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À Model of Intuitionistic Analysis

by Bruno Scarpellini

Introduction

The aim of the présent paper îs to présent a new model of intuitionistic analysis
where by "intuitionistic analysis" we mean essentially the formai System codifiée in
[2]. The intuitive background of the model (explained in section 3.3) îs techmcal in
nature and has nothmg to do with any philosophy of free choice séquences. More
precisely the model îs denved from known proof theoretic properties of intuitionistic
formai Systems as will be explained below. In chapters I, II we présent the preliminanes
needed in order to understand the intuitive background and the model, descnbed m

chapters III and IV respectively. In IV, the main chapter, we develop the full model

Chapter V contains additional comments and conclusive remarks.

1. Continuity fonctions

1.1. Séquence numbers.

Let p0, pi, p2, • • • be the hst of primes, hsted in increasing order and starting with 2

With the fimte séquence of natural numbers a0, al5 as_! we associate the natural

number m=]~[o~* p*i +1. We call m the séquence number associated with a0, as_!

and dénote ît by <a0,..., a^i). Its length, denoted by length (m), îs s. With the

empty séquence we associate the number 1, also denoted by < >; by définition length

(l) 0. N îs the set of natural numbers and Nm dénotes the set of m-place number

theoretic functions; No îs identified with N. For feNt we put f(0) l and F(n)

</(0),..., f(n-l)> for n>0. In order to dénote séquence numbers we use Italie

letters u, v, w, ul9 w2î... etc. We say that w <a0, as_t> îs an extension of v=
<b0,.. bt_!> if t<s and a^b, for i<t; in this case we wnte vcw. v^w îs short

for "i;cworu w". We also wnte vcf if v F(n) for some n. With v, w as before we

dénote by w*v the séquence number <a0,..., as_1? b0, bt_t>; for feNj we dénote

by w*f the élément of Nx given by w*f(î) a, for i<s and w*f(î) f(î — s) for î^s.

1.2. Continuity functions.
An élément ieNs is called a continuity function if a) if t (n t,. ns)^ 0 then ail ^ are

séquence numbers ail having one and the same length, b) for éléments f,eN! (î < s), if
t&Cn),..., Fs(n))*0 then 1(^(11),..., fs(n)) T(f1(m),..., F,(m)) for ail n<m, c) foi

every s-tupel f^Nj (i<s) there is an n with T(F1(n),..., Fs(n))#0. More generally an

élément t(x19 xs, yx,..., yt)eNs+t is said to be a continuity function of type (s, t) 11
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t(x1? xs, nl9..., nt) is a continuity function with respect to xl9..., xs for ail t-tupel
nx,..., nt. Clearly, every continuity function t(x1?..., xs) is a continuity function of
type (s, 0); every élément from Nt whose range does not contam 0 can be considérée
as a continuity function of type (0, t), and every neN différent from 0 is a continuity
function of type (0, 0).

1.3. Continuous functwnals.
If A is any set then As dénotes the s-fold cartesian product of A. A functional of

type (s, t) is a mapping of N\ x N* into N. If e is a functional of type (s, t), if fl9..., fs

and nl9..., nt are éléments of Nt and N respectively then we dénote the value of e for
fl5..., fs and nl9..., nt by e(f1?..., fs, nl9 nt). As functionals of type (0, 0) we simply
take the natural numbers. With every continuity function t of type (s, t) we associate

in a unique way a functional of type (s, t) denoted byeTas foliows: if T(F1(m),...,
fs(m), n1?...,nt)is ^0 then et(fi, ..,f8, nl9—, nt) T(F1(m),—, F8(m), nl9—9 nt)-l.
Every functional of type (s, t) which is of the forai eT is said to be continuous. We call
et the functional induced by t. Among the continuous functionals we mention four of
type (0,1), (0,2), (0,2) and (0,2) respectively. The first is the successor function ', the
second is addition +, the third is multiplication • and the fourth is concaténation *.

