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On the Classification Problem for H-Spaces of Rank Two

by P. J. HiLTON and J. ROITBERG *)

§ 1. Introduction

We shall consider finite H-spaces of rank two. By definition, such a space X is an
H-space of the homotopy type of a finite complex whose (reduced) rational cohomology
H*(X; Q) is generated (as a ring) by two elements ae H*(X; Q), be H"(X; Q), q<n.
A classical theorem of Hopf asserts that g and » are odd, and that a and b are primitive
classes. The pair (g, n) is called the type of X.

One aspect of the classification problem is to determine which pairs (g, n) of odd
integers can be realized as the type of some finite H-space. This problem was con-
sidered and partially solved by Adams [1]. A complete solution in the case that X has
no homological 2-torsion has been given recently by Douglas-Sigrist [6] and Hub-
buck [8], in independent work. The result is the following:

1.1 THEOREM. Let X be a finite H-space of rank 2 such that H,(X; Z) has no
2-torsion. Then the type of X is either (1, 1), (1, 3), (1,7), (3, 3), (3,5), 3, 7) or (7, 7).
Moreover, each of these pairs does actually occur as a type, as can easily be seen.

In the present paper, using the above information, we shall consider the problem
of enumerating all the homotopy types which occur as rank 2 H-spaces. Actually, for
the most part, we restrict our attention to rank 2 H-spaces which have torsion-free
integral homology. For such H-spaces, we give a complete enumeration of homotopy
types, except for a single ambiguity in the case (g, n)=(3, 7). For example, we show
that any homologically torsion-free H-space of type (3, 5) is homotopy equivalent to
SU(3). We also point out here that our results yield the qualitative fact that there
are only a finite number of possible homotopy types for this restricted class of rank
2 H-spaces. In fact, this number is 11 or 13.

The rest of the paper is organized as follows. In § 2, we state and prove our main
results on the homotopy classification of homologically torsion-free rank 2 H-spaces.
It turns out that the only homotopy types occurring are those of manifolds which are
principal sphere bundles over spheres. In § 3, we sharpen the classification of § 2 by
showing that, within the class of homologically torsion-free rank 2 H-manifolds (with
one possible exception), the concepts of homotopy equivalence and PL-equivalence
coincide, i.e. the Hurewicz conjecture for such manifolds is valid. In § 4, we make some
remarks about general rank 2 H-spaces. In particular, we show how certain results of

*) Partially supported by NSF Grant GP 12815.
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Browder enable us to reduce the 2-torsion-free, simply-connected case, modulo a
certain hypothesis, to the case considered in § 2. We also discuss the exceptional Lie
group G, in § 4. Finally, in § 5, we discuss the non-simply-connected case and make
some remarks about projective groups, of a somewhat speculative nature.

We mention here that Browder [4] has given a complete homotopy enumeration
of the rank 1 H-spaces: they are simply S*, $3, §7, P? and P’.

In an appendix we show that the methods used in proving the main results
(Theorems 2.9 and 2.10) actually yield a classification of a much wider class of mani-
folds.

There is an overlap between the results of § 2 and independent unpublished work
by Curtis, Mislin and Thomas, and by Zabrodsky.!)

§ 2. Homologically Torsion-free Rank Two H-spaces

We first dispose of the cases (g, n)=(1, 1), (1, 3), (1, 7) by means of the following
theorem whose proof we omit; the observation was made to us by G. Mislin.

2.1. THEOREM. Let X be an H-space with nt,(X) free abelian of rank k. Then we
have a fibration X = X—(S")* in which the maps are H-maps, and this fibration has a
cross-section. Thus X~X x (SY)*.

2.2. COROLLARY. If X is a torsion-free H-space of type (1, n), then X =S x S".

Having excluded the cases (g, n)=(1, 1), (1, 3), (1, 7), we have to discuss the cases
(g, m=@3,3), (3,95, (3,7), (7, 7). In such a case, X is 1-connected and consequently
we have a cellular decomposition for the homotopy type of X,

X ~S%u,e"uget. (2.3)

2.4. THEOREM. If g=n, then X~S8" x S".

Proof: In this case X=~(S"vS")uze*. Now the Whitehead product [1;, 1,]
generates a cyclic infinite direct summand in 7,,_,(S" v §"). Since Whitehead products
vanish in 7,,_,(X), [11, 1] must be a multiple of . This implies that = +[1,, 1,],
whence X~ 8" x S".

