
soit transverse à F. La méthode classique du tourbillonnement [4], y permet de

modifier F en un feuilletage F' de F', possédant une composante de Reeb le long de

chaque lacet/?' de Pr. Le but de ce qui suit est de montrer qu'il existe de tels feuilletages

F avec des feuilles exceptionnelles. Le feuilletage F' possédera également des

feuilles exceptionnelles provenant de celles de F, et nous aurons fini.
Nous nous appuierons sur l'article de R. Sacksteder déjà cité, article dont nous

conservons d'ailleurs les notations.

a) Difféomorphismes de Si

Dans [5], R. Sacksteder construit un couple de difféomorphismes de S1: (fu gx)

tel que le groupe de difféomorphismes engendré, G(fugx), admette pour ensemble
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minimal un ensemble de Cantor Ci. Rappelons brièvement la construction de Cufl

S1 est représentée comme [0, 2] avec les extrémités identifiées. L'ensemble Q
est défini comme suit: à la première étape les intervalles (§-, f), (1, f) et (-f, 2) sont
enlevés de [0, 2]. A la kième étape, le tiers-moyen de chaque intervalle fermé qui reste

après la (k— l)ième étape est enlevé, comme dans la construction usuelle d'un ensemble
de Cantor. L'ensemble Cx est l'ensemble restant quand toutes les étapes ont été

accomplies. Cx est parfait et nulle part dense. On définit maintenant:

/i(*) * + i (mod.2)

Si (*) ~ si 0 ^ x < 1

gl(x) 3x-^ sif^x^l
gx (x) est défini ailleurs sur [0, 2] de façon à être un difféomorphisme de classe C00

avec g (2) 2.

On peut alors démontrer que Cx est un ensemble minimal du groupe G(fl9gi).
(voir [5]).

Désignons maintenant par nn,n^\, l'application de revêtement de degré n de S1

sur S1 définie par:

nn(x) nx (mod. 2).

Désignons par Cn n~î (Q) et par/n, gn les difféomorphismes de S1 tels que:

nngn gxnn

astreints aux conditions :

/n(0) ^ et gn(0) 0.

Comme nn est une application de revêtement, /„ et gn sont définis et uniques, par les

conditions ci-dessus.

Désignons enfin par Gn G(fn, gn) le groupe de difféomorphismes engendrés par

LEMME 3 : Cn est un ensemble de Cantor minimal pour l'action du groupe Gn.

De plus (fn, gn) tend vers (Id^i, Idsi) dans la topologie C° lorsque n -? + oo.

Démonstration: le groupe des transformations du revêtement nn est engendré par
la translation <x(x)=x+2/n (mod.2).

Notons que a=/w3. Cela signifie que Gn contient comme sous-groupe, le groupe
des transformations de revêtement de nn. Il en résulte que si xoeSx et xen~l(x0),
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alors:

Gn(x) n;1{Gl(x0)) (1)

où Gn{y) désigne la Gy-orbite de y, pour yeS1 et n^ 1.

Supposons que Cn 7u~1(C1) ne soit pas Gy-minimal: il existe alors Fa^Cn, F
fermé, G^-invariant, non vide, de même: nn(F)aC1 est fermé, Gt invariant, non vide
et de plus: nn(F)±Cx car 7i~1[7in(F)] ir d'après (1) puisque F est Gn-invariant.

Mais ceci est impossible puisque Q est minimal. Donc Cn est Gw-minimal.
La seconde assertion suit des considérations suivantes :

2
/n(x)-x — d'une part

3n

et d'autre part gn(0) 0 entraîne que:

-gi(nx)(mod.2)
n

d'où

£»(*)-* (gi(*x)-nx)

soit encore :

llg»-Wsi||<-
n

en notant:

XeSt

b) Construction de feuilletages sur M2 x S1:

Suivant Sacksteder, nous allons associer maintenant à tout couple (/, g) de difféo-

morphismes de S1 un feuilletage #(/, g) de M2 x S1.

M2 est une sphère S2 avec 2 anses attachées et peut être considérée comme l'union
disjointe de 3 ensembles: A, B et C, où A est une «bande » difféomorphe à S1 x [0, 1]

enlaçant 1 fois une des anses, B est une bande analogue enlaçant l'autre anse, et

disjointe de A.
On pourra définir un feuilletage quelconque de M2 x S1 par ses restrictions sur

les 3 ensembles TA=AxSl, TB=BxS1 et Tc CxSK Soit cp une fonction de

ve[0, 1] à valeurs réelles, avec les propriétés suivantes:

(a) q> est croissante et C00.

