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Uber die Darstellung der endlichen
Drehgruppen durch Kugelfunktionen

Herrn Andreas Speiser zum 85. Geburtstag von HEINZ HUBER (Basel)

1. Es sei %, der Vektorraum iiber C der homogenen harmonischen Polynome
I-ten Grades des R>. Jede Drehung TeSO(3, R) induziert eine lineare Abbildung
[T],: 5¢,—#,, definiert durch

[Tliu=u-T™', ues,.

Es sei nun I eine endliche Drehgruppe des R>. Dann ist die Abbildung

T-[T], Terl,

eine Darstellung von I' vom Grade dim5#;=2/+1. Wir wollen die Zerlegung dieser
Darstellung in irreduzible Komponenten untersuchen. Wir miissen deshalb zuerst

ihre Spur
0,(T) = Spur[T],

berechnen. Dazu fiihren wir folgende Grosse ein:
$(T) = Mazxe(p, Tp);
pe

dabei bezeichnet ¢ (p, q) die sphirische Distanz der Punkte p, g auf der Einheitssphire
Y des R3. Aus dieser Definition folgt unmittelbar:

(T~ =9(T), 9(S™'TS)=9(T) VS, TeSO(3,R).

Jetzt zeigen wir:

+1

o) (T") = k}: exp (ikr3(T)). (1

Beweis: A, besitzt bekanntlich folgende ausgezeichnete Basis ([1], ch. IV):

u?(x, y, z) = (x + iy)f (x* + P9 (32 4 y? 4 201D
X P,""“(z (x* + y* + zz)‘*), (2)
—-I<k<+1;

dabei ist P{*1 die |k|-te Ableitung des /-ten Legendre-Polynoms.
: Sei nun peZX ein Fixpunkt von 7. Dann gibt es ein SeSO(3, R) so, dass Sp=
=(0, 0, 1). Setzen wir R=STS ™, so gilt

R.{x +iy—e*(x +iy), 0<a<2m,

(3
z>z

3(T) = 9(R) = Min(e, 27 — a). 4
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Aus (2) und (3) ergibt sich sofort
[RuP =uP R "=e""y® _ 1< k<+1.

Somit wird
i
0,(T") = 0,(S”'R'S) = Spur[ST'R’S], = Spur[R"], = Y e ™,
k=-1

Daraus und aus (4) folgt die Behauptung (1).
Die Reduktion der Darstellung 7—[T], von I ist geleistet, wenn es gelingt, fiir
jeden irreduziblen Charakter y von I den Mittelwert

n(l,x) =M (o3, ) = o,(T) x(T) (5)

OrdF Tel

zu berechnen; nach der Darstellungstheorie ist n(/, y) >0 ganz, und es gilt

g, = Z n(ls X)'x9

X

wobel tiber alle irreduziblen Charaktere von I' zu summieren ist. Wir leiten nun eine
Mittelwertformel fiir Klassenfunktionen auf I' her und wenden sie nachher auf die
Berechnung von (5) an.

2. Essei v=0rdI’ >2 und F die Fixpunktmenge der Gruppe I' auf Z. I' wirkt als
Permutationsgruppe auf F. Zwei Punkte p, ge F sollen aequivalent heissen, wenn es
ein Tel gibt, sodass g=Tp. F zerféllt dann in h Aequivalenzklassen F,..., F,. Wir
wihlen in jeder Fixpunktklasse F; einen festen Reprisentanten p; und definieren:

Iy={Tel|Tp;=p;}, v;=01dl;>2, (j=1,..,h).

Nun ist F;={Tp; | Tel}, und zwar gilt Tp;=Sp; genau dann, wenn S~ 'Terl;. Folg-
lich ergibt sich fiir die Anzahl f; der Fixpunkte der Klasse F; die Gleichung

fi=vlv;. (1)

Nun beweisen wir folgenden

MITTELWERTSATZ: Fiir jede Klassenfunktion ¢ auf I gilt:

2M(p.T)= 3 Mo, 1)~ (h=2) o (E).

