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Eine Bemerkung zu dichten Unterriumen reeller quadratischer Riume

von H. Gross (Ziirich)

Einleitung

In [3] zeigt Kaplansky, dass in abzdhlbardimensionalen Vektorriumen E mit
nicht ausgearteter alternierender Form ¢ die Kodimension dim E/V von dichten
Teilrdumen V ein vollstindiges System ,,orthogonaler Invarianten‘ fiir ¥ bildet. Das
heisst: ist dim E/V; =dim E/V, fiir zwei dichte Teilriume V; in E, dann gibt es eine
Isometrie ¢ von E mit @ (V;)=V, (¢ ist ein [somorphismus, der die vorgelegte Form ¢
respektiert). ,,dicht* bezieht sich hier auf die von & in der gewohnten Weise auf E
induzierte schwache linearen Topologie; die abgeschlossene Hiille eines Teilraumes V'
ist dabei gerade der Biorthogonalraum V**, und V ist somit genau dann dicht in E,
wenn V*=(0)ist (daja V=11,

Schwieriger als die alternierenden Formen sind die symmetrischen Formen zu
behandeln. Der angegebene Satz gilt fiir grosse Klassen von Grundkoérpern aber auch
bei symmetrischen Formen [2], beispielsweise fiir den Korper C der komplexen
Zahlen als Grundkorper: jede Einbettung eines dichten Teilraumes V in E zerfillt,
viz. E zerfillt in dim E/V orthogonale Summanden E, derart, dass V=@, (VN E,) und
V n E, dichte Hyperebene in E, ist. Man kann dann kanonische Basen einfiihren &c.

Die weiter unten bewiesenen Sdtze zeigen, dass viel verwickeltere Verhiltnisse
vorliegen, wenn der Grundkdrper etwa ein TeilkOrper der reellen Zahlen ist. Ist z.B &
positiv definit, dann bildet die Kodimension dim E/V eines dichten Teilraumes ¥ kein
vollstdndiges System orthogonaler Invarianten mehr. Ist der Grundkorper der Kor-
per R aller reellen Zahlen, dann gibt es bei definitem @ zur Kodimension dim E/V =2
genau drei Einbettungen, die nicht durch orthogonale Automorphismen auseinander
hervorgehen. Jede dieser Einbettungen zerféllt aber immer noch in der oben be-
schriebenen Art. Wahlt man dagegen echte Teilkorper von R zum Grundkorper, etwa
den Korper der reellen algebraischen Zahlen oder der rationalen Zahlen, dann gibt
es zur Kodimension dim E/V=2 immer unendlich viele Einbettungen dichter V, die
nicht durch Automorphismen auseinander hervorgehen. Unter ihnen gibt es unendlich
viele (2%°), die nicht zerfallen. Zu jeder Einbettung gibt es aber wenigstens eine ein-
fache Korpererweiterung, die die Einbettung zum Zerfall bringt. Das allgemeinste
Resultat in diesem Zusammenhang lautet: Zu jeder Einbettung V< E, V dicht,
dimE/V=2 iiber dem Grundkoérper k=R gehort eine reelle symmetrische Form
¥, X7 +2%,,X, X, +¥,,X3 in zwei Variablen X,, X, (¥;;€R). Hat man eine weitere
Einbettung ¥ c E, V dicht, dim E/ =2, dann gibt es eine Isometrie von E die V auf V
abbildet dann und nur dann, wenn die beiden Formen )’ ¥, X, X, und ). ;X X sich
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iiber k ineinander transformieren lassen; die Einbettung V' < E zerfillt genau dann in
der angegebenen Art, wenn die Form ) ¥, X ;X ; sich durch eine Variablentransfor-
mation iiber k auf Diagonalform bringen lasst (Sitze 3, 4). Das wird in Kap. I weiter
unten bewiesen. In Kap. II wird die Voraussetzung iiber die Definitheit der Form
fallengelassen. Dieser Fall ist viel umstidndlicher. Schliesslich wird in einem letzten
Kapitell) gezeigt, was fiir Sdtze sich im Falle beliebiger endlicher Kodimension
dichter V¥ in E ergeben. Uber die Zusammenhinge siche man den Anfang von Kap.
II1.

Komplikationen der hier beschriebenen Art scheinen der Grund dafiir zu sein, dass
im ,,klassischen* Fall definiter Formen iiber reellen Korpern eine Verallgemeinerung
des bekannten Wittschen Theorems auf unendliche Dimensionen bisher noch nicht
bekannt ist.

1.0 Bezeichnungen und Voraussetzungen

Es sei @:Ex E—k eine nicht ausgeartete symmetrische Bilinearform auf dem
k-Vektorraum E. Das Paar (E, #) nennen wir einen quadratischen Raum. Wie
iiblich schreiben wir ,,x L y*, wenn @(x, y)=0 ist (x, yeFE), ferner ,,|x||* fiir das
Korperelement @ (x, x).

Im folgenden sei kK immer ein Teilkorper des Korpers R der reellen Zahlen mit der
Eigenschaft:

es gibt eine nur von k abhdngige natiirliche Zahl m derart, dass jede quadratische
Form in m Variablen iiber k die Zahlen +1 oder —1 (oder beide) darstellt.

Beispiele fiir solche k£ sind der Korper Q der rationalen Zahlen mit m=4; all-
gemeiner, alle reellen algebraischen Oberkorper von Q mit genau einer Anordnung,
wobei dann m <4 ist. Schliesslich auch R selbst mit m=1. Die Bedeutung dieser
Korper liegt hier darin, dass jeder quadratischer Raum (E, @) von abzéhlbar unend-
licher (algebraischer) Dimension eine Orthogonalbasis (v;);5, mit |v;] =+ 1 besitzt.
(E, @) ist also durch zwei ,, Triagheitsindices” bis auf Isometrie vollstandig charakteri-
siert ([3], theorem 4).

Jeder Korper mit der angegebenen Eigenschaft besitzt iibrigens eine einzige
Anordnung, also nur die von R induzierte.

In der Folge sei durchwegs dim E=¥, und k von der angegebenen Art.

V sei in den Kapiteln I, IT ausnahmslos ein Teilraum der Kodimension 2 in E und
dicht in E. Da wir hier keine andern Einbettungen studieren, wird kurz von Ein-
bettungen V< E, V< E die Rede sein.2)

1) Einer freundlichen Aufforderung des Referenten folgend.

2) | V< E* ist eigentlich die Beschreibung eines mengentheoretischen Sachverhaltes, kann hier
aber ohne ernstliche Gefahr von Verwechslungen anstelle von idiosynkratischen Hieroglyphen wie
»< : V— E* zur Bezeichnung des intendierten injektiven Homomorphismus verwendet werden.
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Enthdlt V einen unendlichdimensionalen Teilraum W, auf dem die Form ver-
schwindet (W < W), dann enthilt [2] die Lésung unserer Frage. Enthilt V nur
endlichdimensionale Teilrdume W, auf denen die Form verschwindet, dann koénnen
unsere Fragen ohne Schwierigkeiten auf den Fall reduziert werden, dass die Form auf
V definit ist. Wir werden aus diesem Grunde im folgenden immer voraussetzen, dass

&(x,x)> 0 fiirallex #0 aus V.

Nach der Bemerkung iiber die zugelassenen Grundkorper k besitzt ¥ daher immer
eine orthonormierte Basis. Ist (v;);», irgend eine orthonormierte Basis von ¥V, und
sind f, g irgend zwei orthonormierte Vektoren, die ein algebraisches Komplement von
V in E aufspannen, dann heisst die Basis Z=(v;)U{ f, g} von E eine Standardbasis
zur Einbettung V< E. Unter unseren Voraussetzungen besitzt jede Einbettung V< E
(unendlich viele) Standardbasen.

Beziiglich einer festen Standardbasis # setzen wir a;=®(v;, /) und B,=P(v;, g)
(i>1). Die Summen Y 7 o7, Y’ B? und Y7 «,8; konnen konvergent oder divergent
ausfallen. Da ¥+ =(0) ist, kann es kein m geben, sodass die Folgen (2;);sm (B>
proportional sind. Insbesondere ist daher fiir alle geniigend grossen »n immer
D,=(}10?)- Q1 B~ Q1 ¢f)>>0. D, ist monoton wachsend mit » und es ist
D=lim,.,, D,< genau dann, wenn sowohl ) { &/ <o als auch Y 7 B < o ist.

Wir behandeln die Fille ,,D <o0*“ und,,D =00 getrennt. Zu den ersteren gehort
der Fall, dass @ auf ganz E positiv definit ist. Dieser Fall wird weiter unten im Kap. I
behandelt. Der allgemeinste Fall mit D < oo kann ohne Miihe auf den definiten Fall
reduziert werden und soll deshalb nicht besprochen werden. Kap. II behandelt den
Fall ,,D=c0*. Wie zu erwarten ist, hingen diese Fallunterscheidungen nicht von der
gewdhlten Basis # ab. Auf Grund der Untersuchungen in den Kap. I, Il kann in
Kap. III ohne Miihe der Fall beliebiger endlicher Kodimension dimE/V erledigt
werden. Die dazu neu eingefiihrten Bezeichnungen werden am Anfang von Kap. 111
erklért.

