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Eine Bemerkung zu dichten Unterrâumen reeller quadratischer Râume

von H. Gross (Zurich)

Einleitung

In [3] zeigt Kaplansky, dass in abzâhlbardimensionalen Vektorrâumen E mit
nicht ausgearteter alternierender Form # die Kodimension dimE/V von dichten
Teilrâumen F ein vollstândiges System ,,orthogonaler Invarianten" fur V bildet. Das

heisst: ist dimE/Vl=dim E/V2 fur zwei dichte Teilrâume Vt in E9 dann gibt es eine

lsometrie cp von E mit (?(F1)= V2 (<p ist ein Isomorphismus, der die vorgelegte Form $
respektiert). ,,dicht" bezieht sich hier auf die von <& in der gewohnten Weise auf E
induzierte schwache linearen Topologie; die abgeschlossene Huile eines Teilraumes V

ist dabei gerade der Biorthogonalraum F11, und F ist somit genau dann dicht in £,
wenn F1 (0) ist (da ja F111 F1).

Schwieriger als die alternierenden Formen sind die symmetrischen Formen zu

behandeln. Der angegebene Satz gilt fur grosse Klassen von Grundkôrpern aber auch

bei symmetrischen Formen [2], beispielsweise fiir den Kôrper C der komplexen
Zahlen als Grundkôrper: jede Einbettung eines dichten Teilraumes V in E zerfâllt,
viz. E zerfâllt in dimE\ V orthogonale Summanden Ex derart, dass F= ©, Vn Et) und

VnEt dichte Hyperebene in Et ist. Man kann dann kanonische Basen einfùhren &c.

Die weiter unten bewiesenen Sâtze zeigen, dass viel verwickeltere Verhâltnisse

vorliegen, wenn der Grundkôrper etwa ein Teilkôrper der reellen Zahlen ist. Ist z.B $
positiv définit, dann bildet die Kodimension dimEj V eines dichten Teilraumes Fkein
vollstândiges System orthogonaler Invarianten mehr. Ist der Grundkôrper der Kôrper

R aller reellen Zahlen, dann gibt es bei definitem 4>zur Kodimension dimElV=2
genau drei Einbettungen, die nicht durch orthogonale Automorphismen auseinander

hervorgehen. Jede dieser Einbettungen zerfâllt aber immer noch in der oben be-

schriebenen Art. Wâhlt man dagegen echte Teilkôrper von R zum Grundkôrper, etwa

den Kôrper der reellen algebraischen Zahlen oder der rationalen Zahlen, dann gibt

es zur Kodimension dimE/V=2 immer unendlich viele Einbettungen dichter F, die

nicht durch Automorphismen auseinander hervorgehen. Unter ihnen gibt es unendlich

viele (2Ko), die nicht zerfallen. Zu jeder Einbettung gibt es aber wenigstens eine ein-

fache Kôrpererweiterung, die die Einbettung zum Zerfall bringt. Das allgemeinste

Résultat in diesem Zusammenhang lautet: Zu jeder Einbettung VaE, V dicht,

dim2s/F=2 liber dem Grundkôrper fccR gehôrt eine réelle symmetrische Form

W^Xl +2Wi2XiX2 + W22X22 in zwei VariablenXl9X2 (îP^eR). Hat man eine weitere

Einbettung VcE, F dicht, dimE/V=2, dann gibt es eine lsometrie von E die F auf V

abbildet dann und nur dann, wenn die beiden Formen £ VijXiXj und £ ^ijXiXj sich
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ûber k ineinander transformieren lassen; die Einbettung FcEzerfâllt genau dann in
der angegebenen Art, wenn die Form £ T^X^j sich durch eine Variablentransfor-
mation ùber k auf Diagonalform bringen lâsst (Sâtze 3, 4). Das wird in Kap. I weiter
unten bewiesen. In Kap. II wird die Voraussetzung iiber die Definitheit der Form
fallengelassen. Dieser Fall ist viel umstândlicher. Schliesslich wird in einem letzten
Kapitel1) gezeigt, was fur Sâtze sich im Falle beliebiger endlicher Kodimension
dichter V in E ergeben. Uber die Zusammenhânge siehe man den Anfang von Kap.
III.

Komplikationen der hier beschriebenen Art scheinen der Grund dafûr zu sein, dass

im ,,klassischen" Fall definiter Formen ûber reellen Kôrpern eine Verallgemeinerung
des bekannten Wittschen Theorems auf unendliche Dimensionen bisher noch nicht
bekannt ist.

1.0 Bezeichnungen und Voraussetzungen

Es sei <P:ExE->k eine nicht ausgeartete symmetrische Bilinearform aufdem
fc-Vektorraum E. Das Paar (E, <P) nennen wir einen quadratischen Raum. Wie
ùblich schreiben wir ,5xl/', wenn 4>(x, j) 0 ist (x,yeE), ferner ,,||jc||" fur das

Kôrperelement <P(x, x).
Im folgenden sei k immer ein Teilkôrper des Kôrpers R der reellen Zahlen mit der

Eigenschaft:
es gibt eine nur von k abhângige natilrliche Zahl m derart, dass jede quadratische

Form in m Variablen Uber k die Zahlen +1 oder — 1 (oder beide) darstellt.

Beispiele fur solche k sind der Kôrper Q der rationalen Zahlen mit m 4; all-
gemeiner, aile reellen algebraischen Oberkôrper von Q mit genau einer Anordnung,
wobei dann m^4 ist. Schliesslich auch R selbst mit ra=l. Die Bedeutung dieser

Kôrper liegt hier darin, dass jeder quadratischer Raum (E, <P) von abzâhlbar unend-
licher (algebraischer) Dimension eine Orthogonalbasis (vi)i^1 mit \\vt\\ ± 1 besitzt.

(E, #) ist also durch zwei ,,Trâgheitsindices" bis auf Isometrie vollstândig charakteri-
siert ([3], theorem 4).

Jeder Kôrper mit der angegebenen Eigenschaft besitzt ûbrigens eine einzige

Anordnung, also nur die von R induzierte.

In der Folge sei durchwegs dimli K0 und k von der angegebenen Art.
V sei in den Kapiteln I, II ausnahmslos ein Teilraum der Kodimension 2 in is und

dicht in E. Da wir hier keine andern Einbettungen studieren, wird kurz von Ein-
bettungen VcE, VaËdit Rede sein.2)

x) Einer freundlichen Aufforderung des Referenten folgend.
2) ,,Fc £" ist eigentlich die Beschreibung eines mengentheoretischen Sachverhaltes, kann hier

aber ohne ernstliche Gefahr von Verwechslungen anstelle von idiosynkratischen Hieroglyphen wie

,,c : V->E" zur Bezeichnung des intendierten injektiven Homomorphismus verwendet werden.
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Enthâlt V einen unendlichdimensionalen Teilraum W, auf dem die Form ver-
schwindet (WcW1), dann enthâlt [2] die Lôsung unserer Frage. Enthâlt V nur
endlichdimensionale Teilrâume W9 auf denen die Form versehwindet, dann kônnen
unsere Fragen ohne Schwierigkeiten auf den Fall reduziert werden, dass die Form auf
V définit ist. Wir werden aus diesem Grunde im folgenden immer voraussetzen, dass

#(x, x) > Ofiïr aile x^OausV.
Nach der Bemerkung ûber die zugelassenen Grundkôrper k besitzt V daher immer

eine orthonormierte Basis. Ist (vi)i^1 irgend eine orthonormierte Basis von V, und

sind/, g irgend zwei orthonormierte Vektoren, die ein algebraisches Komplement von
V in E aufspannen, dann heisst die Basis ^=(t?f)u{/, g} von E eine Standardbasis

zur Einbettung VcE. Unter unseren Voraussetzungen besitzt jede Einbettung VcE
(unendlich viele) Standardbasen.

Bezûglich einer festen Standardbasis 88 setzen wir (Xi <P(vhf) und Pi <^(vbg)

(i^ 1). Die Summen £5° a?, Ya Pf und YX a*& kônnen konvergent oder divergent
ausfallen. Da F1=(0) ist, kann es kein m geben, sodass die Folgen (af)i>w, {Pùi>m

proportional sind. Insbesondere ist daher fiir aile genugend grossen n immer

A^QCï a?)#CEï PÎ)~~Œi aiPù2>®- Ai ist monoton wachsend mit n und es ist

D=1^-00 Dn<oo genau dann, wenn sowohl £f a?<cx> als auch YX PÎ<°3 ist.

Wir behandeln die Fâlle ,,D<oo"und,,Z) oo" getrennt. Zu den ersteren gehôrt
der Fall, dass # auf ganz E positiv définit ist. Dieser Fall wird weiter unten im Kap. I
behandelt. Der allgemeinste Fall mit D<oo kann ohne Mûhe auf den definiten Fall
reduziert werden und soll deshalb nicht besprochen werden. Kap. II behandelt den

Fall ,,D= oo". Wie zu erwarten ist, hângen dièse Fallunterscheidungen nicht von der

gewâhlten Basis 8è ab. Auf Grund der Untersuchungen in den Kap. I, II kann in

Kap. III ohne Miihe der Fall beliebiger endlicher Kodimension dimE/V erledigt
werden. Die dazu neu eingefûhrten Bezeichnungen werden am Anfang von Kap. III
erklârt.

