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liber die Darstellung der endlichen

Drehgruppen durch Kugelfunktionen

Herrn Andréas Speiser zum 85. Geburtstag von Heinz Huber (Basel)

1. Es sei Jfi der Vektorraum ûber C der homogenen harmonischen Polynôme
/-ten Grades des R3. Jede Drehung TeSO(3, R) induziert eine lineare Abbildung

3el-*3t?h definiert durch

Es sei nun F eine endliche Drehgruppe des R3. Dann ist die Abbildung

eine Darstellung von F vom Grade dim^ 2/+l. Wir wollen die Zerlegung dieser

Darstellung in irreduzible Komponenten untersuchen. Wir mûssen deshalb zuerst

ihre Spur

berechnen. Dazu fûhren wir folgende Grosse ein:

dabei bezeichnet q (p, q) die sphârische Distanz der Punkte/?, q auf der Einheitssphâre

I des R3. Aus dieser Définition folgt unmittelbar:

^T"1) 3(T), 9(S~lTS) 9(T) VS, TeSO(3, R).

Jetzt zeigen wir:

'100= I exp(îkrS(T)). (1)
k=-l

Beweis: 3tfx besitzt bekanntlich folgende ausgezeichnete Basis ([1], ch. IV):

u\k\x, y, z) (x + iyf(x2 + y2fw^(x2 4- y2 + z2)±('-|k|)
(2)

dabei ist P/'fc|) die |A:|-te Ableitung des /-ten Legendre-Polynoms.
Sei nun pel ein Fixpunkt von T. Dann gibt es ein *SeSO(3, R) so, dass Sp

(0, 0, 1). Setzen wir R^STS'1, so gilt

fx + iy -+ eia(x + iy\ 0 < a < 2n, ^
S (T) 9 (R) Min (a, 2w - a). (4j
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Aus (2) und (3) ergibt sich sofort

[R'I u\k) u\k)oR-r e~irkauf\ - l < k ^ + /.

Somit wird

(S-'iRrS) S[S-1RrSl S[Rrl £ ee~irk\
k=-l

Daraus und aus (4) folgt die Behauptung (1).
Die Reduktion der Darstellung T^\T\ von F ist geleistet, wenn es gelingt, fur

jeden irreduziblen Charakter x von F den Mittelwert

1

n(l, x) M(*& F) —— £ at(T) X(T) (5)
Oral Ter

zu berechnen; nach der Darstellungstheorie ist «(/, #)^0 ganz, und es gilt

wobei ûber aile irreduziblen Charaktere von F zu summieren ist. Wir leiten nun eine
Mittelwertformel fur Klassenfunktionen auf F her und wenden sie nachher auf die
Berechnung von (5) an.

2. Es sei v Ordr^2 und F die Fixpunktmenge der Gruppe F auf I. F wirkt als

Permutationsgruppe auf F. Zwei Punkte p, qeF sollen aequivalent heissen, wenn es

ein Te F gibt, sodass q — Tp. F zerfallt dann in h Aequivalenzklassen Fl9..., Fh. Wir
wâhlen in jeder Fixpunktklasse Fj einen festen Reprâsentanten pj und definieren:

Fj {TeF | TPj pj}, vj OrdF,. > 2, (j 1,..., h).

Nun ist Fj {Tpj | Te F}, und zwar gilt Tpj Spj genau dann, wenn S'^eFj. Folg-
lich ergibt sich fur die Anzahl/} der Fixpunkte der Klasse Fy die Gleichung

/i v/viB (1)

Nun beweisen wir folgenden

MITTELWERTSATZ: Fur jede Klassenfunktion q> auf F gilt:

£ M(cp9rj)-(h-2)<p(E).

Beweis: F enthâlt mit jedem Punkt p auch den Antipoden p. Deshalb gibt es eine

Zerlegung
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Setzen wir

rp {Ter|:
so sind offenbar

r'= u n>
peFo

zwei Zerlegungen

Daraus folgt

Tp p},

r
vonF'

u n
>eFo

peF0

y"1 ^

HEINZ HUBER

',-{£}, peF,

in disjunkte Teilr

TeT'p

Terp

peF
(2)

Nun gibt es zu jedem /7GF,. ein SeF, sodass $p=Pj. Dann ist rp S~irjS und

somit

E <P(T)=

Daher wird

FTeTp j=l peFj TeTp j=l
also wegen (1):

v"1 E E v(T0= E M^r,.).