1.4. Continuous operators.
A mapping F from Nsx x N1 into Nt is called an operator of type (s, t). As operators

of type (0,0) we simply take the éléments of Nt. If F is an operator of type (s, t), if
fl9..., fs and n1?..., nt are éléments of Ni and N respectively then we dénote the value
of F for thèse arguments by F [fi,.. fs, nl9..., nt]. With every continuity function tof
type (s, t-fl) we can associate a functor FT as follows: if T(F1(m), Fs(m), nl9..., nt,
q)^0 then F^,..., fs, nl9...9 nt] (q) t(F1(m), Fs(m), nl9..., nt, q)-l. An
operator which is of the form FT is said to be continuous. We call FT the functor
induced by t. Among the continuous operators we mention a particular one, of type
(1,1), denoted by C. The définition of C is as follows: a) if n is not a séquence number
then C[f, n] (i) 0 for ail î, b) if u <u0,.. us_!> then C[f, u] (i) ut for ks and

=f(î — s) if î ^ s. We also wnte more suggestively u * f in place of C [f, u].

2. A formai language

2.1. The alphabet.
Let e and G be two distinct and fixed symbols. With every continuity function t of

iype (s, t) we associate the expression e*, t, with every continuity function a of type
(s, t + 1) we associate the expression Gast. In order to avoid complex notations we
^ften omit the indices s, t and merely wnte eT and Ga respectively. Now we introduce a
formai language L, which contains a nondenumerable set of constants. The alphabet
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of L contains the following symbols: a) the logical connectives a v, "1, 3, V, E,

b) the equality sign and the abstraction operator A, c) for every natural number m

an individual constant m0, d) a denumerable list a1? a2,..., a, b, c... of free individual
variables, e) a denumerable list xl9 x2,..., x, y, z,... of bound individual variables,

f) a denumerable list £l5 <î;2,..., £> *?> £>••• °f bound function variables, g) for every
séquence number u=<u0,..., us_ t> (u=< > included) a denumerable list «i, a«,..., au,

/?u,... of free choice variables, h) for every continuity function t of type (s, t) the

symbol e*, t, i) for every continuity function a of type (s, t +1) the symbol G* t, j) two
pairs of brackets [,] and The symbols e*, t are called functional constants of type
(s, t), the symbols G£t are called functor constants of type (s, t). The free choice

variables a^9 au etc. are assumed to range over number theoretic functions f such that
f(s) <u0,..., us_1> w. The alphabet of L is highly nonconstructive in that it
contains a nondenumerable set of constants. It would not be difficult below to avoid the

use of uncountable many constants, however their use turns out to be very convenient

in that we can save quite a bit of notation. In the cases where t is ', +, •, * we obtain

corresponding functional constants exOf x and tx0> 2 respectively, which for simplicity will
also be denoted by ', -f, -, * respectively. The operator C (see end of 1.4) is of course

continuous, that is of the form Fff for some a of type (1,2). The operator constant

Gî, 4 corresponding to this a will also be denoted by C. Without confusion we often

omit the index o in m0 and simply write m.

2.2. Terms, functors andformulas.
Starting with the alphabet we build up terms and functors by simultaneous in-

ductive définition as follows: a) the mo's and ail free individual variables are terms,

b) free choice variables and functor symbols of type (0,1) are functors, c) if e is a

functional constant of type (s, t), if Fi,..., Fs are functors and ql9..., qt terms then

e(Fl5..., Fs, qi,..., qt) is a term,d) ifGis a functor symbol of type (s, t), if F1?..., Fsare

functors and ql5..., qt terms then G[Fl5..., Fs, qi,..., qt] is a functor, e) if F is a

functor and t a term then F(t) is a term, f) if t(a) is a term and a free individual

variable then (Axt(x)) is a functor, where x is a bound inividual variable not occurring

in t(a). Prime formulas are those of the form p q with p, q terms. Formulas are

given as follows: 1) prime formulas are formulas, 2) if A, B are formulas, then so are

AaB, A vB, "1A,AdB,3) if A (a) is a formula and a a free individual variable then

(Vx) A(x) and (Ex) A(x) are formulas, where x is a bound variable not occurring in

A (a), 4) if A(a< >) is a formula and a< > a free choice variable associated with the

empty séquence then (V£)A(£) and (E£)A(£) are formulas where f is a bound

function variable not occurring in A(a< >). Universal quantification is often written

more briefly as (x) A(x), (£) A({) instead of (Vx) A(x), (V^) A(£) respectively.

2.3. Other languages.

In one place below we will use the language of second order analysis used in [2] ;
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we dénote it by LK. In [1] a certain formalisation of number theory is présentée. The
language on which this formalisation is based is denoted by L^.

2.4. Saturation.
There are two important notions, namely that of a saturated term and that of its

value. By définition only closed terms, that is terms without free individual variables
will be saturated. If t is a saturated term then we dénote its value by |t|. The définitions
are given by induction with respect to the number of symbols contained in t, observing
thereby the following conventions: a) the symbols A, [,], m, xl9 x2,... are coun-
ted once, b) the symbols a«, eT, GT are counted twice. We say that t is saturated and
that its value is |t| if one of the clauses below is satisfied.