1.1 Die Invarianten im Falle einer definiten Form <P

Es sei (Vi)iziv{f,g} eine Standardbasis einer Einbettung VcE. af

Pi~Hvhg). Wirdefinieren^linw^r «?»*=lmw£r pf9 C^im^
Da <f> in Kap. I positiv définit vorausgesetzt wird, folgt

also sind A, B, C Elemente von R und es ist AB-C2>0. Es erweist sich spâter als

zweckmâssig, folgende réelle Zahlen einzufûhren:
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DieTatsache, dass fur jeden Vektor x^O stets ||jc|| >0 ist impliziert, dass

ist: es sei nâmlich V(ÇU <J2) die réelle Form3) V1iÇ2î+2V12ÇiÇ2 + y22Ç22. Ist x=
£1/ +^+Z Xivt ein beliebiger Vektor aus E, so ist £r(Ai + £1aï + £2&)2 NI +

+ ^(£1, £2)- Gesetzt, fur ^ und t>2 wâre W(Çl9 £2) 2s>0. Man wâhle N so gross,
dass Y,n (£iai + £1/* »)2 <e ausfallt; ferner setze man A£ 0 (1 ^ JV) und Af - ^a, - «î;^
(1 ^i< JV). Fur dièse Wahl der Komponenten Çh Àj von x musste ||x|| < —e sein, was
nicht geht. Also ist die Form W nie positiv. Ist umgekehrt W nie positiv, dann folgt
natûrlich, dass ||jc|| ^0 ist fiir aile x; ist ferner ||x|| =0, dann ist %? (*i+^i«»+^i)2

!P(Çi, {2)^0, also {^, + {2^ 0 fur fast aile /. Da Fx (0) ist, mûssen Çt und ^2
Null sein, also muss auch x =0 sein. Wir haben also den

SATZ 1. {¥ij} (/,y=l, 2) 5e/ die Form einer Einbettung VczE bez. irgend einer
Standardbasis. <P ist genou dann positiv définit, wenn W nie positiv ist.

Wir bemerken noch, dass die Grôssen A, B und C und somit die Wtj von der
Wahl der Basis {vt} in V unabhângig sind. Fur eine zweite orthonormierte Basis

(vt) von F ist nâmlich vt ^ y^Vj und daher â( Z lifij, wo die Matrix (ytJ) orthogonal

und zeilenfinit ist. Sie definiert daher eine orthogonale Abbildung im gewôhnlichen
Hilbertschen Folgenraum und dabei bleibt die Norm A von (oci)i>l erhalten. Wie ver-
halten sich aber die Grôssen A, B und C, wenn man die Basisvektoren/und g anders
wâhlt?

und natûrlich det^^O. Definiert man Â, B, C bezuglich der Standardbasis

(vt)u{/,g}9 so zeigt eine kurze Rechnung, dass

Â- 1 v2tl(A - 1) + v212(B - 1) + 2vtlvi2C
B - 1 v22l(A - 1) + vh(B - 1) 4- 2v21v22C

C vnv21 (A - 1) + v12v22(B - 1) + (vuv22 + v12v21) C

So transformiert sich gerade ein symmetrischer Tensor. Fûhren wir noch die Wu ein,
so erhâlt man einfach

*iy E Wj.*r» det(vy)^O, v(j.efe. (1)

Unsere Bemerkungen uber Basiswechsel kônnen in dem folgenden Satz zusammen-
gefasst werden:

SATZ 2. VcE, VczEseien zwei Einbettungen, W {Tij} und ¥ {¥lj} seien die

zugehôrigen (reellen) Formen, definiert bezuglich irgendwelcher Standardbasen. Falls

3) Wir sprechen oft von der Form W oder auch von der Matrix {Wy} oder einfach von den
Grôssen !P# einer Einbettung. Wie Satz 3 zeigt, sind dann die Formenklassen uber dem Grundkôrper
von solchen Formen !Pnur noch von der Einbettung abhângig und nicht von den gewâhlten Basen ai.
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es eine Isometne cp E-*Ë mit cp(V) V gibt, dann stimmen W und W bis auf eine
Transformation (uber dem Grundkorper k) gemass (1) uberein.

Von diesem Satz gilt nun auch die Umkehrung Als Vorbereitung zum Beweis

benotigen wir zwei Hilfssatze.

1. HILFSSATZ. Sind die Formen W und ¥ zweier Einbettungen VcE und VcÊ
nach (1) ineinander transformierbar, dann kann man in beiden Raumen Standardbasen

einfuhren, sodass bezughch dieser Basen sogar W^^W^ gilt (i,j= 1, 2)
Beweis. Es sei ??U X v^^rs fur gewisse vtJek Die Wrs seien definiert bezughch

der Basis (vt) u {/, g} Um die neue Basis zu finden, setzen wir zunachst/0 vn/ 4-

+ Vi2#+Zï %iv» 8o V2i/ + V22#+Zï VxV» wobei wir n und die {„ \ix so bestimmen

wollen, dass ||/0|| ^ 1, ||go|| < 1 und/0 X g0 ausfallt Die drei Bedingungen lassen sich

auf die Form bringen

£ti Â-el9 £riï Ë-e29 £ ^ C - e3 (2)111wobei

v22pt (i l, ,n) (3)

00

Z (u &) 2 Z
n+1 n+1

oo

Z (VUai + V

(4)

Fur hmreichend grosses n werden el9 e2 und s3 behebig klem Also ist fur genugend

grosses n immer noch (Â—£1)(Ë—e2) — (C—e3)2>0 Ferner ist Â—si l-
Vy (1 -Zî a»2)- vi20 -Z" A2)+2vuvi2 Zî aA und lie8t somit îm Grundkorper k,
ebenso sieht man, dass auch B—e2 und C—s3 m k liegen. Auf aile Falle gibt es fur
genugend grosses n immer réelle Losungen Xl9 rjl von (2), also nach (3) auch réelle

Losungen {„ /*, unseres Problems. Es bleibt der Fall, dass /:#R ist. Wahlt man die

reellen Zahlen A' undl?' nahe genug bei Â—e1 und B—e2, ferner A' <Â—euB' <B—s2,
dann existieren nach dem Vorangehenden jedenfalls wieder réelle Losungen der

Gleichungen (2) mit A\ Bf anstelle von Â-e1 und B-e2 respektive. Man wahle

darauf X[, rf[ in k derart, dassZï K2=A% Zï ti2=B" und Zï X[f][ C-e3 ist, wobei

A" und B" nahe genug bei A' und B' sind. Die Ç[ und \ii9 die gemass (3) zu X[ und rj[

gehoren (1 ^ i ^ n), liegen îm Grundkorper und fur die Vektoren/0 und g0 mit den so

bestimmten K,omponenten gilt ||/0|| < 1, ||go|| ^ 1 und/0 lg0 Schhesslich wahlt man

îm Raum k(f0, g0, vu vn)Ln V zwei zueinander orthogonale Vektoren w, v mit
||n|| l-||/oll, lkll l-||goll- (Hier verwenden wir die Tatsache, dass positive
Formen m genugend vielen Vanablen uber unsern Korpern k jedes positive Korper-
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élément darstellen). Setzt man/' f0 +u,g' go+v, v[ t>,(i> 1), dann ist (t?J)u {/',
g'} eine Standardbasis zur Einbettung VcE und es gilt *F'ij= Wtj (i,j= 1, 2). Q.E.D.

Beziiglich einer festen Standardbasis und fur jedes natûrliche n setzen wir An

Iî «?, *n lï A2, Cn Xï «i/»i» Dn AnBn-C2n. Da Fx (0) ist, gibt eseinn0derart,
dass A»>0 ist fur n^n0. Çl9...9Çm seien Elemente aus R; wir setzen a £7 ^af,

E festes m^« betrachten wir die Funktion

auf der reellen Sphâre Si^Ji ^f — ^- ^ort ist immer a2<A, p2<B und daher
beschrânkt. Fur «->oo konvergiert Smn gleichmâssig auf S zu ^m,oo(^i,..., £

D~1((x2B-2(xpC+p2A). Wir behaupten nun:

2. HILFSSATZ. Essein^no,n^m. Dann g//f:(
(iii) zujedem m existiert ein n derart, dass maxs#m>n< 1, (iv) max5#m ^ < 1.

Beweis. #m>n besitzt ein Maximum auf S. Man kann daher die Lagrangesche
Multiplikatorenregel auf die Funktion H=$mtn(Çl,..., £m)-A(£7 tf-l) anwenden.
Die Bedingungen dH/dÇ^Q liefern

Dn^t mtBn - {cifi + O Cn + pfaAn (i < * < m) (5)

Multipliziert man (5) mit ^ und addiert die m Gleichungen, so erhâlt man gerade
À 9mn in den Punkten ({i)i<^m, in denen ein Extremum angenommen wird. Also
sind die Lôsungen A, die (5) und der Bedingung £ £Ï — 1 genûgen, die Extremwerte

von H im Innern von Rm. Berechnet man in diesen Punkten auch noch (Dnk£ù2

(5) und addiert die m Quadrate, so zeigt eine Rechnung, dass

wo G.-Xi+i [aalBll-(a<i8+a/îl)Cïl + PMJ2 ist (Gn 0 im Falle m n). Wegen

Gn^0 ergeben sich die Behauptungen (i) und (ii) unmittelbar aus (6); um (iii) zu
beweisen zeigen wir, dass Gn>0 ist fur geeignetes n. In der Tat, wâre Gn=0 fur fast
aile n, dann wâre

^{olB»- $Cn) fciaC»- $An) fur fast aile i. (7)

Nun kônnen die Koeffizienten von af und pt in (7) nicht beide Null sein, denn sonst

wâre a 0 und /? =0 da Dn^0 ist fur hinreichend grosse n. In den Punkten, wo ein

Maximum vorliegt, ist aber nicht <x= j8 =0. Wir kônnen daher aus (7) schliessen, dass

die oct und J?f proportional sind. Daraus folgt, dass dim V1 ^ 1 ist, was nicht geht.