I.1 Die Invarianten im Falle einer definiten Form ¢

Es sei (v;);>; Y {f, g} eine Standardbasis einer Einbettung V< E. a;=®(v;,f),
Bi=®(v;, g). Wir definieren 4 =lim,, , Y ¥ o, B=lim,_ , 3.7 7, C=lim,, , Y. %:f:
Da & in Kap. I positiv definit vorausgesetzt wird, folgt

A<1, B<g1;

also sind 4, B, C Elemente von R und es ist AB— C?>0. Es erweist sich spiter als
zweckmadssig, folgende reelle Zahlen einzufiihren:

T11=A“"1, T22=B""1, T12=W21=C.
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Die Tatsache, dass fiir jeden Vektor x #0 stets | x|| >0 ist impliziert, dass det(¥;) >0
ist: es sei nimlich Y (¢,, &,) die reelle Form3) ¥, 82 +2W,,¢,&,+ ¥, 62, Ist x=
=&, f +&,8+Y), Aw, ein beliebiger Vektor aus E, so ist Y 2 (4;+ &0, +&,8) 2 =l x|| +
+¥ (&5, &,). Gesetzt, fiir £, und &, wire Y (&, £,)=2¢>0. Man wihle N so gross,
dass Y 5 (&0 +¢,8.)% <e ausfillt; ferner setze man A;=0 (> N) und A, = — Ea;—E,B,
(1 <i<N). Fiir diese Wahl der Komponenten ¢;, 4; von x miisste ||x|| < —¢ sein, was
nicht geht. Also ist die Form ¥ nie positiv. Ist umgekehrt ¥ nie positiv, dann folgt
natiirlich, dass || x| >0 ist fiir alle x; ist ferner || x|| =0, dannist Y ¥ (4; +&,a;+&,8)* =
=¥ (¢, &,)<0, also &,a;+&,8,=0 fiir fast alle i. Da V'*=(0) ist, miissen ¢, und &,
Null sein, also muss auch x =0 sein. Wir haben also den

SATZ 1. {¥,;} (i,j=1, 2) sei die Form einer Einbettung V<E bez. irgend einer
Standardbasis. P ist genau dann positiv definit, wenn ¥ nie positiv ist.

Wir bemerken noch, dass die Grossen 4, B und C und somit die ¥;; von der
Wahl der Basis {v;} in V unabhingig sind. Fiir eine zweite orthonormierte Basis
(¢;) von Vist ndmlich §;=) y;;v; und daher &;=} y;;¢;, wo die Matrix (y, ;) orthogo-
nal und zeilenfinit ist. Sie definiert daher eine orthogonale Abbildung im gewohnlichen
Hilbertschen Folgenraum und dabei bleibt die Norm A4 von («;);», erhalten. Wie ver-
halten sich aber die Grossen 4, B und C, wenn man die Basisvektoren f und g anders
wahlt?

Es sei f=vy; [ +vi28+) (s, §=vaor f +vaig+) uvy, | f1=1, |gll=1,fLg
und natiirlich det(v;;)#0. Definiert man A, B, C beziiglich der Standardbasis
(v)) U {f, &}, so zeigt eine kurze Rechnung, dass

A—1=v{{(4-1)+vi,(B—1)+2vy;v,C
B - 1 = v%l(A - 1) + V§2(B - 1) + 2V21VZ2C
C =v Va1 (A—=1) 4+ vy (B—=1) + (vy Va2 + V12v21) C

So transformiert sich gerade ein symmetrischer Tensor. Fiihren wir noch die ¥;; ein,
so erhdlt man einfach

WU = Z virvjsg’rs’ det (V,'j) # 0, VUGk ; (1)

Unsere Bemerkungen iiber Basiswechsel kénnen in dem folgenden Satz zusammen-
gefasst werden:

SATZ 2. V<E, V< E seien zwei Einbettungen, ¥ ={¥;} und ¥ ={¥;} seien die
zugehorigen (reellen) Formen, definiert beziiglich irgendwelcher Standardbasen. Falls

3) Wir sprechen oft von der Form ¥ oder auch von der Matrix {¥y} oder einfach von den
Grossen Wy einer Einbettung. Wie Satz 3 zeigt, sind dann die Formenklassen {iber dem Grundkorper
von solchen Formen ¥ nur noch von der Einbettung abhingig und nicht von den gewihlten Basen #.
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es eine Isometrie ¢:E—E mit ¢ (V)=V gibt, dann stimmen ¥ und ¥ bis auf eine
Transformation (iiber dem Grundkorper k) gemdss (1) iiberein.

Von diesem Satz gilt nun auch die Umkehrung. Als Vorbereitung zum Beweis
benstigen wir zwei Hilfssdtze.

1. HILFSSATZ. Sind die Formen ¥ und ¥ zweier Einbettungen V<E und V< E
nach (1) ineinander transformierbar, dann kann man in beiden Rdumen Standardbasen
einfiihren, sodass beziiglich dieser Basen sogar ¥, ;=¥ ; gilt (i, j=1, 2).

Beweis. Es sei P;;=) v,,v;,¥,, fir gewisse v;;ek. Die ¥, seien definiert beziiglich
der Basis (v;) U {f, g}. Um die neue Basis zu finden, setzen wir zunichst fo=v,, f +
+v12,8+ 21 €y o=Va1 [ +V228+ .1 HiV;, Wobei wir n und die &, p; so bestimmen
wollen, dass || foll <1, | goll <1 und f,, L g, ausfilit. Die drei Bedingungen lassen sich
auf die Form bringen:

Zﬂ'iz=“f—819 Z'Ii2=B"82, Z}viﬂi=(j—83 2
1 1 1
wobei

Ai=& 4+ vy + vioB, M= Wi + V210 + V22, (i=1,...,n) 3
gy =y, (v, + leﬁi)29 & = Z (v2104 + szﬂi)z,

n;l n+l (4)
&3 = 21 (vi19% + vi2B) (V219 + v228)

n+

Fiir hinreichend grosses n werden ¢,, &, und &, beliebig klein. Also ist fiir geniigend
grosses n immer noch (d—¢,) (B—e¢,)—(C—e;)?>>0. Ferner ist A—¢g =1-
vi (1= e®)—vi, (1= B +2v4,v1, Y1 o;B; und liegt somit im Grundkérper k;
ebenso sieht man, dass auch B—e¢, und C—e¢; in k liegen. Auf alle Fille gibt es fir
geniigend grosses n immer reelle Lésungen A;, #; von (2), also nach (3) auch reelle
Losungen &;, p; unseres Problems. Es bleibt der Fall, dass k #R ist. Wihlt man die
reellen Zahlen 4’ und B’ nahe genug bei A—¢, und B—¢,,ferner 4’ < A—e¢,,B'<B—¢;,
dann existieren nach dem Vorangehenden jedenfalls wieder reelle Losungen der
Gleichungen (2) mit A’, B’ anstelle von 4 —¢; und B—¢, respektive. Man wihle
darauf 4, n; in k derart, dass Y ; 2;2=A4", 31 p;>=B" und Y} Ain;=C—e, ist, wobei
A” und B” nahe genug bei A’ und B’ sind. Die &; und yj, die gemiss (3) zu 4; und #;
gehoren (1 <i<n), liegen im Grundkdrper und fiir die Vektoren f;, und g, mit den so
bestimmten Komponenten gilt || fo|l <1, || goll <1 und fy L g,. Schliesslich wihlt man
im Raum k(f,, g0, V..., V,)- N V zwei zueinander orthogonale Vektoren u, v mit
lul=1=]foll, llvl=1—]goll. (Hier verwenden wir die Tatsache, dass positive
Formen in geniigend vielen Variablen iiber unsern Koérpern k jedes positive Korper-
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clement darstellen). Setzt man /' = f,+u, g’ =g, +v, v;=v;(i>1), dann ist (v;) U { [,
g'} eine Standardbasis zur Einbettung V< E und es gilt ¥;;=¥,; (i, j=1,2). Q.E.D.

Beziiglich einer festen Standardbasis und fiir jedes natiirliche n setzen wir 4,=
i af, By=Y1B?, C,=Y" a;,f;, D,=A,B,—C2. Da V*=(0) ist, gibt es ein n, derart,
dass D,>0 ist fir n>n,. &;,..., &, seien Elemente aus R; wir setzen a=)7 &a,
B= YT &P, Fiir festes n>n, und festes m < n betrachten wir die Funktion

Sm,u(ila tesdy ém) = Dn_l(azBu - zaﬁcn + BZAn)

auf der reellen Sphire S:)7 ¢?=1. Dort ist immer a*<4, < B und daher 3, ,
beschrinkt. Fiir n—»oo konvergiert 3, , gleichmissig auf S zu 3, ,(¢y,..., &)=
=D Y (a?B—-20BfC+B%A4). Wir behaupten nun:

2. HILFSSATZ. Essein>ny, n>m. Dann gilt: (i) maxs9, ,<1, (ii) maxg9, ,=1,
(iii) zu jedem m existiert ein n derart, dass maxs9,, ,<1, (iv) maxs9, ,<1.