Somit folgt aus (2):

2M(q>9 F) V">(E)(2 - | /,) + E M(v> rj)' (3)

Wâhlen wir speziell ç> l, so kommt:

2 v~1(2 — Y /•) -f h. (4)

Daraus und aus (3) ergibt sich der Mittelwertsatz.

3. Aus (2.1) und (2,4) folgt noch die Gleichung

2(1 — i/v) y (i — i/v). w
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Daraus und aus den Nebenbedingungen 2 ^ Vj ^ v ergibt sich sofort die wohlbekannte
Tatsache, dass nur die folgenden Fâlle auftreten kônnen:

I : h 2, Vj v2 v ^ 2 (zyklische Gruppe)
II: A 3, 2 v1^v2^v3, v2<3:
0 v1 v2 2, v3 v/2, v 0mod2 (Diedergruppe)
2) vt 2, v2 v3 3, v 12 (Tetraedergruppe)
3) vx=2, v2 3, v3 4, v 24 (Oktaedergruppe)
4) vl=2, v2 3, v3 5, v 60 (Ikosaedergruppe).

4. Mit Hilfe des Mittelwertsatzes kônnen wir nun den gesuchten Mittelwert
F) in eine aufschlussreichere Gestalt bringen:

SATZ 1 : (a) Zu jedem irreduziblen Charakter x von F gibt es ein System von h

Funktionen auf Z:

keZ-+m(j,k9x), (j 1,..., h),

mit folgenden Eigenschaften:

)=i Z m(j9k,x)-(h

2) m (j, Kx)>0 ganz, m (j, fc, /) m (j, k', x) /"> fc fc' mod v,-,

3) I mC/,fc,x)
fc mod vj

4) £ Ij=l k mod vj
(b) Zwm Hauptcharakter x0 gehôrt insbesondere folgendes System:

L_ Jl fixr fc s= 0 mod v,.,
10

Beweis: Wir wenden den Mittelwertsatz auf die Klassenfunktion (p^oft an und
erhalten

2n(l, x) 2M((Tlz, F) S M(<rô, F,) - (II - 2) (2/ + 1) X(E). (1)

Nun ist Fj eine zyklische Drehgruppe der Ordnung vy; sie besitzt daher eine Er-

zeugende 7) mit S(TJ) 27r/vJ.. Somit wird nach (1.1):

.r^vJ1 Y CtVnxÎTj)***!1 S (l exp(fcr.27rt/vJ.))^)
rmodvj rmodvj \k--l /

î v/1 £ X(rr)exp(-fcr-27u/v,.).
fc=-È rmodvj
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Somit folgt aus (1):

2n(h x) £ I m(j, fc, *)-(*- 2)(2/ + 1) Z(£) (2)

mit

m(j,fc,x) v;1 X z(7]|)exp(-kr-2W//vi). (3)
r mod vj

Die zyklische Gruppe Fj besitzt genau die folgenden v^ irreduziblen Charaktere :

Xjk : TJ -> ef, 8j exp (Ini/vj), (k mod v,.).

Damit kônnen wir (3) folgendermassen schreiben :

rj). (4)

Nun ist aber die Restriktion von x auf Fj die Spur einer (i.a. reduziblen) Darstellung
von Fj-, daher folgt aus (4) nach der Darstellungstheorie:

k mod vy

also insbesondere

X(E)= Y m(j9k,x).
k mod vj

Weiter folgt aus (5):

m U> k> X) ™ (h k'9 x) XjkXjk' auf Fj,
k, k' mod vj

und somit

M(x#, F,) X m2(j> k> x)- (6)
k mod Vj

Andererseits ist aber M(xx, F)=l. Daraus und aus (6) folgt nach dem Mittelwertsatz

j l kmodvj

Endlich folgt aus (4) noch

il fûrfc Omodv,,

Damit ist Satz 1 bewiesen.

5. Wir wollen jetzt einige unmittelbare Folgerungen aus Satz 1 besprechen. Zu-

nâchst ergibt sich sofort
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SATZ 2: Fur den Hauptcharakter Xo von F gilt

"G,Xo)=l+ Z [ï/vJ-(fc-2)/
Ferner zeigen wir

SATZ 3: Essei v0das kleinste gemeinschafthche Vielfache von vl9...,vh. Danngilt

In der Tat folgt aus Satz 1 :

2n(l + v0, X) - 2n(/, x) Z 2 ~ *(£) ~ 2(^ " 2)
v

7-1
Daraus und aus (3,1) folgt aber die Behauptung.