It remains to discuss the cases (g, n)=(3, 5), (3, 7). We first quote a classical
theorem of homotopy theory.

2.5. LEMMA (James [9]; cf. also [7]). Letn—1>g>2 and let 6en,(C,, S¥) denote
the characteristic map for the n-cell of C,Uge" TI=810,€"Uge" *4 (50 that a=0 (0)).

1) Zabrodsky has announced that the principal S3-bundles Eay, Esw and Eion (see § 2 below)
are not H-spaces. He has also announced the homotopy classification of simply-connected, torsion-
free rank 2 H-spaces.
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Then 64 1,y gy (D", 8" V)> 1,4 ,—1(C,, S ismonicand m, , ,_,(C,, S9)is isomorphic to
the direct sum of im o, and an infinite cyclic group generated by the (relative) Whitehead
product [a,1,], 1,€7,(S) the generator. Thus, if j:C,—(C,, S?) denotes the inclusion,
we have jup=m[0o,1,]®0.0, meZ, gen,,,,(D" S"").

We now combine the information given in Lemma 2.5 with general results on the
homology structure of finite H-spaces to get a grasp on the behavior of . We prove

2.6. THEOREM. Let X be an H-space having the form given in (2.3), with
n>q>1. Then j,p=+[o,1,].

Proof: We use the following two facts. First, by a theorem of Browder [2], X
obeys Poincaré duality. Secondly, by a theorem of Browder-Spanier [5], X is stably
reducible, i.e. Z¥B=0 where Z" is the N-fold iterated suspension, N sufficiently large.

The proof uses the formula for j, f givenin Lemma2.5. Letac HY(X; Z),be H"(X; Z)
and ce H""9(X; Z) be cohomology generators. Then, by Theorem 3.3 of James [9],
au b=mc,and by Poincaré duality,aub= +c.Thusm=+1and j,f= +[0, 1,]@0.0,
Q€T 44— (D", " 1). Now, ZVB=0 so that Z"(j,B)=0 and therefore Z"(5.0)=0. We
shall show that this latter equation implies that ¢ =0, thereby completing the proof.
To see this, first note that g=3 in our case. Next, consider the commutative diagram

nn+2(Dn’ Sn— 1) _0_.) 7rrM-Z(Cev Ss)
ey B

Tor3 (D", 8" =25 1,44 (2C,, S%)

Then Z(6.0)=Z004,0=(Z0)42'0. But, since n>5, £’ and (Zo), are both isomor-
phisms, the latter by the homotopy excision theorem. Thus, if ¢ #0, we would also
have Z(0.0)#0. Iterating, we see that ¢ #0 implies 2V(c.0)#0. This establishes our
contention and completes the proof of Theorem 2.6.

Of course, this theorem allows us to take j,f= [0, 1,], since we do not change the
homotopy type of X by replacing f by —8.

Remark. Theorem 2.6 provides an alternate proof of Theorem 3.2 of [7], as follows.
Even though the space E, of [7] is not, in general, an H-space, it is nevertheless true
that E, satisfies Poincaré duality and is stably reducible. (This follows from the fact.
proved as Theorem 4.1 in [7], that E, is a parallelizable smooth manifold.2)) These are
the only properties of E, needed to prove the desired result.

The proof of Theorem 3.2 of [7] given in [7] relied on the fact that there is a map
pi(E,, $?)—(S", point) (the bundle projection) inducing an isomorphism py:
Ty (E,, $*)>my(S™), i.e. that p is a quasifibration. As we shall note directly below.
the fact that j,f= + [0, 1,] implies the converse of this statement.

2) Although it is only proved in [7] that E, is parallelizable for n # 4 (a€7mn-1(S3)), the result
is also true for n =4. In fact, looking at the decomposition of the stable tangent bundle of E given
on p. 105 of [7], it is easily seen that p*,{4} is always O even though {a} need not be 0 for n=4.
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277. COROLLARY. If X is a homologically torsion-free rank 2 H-space, then
there exists a map p:(X, S?)—(S", point) which is a quasifibration.

Proof: In case the type of X is (1, n) or (n, n), this follows from Corollary 2.2 and
Theorem 2.4. If X is as in Theorem 2.6, the result follows by combining the conclusion
of Theorem 2.6 and the work of Sasao [11; pp. 624-626].

This corollary suggests the conjecture that any homologically torsion-free rank
2 H-space has the homotopy type of a sphere bundle over a sphere. This is obviously
true for the types covered by Corollary 2.2 and Theorem 2.4 and turns out to be correct
in general, as we shall soon see. We first have the following general result.