Damit ist gezeigt, dass sogar Gn>0 ist fur aile hinreichend grossen n. (iii) ist damit
auch bewiesen. Die Behauptung (iv) ùber die Funktion 5m>00 auf S ergibt sich in
analoger Weise.
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1.2 Isometrie

Es môgen jetzt zwei Einbettungen VcE und VcE vorliegen. Voraussetzung sei,
dass es Standardbasen &=(vi)v{f9g} und M^=(vt)u{f,g} gibt, bezûglich derer

Vij= Wij ist (i,j= 1, 2). Wir zeigen, dass es eine Isometrie <p:E-*Ëgibt mit q>(V)= F.

Eine solche Isometrie ç ist durch schrittweises Erweitern von Isometrien zwischen
endlichdimensionalen Teilrâumen von E und E zu konstruieren. Das Verfahren
wurde z.B. in [1] im Détail dargestellt und soll hier nicht wiederholt werden; es fûhrt
auch hier zum Ziel, falls man das folgende Problem allgemein lôsen kann:

Gegeben sei ein Vektor xeV mit ||*|| 1. Gesucht wird ein Vektor jceFmit
||*|| 1 derart, dass <P(xJ)=$(xJ) und <P(x,g) $(x,g).

Um ein solches x zu finden setzen wir - mit einem noch zu bestimmenden natûr-
lichen n-xn=YH ^Pi wo (fur l^i^n):

{, d; 1 («b. - jScB) + D~l(Mn - se.), s 9(x, f), p ${*,ê)-
Man findet #(xn,/) ôë und <P(xn9g) p wie verlangt. Wir behaupten, dass fur
geeignetes n die Lange ||*J<1 ausfâllt. Es ist ||*J=X" ^2 i)n"1(â2jBll-2âi5Cn +
+ fi2An) und somit existiert lim^^^H*,,!!. Hat der vorgelegte Vektor x eine Darstel-

lung x=J^^vh so folgt nach Hilfssatz 2, dass limB^00||xII||=Z)~1(â2^-2ôt^C+
+ ^2^)= 5-1(ôê25-2â^ + j52^) am,oo(|1,...,Q<maxs3miOO<l ist. Man findet
daher ein xn mit ||*J| <1. Wâhlt man schliesslich im Raum k(f,g, xnYn V einen

Vektor w mit ||w|| 1 — ||*J|, dann ist x=xn+w ein Vektor der gesuchten Art.
Wie schon erwâhnt, lâsst sich jetzt eine Isometrie cp:E-*E konstruieren mit

(p(V)=V. Zusammen mit Hilfssatz 1 ergibt sich die Umkehrung von Satz 2 und

somit:

SATZ 3. Va E und VczE seien zwei Einbettungen. Es gibt eine Isometrie <p\E-*Ë
mit q>(V)=V genou dann, wenn die zugehôrigen (reellen) binâren Formen ^ {^ij}
und W^lWij}, definiert bezûglich irgendwelcher Standardbasen, gemâss (1) uber dem

Grundkôrper k ineinander transformierbar sind.

1.3 Orthogonale Zerlegungen

Wir sagen, dass eine Einbettung Vc E zerfâllt, wenn es Teilrâume EY und E2 von

E gibt mit

E Et @E29 F (Fn£1) + (VnE2\ Et ±E2
dim lE^ n F] 1, Et n V dicht in Et (i 1, 2)

Falls es zu Va E eine Standardbasis gibt, fur die afj8(=0 ist fur aile i9 dann ist Wi2=0,
und offenbar zerfâllt die Einbettung. Es gilt aber allgemeiner der
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SATZ 4. Eine Einbettung VczE zerfâllt genau dann, wenn sich die Wu nach (1) so
transformieren lassen, dass W\ 2 0 wird.

VczE zerfâllt also genau dann, wenn die (réelle) binâre Form W sich ûber dem
Grundkôrper k auf Diagonalform transformieren lâsst. In der Tat, man wâhle einen
Raum E ûber k und definiere eine Einbettung VczE mit ^u Fu, *F22 ¥22 und
ôiiPi O (i> 1) bezuglich einer Standardbasis. (Das ist auf viele Arten môglich). Es ist
dann Wu= Wfij(i,j= 1, 2), und aufgrund von Satz 3 gibt es eine Isometrie q> zwischen
E und £ mit q>(V)= F. Also zerfâllt auch die Einbettung VczE.

Fur die Anwendung niitzlich ist noch der folgende

SATZ 5. Im Kôrper k sei jedes positive Elément Quadrat. Eine Einbettung VczE
mit den Invarianten ÎFl7 zerfâllt genau dann, wenn Wlu ¥22> ^12 uber k linear abhângig
sind.

Beweis. Zerfâllt die Einbettung, dann gibt es nach Satz 4 eine Transformation
(vu) ûber k derart, dass Wl2=X virv2s^rs~^ ist- Das ist eine Relation der verlangten
Art. Es sei also jetzt umgekehrt aï/11 +j5ï/22 + yï/12=0 und a, p, y in k, <x2+p2 +
+ yV0. Wegen Satz 4 bleibt der Fall, dass ^12^0 ist. Ist y 0, dann ist a#0 und
p^O und wir setzen vu= - (-a£)1/2 fi'1, v12=l, v21 (-ap)1/2oc'1, v22 j?a"1.
Es ist det(vl7) ^0 und ^i2=X vlrv2jiFri 0. Wir zitieren Satz 4. Ist hingegen y^O,
etwa y=l, dann setzen wir vu=a, v12 l, v2l aa~1, v22 p wobei cr eine von 0
verschiedene Lôsung der quadratischen Gleichung x2p — x+a 0 ist (ihre Diskrimi-
nante ist positiv, wie sich aus der linearen Abhângigkeit und x¥\\¥22 — *P\2^0
ergibt). Man ûberzeugt sich, dass det(vl7) /0 ist. Transformation mit (viy) ergibt
wieder ri2=0. Q.E.D.

Ûber k R zerfâllt also jede Einbettung VczE und es ist eine leichte Aufgabe,
aus unseren Sâtzen zu folgern, dass es Uber R genau drei Einbettungen VczE gibt
{E anisotrop), die nicht durch metrische Automorphismen auseinander hervorgehen.
Sie werden reprâsentiert durch (<Fll9 W22, Vi2) (0, 0,0), (-¦£, —J, 0), (0, -£, 0).