Es bezeichne nun / den kleinsten mchtnegativen Rest von /modv0. Dann folgt
aus Satz 3 : j^v + 0(1).

Somit haben wir

SATZ 4: Fûrjeden irreduziblen Charakter x von F gilt
2

km
/-oo / V

Das Ûberraschendste ist nun aber, dass man mit dem ersten Satz n (/, x) tatsâch-
hch vollstândig berechnen kann, und zwar ohne die irreduziblen Charaktere von F a
priori zu kennen ; dièse lassen sich vielmehr ebenfalls mit Hilfe von Satz 1 auffinden
und beschreiben. Wir werden das îm folgenden fur die Ikosaedergruppe zeigen; die

ùbrigen endhchen Drehgruppen konnen ganz analog behandelt werden.

6, Es sei jetzt F die Ikosaedergruppe. Dann gilt nach 3 : h 3, vt 2, v2 3, v3 5,

und Satz 1 hefert folgende Aussagen:

î (1)

X m(l,fe(X)= Z m(2,k,x)= E m(3, k,Z)
k mod 2 k mod 3 k mod 5

(2)

î E m2(j,k,x) 2 + X2(E)- (3)
j 1 k mod v^
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Aus (2) ergeben sich zunâchst die Tabellen auf Seite 38.

Somit folgt aus (1), dass n(l,x) fur aile / berechnet werden kann, sobald die
fûnf Grôssen /(£), m(j9 0, %\ YX=-i m(3> fc» x) bekannt sind.

Wir werden nun zeigen :

SATZ 5: (a) Die Ikosaedergruppe besitzt ausser dem Hauptcharakter Xo genau
vier irreduzible Charaktere Xi, • • •, X4, die folgendermassen beschrieben werden kônnen :

1. Xi ist Charakter der irreduziblen Darstellung
2. X2 ist Charakter der irreduziblen Darstellung []2x2 2

3. Die Darstellung T-+[T~\3 zerfâllt in zwei irreduzible Komponenten mit den
Charakteren /3, /4:(T3

(b) Fur dièse Charaktere gilt folgende Tabelle:

Xi

11

X3

X*

X(E)

3

5

3

4

m(l,0,*)
1

3

1

2

m(2,09x)

1

1

1

2

m(3,0,x)

1

1

1

0

3

3

1

2

Beweis: 0.) Fur /=0 folgt aus (1):

2n(0,*)= £m(7,0,Z) -/(£).
Die Darstellung T-+\_T~\0 ist aber die Einsdarstellung von F, da

stanten Polynomen 0-ten Grades besteht. Daher ist «(0, x) 0

folgt aus (4) :

3

1.) Fur /=1 ergibt sich aus (1), (2):

2n(l,/)=

(4)

aus den kon-
somit

(5)

(6)
fc=-i

Daher kann die Darstellung T-*\T\ keine irreduzible Komponente ersten Grades

besitzen und ist deshalb wegen dim^ 3 selbst irreduzibel.

Bezeichnen wir ihren Charakter mit Xu s0 êilt:
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Daraus und aus (6) ergibt sich:

£ m(3,fc,*i) 2 + m(l,0,Xi), (7)
k=-i

£ m(3,k,x) m(l,0,x) VZ*Zi- (8)

2.) Fur /=2 ergibt sich aus (1), (2):

2n(2, x) w(l, 0, x) - m(2, 0, x) < *(£). (9)

Daraus folgt zunâchst:
(a) Die Darstellung T-+\T~\2 besitzt keine irreduzible Komponente ersten Grades.

Wir zeigen ûberdies:

(b) Sie besitzt auch keine irreduzible Komponente vom Grade 2.

Sonst muss es nâmlich einen Charakter x mit X (E) 2 und n (2, x) > 1 geben. Dann
folgt aus (9) ni(l, 0, x) 2+m(2, 0, %)^2 und daher

X m2(l,fc,z)»4.
/cmod2

Ausserdem gilt

£ m2(j,k,x)> S m(j,k,x) x(E) 2-
k mod vj fc mod vj

Somit wird
3

j=l /tmodv^

Das widerspricht aber der Gleichung (3).