2.8 THEOREM. Let X~S870,e"Ugze""? be an H-space with a=0, i.e. X~(S%v
v 8" )ugze" . Then X~S%x S".

The proof is exactly as in the case g=n.

We now deal systematically with the cases (g, n)=(3, 5), (3, 7).

2.9. THEOREM. If X is of type (3, 5), then X~SU(3).

Proof: We have X~S3u,e’ Uge® with a#0. Indeed, if =0, then Theorem 2.8
implies X~ $3 x S° and this would mean S° is an H-space. Now, by Theorem 2.6 and
the subsequent remark, we may assume, without loss of generality, that j,f=[0, 15 ]. If
we now write SU(3)~S? U, Uy €%, we have o’ = (since ,(S*)=Z,) and, as above,
we may assume j, B'=[0, 1;]. Thus f— B’'eker j,=im iy, iy:n,(S*) > 7, (S> L e%).
The proof will be completed by showing that imi,=0. To this end, recall that
n,(S3)=Z, with generator a.y, y:S’ - S* the Hopf map. But i, (aoy)=ioaxoy and
plainly, ica=0. This completes the proof.

Before stating the next theorem, recall that =g (S°)=Z,, with generator w, the
Blakers-Massey element. Thus, if X is of type (3, 7), the map « has the form kw,
0<k<12. Since we are only concerned with homotopy type we may indeed suppose
0<k<6.

2.10. THEOREM. If X is of type (3,7) and a=kw then X~E, , the principal
S3-bundle over S” with characteristic map ko.

Remark. If k=0, E,,=S®x S, an H-space; if k=1, E,,=Sp(2); Hilton-Roitberg
show [7] that Es, (=E,,,) is an H-space; and, more generally, Stasheff [12] has shown
that E,, is an H-space if k#2 or 6; the same methods, due to Zabrodsky, show that
E,, is an H-space iff E,, is an H-space. Zabrodsky has announced (unpublished) that
E,, and E¢, are not H-spaces.

Proof of 2.10: As in the proof of Theorem 2.9, we have

10 10
Ekm--":"g3 Ukwe7 Uﬂ,e = CkUﬂ'e 5

10
X= Xkﬁ 4S3 Ukwe7 U,;elo = CkUﬂe
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and we will show that =+ f'. In fact, as before, we will choose f, 8’ so that f=p'.
We have, by Theorem 2.6 and the subsequent remark, that j,f=j,8 =0, 1]. Thus,
if k#0, 3, 6 we may immediately infer that f=pf’. For consider the exact sequence

79 (S°) = o (Cy) > g (Crs 53) . (2.11)
Now 7n4(S?)=Z,, generated by

$0 5 552 83,
It is thus generated by kwo2>w, provided 3tk. But i, (kw)=0 s0 iy (kwo2?w)=0 and
Jx 18 monic if 3 fk.

It remains to consider the cases k=0, 3, 6. The case k=0 is already disposed of in
Theorem 2.8. We now take k=3. Then E;, and X; are both H-spaces. Consider

iy Ja
759(53) - 7‘9(C3) —> T (Ca, Ss)
i, Je )
7‘7(33) — Ty (Cs) — Ty (Cs» 53) — Tg (SS)

Now 9(0)=3w so d(40)=0. Thus there is ten,(C;) such that j,(t)=4¢. For any
such 1, j,[ 7, 1]=4[0, 1]. Since attaching e'° kills [z, 1] in both E;,, and X;, we have
4p'=4B=[r,1]. But no(S*)=Z; so 3(B—p')=0. It follows immediately that f=p"

Finally we consider the case k=6. Here X is an H-space but we do not assume
that E4, is an H-space.

For convenience we retain the symbols B, f to refer to X;, E;,, and will use B, f'
to refer to the attaching maps for e'° in X, E,,,, and similarly with &, 7. Then by the
same argument as above we know that 28=[ 7, 1] and it will be sufficient to show that

2B = [%, 1], (2.13)

since we then complete the argument just as in the case k=3. We know that 2’
=[3, 1]+ ixd, A€mo(S?). We have the diagram

Ss""’E6w_’S7

| b ]2 : (2.14)

S* > E,,— S’

(2.12)

inducing

75(S%) = 19 (Ce) = o (Ce S?)
[ s
Tig (53) = Ty (Cs) - ﬂ9(C3’ Ss) s

77(Ce) 5 77 (Ce, 5%) D 16 (S?)

e i ,
77(C3) = 77(C3, 8%) = n6(S°).