Beweis. 8, , besitzt ein Maximum auf S. Man kann daher die Lagrangesche
Multiplikatorenregel auf die Funktion H=39,, ,({,,..., &) — AT £ —1) anwenden.
Die Bedingungen 0H/0¢;=0 liefern

Dn'lfi = aoc,-B,, - (aiﬁ + aﬂi) Cn + ﬁBiAn (1 < i < m) (5)

Multipliziert man (5) mit £; und addiert die m Gleichungen, so erhédlt man gerade
A=3, , in den Punkten (£;); <;<m in denen ein Extremum angenommen wird. Also
sind die Losungen A, die (5) und der Bedingung ) £2=1 geniigen, die Extremwerte
von H im Innern von R™. Berechnet man in diesen Punkten auch noch (D,A¢;)? aus
(5) und addiert die m Quadrate, so zeigt eine Rechnung, dass

A* — 1=-D;%G, (6)

wo G,=>". [0a;B,— (¢;8 +ap;) Co+ BBiA,]? ist (G,=0 im Falle m=n). Wegen
G,>0 ergeben sich die Behauptungen (i) und (ii) unmittelbar aus (6); um (iii) zu
beweisen zeigen wir, dass G,>0 ist fiir geeignetes n. In der Tat, wire G,=0 fiir fast
alle n, dann wire

o; («B, — BC,) = Bi(«C, — pA,) fiir fast alle i. @)

Nun konnen die Koeffizienten von a; und f; in (7) nicht beide Null sein, denn sonst
wire «=0 und f =0 da D,#0 ist fiir hinreichend grosse n. In den Punkten, wo ein
Maximum vorliegt, ist aber nicht o= f =0. Wir kénnen daher aus (7) schliessen, dass
die «, und B, proportional sind. Daraus folgt, dass dim¥*>1 ist, was nicht geht.
Damit ist gezeigt, dass sogar G,>0 ist fiir alle hinreichend grossen a. (iii) ist damit
auch bewiesen. Die Behauptung (iv) iiber die Funktion 3, , auf § ergibt sich in
analoger Weise.
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I.2 Isometrie

Es mogen jetzt zwei Einbettungen V< E und V< E vorliegen. Voraussetzung sei,
dass es Standardbasen #=(v,)U{f, g} und #=(0,)U{f, g} gibt, beziiglich derer
V,;=Y,ist (i, j=1, 2). Wir zeigen, dass es eine Isometrie ¢: E—E gibt mit o (V)="V.
Eine solche Isometrie ¢ ist durch schrittweises Erweitern von Isometrien zwischen
endlichdimensionalen Teilriumen von E und E zu konstruieren. Das Verfahren
wurde z.B. in [1] im Detail dargestellt und soll hier nicht wiederholt werden; es fiihrt
auch hier zum Ziel, falls man das folgende Problem allgemein 16sen kann:

Gegeben sei ein Vektor xe¥ mit ||X]| =1. Gesucht wird ein Vektor xeV mit
x||=1 derart, dass ®(x, )= (%, f) und D(x, g)=d(%, g).

Unm ein solches x zu finden setzen wir — mit einem noch zu bestimmenden natiir-
lichen n - x,=Y"1 &v; wo (fiir 1<i<n):

= D;l(&Bn - Bcn) + Dn_l(BAn —aC,), &= 6(‘2’ f)’ B= i(i’ g)

Man findet &(x,,f)=a und P(x,, g)=p wie verlangt. Wir behaupten, dass fiir
geeignetes n die Linge |x,| <1 ausfillt. Es ist |x,| =Y & =D, ' (&*B,—2&BC,+
+ B24,) und somit existiert lim,_, ,,||x,||. Hat der vorgelegte Vektor X eine Darstel-
lung =) &7, so folgt nach Hilfssatz 2, dass lim,. .| x,||=D"'(&*B—-2afC+
+pB*4)= D~ (@*B—-20BC+ B*A)=9, o (s, ..., Em) <maxgy,, ., <1ist. Man findet
daher ein x, mit ||x,|]| <1. Wahlt man schliesslich im Raum k(f, g, x,)" NV einen
Vektor w mit ||w||=1—| x,|, dann ist x=x,+w ein Vektor der gesuchten Art.

Wie schon erwihnt, ldsst sich jetzt eine Isometrie ¢:E— E konstruieren mit
@(V)=V. Zusammen mit Hilfssatz 1 ergibt sich die Umkehrung von Satz 2 und
somit:

SATZ 3. V< E und V< E seien zwei Einbettungen. Es gibt eine Isometrie ¢:E—E
mit ¢(V)=V genau dann, wenn die zugehorigen (reellen) bindren Formen ¥ ={¥;}
und ¥ ={¥,,}, definiert beziiglich irgendwelcher Standardbasen, gemdss (1) iiber dem
Grundkorper k ineinander transformierbar sind.

I.3 Orthogonale Zerlegungen

Wir sagen, dass eine Einbettung V < E zerfillt, wenn es Teilriume E, und E, von
E gibt mit

E = El ®‘E2, V = (VﬁEl) + (VﬁEz), El -LE2

dim[E/E,nV]=1, EnVdichtinE, (i=1,2)

Falls es zu ¥ c E eine Standardbasis gibt, fiir die a,8,=0 ist fiir alle i, dann ist ¥;,=0.
und offenbar zerfillt die Einbettung. Es gilt aber allgemeiner der
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SATZ 4. Eine Einbettung V < E zerfillt genau dann, wenn sich die ¥, ; nach (1) so
transformieren lassen, dass ¥, =0 wird.

V< E zerfillt also genau dann, wenn die (reelle) binire Form ¥ sich iiber dem
Grundkorper k auf Diagonalform transformieren lisst. In der Tat, man wihle einen
Raum E iiber k und definiere eine Einbettung V< E mit ¥,,=¥,,, ¥,,=¥), und
&;B8,=0 (i>1) beziiglich einer Standardbasis. (Das ist auf viele Arten moglich). Es ist
dann ¥,;=¥;;(i, j=1, 2), und aufgrund von Satz 3 gibt es eine Isometrie ¢ zwischen
E und E mit ¢(V)="V. Also zerfillt auch die Einbettung V' <E.

Fiir die Anwendung niitzlich ist noch der folgende

SATZ 5. Im Korper k sei jedes positive Element Quadrat. Eine Einbettung V< E
mit den Invarianten ¥ ;; zerfillt genau dann, wenn ¥,, ¥ ,,, ¥, iiber k linear abhiingig
sind.

Beweis. Zerfdllt die Einbettung, dann gibt es nach Satz 4 eine Transformation
(v;;) Uber k derart, dass ¥,=) v,,v,,%,,=0 ist. Das ist eine Relation der verlangten
Art. Es sei also jetzt umgekehrt a¥,, + f¥,,+9¥,,=0und o, B, y in k, a2+ B2 +
+7y2#0. Wegen Satz 4 bleibt der Fall, dass ¥,,%0 ist. Ist y=0, dann ist «#0 und
B #0 und wir setzen v;;=— (—af) 2 B~ v, =1, vy =(—ap)2a™ !, vy, =fa” L.
Es ist det(v;;) #0 und ¥{,=) v,v,;¥,;=0. Wir zitieren Satz 4. Ist hingegen y#0,
etwa y=1, dann setzen wir v,;=0, v;,=1, v,;=ac~!, v,,=p wobei ¢ eine von 0
verschiedene Loésung der quadratischen Gleichung x?8 —x+a=0 ist (ihre Diskrimi-
nante ist positiv, wie sich aus der linearen Abhingigkeit und ¥,,¥,,—¥2,>0
ergibt). Man iiberzeugt sich, dass det(v;;) #0 ist. Transformation mit (v;;) ergibt
wieder ¥1,=0. Q.E.D.

Uber k=R zerfillt also jede Einbettung V< E und es ist eine leichte Aufgabe,
aus unseren Sdtzen zu folgern, dass es iiber R genau drei Einbettungen V< E gibt
(£ anisotrop), die nicht durch metrische Automorphismen auseinander hervorgehen.
Sie werden reprisentiert durch (¥y4, ¥5,2, ¥1,)=(0,0,0), (-4, —1, 0), (0, —1, 0).

Ist dagegen k #R, dann kann man aufgrund von Satz 3 immer unendlich viele
Einbettungen V< E angeben, die nicht durch metrische Automorphismen ausein-
ander hervorgehen; zudem kann man unendlich viele unter ihnen so wéhlen, dass sie
nicht zerfallen. Das folgt aus Satz 5 und der Artin-Schreierschen Charakterisierung
der Korper von endlicher Codimension in algebraisch abgeschlossenen Korpern,
wonach [R:k]=1 oder [R:k]> N, ist (fiir beliebige Teilkérper Kk =R):

Zunichst bemerken wir, dass es zu irgendwelchen Zahlen ¥y =A4—1, ¥,,=B—1
und ¥,,=C eine zugehorige Einbettung gibt, sofern die notwendige Bedingung
AB>C? erfillt ist (Schwarzsche Ungleichung und V*'=(0)). Wir diirfen etwa
A>|C| annehmen. Man wihle ein rationales 4 nahe genug bei \/ A/\/ B sodass
4—A|C|>0 & B—|C|/A>0 ist; dann wihle man in k Folgen (n;), (¢;), (¢;) mit
YT nf=|Cl/A, Y.? pi=A—A|C|, YT 6f=B—|C|/A. Erklirt man jetzt eine Basis
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{v;} U {f1,f2} zur Standardbasis mit o5;_,=0;, #3;_1 =0, ot3;=sgnC-A-m, fiir i>1,
B3i-2=0, B3;—1=0;, B3;=m; (i=1), so hat die Einbettung die gewiinschte Form ¥, ,
¥32, ¥12.