Ist dagegen fc#R, dann kann man aufgrund von Satz 3 immer unendlich viele

Einbettungen VczE angeben, die nicht durch metrische Automorphismen auseinander

hervorgehen ; zudem kann man unendlich viele unter ihnen so wâhlen, dass sie

nicht zerfallen. Das folgt aus Satz 5 und der Artin-Schreierschen Charakterisierung
der Kôrper von endlicher Codimension in algebraisch abgeschlossenen Kôrpern,
wonach [R:fc] 1 oder [R:fc] ^ Ko ist (fur beliebige Teilkôrper fccR):

Zunâchst bemerken wir, dass es zu irgendwelchen Zahlen Wn A -1, W22~B-1
und Ï/12 C eine zugehôrige Einbettung gibt, sofern die notwendige Bedingung
AB>C2 erfûllt ist (Schwarzsche Ungleichung und Fx (0)). Wir dûrfen etwa

annehmen. Man wâhle ein rationales A nahe genug bei ^/AjJb sodass

|C|/A>0 ist; dann wâhle man in k Folgen fo), (ej, (at) mit
pî**A-JL\C\, B°af £-|C|M. Erklârt man jetzt eine Basis
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{Vi}yj{fl9f2} zur Standardbasis mit a3i_2 Qh a3i_1=0, a3f sgnC'A-7rf fur j>1,
^3i-2 0, ^3,-! crl-, p3i ni {i^ 1), so hat die Einbettung die gewûnschte Form *Fn,
^22? ^12*

Jetzt hat man im fc-Vektorraum R lediglich 2Ko 3-dimensionale Râume R% an-
zugeben mit RlnRx (0) fur i^x; je drei linear unabhângige Vektoren ^J^ Wl22,

W[2eRt definieren dann eine Einbettung VlaEl die nicht zerfallt, und Formen
W\ W* mit i^x kônnen trivialerweise nicht ineinander transformiert werden ûber
dem Grundkôrper k. Die Wahl solcher Râume Rt ist leicht: Falls dimjtR 2Ko ist,
kann man eine Basis von R in Trios antreten lassen. Falls dimfcR<2Ko ist, dann ist

card(fc) 2Ko (da in jedem unendlichdimensionalen A>Vektorraum R gilt cardR
dimR-card(fc)). Man kann etwa R in drei unendlichdimensionale Teilrâume Rl9 R2,

R3 (direkt) zerlegen; darauf wâhle man 2Ko linear unabhângige Vektoren W[t in Rl9
2Xo linear unabhângige *Fl22 ^n ^2 und 2Ko linear unabhângige W[2 in R3. Damit hat

man in jedem Falle 2Ko Einbettungen gefunden, die weder zerfallen noch durch
Isometrie auseinander hervorgehen. Es ist ùbrigens auch klar, dass es modulo
Isometrie mehr als 2Ko Einbettungen gar nicht geben kann.

II.l Die Invarianten im Falle D 00.

In den Fâllen, wo die Summen A, B und C divergieren kônnen, mùssen neue
Invarianten eingefiihrt werden. Um spâter die Gedankengânge nicht unterbrechen zu

miissen, schicken wir ein paar triviale Bemerkungen iiber Folgen voraus. Es seien

(xùh (ydi beliebige réelle Zahlenfolgen. Wir setzen Xh Ya xi* ^n Zî ^?» ^»
Ya xtyu Dn xnYn-zï' Vorausgesetzt werde: Es gibt ein n0 sodass fur aile

die Teilfolgen (Xi)i>n, (y^i^n linear unabhângig sind. Insbesondere ist dann

Dn # 0 fur n S* n0. (1)

Die Folgen

\ (xn + Yn + izn) d; \(xn + Yn- izn) d; l (2)

sind mit wachsendem n(n^n0) monoton fallend und besitzen demzufolge wohl-

bestimmte, nichtnegative Grenzwerte. Es konvergieren also auch die Folgen ZnD~

Divergiert mindestens eine von Xn und Yn fiir «-^oo, dann divergiert auch Dn mit

wachsendem n,

Wir setzen a*=Yïï tixu P=1La t^t unc^ betrachten die beiden Funktionen
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2 • Xn 2 •
Yn Zn

auf der reellen Sphâre S: £7 g 1.

Nach dem Beweis von Hilfssatz 2 gilt fur n ^ n0 und n > m

maxsSM>n ^ 1, maxsSMfl 1, fur jedes m ist maxsSm>M < 1

fte/ tf//e« hinreichend grossen n, maxs Smj «, < 1. J

Schliesshch bemerken wir, dass die Grenzwerte der Folgen (2) unverândert
bleiben, wenn die Folgen (*,)„ (j^X derselben (zeilenfiniten) ,,orthogonalen"
Transformation unterworfen werden: *i'=Z 7u ¦*/> ^t^Z^u^j' Z IV/IV^Z yjryJS <>rs

(Kronecker) und bei festem i ist y^O fur nur endhch viele j. Die Beweise sind
Routine.

Es sei nun also wieder (vX^{f,g} eine Standardbasis einer Einbettung VaE,
cct <f>(t\,/) und fit <P (vt, g\ ferner ^4n Zï afî ^n Zi ^»2' ^» Zï aiA unc^ ^«
=AnBn — C*. Die Unabhàngigkeitsforderung (1) ist fur die Folgen der a, und $x erfullt.
Wir kônnen daher defimeren :

A B C
Xlx lim — X22 lim —, Xl2 X21 lim —- (5)

n-»oo L)n n-*oo *^n n-^oo L/n

Die ZtJ sind nichtnegative Elemente aus R; sie sind von der Wahl der Basis (vt) in V
unabhângig. Da Dn divergiert, ist immer

det(XlJ) 0 (6)

II.2 Isometrie (D oo)

Es seien jetzt zwei Einbettungen VczE und VcË vorgelegt, die zugehôrigen
XtJ und XtJ definiert bezûghch irgendwelcher Standardbasen & (vl)v{f9 g} und

J ({?i)u{/,g} respective. Es gilt dann der folgende

SATZ 6: Es existiert eine Isometrie cp:E-+Ë mit q>(V)=V dann und nur dann,

wenn es eine nichtsingulâre 2 x 2-Matrix (vM) ûber k gibt, derart dass

und
'

(7)

Q Z VnVi^Ty + Z V2.V2A + [1 - *n - X22] «detCvJ2 > 0

ZUSATZ. Gibt es eine Isometrie (p von der angegebenen Art, dann existiert bezuglich

geeigneter Standardbasen der Grenzwert der Folge DnD~1 und es ist limn_> ^ DnD~l q;
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ferner ist

q{\ - X1X - JT22) (1 - Xn - X22) det(v0-)2

Insbesondere gehôren also mindestens zu den vier Fâllen, wo 1— Xn~X22 gleich 1,

zwischen 0 und 1, gleich 0 resp. zwischen 0 und — oo isf, verschiedene Klassen von

Einbettungen.
Beweis. A) Es môge ein <p der angegebenen Art existieren. Neben den beiden

Standardbasen & and J? betrachten wir noch die Standardbasis ^f=z(Vi)u{(pf, <pg)

zur Einbettung VaE. Fur die Xy bezûglich dieser Basis gilt natiirlich X(j X^ (i, j 1,

2). Drûckt man M durch ^' aus, dann erhâlt man - wie in 1.1 - Gleichungen

An -1 vlM'n -1) + vL(b; -1) + 2vnv12c;
Bn -1 vI^a; -1) + v!2(b; -1) + 2v21v22c;

i; -1) + v12v22(b; -1) + (vnv22 + v12v21) c;
(8)

fur aile hinreichend grossen n und eine nichtsingulâre 2x2 —Matrix (vl7) mit v^ek.
Also gilt (etwa fur n>n0) (Ân-l)(Bn-l)-CÏ [(Afn-l)(B'n-\)-Cn2]A29 wobei

J det(vu) ist. M.a.W.: DH-Ân-BH + l [D'H-A'n-B'H + l'] A2. Druckt man Ân und

Bn mit Hilfe von (8) durch Arm B'n und Cn aus, so ergibt sich die Existenz von lim,,-^
Y,bnD'n~x und man findet \\mn^^bnD'n~x=q, da X{j Xu ist. Betrachtet man die

Abbildung <p~*, so ergibt sich analog die Existenz von limn^^D^D'1; daher ist

g^O, also positiv. Dividiert man jetzt die Gleichungen (8) durch Dn und erweitert
rechts mit Dn, so erhâlt man fur n-+oo die Transformationsgleichungen (7). Damit ist

die eine Hâlfte unseres Satzes und sein Zusatz bewiesen.

B) Es môgen umgekehrt die Bedingungen (7) erfullt sein. Wir zeigen zunâchst,
dass sich zur Einbettung VaE eine Standardbasis 3&1 so finden lâsst, dass X'i} — %iS

gilt fur ij'= 1,2. Um £8' zu finden setzen wir vorerst v\ t^(/ ^ 1) und/0 vt x/ H- vi2g +
+Z?^î;i'^o V2i/+v22g4-Xî^^i- Es sollen nun n und die {„ i/, (l</^«) so

bestimmt werden, dass ||/OIK1, llgoll^l und/olgo ausfâllt. Setzt man Af ^ +
+aiv11+jîiv12, ^i=y/i+aiv21+j?iv22 (l^f^w), mit spâter noch zu bestimmenden n,

so ist das genau dann der Fall, wenn gilt

(9)

Dièses System lâsst sich nach dem Muster von 1.1 ûber k lôsen, wenn sich zeigen lâsst,

dass UHVm-WJt>0 ist fur hinreichend grosses w, wo Un9 Vn, Wn der Reihe nach die

i
n

1

n

(4.-

v2iU,

1)

1)

1 1)

+

+

4-

vUBn-

vL(*B-

Vl2V22(B,

1)

1)

1)

+

+

+

2vuv12C,

2v21v22CB

(vuv22 +
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V12V21)
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rechten Seiten der drei Ungleichungen (9) sind. Setzen wir der Bequemlichkeit
halber noch Un= 1 +Rn, Vn=\ +5n, dann ist RnSn- WÏ [(An-1) (Bn- 1)-C2] A2.