Beweis: F enthilt mit jedem Punkt p auch den Antipoden j. Deshalb gibt es eine
Zerlegung

F=F0UF0, Fth0=@.
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Setzen wir
r,={Ter|Tp=p}, I'y=r,—{E}, peF,
so sind offenbar

= U I'p r'=1\y r,

peFo peFo

zwei Zerlegungen von I''=TI"—{E} in disjunkte Teilmengen. Somit wird

M(p,I)=v"'p(E)+v" 3 ¥ o(T)

'o(E)+v” ‘pEZ TEZT o(T).
Daraus folgt " ’
2M (@, N)=22""9(E)+v ' ¥ ¥ o(T)=
peFTel'p (2)
=v 1p(E)(2 - z M+v Y Y o(T).

peF Telp

Nun gibt es zu jedem peF; ein Ser’, sodass Sp=p;. Dann ist r,=S"'T;S und
somit

Y o(T)= > o(T)=v;M(e,I;) VpeF;.
Tel, Tely

Daher wird
h h
Y YoM=Y > Y o(M=) fvmM(eTI))
peFTel, j=1peF;Telp j=1

also wegen (1):

Y Y e(T)= Z M(o,I;

peFTel,
Somit folgt aus (2):
h h
2M(p. 1) =v"'p(E)2~ T f)+ ¥, M(p.T)). 3
J= J=

Wihlen wir speziell =1, so kommt:
_ie- il £)+h. *
‘Daraus und aus J(;) ergibt sich der Mittelwertsatz.
3. Aus (i.l) und (2.4) folgt noch die Gleichung
2(1 =1/v) = _il (1—1/v). ey
=
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Daraus und aus den Nebenbedingungen 2 <v; <v ergibt sich sofort die wohlbekannte
Tatsache, dass nur die folgenden Fille auftreten k6nnen:

I: h=2, v;=v,=v>2 (zyklische Gruppe)

II: h=3,2=v,<v,<v;,v,<3:

1) vy=v,=2, v3=v/2, v=0 mod 2 (Diedergruppe)
2) v;=2, v,=v3=3, v=12 (Tetraedergruppe)

3) vi=2, v, =3, v;=4, v=24 (Oktaedergruppe)
4) vi=2,v,=3, v;=5, v=60 (Ikosaedergruppe).

4. Mit Hilfe des Mittelwertsatzes konnen wir nun den gesuchten Mittelwert
n(l, x)=M/ o}, I') in eine aufschlussreichere Gestalt bringen:

SATZ 1: (a) Zu jedem irreduziblen Charakter y von I' gibt es ein System von h
Funktionen auf Z:

keZom(jky), (=1,..,h),

mit folgenden Eigenschaften:

D=3 Y mOk)—(h—2)@l+ 1) 2(E),

j=1k=-1
2) m(j, k,x)>0ganz, m(j, k,x)=m(j, k', x) fiirk =k modyv;,
3 Y m(k x)=x(E)

k mod v;

HY Y m k) =2+ -2 rE).

Jj=1 kmod vy

(b) Zum Hauptcharakter y, gehort insbesondere folgendes System:

, 1 firk =0modyv;,
m(.]’ ka XO) = {0 sonst. !

Beweis: Wir wenden den Mittelwertsatz auf die Klassenfunktion ¢ =a,¥ an und
erhalten

2n(l 1) =2M (e 1) = 5, Mo, T)) ~ (b =D (2 + D(B) 0

Nun ist I'; eine zyklische Drehgruppe der Ordnung v;; sie besitzt daher eine Er-
zeugende T; mit §(T;)=2n/v;. Somit wird nach 1.1):
l ot
Moz, T)=v;i' Y a(THx(T)=";" % ( 2 exp(kr‘Zni/v,-)) (T} =

rmodvy rmodv; \k=-1
l

Y vyt Y x(T7) exp(— kr-2mifv;).

k=-1 rmodv;
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Somit folgt aus (1):

PR
(0= 3 5 mi k) - (=2 @+ 1) x(E) ®
mit
m(j, k, x) =v;* 221 x(T7) exp(— kr-2mifv;). (3)

Die zyklische Gruppe I'; besitzt genau die folgenden v; irreduziblen Charaktere:
T =€y, & =exp(2nifv;), (kmodv)).