Jetzt hat man im k-Vektorraum R lediglich 2¥° 3-dimensionale Riume R, an-
zugeben mit R, R, =(0) fiir 1#x; je drei linear unabhingige Vektoren ¥;,, ¥;,,
¥1,€R, definieren dann eine Einbettung V,cE, die nicht zerfillt, und Formen
¥', ¥* mit 1#x kOnnen trivialerweise nicht ineinander transformiert werden iiber
dem Grundkérper k. Die Wahl solcher Riume R, ist leicht: Falls dim, R =2"° jst,
kann man eine Basis von R in Trios antreten lassen. Falls dim, R<2"° ist, dann ist
card(k)=2" (da in jedem unendlichdimensionalen k-Vektorraum R gilt cardR=
dimR-card(k)). Man kann etwa R in drei unendlichdimensionale Teilriume R, R,,
R; (direkt) zerlegen; darauf wiihle man 2% linear unabhingige Vektoren ¥}, in R,
2% linear unabhiingige ¥}, in R, und 2™° linear unabhingige ¥}, in R,. Damit hat
man in jedem Falle 2%° Einbettungen gefunden, die weder zerfallen noch durch
Isometrie auseinander hervorgehen. Es ist iibrigens auch klar, dass es modulo
Isometrie mehr als 2¥° Einbettungen gar nicht geben kann.

II.1 Die Invarianten im Falle D= co.

In den Fillen, wo die Summen A, B und C divergieren konnen, miissen neue In-
varianten eingefithrt werden. Um spéter die Gedankengédnge nicht unterbrechen zu
miissen, schicken wir ein paar triviale Bemerkungen iiber Folgen voraus. Es seien
(x)i» (3); beliebige reelle Zahlenfolgen. Wir setzen X, =Y x2, Y,=Y1 !, Z,=
=Y1 X D,=x,Y,—Z2%. Vorausgesetzt werde: Es gibt ein n, sodass fiir alle n>n,
die Teilfolgen (x;);>n (¥)i>, linear unabhingig sind. Insbesondere ist dann

D,#0 fir n>n,. (1)
Die Folgen
XD, ', .0 (X, + Y, +22,) D, ', (X, + Y, — 2Z,) D, )

sind mit wachsendem n(n>n,) monoton fallend und besitzen demzufolge wohl-
bestimmte, nichtnegative Grenzwerte. Es konvergieren also auch die Folgen Z,D, g
‘Divergiert mindestens eine von X, und Y, fiir n— oo, dann divergiert auch D, mit
wachsendem n.

Wir setzen a=) 7 &x;, f=Y 71 £;»; und betrachten die beiden Funktionen

X, Y, Z,
Sm,n(éla seey fm) = ﬁZ'E + 052'1“); — 2(Xﬁ ——D:
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X, .Y, . Z,
O wo (Eps v &) = B%lim =" + o®- lim —" — 208+ lim —"
auf der reellen Sphére S:)'7 & =1.
Nach dem Beweis von Hilfssatz 2 gilt fiir n>ny, und n>m

3

maxsd,, ,<1, maxgy,,=1, firjedes mist maxs9, ,<1
bei allen hinreichend grossen n, maxg 9, , < 1.

Schliesslich bemerken wir, dass die Grenzwerte der Folgen (2) unverdndert
bleiben, wenn die Folgen (x;);, (»;); derselben (zeilenfiniten) ,,orthogonalen‘ Trans-
formation unterworfen werden: x;=Y) v;; x;, Yi=Y. %ij Vj» 2. Vei¥si=2, VjrVjs=Ors
(Kronecker) und bei festem i ist y;;#0 fiir nur endlich viele j. Die Beweise sind
Routine.

Es sei nun also wieder (v;);U{f, g} eine Standardbasis einer Einbettung V< E,
ai=¢(vi’f) und Bl=¢(vf3 g)’ ferner An=zq aiza Bn=z'; 18127 Cn=2'1' aiﬁi und Dn=
=A,B,— C?. Die Unabhingigkeitsforderung (1) ist fiir die Folgen der «; und g; erfiillt.
Wir konnen daher definieren:

. A, . B, . C,
Xll = llm T Xzz = hm T X12 = X21 = hm g (5)

n-—ao n n—ao n n—>awo n

Die X;; sind nichtnegative Elemente aus R; sie sind von der Wahl der Basis (v;) in V
unabhanglg. Da D, divergiert, ist immer

II.2 Isometrie (D= )

Es seien jetzt zwei Einbettungen V<FE und V< E vorgelegt, die zugehorigen
X;; und X;; definiert beziiglich irgendwelcher Standardbasen #=(v;)uU{f, g} und
B=)u{ f g} respective. Es gilt dann der folgende

SATZ 6: Es existiert eine Isometrie ¢:E—E mit o(V)=V dann und nur dann,
wenn es eine nichtsinguldre 2 x 2-Matrix (v;;) iiber k gibt, derart dass

lj = Z v:r
und @)
e =Y vy Xy + Y vavy; Xy + [1 — Xy — X;5]-det(v;)* >0

ZUSATZ. Gibt es eine Isometrie ¢ von der angegebenen Art, dann existiert beziiglich
geeigneter Standardbasen der Grenzwert der Folge D, D, " und es ist lim,_, , D,D; ' =p;
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Sferner ist
o(1-X, - X5)=(1-X,, — X,,) det(vij)z

Insbesondere gehiren also mindestens zu den vier Fillen, wo 1—X,,—X,, gleich 1,
zwischen 0 und 1, gleich O resp. zwischen 0 und — o ist, verschiedene Klassen von
Einbettungen.

Beweis. A) Es moge ein ¢ der angegebenen Art existieren. Neben den beiden
Standardbasen # and # betrachten wir noch die Standardbasis &' =(3,)U {@ f, 0 g}
zur Einbettung V< E. Fiir die X;; beziiglich dieser Basis gilt natiirlich X;;=X;; (i, j=1,
2). Driickt man # durch #’ aus, dann erhilt man — wie in 1.1 — Gleichungen

A,— 1=} (4, 1)+ V%z(B:: —-1)  +2vv,C,
B, —1=v3,(4, - 1)+ V3, (B, —1)  +2vyyv,;,C, (3
Co=vi1v21 (4, — 1) 4+ viavy5(By — 1) + (vi1va2 + Vi2v2y) C,

fiir alle hinreichend grossen n und eine nichtsinguldre 2 x 2 — Matrix (v;;) mit v;;ek.
Also gilt (etwa fiir n>ny) (4,~1) (B,—1)—C?=[(4,—1) (B,—1)—C,*] 42, wobei
A=det(v,)) ist. M.a.W.: D,— A,— B, +1=[D,— A, — B, + 1] 4. Driickt man 4, und
B, mit Hilfe von (8) durch A4, B, und C, aus, so ergibt sich die Existenz von lim,_, ,
x D,D,”" und man findet lim,,D,D, '=g, da X;;=X; ist. Betrachtet man die
Abbildung ¢!, so ergibt sich analog die Existenz von lim,., D,D;'; daher ist
0+#0, also positiv. Dividiert man jetzt die Gleichungen (8) durch D, und erweitert
rechts mit D,, so erhélt man fiir n— oo die Transformationsgleichungen (7). Damit ist
die eine Hilfte unseres Satzes und sein Zusatz bewiesen.

B) Es mogen umgekehrt die Bedingungen (7) erfiillt sein. Wir zeigen zunéichst,
dass sich zur Einbettung V< E eine Standardbasis #’ so finden lésst, dass X;;=X;;
giltfiiri,j=1,2. Um %’ zu finden setzen wir vorerst v; =v;(i= 1) undfo=v,, f +v(28+
+Y 0 E v, 8o=Va1 S V2284 nivi. Es sollen nun n und die &, n; (1<i<n) so
bestimmt werden, dass || fol| <1, ||goll <1 und f, Ll g, ausfillt. Setzt man A;=¢;+
+0o Vi1 +BiVigs U=+ vy, +P;v2, (1 <i<n), mit spiter noch zu bestimmenden #,
so ist das genau dann der Fall, wenn gilt

a
e

<1+ [Vf1 (Au - 1) + V%z (Bn - 1) 4+ 2v1v12C,]

<1+ [V§1(An -1 + V3, (B, —1) 4+ 2vy;v,,C,] )