Also VmVH-W2 (RjSH-W;)+Rm + Sm + l=[(Am-l) (Bn-l)-C22 A2+Rn+Sn + L
Man findet daher nmH^(UnVH-w;)D;1 (l-X11-X22)A2+ZvuvljXtJ+îi
v2iV2jXij Q und g>0 nach Voraussetzung. Da Dn nie negativ ist, folgt in der Tat,
dass UttVn- W2>0 ist fur aile hinreichend grossen n. Fur solche n ist also das System
(9) iiber dem Kôrper k lôsbar und somit ||/0||<l, l|goil<l und/0±g0. Wir wâhlen
in Vnk (/^go)1 zwei orthogonale Vektoren u, v mit IMI l-|l/oll> i>=l-|l#oll
und setzen ââ' (vt) u {/0+w, g0 +1?}. Berechnet man jetzt die Z/j beziiglich &\ dann
giit x^a-1 X v/rvisjrrs, wocr=iim^00/);i);1 =X vllvljxu+YJ v2iv2ijrv+(i - jrn-
X22) 2J2 ^. Also ist in der Tat A7, JTl7 (î,y l, 2).

C) Im letzten Teil des Beweises ist folgender Satz herzuleiten:

SATZ: Ist Xij ]?ij O',y= 1, 2), dann existiert eineIsometrie (p:E-*Ëmit (p(V)=V.
Man habe zu diesem Zwecke bereits orthonormierte «-Beine {x1?..., xn}cz V,

{*!,..., xn}czVkonstruiert mit <P(xhf) $(xi9f) und #0^, g) ^(^,g), U/U
Die lineare Abbildung çn mit <pnf f, (png g'> <Pnxi — Xi ist eine Isometrie. Es sei

xgV ein Vektor mit ||x|| l, xLxi (/<«). Es soll zunâchst (pn isometrisch auf x
erweitert werden mit x—cpx in F. Es ist also in V ein Vektor x zu konstruieren mit
||x|| l, *±*,(K#i) und £(*,/) #(*,/), *(*,g) #(*, g).

{x^..., xw} kann zu einer orthonormierten Basis (xl)i>1 von F erweitert werden,
und man erhâlt eine Standardbasis ^' (*/)u{/, g} fur die Einbettung FczE.
Entsprechend J' (*j)u {/,£}. Es ist Xlj Xij9 X/=Xl7(/,y=l, 2). Wir setzen

^* fc(^)£>w, r* k{Xdt>n, E* V*+k(f,g), E*=V*+k(f,g). Vv f^sind dicht in
E* bzw. j&*. Wir behaupten, dass fur die Einbettungen V^czE^, V*czE* gilt Ar#IJ

X*ij(i,j=l, 2) und beweisen die Behauptung durch Induktion nach n. Es geniigt
offensichtlich, den Fall n=\ zu betrachten.

Da aile unsere Grossen nicht von der in Fgewâhlten Basis abhângig sind, kônnen
wir ohne Beschrânkung der Allgemeinheit annehmen, dass ^1 1;^ ist (f>l). Es

ist dann X#11 lim^œ{(^-22221
Der Grenzwert von 9ltfl(l) ist eine Funktion der al5 fil9 XtJ allein. Da nun ax ocl

und j81=j81 ist nach Yoraussetzung, folgt aus Xij=^ip dass auch ^*ii=^*ii ist.

Entsprechendes folgt fur die ûbrigen Indexpaare. Wir bemerken noch, dass die analoge

Behauptung fur die Wtj im anisotropen Fall aufgrund der Définition der Wu dort
trivialerweise richtig ist.

Die Aufgabe, die Abbildung (pn auf ganz Fzu erweitern, reduziert sich nun wieder
auf die in 1.2 formulierte Aufgabe, und die Argumentation von 1.2 kann ohne

Ânderung iibernommen werden.

Damit ist der Beweis unseres Satzes vollstândig.
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II.3 Orthogonale Zerlegungen (D oo)

Entsprechend zu Satz 4 hat man hier den

SATZ 7. Eine Einbettung VczE zerfâllt genau dann, wenn sich die Xtj nach (7)

so transformieren lassen, dass X'12 0 wird.
Ist nâmlich X12=0, dann ist wegen (6) auch XilX22 09 etwaX22 0. Wir defi-

nieren eine Einbettung VczË mit â2l=^2l_1=0 (j> 1), £f ôë2l_1 oo und £j° Pli
Xll fallsXn /0 ist, Ya Pli °° fallsZn =0ist. In jedem Falle ist Jfl7=Xl7(/J= 1,2).
Also kann man den vorangehenden Satz zitieren.

SATZ 8. Kc£ zerfâllt genau dann, wenn Xl2 0 oder XxxX^2 ek ist.
Beweis. SeiX^^O, also X11Ar22/0 nach (6). Falls nun die Einbettung zerfâllt,

dann gibt es nach (7) eine Gleichung 0 £ vlrv2sZrs. Multiplikation mit Xn ergibt
0 (vllXll+v12Xl2)(v21Xll+v22X12). Ergo X^X^ek. Sei umgekehrt XnX^2

eek. Wir setzen vu l, v12 e, v21=A, v22= — Aemiteinemnochzubestimmenden
A=£0. Es ist A-=— 2Àe. Fur den Ausdruck von q findet man ^=4[J11+A2J11I2"21
x(l—Xlt—X22)]. Sollte also 1— Xlt—X22<0 sein, dann ist À2 hinreichend klein zu
wâhlen. Die Transformation (vfJ) erfûllt dann die Bedingungen von Satz 7 und
liefert JP12=0. Wegen Satz 7 ergibt sich die Behauptung.

KOROLLAR. In k sei jedespositive Elément Quadrat. Eine Einbettung VczE mit
der MatrixXij zerfâllt genau dann, wenn Xlu X22, X12 ilber k linear abhângig sind.

Beweis. Zerfâllt die Einbettung, dann liefert Satz 7 den Beweis. Sei also umgekehrt
aZ1]L+i?X22 + yZ12=0 und a, j», y in k (a2+£2 + yV0). Der Fall, dassX12 0 ist,

wird von Satz 7 erledigt. Sei daher X12^0, also XnX22^0. Weil XnX22-X?2=O
ist, folgt aus der vorausgesetzten Relation, dass y2—4aj8 ein Quadrat ist. Andererseits

ergibt Division mitZn, das a+jS(X12X1"11)2 + 7(Z12Zri1) 0ist,m.a.W.,X12Zr11 ist

Lôsung der quadratischen Gleichung a + y<!;+/?£2 0. Da ihre Diskriminante nicht

negativ ist, liegen ihre Lôsungen schon in k, insbesondere ist X12Xï11ek. Wir sind

somit im Falle des vorangehenden Satzes.

Sei nun fc=R. Nach dem Korollar zerfâllt jede Einbettung VczE. In diesem

Spezialfall ergeben sich daher die verschienenen Typen môglicher Einbettungen schon

aus [1]: Fur jeden orthogonalen Summanden hat man nâmlich 4 Môglichkeiten
entsprechend den Fâllen, dass die Summe £* a? < 1, =1, > 1 und < oo oder schliess-

lich oo ausfâllt. In unserem Falle, wo die Diskriminante unendlich ist, muss einer

der orthogonalen Summanden eine divergente Summe haben, somit muss es nach [1]
insgesamt 4 Typen geben (mit D oo). Das folgt aber ohne Miïhe auch aus den viel

allgemeineren Transformationsgleichungen (7): Es werde vorausgesetzt, dass zwei

zerfallende Einbettungen VczE und VczË nach (7) ineinander transformierbar
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seien. DaX12 X12=0 ist, kônnen wir so numerieren, dassX22 X22 0 ist- Somit
miissen drei Gleichungen: Xll g~1v2ilX11, 0 v21Xlu 0 v11v2lXli, erfûllt sein. Ist
Zn=0, dann auch X1X und umgekehrt. Es sei also Xu/0 vorausgesetzt. Dann ist
Xu^0, also vn7^0, und v21=0. Die allgemeinste Transformation, die in Frage
kommt, hat eine Matrix (vy) mit v21=0 und v11v22^0. Die Bedingung fur q lautet
dann q= vlîXll+\\—Xll']Vj1v22>0. Ist Xn l, dann ist Q=vl1X11 also Xn
e"1vî1Ar11 l. IstXn<l, dann ist Q>v\lXll, also XU<1. Ebenso istXu>l falls

Xn>\ ist. Wâhltmanindenbeidenletzten Fâllen v222 =X11(l~X[11) Xn (1 -In)"1,
so sieht man, dass dabei e>0 ist und aile drei Gleichungen erfullt sind. Damit haben
wir die 4 Typen wieder gefunden, sie werden reprâsentiert durch die Tripel (Xlt,X22,
X12) (0, 0, 0), (1, 0, 0), (i, 0, 0), (f, 0, 0). Noch anders ausgedrûckt: sie entsprechen
den vier Fâllen 1 —Xt i —X22 gleich 1, gleich 0, zwischen 0 und 1, zwischen 0 und — oo.