Damit kénnen wir (3) folgendermassen schreiben:
m(j, k, X)=M(Xijk, rj)' 4)

Nun ist aber die Restriktion von y auf I'; die Spur einer (i.a. reduziblen) Darstellung
von I';; daher folgt aus (4) nach der Darstellungstheorie:

m(j, k, x) = 0 ganz,
x= Y m(jk x)xpaufl;,

k mod v;

(3)

also insbesondere

XE)= 2 m(jkx).

kmodv;

Weiter folgt aus (5):

XZ: Z m(-]’ k’X)m(.,a k,’X)Xjkijk'anFj,

k, k'’ mod v;

und somit

M(i, )= Y m*(j, k). (6)

k mod v;

Andererseits ist aber M (xj, I')=1. Daraus und aus (6) folgt nach dem Mittelwertsatz

S S mi(kx) =2+ (h—2) ().

Jj=1 kmodvy

Endlich folgt aus (4) noch

ik 0=

Damit ist Satz 1 bewiesen.

1 fiirk=0modyv;,
0 sonst.

5. Wir wollen jetzt einige unmittelbare Folgerungen aus Satz 1 besprechen. Zu-
néchst ergibt sich sofort
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SATZ 2: Fiir den Hauptcharakter y, von I gilt

n(l,xo)=1+ il Lv;]—(h-2)1.

Ferner zeigen wir

SATZ 3: Es sei v, das kleinste gemeinschaftliche Vielfache von v,, ..., v,. Dann gilt
v

n(l+ve, x)=n(l,x)+2 :}9 x(E).

In der Tat folgt aus Satz 1:

20(1+ 30,0 = 200 1) = 3. 2”2 £(B) = 2(h ) v (E)

7= Jj
h
=
Daraus und aus (3.1) folgt aber die Behauptung.

Es bezeichne nun [/ den kleinsten nichtnegativen Rest von / modv,. Dann folgt
aus Satz 3:
Vo 1-1 2
n(lLx)=n(l, ) +2 o x(E) T ;X(E) 1+0(1).
0
Somit haben wir

SATZ 4: Fiir jeden irreduziblen Charakter y von I' gilt
I 2
tim ") _ 2

- o0 v

x(E).

Das Uberraschendste ist nun aber, dass man mit dem ersten Satz n(l, x) tatsich-
lich vollstindig berechnen kann, und zwar ohne die irreduziblen Charaktere von I' a
priori zu kennen; diese lassen sich vielmehr ebenfalls mit Hilfe von Satz 1 auffinden
und beschreiben. Wir werden das im folgenden fiir die Ikosaedergruppe zeigen; die
iibrigen endlichen Drehgruppen konnen ganz analog behandelt werden.

6. Es sei jetzt I' die Tkosaedergruppe. Dann gilt nach 3: h=3,v,=2,v,=3,v; =5,
und Satz 1 liefert folgende Aussagen:

3 1
2n(l, x) = };1 k;_lm(j, k, x) — (21 + 1) x(E) )
Y m(Lky)= Y m2kx)= Y m@Bkx)=xE),
k mod 2 k mod 3 kmod 5
m(j, k, x) > 0 ganz, )
3
Y Y m*(j, kx)=2+x*(E). 3)

J=1 kmod v;
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(Xogu— | Xy ‘Qu’ =K~ @y Qu~TK+ | (Xo'gu+
(DX (1+1)% @DX@+Ds | DX+t (@x(-1n% (@5 | (X <y gut~=1¢
©)p=1 (s)e=1 (9=l (S)1=1 (s)o=1
(X ‘0 Q)m— (X ‘0 ‘QYm+
(@DXa+n% @+ (@)% | (X Quut-=2Y¢
(€)z=1 (€)1=1 (€)o=1
(X0 ‘r)m— (X ‘o 1)+
(@)X (1+1) (@)% |y q)wt~-=1¢
@1=1 (@o=1
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Aus (2) ergeben sich zunichst die Tabellen auf Seite 38.
Somit folgt aus (1), dass n(/, ) fiir alle / berechnet werden kann, sobald die

fiinf Gréssen x(E), m(j,0,x), .= _1 m(3, k, x) bekannt sind.
Wir werden nun zeigen:

SATZ 5: (a) Die Ikosaedergruppe besitzt ausser dem Hauptcharakter y, genau
vier irreduzible Charaktere x4, ..., x4, die folgendermassen beschrieben werden konnen:

1. x, ist Charakter der irreduziblen Darstellung 7-[T],:x, =0,
2. yx, ist Charakter der irreduziblen Darstellung 7-[T],:x, =0,

3. Die Darstellung T—[T]; zerfallt in zwei irreduzible Komponenten mit den
Charakteren x3, x4:03=x3 +Xa-

(b) Fiir diese Charaktere gilt folgende Tabelle:

x(E) | m(1,0,) | m(2,0,x) m(3,0,x) | Yi-cim(B,k, %)
X1 3 1 1 1
X2 5 3 1 1
A3 3 1 1 1
Beweis: 0.) Fiir /=0 folgt aus (1):
3
2n(0,x) = Y, m(j,0,x) — x(E). @

j=1
Die Darstellung T—[T], ist aber die Einsdarstellung von I', da 5, aus den kon-
stanten Polynomen O-ten Grades besteht. Daher ist n(0, x)=0 Vx#y, und somit
folgt aus (4):

3

> m(j,0,x)=x(E) VY #Xo- (5)

i=1
1.) Fiir /=1 ergibt sich aus (1), (2):
1

2n(l,x)= Y m(3,k,x)—m(1,0,x) < x(E). ©)

k=—1

Daher kann die Darstellung 7—[T], keine irreduzible Komponente ersten Grades
besitzen und ist deshalb wegen dim 5, =3 selbst irreduzibel.
Bezeichnen wir ihren Charakter mit x;, so gilt:

XI(E)=3’n(1>X1)=l’n(l’X)=O VX #X1-
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Daraus und aus (6) ergibt sich:
1

2 mB k) =2+m(1,0,x,), ™
1

k_Z_lm(l k,x)=m(1,0,x) Vx#yx. )

2.) Fiir /=2 ergibt sich aus (1), (2):

2n(2,x)=m(1,0,3) —m(2,0, ) < x(E). 9

Daraus folgt zunéchst:
(a) Die Darstellung T—[T], besitzt keine irreduzible Komponente ersten Grades.
Wir zeigen liberdies:
(b) Sie besitzt auch keine irreduzible Komponente vom Grade 2.
Sonst muss es ndmlich einen Charakter y mit y (E)=2 und n(2, x) > 1 geben. Dann
folgt aus (9) m(1, 0, x)=2+m(2, 0, x)>2 und daher

Y mP(lLk,x)=>4.

k mod 2

Ausserdem gilt
Y m*(, k)= Y m(@kyx)=x(E)=2.

kmodyv; kmodyv;
Somit wird
3
Y ¥ m(iky)=4+2+2.
Jj=1 kmodv;

Das widerspricht aber der Gleichung (3).
Wegen dim 5, =5 folgt jetzt aus (a) und (b), dass die Darstellung T—-[T], irre-
duzibel ist. Bezeichnen wir ihren Charakter mit x,, so gilt:

12(E) =5, n(2, x2) =1, n(2,x)=0 Vy#x,.
Daraus und aus (9) ergibt sich:

m(1,0, x2) =m(2,0, x;) +2 (10)
m(1,0,x)=m(2,0,x) Vyx#x.. (11)
3.) Fiir /=3 ergibt sich aus (1), (2):

203 ) =2(B) = m(1,0,0 +m(2, 0,0~ T m(3,k2). )

Daraus und aus (7), (11) folgt 2n(3, x,)=1-m(1, 0, x,) < 1; somit ist
n(3,x)=0 (13)
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und m(1, 0, x,)=1. Daraus ergibt sich nach (11), (7) und (5) die erste Zeile unserer
Tabelle.