[viivas (Ay — 1) 4+ v12v22(B, — 1) + (vi1Va22 + V12V21) C,l

Rt
=
|

HM; .-M: ,_M:
LN

Dieses System lésst sich nach dem Muster von 1.1 iiber k 16sen, wenn sich zeigen ldsst.
dass U,V,—W2>0 ist fiir hinreichend grosses n, wo U,, V,, W, der Reihe nach die
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rechten Seiten der drei Ungleichungen (9) sind. Setzen wir der Bequemlichkeit
halber noch U,=1+R,, V,=1+S,, dann ist R,S,—WZ?=[(4,—1) (B,—1)—C2] 42.
Also U, V,—W2=(R,S,— W2 +R,+S,+1=[(4,—1) (B,—1)—C2] 4>+ R,+S,+1.
Man findet daher lim,,,(U,V,--W2)D; '=(1—X,;—X,5) A2+ viiv; X+
v2:v2;Xij=0 und ¢>0 nach Voraussctzung. Da D, nie negativ ist, folgt in der Tat,
dass U,V,— W2 >0 ist fiir alle hinreichend grossen . Fiir solche n ist also das System
(9) iiber dem Korper k 16sbar und somit || fpl| <1, [|goll <1 und f, L g,. Wir wihlen
in Vnk (fy, go)" zwei orthogonale Vektoren u, v mit Jju| =1—| fl, v=1—] g0l
und setzen #’'=(v;) U { fo +u, g, + v}. Berechnet man jetzt die X;; beziiglich #’, dann
gilt X;j=6"1Y v, v, X,,woo=lim,,, D,D, ' =Y vi;vy; Xij+ V2iva; Xij+(1— X1, —
X,,) A*=¢. Also ist in der Tat X};,=X;; (i,j=1, 2).
C) Im letzten Teil des Beweises ist folgender Satz herzuleiten:

SATZ: Ist X;;=X,; (i, j=1, 2), dann existiert eine Isometrie ¢: E—~Emit o(V)=V.

Man habe zu diesem Zwecke bereits orthonormierte n-Beine {x,..., x,} <V,
{X45..., X,} =V konstruiert mit &(x;, f)=®(%;,f) und d(x;, g)=P(%;, &), 1 <i<n.
Die lineare Abbildung ¢, mit ¢,f = f, ¢,g= 8, @,x;=X; ist eine Isometric. Es sei
xeV ein Vektor mit ||x| =1, x L x; (i<n). Es soll zunichst ¢, isometrisch auf x
erweitert werden mit X=¢x in V. Es ist also in ¥ ein Vektor X zu konstruieren mit
Ixl=1, x Lx;(i<n) und &(%, f)=d(x, f), D(%, §)=D(x, g).

{x4,..-, X,} kann zu einer orthonormierten Basis (x;);>; von V erweitert werden,
und man erhilt eine Standardbasis #' =(x)u{/f, g} fiir die Einbettung VcE.
Entsprechend &' =(x)u{f, g}. Bs ist X;=X;;, X;=X,;(i,j=1,2). Wir setzen
Vi=k(x)ism Va=k(X)isn Ex=Ve+k(f, 8), Ex=Vy+k(f, &). Vs, V, sind dicht in
E, bzw. E,. Wir behaupten, dass fiir die Einbettungen V,<E,, V, < E, gilt X *ij=
X4i;(,j=1,2) und beweisen die Behauptung durch Induktion nach n. Es geniigt
offensichtlich, den Fall n=1 zu betrachten.

Da alle unsere Grossen nicht von der in V gewéhlten Basis abhdngig sind, konnen
wir ohne Beschrinkung der Allgemeinheit annehmen, dass x;=v; ist (i>1). Es
st dann  Xyyy=lim,. , {(4,—02) [(4s—03) (B,— B2)—(C,— 0, 1)?] "} =lim, .,
(An—a%)D;l ‘hmn-"oo(l _‘919n(1))_1 =X11 .limn'*oo [1 —sl,n(l)]_l'

Der Grenzwert von 9, ,(1) ist eine Funktion der a4, f,, X;; allein. Da nun o, =&,
und B,=p, ist nach Voraussetzung, folgt aus X;;=X;;, dass auch X,,;,;=2X,,, ist.
Entsprechendes folgt fiir die iibrigen Indexpaare. Wir bemerken noch, dass die analoge
Behauptung fiir die ¥;; im anisotropen Fall aufgrund der Definition der ¥;; dort
trivialerweise richtig ist.

Die Aufgabe, die Abbildung ¢, auf ganz ¥ zu erweitern, reduziert sich nun wieder
auf die in L2 formulierte Aufgabe, und die Argumentation von 1.2 kann ohne
Anderung iibernommen werden.

Damit ist der Beweis unseres Satzes vollstindig.
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II.3 Orthogonale Zerlegungen (D = c0)
Entsprechend zu Satz 4 hat man hier den

SATZ 1. Eine Einbettung V —E zerfdllt genau dann, wenn sich die X;; nach (7)
so transformieren lassen, dass X',, =0 wird.

Ist ndmlich X, =0, dann ist wegen (6) auch X, X,,=0, etwa X,,=0. Wir defi-
nieren eine Einbettung ¥ < E mit &,;=pB,;_,=0(>1), Y.¥ @3-y =00 und ) 7 B2;=
X7y fallsX;, #0ist, Y.¥ B3;= oo falls X,, =0ist. In jedem Falle ist X;;=X;;(i,j=1, 2).
Also kann man den vorangehenden Satz zitieren.

SATZ 8. V cE zerfillt genau dann, wenn X ,,=0 oder X,,X;," €k ist.

Beweis. Sei X,,#0, also X;;X,,7#0 nach (6). Falls nun die Einbettung zerfillt,
dann gibt es nach (7) eine Gleichung 0= v,,v,.X,,. Multiplikation mit X, ergibt
0=(vy; X;1+v12X15) (v Xy, +v,,X1,). Ergo X,, X[, ek. Sei umgekehrt X, , X' =
=¢gek. Wir setzen v;; =1, v;,=¢, v,; =4, v,, = — A¢ mit einem noch zu bestimmenden
A#0. Es ist A= —2Je. Fiir den Ausdruck von ¢ findet man g=4[X;; +12X; X5,
x(1—=X,;—X,,)]- Sollte also 1— X;, —X,, <0 sein, dann ist A* hinreichend klein zu
wihlen. Die Transformation (v;;) erfiillt dann die Bedingungen von Satz 7 und
liefert X,,=0. Wegen Satz 7 ergibt sich die Behauptung.

KOROLLAR. In k sei jedes positive Element Quadrat. Eine Einbettung V< E mit
der Matrix X ;; zerfdllt genau dann, wenn X, X 5,, Xy, iiber k linear abhingig sind.

Beweis. Zerfillt die Einbettung, dann liefert Satz 7 den Beweis. Sei also umgekehrt
X +BX,,+9X,,=0und «, B, y in k (a®+B2+y>+#0). Der Fall, dass X,,=0 ist,
wird von Satz 7 erledigt. Sei daher X,,#0, also X,,X,,#0. Weil X,,X,,—X{,=0
ist, folgt aus der vorausgesetzten Relation, dass y? —4af ein Quadrat ist. Andererseits
ergibt Division mit X, ,, das a4+ (X;,X;;")?* +7 (X1, X)) =0ist, m.a.W., X, X, ist
Losung der quadratischen Gleichung a+y&+p£2=0. Da ihre Diskriminante nicht
negativ ist, liegen ihre Losungen schon in k, insbesondere ist X, X;;'ek. Wir sind
somit im Falle des vorangehenden Satzes.

Sei nun k=R. Nach dem Korollar zerfillt jede Einbettung V' < FE. In diesem
Spezialfall ergeben sich daher die verschienenen Typen méglicher Einbettungen schon
aus [1]: Fiir jeden orthogonalen Summanden hat man nidmlich 4 Mdéglichkeiten
entsprechend den Fillen, dass die Summe b3 a?<1, =1, >1 und < oo oder schliess-
lich = o0 ausfillt. In unserem Falle, wo die Diskriminante unendlich ist, muss einer
der orthogonalen Summanden eine divergente Summe haben, somit muss es nach [1]
insgesamt 4 Typen geben (mit D= o0). Das folgt aber ohne Miihe auch aus den viel
allgemeineren Transformationsgleichungen (7): Es werde vorausgesetzt, dass zwel
zerfallende Einbettungen V< E und PcE nach (7) ineinander transformierbar
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seien. Da X;,=X,,=0 ist, kénnen wir so numerieren, dass X,,=X,,=0 ist. Somit
miissen drei Gleichungen: X, =0~ v}, X,,, 0=v,,X,,, 0=v,,v,,X,,, erfiillt sein. Ist
X, =0, dann auch X;; und umgekehrt. Es sei also X,, #0 vorausgesetzt. Dann ist
X{1#0, also v;;#0, und v,,;=0. Die allgemeinste Transformation, die in Frage
kommt, hat eine Matrix (v;;) mit v,; =0 und v,,v,,#0. Die Bedingung fiir g lautet
dann o=v} X;, +[1-X,,]v}v3,>0. Ist X,,=1, dann ist g=v> X, also X =
o Wi Xy =1. Ist X;; <1, dann ist ¢>v3,X,,, also X, <1. Ebenso ist X,,>1 falls
X ;> 1ist. Wihlt man in den beiden letzten Fillen v2,=X,, (1 - X)) X,, 01 —-X,,) "%,
so sicht man, dass dabei ¢ >0 ist und alle drei Gleichungen erfiillt sind. Damit haben
wir die 4 Typen wieder gefunden, sie werden représentiert durch die Tripel (X,,, X 5,,
X1,)=(0,0,0),(1,0,0), (3,0,0), (3, 0,0). Noch anders ausgedriickt: sie entsprechen
den vier Fillen 1 —X,, —X,, gleich 1, gleich 0, zwischen 0 und 1, zwischen 0 und — co.
Die vorangehende Diskussion zeigt iibrigens, dass die Klasse der Einbettungen, re-
prasentiert durch (0, 0, 0), dadurch charakterisiert ist, dass die Einbettungen zerfallen
beziiglich aller Paare f, g, die iiberhaupt ein Komplement von ¥ in E aufspannen.
Fiir beliebiges k liefert die vorangehende Diskussion den folgenden

SATZ 9. Seien V<E, V<E zwei Einbettungen mit X,,=X,,=0 (bez. geeigneter
Basen); wir numerieren so, dass X,,=X,,=0 ist. Dann gibt es eine Isometrie
¢:E—E mit ¢(V)=V genau dann wenn gilt X,;=X,,=0 oder X,,=X,,=1 oder
(X' =1 (X' =1)"1ist Quadrat in k.