(2.15)
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Now 0(6)=6w, f4(5)=20 and we may take t=f, (7). It follows that f,[7, 1]=[x, 1].
We claim that f, (B")=mp’ for some m. For we have the diagram

P
nlO(EGw’ Cs) - ”9(C6)
11 L
2 2.16
7510(E3an C3)— 7y (Cs) ( )

and the groups on the left of (2.16) are cyclic infinite with their d-images generated
by B, B’ respectively. Thus, applying f, to the equation 28 = [T, 1] +ish, we get
2mp’ =[1, 1]+i,A. We know that 48'=[1, 1]. Thus, applying j,, we infer that m=2
(which was in any case clear on other grounds). Thus i,A=0 so that A=0, whence
(2.13) is proved and, with it, the proof of Theorem 2.10 is complete.

We thus have a complete list of homotopy types of torsion-free rank 2 H-spaces,
modulo one ambiguity. The list reads S*xS'; §'x 83; $*xS87; $3x S53; SU(3);
S*xS7, Sp(2), E,,, Es,, E,,, Es,, Eg,; S”xS".

The one doubt concerns the bold examples; both or neither are H-spaces — and,
as we have said, Zabrodsky has announced that neither is. This announcement does
not, of course, render the arguments of Theorem 2.10, in the cases k=2, 6, superfluous.

§ 3. Topological Classification
Our purpose in this section is to prove

3.1. THEOREM. Let X be an arbitrary homologically torsion-free rank 2 H-space,
not of the homotopy type of S' x S>. Then there is a closed PL manifold M, unique up
to PL-equivalence, which is homotopy equivalent to X.

Remark. This theorem is quite analogous to the situation in the case of rank
1 H-spaces. There, the only possible exception is, of course, S°.

Proof of 3.1: Of course, the existence of M (indeed, of a smooth manifold M) was
proved in § 2. For uniqueness, we first consider the case where the type of X is (1, »n).
If n=1, the result is obvious. Since we are excluding n=3, there remains only n=7.
But, as has been observed independently by several people, of M is any PL manifold
homotopy equivalent to S* x S”, n>>5,3) then a theorem of Browder-Levine implies
that M must be PL-equivalent to S' x S".

We turn now to the case where the type of X is (g, n), g> 1. Here, uniqueness will
be deduced from simply-connected surgery considerations. A convenient way to see
this is to use Sullivan’s formulation of the surgery technique [13]. Thus, if N is another
closed PL manifold homotopy equivalent to X, let #: N— M be a homotopy equiva-
lence. According to [13], 4 is “classified”” by a map C,:M,—F/PL, M, denoting M

3) The result is actually true for n > 4 as is shown in J. Shaneson’s thesis.
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with a small open disc removed and F/PL denoting the fibre of Bp;— Br. But

M~X~S5%0,e"Uge"™? so that My~S?u,e". Applying the cohomology functor

[—, F/PL] to the cofibration S7—S?u,e"— S" yields an exact sequence
n,(F/PL)—[M,, F/[PL]— T, (F/PL);

since ¢ and n are odd, =, (F/PL)=m=,(F/PL)=0 by [13] and hence [M,, F/PL]=0. In
particular, C, is nullhomotopic and thus, again by [13], 4 can be deformed to a PL-
equivalence h’: N- M. This completes the proof of Theorem 3.1.

Observe finally that Theorem 3.1, while giving a combinatorial classification, also
contains a topological classification. For if M is a closed, topological (not a priori
PL) manifold homotopy equivalent to X, X a homologically torsion-free rank 2 H-
space, then the recent solution of the Triangulation Conjecture by Kirby-Siebenmann
and Lashof-Rothenberg implies that M can be triangulated as a PL-manifold. In fact,
the only possible obstruction to triangulating M lies in H*(M; Z,), and the latter
group is clearly O in our situation.

§ 4. General Rank Two H-spaces

We begin by quoting a general theorem of Browder on torsion in H-spaces. The
main result of this section will then follow as an immediate corollary.

4.1. THEOREM (Browder [3, Th. 6.7 and succeeding remarks]). Let X be a finite,
connected H-space (not necessarily of rank 2) and suppose H,(Q2X; Z) is torsion-free.
Then

(a) if H* (X; Z) has p-torsion, then there exist integersk > 1 and m, withm=1 mod p,
such that H* (X ; Q) has a generator of dimension 2m p*—1; and 2m is the smallest
dimension where H*(X; Z) has p-torsion;

(b) if H*(X; Z) has higher p-torsion (i.e. elements of order p", r>1), then there
‘exist integers 1>2 and q, with q=1mod p, such that H*(X; Q) has a generator of
dimension 2q p' — 1; and 2q is the smallest dimension where H*(X ; Z) has higher p-torsion.