Clause 0: t is m0. Then t is saturated and |t| m.
Case 1 : t is a*(p), p is a saturated term, |p|=j> w=<a0,..., as_!> and j<s. Then t

is saturated and |t|=aj.
Case 2: t is Gt(p), p is saturated, |p| n and is of type (0,1). Then Gt(p) is

saturated and |Gt(p)| x(n) -1.
Case 2: t is et(G1,..., Gs, ql9..., qt). Then t is called saturated if the following

conditions are satisfied: 1) ail q^s are saturated and Iq^nj, 2) for every irgs there
is a kj>0 such that Gi(jo) is saturated for ail j<ki? 3) t(u19..., ms, nl9..., nt)^=0 where

u{ is the séquence number <|G,(00)|,..., |Gi((ki-l)0)|>. We put |t| T(w1?..., ws,

n1?..., nj)— 1. We note that in view of our convention Gi(j0) contains less symbols
than t.

Case 3 : t is Gf \GX,..., Gs, qt,..., qt] (p). Then t is called saturated if the following
conditions are satisfied: 1) ail q^s are saturated and |QiI ni9 2) p is saturated and
|p| m, 3) for every i^s there is a ki>0 such that Gi(jo) is saturated for ail j<ki5
4) x(ul9...9us9 ni,...,nt,m)#0 where u, is <|Gi(0o)|,..., |GtCCk:i —l)o)l>- We put
\t\ T(ul9...9us9ni9...9nt9m)—l. As before, Gi(j0) contains less symbols than t in
view of our counting convention.

Case 4: t is (Axp(x))(q). Then t is saturated if 1) q is saturated, 2) p(m0) is

saturated where m=|q|. We put |t| |p(mo)|.
In connection with this définition we introduce a notation. Let w=<a0,..., as«1> be

a séquence number and G a constant functor having the property : if i < s then G(i0) is

saturated and IGQoX — aj. Then we write w^G.
A few properties of saturation hâve to be known. To this end we need a lemma on

continuity functions.

LEMMA 1 : Let % hâve type (p, q). Let al9..., <rp andfiu...9 )Uq hâve type (s, 1) and
{% 0) respectively. Then there is a continuityfonction v oftype (s, 0) having the following

property: if v^,..., ws)^0 then 1) ^(v^,..., ws)#0/or ail j l,..., q, 2) there is an
i ^ length (wt) such that aï (w, k) # 0 for ail k < i and all^s and such that t(ul9...,up9
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where wj <c7j(w, 0)-l,..., 0j(iv, i — 1)—1>, nj=/ij(>v)-l and where w

is an abbreviation for wl9...9 ws.

Proof: Call an s-tupel wl9..., vvs of séquence numbers secured if they ail hâve the

same length and if in addition 1) and 2) of the lemma are satisfied. Put v(wt,..., ws) 1

iff w1?..., ws is secured and 0 otherwise. It remains to show: if fl9..., fs are number-
theoretic functions then there is an N such that v(Fx(N),..., FS(N)) 1. To this end we

define numbertheoretic functions gj9 j l,..., p as follows: gj(n) m iff there is a k
with <jj (Fj (k),..., Fs (k), n) m +1. Next we détermine an M so large that //j (Ft (M),...,
Fs(M))=nj + l for j l,..., q. Then we clearly find an i such that t^g^i),..., gp(i),

nl5..., nq)#0. With this i given we finally détermine an N^M so large that F

FS(N), k)#0 for ail j l,..., p and ail k<i. Necessarily

and nj + l=^j(F1(N),..., FS(N)) holds. Then clearly v^N),..., FS(N))=1 what
concludes the proof.

LEMMA 2 : Let tbe a term withoutfree individual variables whose choice variables

are among o^J,..., a£; we indicate this by writing t(aû|,..., a,J*). Then there is a con-

tinuity function of type (s, 0), say t, with the property: if r(vl9...9 i?s) m-hl then

ii» •••> ai*.*vs) w saturated and Us value is m.