Aus (12) und (8) folgt:

2n(3, ) =x(E)—2m(1,0, ) + m(2,0,%) Vx#x:- (14)

Daraus folgt nach (10): 2n(3, x,)=1-m(2, 0, x,)<1. Folglich ist m(2, 0, x,)=1.
Daraus ergibt sich nach (10), (8) und (5) die zweite Zeile unserer Tabelle.
Aus (14) und (11) ergibt sich:

2n(3, 1) = x(E) = m(1,0,x) < x(E) Yy # X1 X2 - (15)

Daraus folgt zunédchst:

(a) Die Darstellung T—[T]; besitzt keine irreduzible Komponente ersten Grades.
Wir zeigen noch:

(b) Sie besitzt auch keine irreduzible Komponente vom Grade 2. Andernfalls
gidbe es einen Charakter -y mit x(E)=2 und n(3,x)>1. Nach (15) wire dann
m(1, 0, x)=0. Daraus ergibe sich einerseits nach (11) und (5): m(3, 0, x) =2, anderer-
seits aber nach (8): m(3, 0, x)=0.

Wegen dim 5#, =7 folgt jetzt aus (a) und (b), dass die Darstellung T—[T]; ent-
weder in zwei irreduzible Komponenten der Grade 3 und 4 zerfallen muss oder selbst
irreduzibel ist. Letzteres ist aber wegen 72 +x3 (E)>60 unmdoglich. Bezeichnen wir
nun den Charakter der Komponente dritten Grades mit x5, denjenigen der Kompo-
nente vierten Grades mit y,, so gilt wegen (13)

1:(E)=3  nBx)=1 x3#x,

2a(E)=4, " n(3,xs)=1.
Daraus folgt nach (15):

m(1,0,x;) =1, m(1,0, x4) =2.
Hieraus ergeben sich nach (11), (8) und (5) die beiden letzten Zeilen unserer Tabelle.
Wegen

ioxf(E)=l+32+52+32+42=60

ist xo, X1»---» X4 das vollstindige Charakterensystem der Ikosaedergruppe. Damit ist
Satz 5 bewiesen.

7. Zum Schluss zeigen wir noch, dass sich aus unseren Uberlegungen die Charak-
terentafel der Ikosaedergruppe miihelos als Nebenprodukt gewinnen lisst. Da 9(T)
eine Klassenfunktion auf I’ ist, sind die folgenden 5 Elemente von I" gewiss paarweise
inkonjugiert:
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3(T) 0 T 2n 2n 4n (T;=Erzeugende von I';). (1)

Andererseits zerfdllt aber I' in genau 5 Klassen konjugierter Elemente, da es nach
Satz 5 gerade 5 irreduzible Charaktere auf I' gibt. Somit bilden die Elemente (1) ein
volles Repriasentantensystem. Aus (1.1) ergibt sich sofort folgende Tabelle:

El|lT | T, T?
o, 3 | -1 0 1+e+e™? 1+e2+¢2
oy | 5| 1] =1 0 0
oy 7 | -1 1| —1—e—¢™ ' | —1—-62—¢~ 2| e=exp(2nmi/5)
o4 9 1 0 -1 -1

Nun ist aber nach Satz 5:

01 = Y15 Gz = X2 3= X3+ Xa,
und man findet mit der Tabelle von Satz 5 sofort die Zerlegung o, =y, + 4. Daraus
ergibt sich:

X1 =01, X2=03,  A3=03+03—04  Ya=04—0;.

Somit erhalten wir folgende Charakterentafel fiir I":

el|lT | T, T2
X1 3 | -1 0| 1+e+e? 1+e*+¢™2
n | s ] 1] =1 0 0
X3 3 | -1 0 —g—g ! —g?—g72
w | 4] o 1 —1 ~1

(vergl. [2], p. 184).

LITERATUR

[11 E. W. HOI;SON: The Theory of Spherical and Ellipsoidal Harmonics (Cambridge 1931, University
Press).
[2] A. Seuiser: Die Theorie der Gruppen von endlicher Ordnung (Basel und Stuttgart 1956, Birkhéuser).

Eingegangen den 17. April 1970.



	Über die Darstellung der endlichen Drehgruppen durch Kugelfunktionen.