4.2. THEOREM. If X is a connected, rank 2 H-space without 2-torsion, and if
H,(QX; Z) is torsion-free,) then X has no p-torsion in its integral cohomology (or
equivalently, its integral homology) for p >5, and has no higher 3-torsion in its integral
cohomology.

If, in addition, X is simply-connected, then X has torsion-free integral cohomology.

Proof: We consider the simply-connected case, the proof being similar in the
general case. The existence of p-torsion in H* (X; Z) implies, by Browder’s Theorem
4.1, that H*(X; Q) has a generator in dimension 2m p*—1, with both m,k>1.

4) J. Hubbuck has informed us that the restriction on QX can be removed.
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Moreover, we cannot have m=1, since otherwise, again by Browder’s theorem, we
would have H? (X; Z) possessing p-torsion, which is impossible. (In fact, H? (X; Z)=0
since, by another theorem of Browder [2], 7, (X)=0 for a finite, simply-connected
H-space.) Thus, since m=1 mod p, we must have m >4, and then 2m p*—1>23. But
this evidently contradicts Theorem 1.1 and completes the proof of the theorem.

Thus, Theorem 4.2 provides us, in view of the results in § 2, with a solution of the
classification problem in the 2-torsion-free, simply-connected case, modulo the hypoth-
esis on QX.

Concerning this hypothesis, we mention that a well known theorem of Bott asserts
that H, (QX; Z)is torsion-free if X is a Lie group. Moreover, the only known examples
of finite H-spaces (cf. Hilton-Roitberg [7], Zabrodsky [14], Stasheff [12]) are “locally”’
either Lie groups or products of odd-dimensional spheres, i.e. for each prime p, X is
H-equivalent, modp, to such a space. Thus, for all known finite H-spaces, it is true
that H, (QX; Z) is torsion-free. It is therefore not inconceivable that H, (QX; Z) is
torsion-free for an arbitrary finite H-space X. Nevertheless, it would certainly be
desirable to avoid using this hypothesis on QX in Theorem 4.2 (provided, of course,
the result is true in that generality).

We consider next what occurs when we remove the restriction that there be no
2-torsion present. Then the conclusion of Theorem 1.1 is no longer necessarily valid
and, in fact, the exceptional Lie group G, provides a specific counterexample.

Recall that G, may be considered as a bundle over S® with fibre SU(3). This
implies that G, has a cellular decomposition of the form

14
G,~S*u,fuefueuc’uelue't. (4.3)

Thus G, has rank 2 and type (3, 11). Moreover, the known homology structure of
G, tells us that the 6-cell (resp. 9-cell) is attached to the 5-cell (resp. 8-cell) by a map
of degree 2. (This also follows from Theorem 4.1, which implies that if X is any simply-
connected finite H-space of type (3, 11), satisfying the condition on QX, then X has
no p-torsion for p>3 and no higher 2-torsion.)

In addition to G,, there are three other H-spaces of type (3, 11) which can be
constructed by Zabrodsky’s method.

We state this as

4.4. THEOREM. There are four homotopically distinct H-spaces, X, X,, X; and
X, of type (3, 11), which can be obtained by “‘mixing” G, with S°x S (X, being G, ).

Proof: Following Zabrodsky, we take a decomposition P=P, U P, of the set of
primes P into disjoint subsets and we mix G, (P,) with % x §** (P,). (In order that the
result be an H-space, we must have 2€P;.) The four examples arise by taking (a)
P, =0 (yielding G,, of course), (b) P,={3}, (c) P,={5}, (d) P,={3, 5}. The reason
that these examples are homotopically distinct is that G, and S* x S'! are definitely
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not equivalent, either mod3 or modS5. In fact, by a theorem of Bott-Samelson, re-
proved by Kumpel in [10], 7,,(G,)=0, whereas n,,(S*x S')=Z,s. Thus the four
examples are distinguished by 7, and the theorem is proved.

Remarks. (1) The reason that only the primes 3 and 5 play a role in Theorem 4.4
is that, by a theorem of Kumpel [10], G, and S> x S'! are equivalent modp forall p>7.