Proof: We proceed by induction with respect to the number of symbols in t,

respecting thereby the counting convention. In order to avoid heavy symbolism we

content ourself with the discussion of some typical cases. Case 1 : t is eT(G[au, jftv],

q(au, py)) where G and q do not contain other choice variables than aM, jSv. For every

n, G [au, jSv] (n) has less symbols than t. By induction there are continuity functions

of type (2,0), say an, with the property: if an(uu i;1) m + l then G[au<tUl, J3V#V1] (n)

is saturated and has value m. We pièce the crn's together in order to obtain a continuity

function a of type (2,1) with the property: if a(uu vl9 n) m + l then G\jxmui,

Pv*v3 (n) is saturated and has value m. On the other hand q(au, j8v) has less symbols

than t. Hence there is a continuity function \i of type (2,0) with the property: if
Ii(u1,vi)=m + l then q(aulM11, j3v«,Vl) is saturated and has value m. According to the

previous lemma there is a continuity function v of type (2,0) with the property: if
v(m1, vJ^O then 1) q(au*Ul, j8v#Vl) is saturated with value say m, 2) there is an iS
length(mJ such that G [au*Ul, j8v«Vl] (k) is saturated for ail k<i with value say mk and

in addition T«m0,..., !%_!>, m)#0. But according to the définition of saturation

thismeans thât et(G[au#lll, jSv*Vl], q(au«Ul, /?v*Vl)) is saturated and has value T«m0,

nii-!), m) — l. The continuity function whose existence is postulated by the

lemma is now given by v* whose définition goes as follows: 1) v*(ul9 v^^O if!
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i, »i)9fe0,2)ifv(ii1, ©O/Othenv*^, f?1) r«m0,...,mI_1>, m)withm0,..., m^
and m as above.

Case 2: t is Ft [G [au, j?v], q(au, /?v)] (p(au, /?v)). This is treated in exactly the same

way as the previous case; the fact that t is of type (1,2) has no influence on the

argument. Case 3 : t is au (p(au, /?v)). We leave the easy construction of v (on the basis

of fi associated with p(au, j?v) according to the induction hypothesis) to the reader.
Case 4: t is (Axp(au, /?v, x)) (q(au, pw)). This case can be reduced to an application of
lemma 1, however we prefer to sketch a direct argument. According to the induction
hypothesis there exists a continuity function t of type (2,1) with the property: if
x(ul9 vi9 n) m + l then p(au»ui, jSv*Vl, n) is saturated and its value is m. Again
according to the induction hypothesis tbere is a continuity function \i of type (2,0) such
that q(au,Ul, j3v*Vl) is saturated with value n whenever ix(ui9 t;1) n + l. Call ui9 vx

secured if it is a pair of séquence numbers, both of equal length, with the property : 1

H(uu i;1) n + l, 2) r(uu vl9 n) m + l. If ui9 vx is secured, then (Axp(au,Ul, £v,Vl, x))
(q(au*ui> $v*vi)) is saturated by définition and its value is m with m as above. Define v

asfollows: v(ux, i;1) m + l if t(w15 vl9 n) m + l (withn=/x(wl5 %)~1) whereul9 v^ is

secured, and 0 otherwise. In order to show that v is indeed a continuity function (of
type (2,0)) one proceeds in the same way as in the proof of lemma 1.

LEMMA 3 : Let p(n0) be a saturated term and let t be a saturated term whose value

is n. Then p(t) is saturated and |p(no)| |p(t)|.

Proof: We proceed by induction with respect to the number of symbols in p. We

content ourself to treat one typical case among the induction steps. Ail other cases are
similar but simpler to treat. Let p be FT[G[n0], q(n0)] (r(n0)). Since p is saturated,
the following holds: 1) there is an u with wçG[n0], 2) |q(no)|=m1, 3) |r(no)|=m2,
4) t(w, ml9 m2)=|p(n0)| + 1. From 1) we conclude that G[n0] (i) is saturated for ail
i < length (w) s and that |G[n0] (ï)\=u{ where w=<u0,..., us_!>. G[n](i) has less

symbols than p, hence we can apply the induction hypothesis: G[t](i) Ui for ail
i<s. Similarly |q(t)|=ml5 |r(t)| m2 according to the induction hypothesis. In view
of the définition of saturation it foliows that FT[G(t), q(t)] (r(t)) is saturated with
value t(m, ml9 m2)-1 |p(no)| ; this proves the statement in this case.