Fillt in einer Einbettung V< E die Summe ) o? beziiglich irgend einer Standard-
basis (v;) U {f, g} endlich aus, dann ist X;, =0, also X;,=0 und die Einbettung
zerfallt beziiglich f, g. Wir wollen hier noch zeigen, dass man in diesem Fall eine
Anwendung von Satz 7 umgehen kann, indem man direkt eine orthogonale Zerlegung
konstruiert.

Ist Y7 of endlich (und Y'¥ B? dann divergent), dann ist es eine leichte Ubung zu
zeigen, dass lim,_,, C,* B, '/>=0 ist und somit

[+ =1
X, = (Z o:f) .
1
Um eine orthogonale Zerfillung konstruieren zu konnen, ist im Wesentlichen die
Losbarkeit der folgenden Aufgabe einzusehen: Zu einem vorgelegten Vektor ve V ist
eine Zerlegung

v=w+ 1, weV, voeV, wlog, vol f, wlg

zu finden.
Wir setzen vy=)7_, £;v;, wobei n und die {; so zu bestimmen sind, dass

@) Y& -F &d(,0)=0, (i) z Eu=0, (i) T Efi=2(0.g)
1 1
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erfiillt sind. Wir bemerken Folgendes: ersetzt man w und vy, durch w—u und v, +u
respektive, wo ue Vnk(f, g, w, vo)*, dann dndert sich fiir die neue Zerlegung von
v an den Bedingungen (ii) und (iii) nichts, wihrend man anstelle von (i) die Bedingung
w—ul vy+u d.h. ||vg]l —P(vy, v) +||ul| =0 zu erfiillen hat. Da man Vektoren u mit
beliebig vorgeschriebener Linge |u|| >0 liber unsern Ko6rpern immer finden kann, so
sieht man, dass es geniigt, n und die £; derart zu bestimmen, dass (ii), (iii) und die
Bedingung

i) ‘:/: & - ; &P (v, v) <0

anstelle von (i) erfiillt sind. Zu diesem Ende setzen wir — mit spéter festzulegendem n -

28; = D (v, v;) + Aoy + pp;
A= Dn_l ['- Bn¢(v9 f) - Cn¢(”9 g)] (10)
p =D, [4,2(v,8) + C,®(v, /)]

Die Bedingungen (ii) und (iii) sind dann erfiillt. Ferner findet man

Y& - i &@ (v, v) = 4[4,2°(v, g) + B,@* (v, f) + 2C, 2 (v, f) ®(v,8)] D, ' — }lv]

1

Also ist

im 362 - 00| =4 [(Fo2) ¢20.) - 101 =

=—%(§a3)“ [nvu;a? —«P’(v,f)] <o.

Wihlt man daher n hinreichend gross, so wird durch den Ansatz (10) auch die
Bedingung (i’) befriedigt. Durch Wiederholung dieses Verfahrens lédsst sich eine ganze
Basis von V beziiglich f und g orthogonal zerlegen.

Mit dieser Methode erhilt man etwas allgemeiner den folgenden

SATZ 10. V< E sei eine Einbettung. V sei orthogonale Summe, V=V,®V,, derart,
dass fiir ein algebraisches Komplement G von V in E der Raum V, dicht ist in Ey=V,®G
und die Einbettung Vy< E, unendliche Diskriminante besitzt. Damit V< E zerfdllt, ist
jede der folgenden Bedingungen hinreichend: (i) Die Summe A,=Y 7 of beziiglich
‘einer geeigneten Standardbasis B, von Vo E,, ist endlich. (ii) Die Einbettung Vo< Eo
zerfdllt.

Beweis. (i) Es sei zundchst V; unendlichdimensional vorausgesetzt, und es sei
(w);>1 eine orthonormierte Basis von V. Sei ferner #,=(v;) U { f, g} die Basis der
Voraussetzung. Durch geeignetes Zerlegen der Basis (v;) in abzdhlbar viele unend-
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liche Teilfamilien (v;;);>; kann man immer eine orthogonale Zerlegung Vo= 2, V,;
erhalten mit Vp; dicht in Vy;+G, Y2, ®*(v;;, f)<oo und Y2, ¢*(v;;, g)= co.
(Eine divergente Reihe mit positiven Gliedern kann immer in unendlich viele diver-
gente Teilreihen zerlegt werden). M.a.W., die Einbettungen V,;cV,;+G erfiillen
alle die Voraussetzung (i). Dasselbe gilt dann auch noch fiir die Einbettungen
Vo, @ w))] = [Vo,®@ W)l +k(f, 8),j>1, welche also beziiglich £, g zerfallen. Also
zerféllt auch V=) ;[Vo;+(w)] <V +k(f,g). Q.E.D.

Sollte V; endlichdimensional sein, dann kann man analog vorgehen.

(i1). Zerféllt Vo< E,, dann ist o, =0 (i> 1) beziiglich einer geeigneten Standard-
basis Z=(v,)u{/, g}. Fillt eine der Summen Y 7 «f, Y'Y B endlich aus, dann ist
man im Falle (i). Andernfalls zerlege man Vyc E; in unendlich viele Einbettungen
unendlicher Diskriminante durch Zerlegen der Basis (v;). Jede dieser Einbettungen
zerfillt beziiglich £, g. Jetzt schliesst man wieder wie im Beweise von (i).

IIT Der Fall endlicher Kodimension

Es soll jetzt der Fall dichter V' von beliebiger endlicher Kodimension in E be-
handelt werden .Ohne Beschriankung der Allgemeinheit nehmen wir wieder an, dass @
wenigstens auf V definit ist (cf. 1.0). Man stellt dabei folgendes fest:

Erstens: Wenn der Grundkorper k der Korper der reellen Zahlen ist, dann
enthalten die im Falle dimE/V =2 bewiesenen Sitze 5, 7 und 10 bereits den Fall
dim E/V < c0. Zweitens: Ist k beliebiger Teilkorper der reellen Zahlen, dann bringt der
konvergente Fall (D<) keinerlei neue Schwierigkeiten. Drittens: Dagegen bringt
die Verallgemeinerung des divergenten Falles (D = o0) neue Schwierigkeiten. Viertens:
eine einheitliche Behandlung ist moglich (Satz 12), aber fiir die Anwendungen ist die
Unterscheidung der beiden Fille D < oo,=0c0 zweckmissig.

Es sei also im Folgenden {v;} eine orthonormierte Basis von V, {f},...,f.} sei
orthonormierte Basis eines algebraischen Komplementes F von V in E. Wir setzen
af =P (v,, f,) und betrachten fiir jedes n die Gramsche m xm Matrix A,=(4;)=
=(Y1afs). Die quadratische Form 0,(&)=Y7 -4, ¢/ ist also nicht negativ; bei
festen £1,..., ™ und wachsendem n ist die Folge der Werte 6,(£) monoton steigend
und wegen der Voraussetzung ¥+ =(0) ist keine Restfolge in 6,(£) konstant. Die
Matrizen (AJ° +&&%), (Ay° — EE°) sind Summen bzw. Differenzen Gramscher Matrizen
und fiir ihre Determinanten findet man?): det(4; +¢¢&)=det(4;)+ Y (—1)"*/4Y
x EiEJ wo A" der Minor vom Grade m — 1 ist, der zu 4}/ gehort. Die hier auftretende

a11 ... &X1n X1
4) Das folgt etwa aus dem Determinantensatz : .
Anl... Ann Xn
i ...Vn 2
det(ayy) und 4i; der Minor vom Grade n — 1 ist, der zu ai; gehort.