Wegen dim^f2 5 folgt jetzt aus (a) und (b), dass die Darstellung r-»[r]2 irre-
duzibel ist. Bezeichnen wir ihren Charakter mit Xi-> so gilt:

X2(E) 5, n(2, %2)=1, n(2, x) 0 ^x^Xi-
Daraus und aus (9) ergibt sich:

3.) Fur 1=3 ergibt sich aus (1), (2):

J
k=-l

Daraus und aus (7), (11) folgt 2n(39 Xi)381 -'«(1, 0, Xi)< 1 ; somit ist

n(3,x0 0 (13)
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und m(l, 0, Xi)= 1. Daraus ergibt sich nach (11), (7) und (5) die erste Zeile unserer
Tabelle.

Aus(12)und(8)folgt:

2n(3, x) X(E) - 2m(l, 0, y) + m(2, 0, X) Vx*Xi- (14)

Daraus folgt nach (10): 2«(3, x2)=l-w(2, 0, X2)<1. Folglich ist m(2,0, X2)=l-
Daraus ergibt sich nach (10), (8) und (5) die zweite Zeile unserer Tabelle.

Aus (14) und (11) ergibt sich:

2n(3,x) x(£)-m(l,0,X)<Z(£) VX*XuX2. (15)

Daraus folgt zunâchst:

(a) Die Darstellung T->[T~]3 besitzt keine irreduzible Komponente ersten Grades.
Wir zeigen noch :

(b) Sie besitzt auch keine irreduzible Komponente vom Grade 2. Andernfalls
gâbe es einen Charakter x m& x(£) 2 und w(3, y)>\. Nach (15) wâre dann

m(l, 0, x)=0. Daraus ergâbe sich einerseits nach (11) und (5): m(3, 0, x) 2, anderer-
seits aber nach (8): m (3, 0, x) 0.

Wegen dim^f3 7 folgt jetzt aus (a) und (b), dass die Darstellung T-+[T]3 ent-
weder in zwei irreduzible Komponenten der Grade 3 und 4 zerfallen muss oder selbst

irreduzibel ist. Letzteres ist aber wegen 72+X2(J^)>^ unmôglich. Bezeichnen wir
nun den Charakter der Komponente dritten Grades mit /3, denjenigen der Komponente

vierten Grades mit #4, so gilt wegen (13)

Daraus folgt nach (15):

Hieraus ergeben sich nach (11), (8) und (5) die beiden letzten Zeilen unserer Tabelle.

Wegen

Y Xr(E) 1 + 32 + 52 + 32 + 42 60
r 0

ist Xo, Xu-> X* das vollstândige Charakterensystem der Ikosaedergruppe. Damit ist
Satz 5 bewiesen.

1. Zum Schluss zeigen wir noch, dass sich aus unseren Oberlegungen die Charak-

terentafel der Ikosaedergruppe mûhelos als Nebenprodukt gewinnen lâsst. Da S(T)
eine Klassenfunktion auf F ist, sind die folgenden 5 Elemente von T gewiss paarweise

inkonjugiert:
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HT)

E

0

T\

n

T2

2n

y y

*?

y
(T, Erzeugende von FJ). (1)

Andererseits zerfallt aber F in genau 5 Klassen konjugierter Elemente, da es nach
Satz 5 gerade 5 irreduzible Charaktere auf F gibt. Somit bilden die Elemente (1) ein

voiles Reprâsentantensystem. Aus (1.1) ergibt sich sofort folgende Tabelle:

<*2

a4

E

3

5

7

9

Tx

-1
1

-1
1

T2

0

j

1

0

T3

l+s+e'1

0

-l-e-fi"1
-1

Ti

l+e2+e"2

0

-I~e2-e-2

j

exp(27i//5)

Nun ist aber nach Satz 5 :

und man findet mit der Tabelle von Satz 5 sofort die Zerlegung cr4=%2 +x4. Daraus

ergibt sich:

Xl °l> Xl 02> Z3 ^2 + *3 ~ ^4, X4 0-4 - ^2 •

Somit erhalten wir folgende Charakterentafel fur F:

Xi

Xi

X3

Xa

E

3

5

3

4

Tt

-1
1

-1
0

T2

0

-1
0

1

T3

1+e+e"1

0

— s—e'1

-\

Ti

l+62+£-2

0

-e2-e"2

j

(vergl. [2], p. 184).

LITERATUR

[1] E. W. Hobson: The Theory ofSpherical and Ellipsoïdal Harmonies (Cambridge 1931, University
Press).

[2] A. Spmser: Die Théorie der Gruppen von endlicher Ordnung (Basel und Stuttgart 1956, Birkhâuser).

Eingegangen den 17. April 1970.


	Über die Darstellung der endlichen Drehgruppen durch Kugelfunktionen.