(2) The homotopy types X; (i=2, 3, 4) all have representatives which are smooth
manifolds; this follows from the Browder-Novikov Theorem.

(3) Presumably, further examples can be obtained by mixing G, with G,, G, being
G, with the opposite multiplication. See Stasheff [12], where this operation is carried
out with Sp(2) in place of G,.

§ 5. The Non-Simply-Connected Case

We conclude the paper with several remarks about non-simply-connected rank
2 H-spaces. For simplicity, we restrict attention to H-spaces whose type is one of
those appearing in the conclusion of Theorem 1.1. (Of course, this is no real restriction
if the space has no 2-torsion.)

First we note that Theorem 4.2 does not rule out the possibility of the existence of
3-torsion or higher 2-torsion in such a space. In fact, 3-torsion does occur: simply
observe that SU(3) has center Z; so that if PSU(3) denotes the corresponding projec-
tive group, H?(PSU(3); Z)=2Z,. Of course, 2-torsion also occurs: for example,
reason as above with PSp (2), the projective symplectic group, With regard to higher
2-torsion, it is easily seen from Theorem 4.1 that if it occurs, it appears already in
H?(X; Z). This would imply that n, (X) has elements of order 4 and this seems unlikely.
The known examples certainly have no 4-torsion in their fundamental groups.

We would now like to mention the existence of certain spaces which look like very
strong candidates for the role of rank 2 H-spaces. These spaces, which we denote by
PE,,, are obtained as follows. There is, on the principal S*-bundle E,,, a certain
smooth, fixed-point-free involution T;; PE,,, is the resulting quotient manifold. For
k=1, PE,,is PSp(2); indeed, it turns out that T is just multiplication by ( B (1) _ ?) .
It seems quite likely that whenever E,, is an H-space, so is PE; . A detailed treatment
of the spaces PE,, will be presented elsewhere.

Finally, we mention another possible way of obtaining rank 2 H-spaces with
fundamental group Z,. That is simply by applying Zabrodsky’s mixing technique to
the spaces PSp (2), PSp (2), P(S> x S7). (Zabrodsky works only with simply-connected
spaces, but this appears to be overly restrictive.) Since the principal S°-bundles Ey,
(k#£2mod4) are obtained by mixing Sp (2), 55(_2), S* x S7, it is tempting to conjecture
that the spaces PE,,, of the preceding paragraph are obtained in a similar way from the
corresponding projectivized spaces. We hope to return to this point on a future occasion.
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§ 6. Appendix

We remarked in § 2 that the conclusion of Theorem 2.6 only requires that X satisfy

Poincaré duality and be stably reducible. This remark enables us to prove the following
theorem.

6.1. THEOREM. If X is a closed smooth 1-connected torsion-free manifold of rank
2 and type (g, n) with q=3 and n=>5 or 7, then X is homotopy equivalent (and therefore
PL-equivalent) to an orthogonal S%-bundle over S".

Proof. We first show that X is a n-manifold. Since n;(B0)=0, i=3, 5, 7, it follows
immediately that r] (X-point) is trivial, where te[ X, B0] is the stable tangent bundle.
Thus X is almost parallelizable. If dim X'=8, we complete this stage of the argument
by observing that the obstruction to trivializing t vanishes iff p, (X)=0, which is true
by the Hirzebruch Signature Theorem since ¢ (X)=0. If dim X'=10, we reason by the
classical argument, invoking the injectivity of the J~homomorphism in dimension 10.

Now the argument of Theorem 2.6 allows us to infer, in the notation of § 2, that
JjsB= [0, i], so that X quasi-fibres over S". A close examination of the arguments
proving Theorems 2.9 and 2.10, involving a study of the self-homotopy-equivalences
of C,=S%yu,€", then shows that there are precisely 3 such quasifibrations if n=>5 and
10 such if n=7. However, James and Whitehead, in their classical study of sphere-
bundles over spheres, showed that there are precisely 3 orthogonal S3-bundles over
S3, and Curtis and Mislin, basing themselves on the work of James and Whitehead,
have recently shown (as yet unpublished) that there are precisely 10 orthogonal
S3-bundles over S7. Thus each of our quasifibrations is homotopy equivalent to an
orthogonal S3-bundle and the proof of the theorem is complete.

Remark. The same conclusion holds if X is assumed only to be a closed, PL
manifold. Indeed, by carefully applying smoothing theory to X, it can be seen that all
the obstructions to smoothing X vanish, and we may then apply Theorem 6.1.
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