=Az—3 (— 1)*4s xi y; wo A=
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quadratische Form in den ¢ ist natiirlich ebenfalls nicht negativ, also ist D, =det (47)
mit n monoton steigend; zudem ist nicht D,=0 fiir alle n, sonst wire V'#(0),
was nicht geht. Also ist auch keine Restfolge in D, konstant. Insbesondere existiert
fiir geniigend hohes » die Matrix G,=(GJ°)=(4})"!. G, konvergiert fiir n— o0 gegen
eine Matrix G=(G"): Mit (4,’) definiert ndmlich auch G, eine nicht negative qua-
dratische Form, ebenso gehort zu S, = A4)%, | — A,° eine nicht negative Form wie wir
gesehen haben; es folgt daher aus der Identitit G,—G,.;=G,+,[S,+S5,G,S,]G,+,,
und weil hier alle Matrizen symmetrisch sind, dass auch G,— G, , eine nicht negative
quadratische Form definiert und somit bei festen &!,..., &™ fiir n—» o0 die Werte
(&)=Y Gy&& monoton abnehmen. Da daraus insbesondere auch folgt, dass die
Diagonalelemente G, mit » monoton fallen, zeigt man durch Induktion nach m ohne
Miihe, dass D=lim,_,, det(4;’)<oo genau dann statthat, wenn lim,_, , 4}’ < oo fiir
alle 1<r,s<m.

Fiir die Vektoren veV mit vorgeschriecbenen Werten & (v, f,)=n, findet man
wieder inf||v]| =I'(7)=), G"n,n,. Andernseits hat I'(y) fiir n,=) &0} auf der reellen
Sphire ) £2=1 ein Maximum < 1. Das folgt genau gleich wie in §I.1.

III.1 dimE/V<ow, D<o

In diesem Falle sind die Summen A™=Ilim,_ ,A4;° endlich. Wir setzen wieder
Pprs= g™~ §" (Kronecker). Hat man zwei Riume E=V@F, E=V@®F mit Vi=V'=
=(0) und dim E/V=dim E/V < 00, dann seien {¥"*}, {¥"*} definiert beziiglich irgend-
welcher Standardbasen zu den beiden Einbettungen. Entsprechend den Sitzen 2, 3, 4
gilt dann:

SATZ 11. Es gibt eine Isometrie ¢: E—E mit (V)= V genau dann, wenn sich die
reellen Formen ) WrEE, S WEE iiber dem Grundkorper k ineinander transfor-
mieren lassen. Insbesondere zerfillt eine Einbettung V< E genau dann, wenn sich die
Form ¥ iiber k auf Diagonalform transformieren lisst. Falls k=R ist, zerfallen also
alle Einbettungen.

Beweis. Die Sitze 2 und 3 lassen sich ohne Miihe iibertragen, aber auch Hilfssatz
1: Sind die Formen ¥ und ¥ mittels der Matrix C ineinander transformierbar, so hat
man wiederum einzusehen, dass fiir geeignete &;, und geeignetes N die Vektoren
fi=Y ci;fi—Y1 &v, paarweise orthogonale Einheitsvektoren sind. Diese Orthogo-
nalititsbedingungen lauten 1= — Co/yX* — XA 3C* + XX * +CC*(«y die Transpo-
nierte der mx N Matrix («})=%/y und X* die Transponierte der mx N Matrix
(¢;,)=X). Die Substitution X = C.o/ y — Y liefert die Bedingung YY* —I=C(4dy—1)C*.
Da nach Vorraussetzung A—I=C(A—I)C* ist, fillt die symmetrische Matrix
C (Ay—1I) C*+I fiir hinreichend grosses N positiv definit aus, ldsst sich somit fur
geeignetes N auf Diagonalform YY* bringen.
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1.2, dimE/V<ow, D<o

Es seien #={v;} U { f;} und Z={,) U { f;} Standardbasen zu den Einbettungen
V< E, V< E. Falls es eine Isometrie ¢: E— E mit ¢ (V)= V gibt, dann gibt es ja eine
invertierbare mxm Matrix C derart, dass beziiglich der Standardbasis #°=
{5} U {of} gl

Af—I1=C(4y-1)C* (n=n,) ¢))

Wenn D= co ist, dann ist die Form ¥ von II1.1 nutzlos. Aus (1) ergibt sich eine ein-
fache Transformationsgleichung fiir die Matrix X =Ilim,_, ,(4;’)/det(4}’) (die immer
existiert). Im Falle dim E/V'=2 fiihrte dieser Trick zum Ziel wegen des einfachen
Zusammenhanges von X und der Matrix G=1lim,_, , (47") !, die ja bei der Konstruk-
tion der gesuchten Isometrie explizit auftritt. Man hat daher im allgemeinen neben X

auch G zu betrachten. Zunichst ist G=G und aus (1) folgt sofort ein Zusammenhang
zwischen G un G:

G(Ccc* —(cC*-1)GN)=G", wo G"=C*'GC™' zur Abkiirzung. (2)

Es scheint plausibel, dass im Falle dim E/V'=3 die Grossen X und G die Ein-
bettung bis auf Automorphismen vollstindig festlegen, nicht aber im Falle beliebiger
endlicher dim E/V. Wenn man ndmlich ¢ durch schrittweises Konstruieren definiert,
wie das in 1.2 geschehen ist, so miissen nach jedem Schritt die ,,Induktionsvoraussetz-
ungen** wieder erfiillt sein, insbesondere muss bei jedem Schritt G =G sein beziiglich
der verwendeten Standardbasen. Am Schlusse von 11.2 ist dieser nicht zu vernach-
lassigende Punkt vorgefiihrt. Um nun aber allgemein schliessen zu konnen, dass
lim,_, , (47 —&E) " =lim,_, , (4~ €)' ist, muss man Gleichheit entsprechender
Limites von 4,/det A, voraussetzen, wo 4, irgend ein Minor vom Grade 1<t <m der
Matrix A4,=(4)°) ist. (Diese Limites sind immer vorhanden bei hinreichend kleinen
¢). Die Annahme solcher rechnerischer Voraussetzungen hat einen guten geome-
trischen Hintergrund:

Es seien @: E— E eine Isometrie mit ¢ (V)= und # Bildbasis der Standardbasis
%. Fiir hinreichend kleines ¢>0 kann man in ¥V immer N paarweise orthogonale
Einheitsvektoren wjy,..., wy finden mit beliebig vorgeschriebenen ,,Winkeln*
D(w;, f)=1} Yy (f)*<e; ebenso findet man in ¥ orthogonale Einheitsvektoren
Wy, ..., Wy mit ®(W, f7)=n;. Es sei ¥, der von den wy,... wy aufgespannte Raum
ferner ¥, = V¢ n V. Entsprechend seien 7,, ¥, erklirt. Die Restriktion ¢ | hat eine
Erweiterung ¢, auf V,®F mit ¢,(V,)=V, und nach Voraussetzung natiirlich die
Erweiterung ¢ auf ¥ @ F mit ¢ (V)= V. Wir behaupten jetzt, dass ¢, eine Erweiterung
@, auf V@F besitzt mit ¢,(V;)=V; (d.h. “man kann in ¢:V,@V,®F->V,®V,®
®(¢F) die Riume V, und ¥, kiirzen*). Zu diesem Ende konstruiert man einen metri-
schen Automorphismus ¢; von E mit den Eigenschaften ¢, le=1F, ¢3(Vo)=0 " 1(V,)
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und ¢,(V)="V. Da die Riume V, und P, endlichdimensional sind, lisst sich ein
solches ¢ aufgrund des Wittschen Satzes in endlichen Dimensionen sofort angeben.
Damit ist unsere Behauptung bewiesen. Durch Abidndern von insgesamt endlich
vielen Vektoren in # kann man erreichen, dass w,, ..., wy die ersten N Vektoren in #

sind und entsprechend in der Bildbasis #. Nach dem eben Bewiesenen iiber die

Isometrie ¢@,:V,@F->V,@F folgt jetzt, dass lim,_ (AF—nni— - —niny) 1=
=lim,, (A7 —nn}—- —nyny)~! ist. Aus der Gleichheit dieser Grenzwerte auf

kleinen Kugeln Y7, (n)*><e, (1<t <N) folgt die Gleichheit der Grenzwerte fiir
irgendwelche sinnvollen n;eR, wenn nur N>m—1 ist. Das ergibt sich aus dem zu
Anfang von III genannten Entwicklungssatz fiir Determinanten.

Aufgrund dieser Vorbereitungen beweist man nun nach fritherem Muster den

SATZ 12. Es gibt eine Isometrie ¢ : E— E mit ¢ (V)= V dann und nur dann, wenn es
Standardbasen %, # gibt, beziiglich derer

lim (A} — £ — - — roE )
= lim (4, = &1&] — = &uoibn-1) ™', m = dimE/V = dim £}V,

n—a

fiir hinreichend kleine £.

KOROLLAR: VcE sei eine Einbettung und A,=(A)’) definiert beziiglich irgend
einer Standardbasis. Die Einbettung zerfdllt genau dann, wenn es eine invertierbare
Matrix Ciiber k gibt mit der Eigenschaft: Fiir jede Folge A, von nicht-Hauptminoren der
Matrix A,=C(A,—1)C*+1, A, von irgend einem Grad zwischen 1 und m—1, aber
fiir jedes n entsprechend gewdhlt, fillt der Grenzwert lim,_, A,/detA,=0 aus. Fiir
hinreichend grosses n ist A, positiv definit.

Wir werden im nichsten Paragraphen sehen, dass iiber R jede Einbettung zerféllt.