Die vorangehende Diskussion zeigt ûbrigens, dass die Klasse der Einbettungen,
reprâsentiert durch (0, 0, 0), dadurch charakterisiert ist, dass die Einbettungen zerfallen
bezûglich aller Paare/, g, die iiberhaupt ein Komplement von Vin E aufspannen.

Fur beliebiges k liefert die vorangehende Diskussion den folgenden

SATZ 9. Seien VczE, VcË zwei Einbettungen mit X12 Xl2 0 (bez. geeigneter
Basen); wir numerieren so, dass X22 J?22 Q ist. Dann gibt es eine Isometrie
(p:E-^Ë mit cp(V)=V genau dann wenn gilt Xll=Xll=0 oder Xli=J?ll l oder
(AVi1 -1)• (JTfi1 -1)"x ist Quadrat in k.

Fâllt in einer Einbettung VczE die Summe Ya a? bezûglich irgend einer Standard-
basis (vt)\j {/,g} endlich aus, dann ist Xil=0, also Xl2=0 und die Einbettung
zerfâllt bezûglich /, g. Wir wollen hier noch zeigen, dass man in diesem Fall eine

Anwendung von Satz 7 umgehen kann, indem man direkt eine orthogonale Zerlegung
konstruiert.

Ist Ya a? endlich (und £j° /?? dann divergent), dann ist es eine leichte Ubung zu
zeigen, dass limn_+ooCn-^~1/2 0 ist und somit

-1

Um eine orthogonale Zerfâllung konstruieren zu kônnen, ist im Wesentlichen die
Lôsbarkeit der folgenden Aufgabe einzusehen: Zu einem vorgelegten Vektor ve F ist
eine Zerlegung

v w + v0, weV, voeV, w±v09 vo±f, wlg
zu finden.

Wir setzen vo YH=i £ivh wobei n und die ^ so zu bestimmen sind, dass

(0 ttt-t «**(»!. v) ° > © t^ ° ' (iii> t ZiPt * ("> S)il i i
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erfûllt sind. Wir bemerken Folgendes: ersetzt man w und v0 durch w — u und vo+u
respektive, wo ueVnk(fg, w, vQ)L9 dann ândert sich fur die neue Zerlegung von
v an den Bedingungen (ii) und (iii) nichts, wâhrend man anstelle von (i) die Bedingung
w—uLvQ+u d.h. ||t>0|| —#(t>0, i;) + ||w||=0 zu erfiillen hat. Da man Vektoren u mit
beliebig vorgeschriebener Lange ||w|| >0 ûber unsern Kôrpern immer finden kann, so

sieht man, dass es genûgt, n und die Zt derart zu bestimmen, dass (ii), (iii) und die

Bedingung

anstelle von (i) erfûllt sind. Zu diesem Ende setzen wir - mit spâter festzulegendem n -

k D~l [-B.*(», /)-C.*(p, g)] (10)

Die Bedingungen (ii) und (iii) sind dann erfiïllt. Ferner findet man

Ê tf - Î WK». »«) i[4,*2(», g) + b.*2(», /) + 2c.#(», /) *(», g)] d;1 - iikii
11 i

Also ist

Jim

- i (î «?) "J [iHI Ç «»? - *2 (». /)] < 0.

Wâhlt man daher n hinreichend gross, so wird durch den Ansatz (10) auch die

Bedingung (i') befriedigt. Durch Wiederholung dièses Verfahrens lâsst sich eine ganze
Basis von V bezûglich/und g orthogonal zerlegen.

Mit dieser Méthode erhâlt man etwas allgemeiner den folgenden

SATZ 10. VczEsei eine Einbettung. Vsei orthogonale Sumrne, V= V0®Vlf derart,

dassfiir ein algebraisches Komplement G von V in E der Raum Vo dicht ist in Eo Vo® G

und die Einbettung VoczEo unendliche Diskriminante besitzt. Damit VaE zerfâllt, ist

jede der folgenden Bedingungen hinreichend: (i) Die Summe A0 Ya a? beziiglich

einer geeigneten Standardbasis &§ von VoczEo ist endlich. (ii) Die Einbettung V0<^E0

zerfâllt.
Beweis. (i) Es sei zunâchst Vt unendlichdimensional vorausgesetzt, und es sei

(wdizi eine orthonormierte Basis von Vt. Sei ferner â§0 {v^Kj {/, g} die Basis dei

Voraussetzung. Durch geeignetes Zerlegen der Basis (vt) in abzâhlbar viele unend-
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liche Teilfamilien {v^^x kann man immer eine orthogonale Zerlegung VQ YJLiVOj
£ 1erhalten mit VOj dicht in Voj + G9 ^=i ®2(VjiJ)<°° und

(Eine divergente Reihe mit positiven Gliedern kann immer in unendlich viele divergente

Teilreihen zerlegt werden). M.a.W., die Einbettungen VojaVQj + G erfiillen
aile die Voraussetzung (i). Dasselbe gilt dann auch noch fur die Einbettungen
[KOi0(wi)]c=[Foi®(wi)]+/c(/,g),j>l, welche also bezûglich/, g zerfallen. Also
zcrfîllt auch V^plVoj+iWj)] <= V+k(f9 g). Q.E.D.

Sollte Vx endlichdimensional sein, dann kann man analog vorgehen.
(ii). Zerfâllt VQcE09 dann ist a1j91 O (i> 1) bezûglich einer geeigneten Standard-

basis # (t>f)u {/,#}. Fàllt eine der Summen £* a?, YX PÎ{ endlich aus, dann ist
man im Falle (i). Andernfalls zerlege man VocEo in unendlich viele Einbettungen
unendlicher Diskriminante durch Zerlegen der Basis (vt). Jede dieser Einbettungen
zerfâllt bezûglich/, g. Jetzt schliesst man wieder wie im Beweise von (i).

III Der Fall endlicher Kodimension

Es soll jetzt der Fall dichter V von beliebiger endlicher Kodimension in E be-

handelt werden .Ohne Beschrânkung der Allgemeinheit nehmen wir wieder an, dass #
wenigstens auf V définit ist (cf. 1.0). Man stellt dabei folgendes fest:

Erstens: Wenn der Grundkôrper k der Kôrper der reellen Zahlen ist, dann
enthalten die im Falle dimls/F=2 bewiesenen Sâtze 5, 7 und 10 bereits den Fall
dim£/F< oo. Zweitens: Ist k beliebiger Teilkôrper der reellen Zahlen, dann bringt der
konvergente Fall (D<oo) keinerlei neue Schwierigkeiten. Drittens: Dagegen bringt
die Verallgemeinerung des divergenten Falles (D= oo) neue Schwierigkeiten. Viertens:
eine einheitliche Behandlung ist môglich (Satz 12), aber fur die Anwendungen ist die

Unterscheidung der beiden Falle Z><oo, oo zweckmâssig.
Es sei also im Folgenden {vt} eine orthonormierte Basis von V, {/i,...,/m} sei

orthonormierte Basis eines algebraischen Komplementes F von V in E, Wir setzen

aj *(!?£,/,.) und betrachten fur jedes n die Gramsche mxm Matrix An (Ar^)

(ZXai)- Die quadratische Form On(Ç) J2j=iAn ^& ist also nicht negativ; bei
festen «i;1,..., Çm und wachsendem n ist die Folge der Werte 9n(Ç) monoton steigend
und wegen der Voraussetzung VL (0) ist keine Restfolge in 8n(Ç) konstant. Die
Matrizen (v4" + ^r^s), 04" — <T£S) sind Summen bzw. Differenzen Gramscher Matrizen
und fur ihre Determinanten findet man4): det(^5±{r{s)=det(^5)±Z(-1)i+y^u
x ÇtÇ-1', wo AiJ der Minor vom Grade m -1 ist, der zu AlnJ gehôrt. Die hier auftretende

4) Das folgt etwa aus dem Determinantensatz ' * * Az—E (— l)i+jdu xt yj wo
OCnl... OLnn Xn

yi ...yn z
und An der Minor vom Grade n -1 ist, der zu an gehôrt.

«11

OCnl

...am

OCnn

...yn

Xl

Xn
Z
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quadratische Form in den £ ist natûrlieh ebenfalls nicht negativ, also ist Dn det (Arns)

mit n monoton steigend; zudem ist nicht Dn — 0 fur aile «, sonst wâre Fx#(0),
was nicht geht. Also ist auch keine Restfolge in Dn konstant. Insbesondere existiert
fur geniigend hohes n die Matrix Gn= (Grns) (Arnsyl. Gn konvergiert fur «-?oo gegen
eine Matrix G (Grs): Mit (Arns) definiert nâmlich auch Gn eine nicht négative
quadratische Form, ebenso gehôrt zu Srns Arns+i-Arns eine nicht négative Form wie wir
gesehen haben; es folgt daher aus der Identitât Gn — Gn+1 Gn+1[Sn+SnGnSn~]Gn+l,
und weil hier aile Matrizen symmetrisch sind, dass auch Gn — Gn+1 eine nicht négative
quadratische Form definiert und somit bei festen £*,..., £m fiir n-*co die Werte

Fn(Ç) Y, G«s£r£s monoton abnehmen. Da daraus insbesondere auch folgt, dass die

Diagonalelemente G" mit n monoton fallen, zeigt man durch Induktion nach m ohne

Mûhe, dass D limw_>00 det(Arns)<oo genau dann statthat, wenn limn_ooy4"<oo fiir
aile l<r,s^m.