(c) Toutes les dérivées de cp s'annulent pour v=0 et v= 1.
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Si (/, g)eDiff(S1)x Diff(S1) on construit le feuilletage #(/, g) de la façon suivante:

On associe à (/, g) les fonctions h, k suivantes de S^xp), 1] dans S1:(Sl
[0,2]/0~2)

(mod.2) \
k(x, v) x + (g(x) - x) cp(v) (mod. 2). j w

Notons que A(x, 0) x A(x, 0)

et que h(x, 1)=/(x) et *(*, l)=g(x).

Si (w, v), weS1 et ve[0, 1] représente un point de A, (x, w, v), avec xeS1, représente

un point de TA.

Nous définissons le feuilletage <&(f,g) sur Tx par la convention que la feuille

contenant le point (x, w, 0) est formée de tous les points de la forme (h(x9 v), u\ v).

Le feuilletage $(f, g) est défini sur TB de la même façon, en remplaçant h par k, et

sur Tc par la condition que x est constant sur chaque feuille.

Il est aisé de voir que les feuilletages ainsi définis sur TA, TB, Tc se recollent pour
définir un feuilletage Cco:<P(f, g) surM2x51, dont les feuilles sont transverses en

chaque point à S1 dans le produit M2 x S1. La propriété de transversalité que nous

venons de noter a pour conséquence que tout lacet y de M2, dont les extrémités sont

en b, a un relèvement unique dans le feuilletage #(/, g) en un chemin commençant

au point (b, x) (xeS1) contenu dans la feuille par (b, x). Notons (b, T(y, x)) Fautre

extrémité de ce chemin.

T(y, x), y étant fixé est un difféomorphisme de S1, qui ne dépend que la de classe

d'homotopie de y dans n1 (M2, b). On a ainsi une représentation de n1 (M2, b) dans

le groupe des difféomorphismes de S1. L'image de cette représentation est précisément
le groupe G(/, g). D'autre part, il est clair que 2 points (x, b), (y, b) (x, yeS1) sont

sur une même feuille de # (/, g) si et seulement si les deux points x et y appartiennent
à la même orbite de G(f, g). En particulier à tout ensemble minimal (respectivement

exceptionnel) de G(f,g) correspond biunivoquement un ensemble minimal (resp.
exceptionnel) du feuilletage ${f, g) par l'application xeS1-*^, x)e{b} x S1 cM2 x S1.

On se reportera utilement à l'article de Sacksteder pour trouver les détails de ce

qui précède.
On a le résultat suivant à propos de l'application 0 que nous venons de décrire :

LEMME4: l'application ^:Diff(5rl)xDiff(51)-î)(M2xS1) décrite ci-dessus est

continue lorsque Diff (S1) et $(M2 xS1) sont munis de leurs C°-topologies. De plus

La dernière assertion est évidente par construction de #. Supposons que (/, g)

soit un couple quelconque de difféomorphismes de «S1. Soit (x, m, v) un point quel-



Les feuilles exceptionnelles 523

conque de TA. En raison des formules (2), les 2 vecteurs suivants:

dq> ô ô

dv dx dv

et

v2(x, w, v)= —
du

sont tangents à la feuille de ç (/, g) au point (x, u, v).
Si (/', g') est un autre couple auquel sont associés les vecteurs v[ et V2 comme

ci-dessus, on a les relations suivantes:

< 11/ -/T sup |<p'(v)|

(3)
0.

Ces relations impliquent que le feuilletage <P (/, g) restreint à TA dépend continuement
de (/, g). La même considération s'applique à &(f, g)\Ta en remplaçant/par g. Enfin,
par construction <P(f9g)\Tc F0\c. D'où le résultat.

c) Démonstration du théorème

Les lemmes 3 et 4 impliquent que le feuilletage $ (/„, gn) tend vers Fo dans la
topologie C°, si n-* +oo. Donc pour n assez grand #(/„, gM)e t/et est donc transverse
au système de lacets P de la partie I. Chaque feuilletage $ (/„, gn) possédant un
ensemble minimal exceptionnel en vertu d'une remarque faite ci-dessus, les feuilletages
de la variété V obtenus par tourbillonnement le long de P posséderont également des
feuilles exceptionnelles.
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