Beweis. Sei C eine solche Matrix. Wir setzen f;=) ¢;; f;+ Y1 ;,v, und verlangen,
dass die f; ein orthonormiertes System bilden. Wie im Beweis von Satz 11 hat man
dazu ein Gleichungssystem YY*=I—CC*+CA,C* nach Y aufzuldsen fiir ein
geeignetes n; die Voraussetzung der Korollars garantiert eine solche Lésung. Damit
ist gezeigt, dass es eine Standardbasis # gibt, sodass die beziiglich # definierte Matrix
A,= (A7) die im Korollar genannten Eigenschaften von A, besitzt. Nehmen wir nun
irgend eine zerfallende Einbettung V"< E” her mit G”=G, dann kann man Satz 12
anwenden. Das ist die eine Hilfte des Korollars, die andere ist selbstverstindlich.

IL.3. dimE/V<ow, k=R

Ist der Grundkérper der Korper der reellen Zahlen, so beweisen wir zunichst
den
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SATZ 13. Jede Einbettung zerfillt in eine orthogonale Summe vom Typ dimE/V =1.

Beweis. V< E sei vorgelegt und {v;} eine orthonormierte Basis von V. Wir be-
weisen die Richtigkeit des Satzes zunéchst in zwei Spezialfillen.

Fall I: Esist ) ©°(v;, f)?> < oo fiir alle f'¢ V. Wir zitieren Satz 11.

Fall II: Es ist Y P (v, f)*=o0 fiir alle f¢V. Induktion nach m=dimE/V. Fir
m=1 ist die Behauptung klar; es liege also eine Einbettung mit dimE/V =m+1 vor.
F sei ein m-dimensionaler Teilraum von E mit Fn V=(0). Die Einbettung V= VOF
zerfalle nach Induktionsvoraussetzung, V@ F=@*[V,® (f))], V; dicht in V,®(f)).
Sm+1 sei Einheitsvektor, f,,.1¢ V®F und f,., 1 f;(j=1,..., m). Man betrachte die
Einbettungen V;< V;® (f;, fin+1)- Sie sind entweder vom Typ (0, 0, 0) (siehe I1.3) und
zerfallen beziiglich f; und f,, ., oder aber es gibt eine orthonormierte Basis {w;} von ¥,
derart, dass ) T (W;, frm+1)? <o ausfillt, und dann zerfillt die Einbettung wiederum
beziiglich f; und f,,, aufgrund von Satz 10. In jedem Falle ist V;= Vjo@lel mit
Smt1 L Vo, f; L V. Setzen wir V. =>7 ¥V}, so ist E=Y 771 (V,®(f)) die ge-
wiinschte Zerlegung in diesem Fall.

Kehren wir jetzt zum allgemeinen Fall V< E zuriick. F sei ein beliebiges aber festes
lineares Komplement von V in E. Die Menge der Vektoren f € F mit endlicher Summe
Y. (v;, f)? ist ein linearer Teilraum F, von F. F, ist ,,modulo ¥* durch die Einbettung
eindeutig bestimmt, und fiir jedes f¢ VOF, ist Y T (v, f )2 =c0. Sei F,=F; nF. Wir
behaupten nun: Es gibt eine Zerlegung von V, V'=V,@® V, derart dass

E=(b®F)®(V,®F), V dichtin V,®F 3

Wegen der schon behandelten Fille I und II ergibt sich dann aus (3) die Behauptung
des Satzes unmittelbar.

Fiir dimE/V =1 ist die Behauptung (3) selbstverstindlich; es sei also dimE/V =
=m+1, F=F,®F, eine Zerlegung eines Komplementes F von V in der beschriebenen
Art. Falls Fy=(0) oder F,=(0) ist, hat man trivialerweise eine Zerlegung (3), diese
Fille mégen also nicht vorliegen. Wir wéhlen einen Einheitsvektor fin V@®F,, f¢V
und setzen Foo= f* N F,. Nach Induktionsvoraussetzung gibt es eine Zerlegung vom
Typ (3) fiir die Einbettung Ve V+(Foo +Fy), V® (Foo®@F,)=(Vo®Fo0) @, (Vi ®F,)
und fiir ¥;@F, nach Fall II eine orthogonale Zerlegung V,@F, =@ [V,;® (f;)].
Man betrachtet jetzt wieder die Einbettung V,;<V,;® (f;,f), auf die man immer
Satz 10 anwenden kann. So erhilt man die gewiinschte Zerlegung wie im Fall II.
Damit ist Satz 13 bewiesen.

Bemerkung: Zerlegungen von der Art (3) iiber Korpern k #R sind im Allgemeinen
nicht invariant gegeniiber Korpererweiterungen. Die einfachsten Gegenbeispiele
liefert der Fall dim E/V=2. Auf V+(f,f,) definieren wir eine Form & indem wir
eine Basis {v;}uU{f;,/>} als Standardbasis erkliren mit ®(v;, f{)=1, @(v;,f3)=p;
wobei wir fiir §, eine gegen ein f eR—k konvergente Folge in k wéhlen, derart, dass
ZTI B—pB;l in R endlich ausfillt. Automatisch ist dann V+=(0) und man findet
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X,1=1,X,,=8,X,,=B> Wegen Satz 8 zerfillt die Einbettung nicht, wegen Satz 10

liegt also eine Zerlegung der Art (3) vor (mit Fo=(0)). Uber k(\/B ) zerfillt die Ein-
bettung; sie kann nicht vom Typ (0, 0, 0) sein, sonst wire die urspriingliche Ein-
bettung ebenfalls von diesem Typ aufgrund der allgemeinen Transformations-

gleichungen; das ist aber unmdoglich, da sie nicht zerfillt. Uber k(\/ B) zerfillt also
die Einbettung nach (3), diesmal aber mit dimFy=dimF;=1. Das Beispiel zeigt
ferner, dass man auch den Beweis im Fall II von Satz 13 fiir k #R nicht fiihren kann.

Uber den im Beweise eingefiihrten Raum F, lisst sich noch Folgendes bemerken.
Ist F,, zu einer Einbettung ¥ = E analog definiert, so ist fiir die Existenz einer Isometrie
@: E— E mit ¢ (V)= V jedenfalls notwendig, dass es eine Isometrie ¢q: V@ F,— V®F,
gibt mit @, (V)=V. Betrachten wir jetzt eine Zerlegung der beiden Einbettungen
gemiss Satz 13, E=@*[V;® (f)], E=®[V;®(f))]; die f;,f; mdgen als Ein-
heitsvektoren gewdhlt sein. Zu jedem Raum V;®(f;) gehort eine Quadratklasse
(s;—1)R? in Ru {0} nimlich s;=) ¥ & (w; f;)> wo w; irgend eine orthonormierte
Basis von X ist. Diese Klasse fillt mit der zur Einbettung V < V @ ( f;) gebildeten Qua-
dratklasse zusammen (da diese ja nicht von der Wahl der orthonormierten Basis in V
abhingt). Entsprechend treten Quadratklassen (5,—1)R? zur Zerlegung von E auf.
Nach der Bemerkung iiber die Riume F,, F, muss bei einer Isometrie die Summe
derjenigen V;® (f;) mit s;<co auf die Summe derjenigen V;® (f;) mit §;<co ab-
gebildet werden. Beziiglich unserer Zerlegungen haben also die Formen ¥ und ¥ im
Satz 11 zu den Einbettungen V<= V@F,, V<= V®F, Diagonalgestalt, und aus dem
Satz von Sylvester folgt daher, dass die Anzahl der s;<1, diejenige der s;=1 und
diejenige der s; mit 1 <s;<oo mit den ensprechend gebildeten Anzahlen von §; iiber-
einstimmt. Wenn umgekehrt diese Anzahlen iibereinstimmen, dann existiert immer
ein ¢ von der gewiinschten Art (Satz 2 in [1]):

KOROLLAR: Es seien E=@*[V,®(f)], E=&*[V;®(f;)] irgendwelche
orthogonalen Zerlegungen zweier Einbettungen V< E, V< E mit dimE/V=dimE/V=
=m< oo iiber dem Korper R. Es existiert eine Isometrie ¢ : E—E mit o (V)= V dann
und nur dann, wenn die Quadratklassen (s;— 1)R?, (s;— 1)R? bis auf die Nummerierung

iibereinstimmen. Insbesondere gibt es also bis auf Isometrie genau (m + 3) Einbettungen
zu dimE/V=m wenn D < o, genau <m+ ) Einbettungen wenn D < oo ist und genau
(m';ll-l) Einbettungen bei definitem .

Bei definitem & kommen nimlich nur die Quadratklassen von —1 und 0 in

Betracht.

Es ist klar, dass man aus unseren Resultaten auch etwa Eigenschaften von diver-
genten Reihen ableiten kann, z.B.: Sind (&)),..., (£") irgendwelche Folgen reelle”
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Zahlen mit der Eigenschaft, dass fiir jede Linearkombination (A'&] +--- +A™ET) die
Summe Y ¥ (A +- +A"EM? divergiert, dann gibt es eine zeilenfinite orthogonale
Matrix (;;)=A (AA*=1I), sodass die mit ihr transformierten Folgen (3})=(} o;;¢)),
o, (M= a;€T) paarweise senkrecht stehen, ninf =0 fiir alle i und alle r #s.
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