Fur die Vektoren veV mit vorgeschriebenen Werten <P{v, fr) rjr findet man
wieder inf ||t?|| r()f) £ &**!/!s- Andernseits hat T(rç) fiir rçr £ £ia* au^ der reellen

Sphâre £ £? 1 ein Maximum < 1. Das folgt genau gleich wie in §1.1.

m.l dim£'/F<oo, D<oo

In diesem Falle sind die Summen y4" limIJ_>ooy4" endlich. Wir setzen wieder
Wrs Ars-ôrs (Kronecker). Hat man zwei Râume E= V®F, £= V®Fmit V1=V1

(0) und dim£t/F=dim.£/f<oo, dann seien {!PS}, {Wrs} definiert beziiglich irgend-
welcher Standardbasen zu den beiden Einbettungen. Entsprechend den Sâtzen 2, 3, 4

gilt dann :

SATZ 11. Es gibt eine Isometrie <p:E-*E mit (p(V)= V genau dann, wenn sich die

reellen Formen £ Wrs^r^s, £ *prsçrçs #èer dem Grundkôrper k ineinander transfor-
mieren lassen. Insbesondere zerfâllt eine Einbettung VaE genau dann, wenn sich die

Form W uber k auf Diagonalform transformieren lâsst. Falls k R ist, zerfallen also

aile Einbettungen.
Beweis. Die Sâtze 2 und 3 lassen sich ohne Mûhe ùbertragen, aber auch Hilfssatz

1 : Sind die Formen W und W mittels der Matrix C ineinander transformierbar, so hat

man wiederum einzusehen, dass fur geeignete Çiv und geeignetes N die Vektoren

fi=Y< cijfj~"YA ^îv^v paarweise orthogonale Einheitsvektoren sind. Dièse Orthogo-

nalitâtsbedingungen lauten /= -Cs/NX* -Xjz?%C* +XX* + CC*(j#% die Transpo-
nierte der mxN Matrix (otj)=<stfN und X* die Transponierte der mxN Matrix
(£fv) Ar). Die Substitution X=C<a?N- Fliefert die Bedingung YY*-I=C(AN-I)C*.
Da nach Vorraussetzung Â-I=C(A-I)C* ist, fâllt die symmetrische Matrix
C (AN-I) C*-h/ fiir hinreichend grosses N positiv définit aus, lâsst sich somit fur

geeignetes N auf Diagonalform YY* bringen.



Dichte Unterrâume quadratischer Râume 489

IH.2. dimE/V<oo9 2)<oo

Es seien ^ {vt} u {/f} und M {vt) u {/,} Standardbasen zu den Einbettungen
VczE, VcE. Falls es eine Isometrie <p:E-+Ë mit q>(V)== Fgibt, dann gibt es ja eine
invertierbare mxm Matrix C derart, dass beziiglich der Standardbasis «^°

{vi}v{(Pfi}gi\t

iÇ-/ C(^-/)C* (n>n0) (1)

Wenn D oo ist, dann ist die Form W von III. 1 nutzlos. Aus (1) ergibt sich eine ein-
fache Transformationsgleichung fiir die Matrix Z=limll_+00(^4")/det(v4") (die immer
existiert). lm Falle dim El V=2 fûhrte dieser Trick zum Ziel wegen des einfachen

Zusammenhanges von Zund der Matrix G limn^O0(Arns)~1, die ja bei der Konstruk-
tion der gesuchten Isometrie explizit auftritt. Man hat daher im allgemeinen neben X
auch G zu betrachten. Zunâchst ist ù G und aus (1) folgt sofort ein Zusammenhang
zwischen G un G:

G(CC*-(CC* -/)GA) GA, wo GA=C*-lGC~1 zur Abkûrzung. (2)

Es scheint plausibel, dass im Falle dim ls/F= 3 die Grôssen X und G die Ein-
bettung bis auf Automorphismen vollstândig festlegen, nicht aber im Falle beliebiger
endlicher dimis/F. Wenn man nâmlich q> durch schrittweises Konstruieren definiert,
wie das in 1.2 geschehen ist, so mussen nach jedem Schritt die ,,Induktionsvoraussetz-
ungen" wieder erfûllt sein, insbesondere muss bei jedem Schritt G G sein beziiglich
der verwendeten Standardbasen. Am Schlusse von II.2 ist dieser nicht zu vernach-

lâssigende Punkt vorgefuhrt. Um nun aber allgemein schliessen zu kônnen, dass

limn_+00(^"-^s)~1=limll_+00(y4"-^s)"1 ist, muss man Gleichheit entsprechender
Limites von AnldQtAn voraussetzen, wo An irgend ein Minor vom Grade 1< t <m der

Matrix An (Arns) ist. (Dièse Limites sind immer vorhanden bei hinreichend kleinen
Ç). Die Annahme solcher rechnerischer Voraussetzungen hat einen guten geome-
trischen Hintergrund:

Es seien (p;E-+£ eine Isometrie mit q>(V)=V und M Bildbasis der Standardbasis
J*. Fiir hinreichend kleines e>0 kann man in V immer N paarweise orthogonale
Einheitsvektoren wt,..., wN finden mit beliebig vorgeschriebenen ,,Winkeln"
^(H;i»/r)=^Zr=i 0?i)2<e; ebenso findet man in V orthogonale Einheitsvektoren

vPl5..., wN mit $(wi,fr) riï. Es sei Vo der von den wu...wN aufgespannte Raum
ferner Vx Vq n V. Entsprechend seien Fo, Vx erklârt. Die Restriktion (p \ F hat eine

Erweiterung q>x auf V0®F mit 9i(F0)=F0 und nach Voraussetzung natiirlich die

Erweiterung ç auf V®Fmit cp(V)=V. Wir behauptenjetzt, dass cpt eine Erweiterung
(p2 auf F0Fbesitzt mit q>1{V1)=Vl (d.h. "man kann in q>\V0®V1®F-*V0®V1®
®((pF) die Râume Vo und Vo kûrzen"). Zu diesem Ende konstruiert man einen metri-
schen Automorphismus (p3 von E mit den Eigenschaften q>3 \ F 1F, (p3(Fo) ç'1 (f0)
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und (ps(V)=V. Da die Râume Vo und Vo endlichdimensional sind, lâsst sich ein

solches ç>3 aufgrund des Wittschen Satzes in endlichen Dimensionen sofort angeben.

Damit ist imsere Behauptung bewiesen. Durch Abândern von insgesamt endlich
vielen Vektoren in $ kann man erreichen, dass wu..., wN die ersten N Vektoren in J*

sind und entsprechend in der Bildbasis (M. Nach dem eben Bewiesenen liber die

Isometrie q>2m>V\®F->Vt©F folgt jetzt, dass Mm^^iÂ™-rf^ rjrNrjsN)~l

=limn^00(vl"-fyr1^i vWn)'1 ist- Aus der Gleichheit dieser Grenzwerte auf
kleinen Kugeln ^=1 (rç,)2<£, (1 <* <#) folgt die Gleichheit der Grenzwerte fur
irgendwelche sinnvollen rç'eR, wenn nur N^m—l ist. Das ergibt sich aus dem zu

Anfang von III genannten Entwicklungssatz fur Determinanten.

Aufgrund dieser Vorbereitungen beweist man nun nach frùherem Muster den

SATZ 12. Es gibt eine Isometrie (p : E-> Ë mit (p(V)=V dann und nur dann, wenn es

Standardbasen 38, Ê gibt, beziiglich derer

lim {A? - f'iÉÏ «.-ift-i)"1, m
n~*co

fiir hinreichend kleine £.

KOROLLAR: VcE sei eine Einbettung und An (Arns) definiert beziiglich irgend

einer Standardbasis. Die Einbettung zerfâllt genau dann, wenn es eine invertierbare

Matrix C Uber k gibt mit der Eigenschaft: Fiirjede Folge An von nicht-Hauptminoren der

Matrix A'n C(An—I)C* +1, An von irgend einem Grad zwischen 1 und m—\, aber

fur jedes n entsprechend gewâhlt, fâllt der Grenzwert limrj_+OOidn/detylrt 0 aus. Fur

hinreichend grosses n ist A'n positiv définit.
Wir werden im nâchsten Paragraphen sehen, dass iiber R jede Einbettung zerfâllt.
Beweis. Sei C eine solche Matrix. Wir setzen/f £ Cy/)+Z" Çivvv und verlangen,

dass die ft ein orthonormiertes System bilden. Wie im Beweis von Satz 11 hat man

dazu ein Gleichungssystem YY*=I-CC* + CAnC* nach Y aufzulôsen fur ein

geeignetes n; die Voraussetzung der Korollars garantiert eine solche Lôsung. Damit
ist gezeigt, dass es eine Standardbasis M gibt, sodass die beziiglich M definierte Matrix
Ân=(Âr£) die im Korollar genannten Eigenschaften von A'n besitzt. Nehmen wir nun

irgend eine zerfallende Einbettung V'czE" her mit G" G, dann kann man Satz 12

anwenden. Das ist die eine Hâlfte des Korollars, die andere ist selbstverstândlich.

III.3. dimE/F<oo, &=R

Ist der Grundkôrper der Kôrper der reellen Zahlen, so beweisen wir zunâchs*

den
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SATZ 13. JedeEinbettungzerfâlltineineorthogonaleSummevontTypdimE\V=\.
Beweis. VczE sei vorgelegt und {uj eine orthonormierte Basis von F. Wir be-

weisen die Richtigkeit des Satzes zunâchst in zwei Spezialfâllen.
Fall I: Es ist y£T(viJ)2<°o fur alle/£ F. Wir zitieren Satz 11.

Failli: Es ist Xr(^,/)2 oo fur aile f$V. Induktion nach m dimF/F. Fur
m l ist die Behauptung klar; es liège also eine Einbettung mit dimF/F=m + l vor.
F sei ein m-dimensionaler Teilraum von E mit Fn F=(0). Die Einbettung Fc V@F
zerfalle nach Induktionsvoraussetzung, F©F=©1[Fi© (/,•)], Vi dicht in Vj®(fj).
/m+1 sei Einheitsvektor, fm+l$V@F undfm+1±fj(j=l,...9m). Man betrachte die

Einbettungen Vjcz F,-® (fj,fm+1). Sie sind entweder vom Typ (0, 0, 0) (siehe II.3) und
zerfallen bezûglich/) und/m+1 oder aber es gibt eine orthonormierte Basis {wj von F,
derart, dass ^?)(>vi,/m + 1)2<oo ausfâllt, und dann zerfâllt die Einbettung wiederum

bezûglich/} und/m+1 aufgrund von Satz 10. Injedem Falle ist Vj=Vj0®LVjl mit
fm+i-LVj09fj±Vn. Setzen wir Fm+1=£7=1Fil? so ist F=I7+1(W/})) die ge-
wiinschte Zerlegung in diesem Fall.

Kehren wir jetzt zum allgemeinen Fall FcFzuriick. F sei ein beliebiges aber festes

lineares Komplement von Fin E. Die Menge der Vektoren/eF mit endlicher Summe

Z* (vhf)2 *st ein linearer Teilraum Fo von F. Fo ist ,,modulo F" durch die Einbettung
eindeutig bestimmt, und fur jedes/£F©F0 ist XrOf,/)2 oo. Sei Ft F^nF. Wir
behaupten nun: Es gibt eine Zerlegung von F, F= Fo© Fx derart dass

£ (F0©F0)©(F1©F1), Vt dicht in V^F, (3)

Wegen der schon behandelten Falle I und II ergibt sich dann aus (3) die Behauptung
des Satzes unmittelbar.

Fur dimF/F=l ist die Behauptung (3) selbstverstândlich; es sei also dim£/F=
m -f 1, F=F0®F1 eine Zerlegung eines Komplementes F von F in der beschriebenen

Art. Falls Fo (0) oder Fl=(0) ist, hat man trivialerweise eine Zerlegung (3), dièse

Falle môgen also nicht vorliegen. Wir wâhlen einen Einheitsvektor fin V®F0,f$V
und setzen Foo f1nF0. Nach Induktionsvoraussetzung gibt es eine Zerlegung vom
Typ (3) fur die Einbettung Fc F+CFoo+FJ, F©(F00©Fi) (F0©F00)©1(F1©F1)
und fur V^F^^ nach Fall II eine orthogonale Zerlegung F1©F1 ©1[F1j©(/j)].
Man betrachtet jetzt wieder die Einbettung VljczV1j®(fpf), auf die man immer
Satz 10 anwenden kann. So erhâlt man die gewûnschte Zerlegung wie im Fall IL
Damit ist Satz 13 bewiesen.

Bemerkung: Zerlegungen von der Art (3) ûber Kôrpern fc^R sind im Allgemeinen
nicht invariant gegenûber Kôrpererweiterungen. Die einfachsten Gegenbeispiele
liefert der Fall dim£/F=2. Auf V-\-(fuf2) definieren wir eine Form <P indem wir
eine Basis {t>i}u{/l5/2} als Standardbasis erklâren mit ${vhf1) \, $(^,/2) jS.

wobei wir fur Pt eine gegen ein jS eR-k konvergente Folge in k wâhlen, derart, dass

Ya\P-Pî\ in R endlich ausfâllt. Automatisch ist dann Fx (0) und man findet
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X11 l,X12 P,X22 P2- Wegen Satz 8 zerfâllt die Einbettung nicht, wegen Satz 10

liegt also eine Zerlegung der Art (3) vor (mit Fo (0)). Ober k(y/p) zerfâllt die

Einbettung; sie kann nicht vom Typ (0,0,0) sein, sonst wàre die ursprûngliche
Einbettung ebenfalls von diesem Typ aufgrund der allgemeinen Transformations-

gleichungen; das ist aber unmôglich, da sie nicht zerfâllt. Ober kÇj /?) zerfâllt also

die Einbettung nach (3), diesmal aber mit dimF0 dimF1 l. Das Beispiel zeigt
ferner, dass man auch den Beweis im Fall II von Satz 13 fur A:/R nicht fùhren kann.

Ûber den im Beweise eingefûhrten Raum Fo lâsst sich noch Folgendes bemerken.

Ist Fo zu einer Einbettung Va Ë analog definiert, so ist fur die Existenz einer Isometrie

(p:E-+Ëmit q>(V)= Fjedenfalls notwendig, dass es eine Isometrie cp0: V®F0-+V@F0
gibt mit <PoiY)=V. Betrachten wir jetzt eine Zerlegung der beiden Einbettungen
gemâss Satz 13, E=®L\_Vj®(fJ)\ Ë=®1[Vj® (/,)]; die /},/, môgen als Eh>
heitsvektoren gewâhlt sein. Zu jedem Raum Vj®(fj) gehôrt eine Quadratklasse
(.s, —1)R2 in Ru{oo} nâmlich sj YéT $(wifj)3 wo wi irgend eine orthonormierte
Basis von Xj ist. Dièse Klasse fâllt mit der zur Einbettung V a F® (/}) gebildeten
Quadratklasse zusammen (da dièse ja nicht von der Wahl der orthonormierten Basis in V

abhângt). Entsprechend treten Quadratklassen (iy—l)R2 zur Zerlegung von Ë auf.

Nach der Bemerkung uber die Râume Fo, Fo muss bei einer Isometrie die Summe

derjenigen Vj®(fj) mit Sj<oo auf die Summe derjenigen Vj®{fj) mit Sj<co ab-

gebildet werden. Beziiglich unserer Zerlegungen haben also die Formen W und 7 im

Satz 11 zu den Einbettungen Va V®F0, Vc V®F0 Diagonalgestalt, und aus dem

Satz von Sylvester folgt daher, dass die Anzahl der ^<1, diejenige der Sj=l und

diejenige der Sj mit 1 <^< oo mit den ensprechend gebildeten Anzahlen von Sj ûber-

einstimmt. Wenn umgekehrt dièse Anzahlen iibereinstimmen, dann existiert immer

ein cp von der gewûnschten Art (Satz 2 in [1]):

KOROLLAR: Es seien £=®1 [F,.®(/})], Ë=®L\yj®{fj)'\ irgendwelche

orthogonalen Zerlegungen zweier Einbettungen VcE, Va Emit àxmEjV—à\mEjV=
=m<oo uber dem Kôrper R. Es existiert eine Isometrie q>:E-*Ë mit cp(V)= V dann

undnur dann, wenn die Quadratklassen (ss— 1)R2, (sj— 1)R2 bis auf die Nummerierung

iibereinstimmen. Insbesondere gibt es also bis auf Isometrie genau Einbettungen
/ ~\ \ m I(m +2\

zu dimEIV=m wenn D<oo, genau Einbettungen wenn D<co ist und genau

/m + l\ \ m /
} Einbettungen bei definitem 0.

\ m
Bei definitem # kommen nâmlich nur die Quadratklassen von —1 und 0 in

Betracht.

Es ist klar, dass man aus unseren Resultaten auch etwa Eigenschaften von diver-

genten Reihen ableiten kann, z.B.: Sind (£/),..., ({*) irgendwelche Folgen réelle
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Zahlen mit der Eigenschaft, dass fur jede Linearkombination {Xl£,\-\— +Aw£Jn) die

Summe Ya^^i +'" +^W£D2 divergiert, daim gibt es eine zeilenfinite orthogonale
Matrix (<xu) A (AA*=I), sodass die mit ihr transformierten Folgen ()/*) (£ afi£j),

(rç™) Qr (XijÇJ) paarweise senkrecht stehen, rçjrç*=0 fur aile i und aile r^s.
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