LEMMA 4: Let p(au) be a saturated term and assume u^G. Then p(G) is satura-

Proof: We proceed by induction with respect to the number of symbols in p. We

content ourself by treating two typical cases among the induction steps. The re-

maining cases are similar but simpler to treat. Case 1: p(au) is au(q(au)). Let u be

<u0,..., u8_t>. Since p is saturated, it follows by définition that q(au) is saturated with
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value i < s. Since q has less symbols than p we can apply the induction hypothesis and
conclude: q(G) is saturated and |q(G)|=i. On the other hand «çG, that is, G(i0) is

saturated and |G(io)| ut for i<s. In virtue of the previous lemma we find that
G(q(G)) is saturated too and that its value is again u4. Hence |p(G)|=Uj. Case 2:

p(au) is FT[H[au], q(au)] (r(au)). Since p(au) is saturated, the foliowing holds by
définition: 1) there is a v with t)£H[au], 2) q(au) and r(au) are saturated and hâve

values say mt and m2, 3) t(v, mu m2) — l |p(au)|. Let v be <v0,..., Vg.j). Since

t?£H it follows that H [au] (i0) is saturated for i<s and that its value is Vj. H [au] (i0)
has less symbols than p. Hence it follows from the induction hypothesis that H [G] (i0)
is saturated for ail i <s and that its value is \{. Similarly we find |q(G)| ml9 |r(G)|
=m2. From the définition of saturation it follows that Ff [H [G], q(G)] (r(G)) is

saturated and has value x(v, mu m2)-l, that is |p(au)|. Hence |p(G)| |p(au)|.

LEMMA 5: If p(a^,..., oc£) is saturated with value m, if u1^Gu...,us^Gs
then p(G!,..., Gs) is saturated with value m.

Proof: This is obtained by a repeated application of the previous lemma.

DEFINITION 1 : Let il9..., is and kl9..., k8 be two sets of pairwise distinct num-
bers. Let ul9...9 us be a list of séquence numbers. Then the two lists o^J,..., <x£ and

«uî» •••> «u" are said to be of the same type.

LEMMA 6: Let «£,..., < and a*;,..., a£ be of the same type. Let p(a^;,...,<;)
be a saturated term whose choice variables are among a^J,..., a£ and whose value is m.

Then p(a^J,..., a^) is saturated and has value m.

Proof: The proof proceeds by an easy induction with respect to the length of p.

LEMMA 7: Let pCa^J,..., a£), <},..., a£ and ajj,..., aî£ be as in lemma 6. Let x

hâve the propertyiif x(vl9...9vs)^0 then p(aln\*yi,..., aû",Vs) is saturated. Then: if
*(vu...9 ps)#0 then p(a*J»Vl,..., a^#Vs) is saturedwith value ptà\*yi9...9 ai»v.).

Proof: o^\tvi9..., ai%Vs and oîJ|<Vl,..., a^#VB hâve the same type. Apply lemma 6.

LEMMA 8: Let ul9...9u8 be a list of séquence numbers and Fifa^,..., ajj],

i=l,-,sato offunctors containing no otherfree variables than those indicatedand
such that Wi^Fj [a^J,..., a^] holds. Let % be a continuity function of type (s, o). Then

there exists a continuity function v of type (t, 0) with the property: if v(wl9...9wt)^0
then there exist «i,..., u's such that uif,u[ £ F^ajj»^,..., o4*#wJ aw^ such that
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Proof: Let a{ be the continuity function of type (t, 1) with the property: if
ffiOn, •••, wt9 n) k + l then ¥{ [a}J*Wl,..., ai%Wt] (n) is saturated and has value k.
Specializing lemma 1 to the présent case we get a v of type (t, 0) with the property: if
v(wi9...9 wt)^0 there is an i^length^) such that Fk[aJi«Wl,...,aJ*,wJ (m) is

saturated with value a^ for ail m<i, k=l,..., s and t(wÎ,---, m*)^0 where u^

<ao,..., a^-i). If i<length(wi)=p then we put Wk < >, otherwise we put u^

DEFINITION 2: A formula p(o£,..., a5 q(<,..., <) is called true if there is

a continuity function t of type (s, 0) such that p(ph\mvi,..., <,Vs), q(<,vl,...,<,Vl)
are both saturated and hâve the same value whenever x(vl9...9vs)^0.

3. Intuitive background of the model

3.1. Three Systems of number theory
Below we use three Systems of intuitionistic number theory in order to explain the

intuitive background of the model. The first system, to be denoted by Zl5 is that one
described in [1]. The second, to be denoted by Z2, is obtained by omitting the axiom
of choice, of bar induction and continuity from the System of intuitionistic analysis
described in [2]. The third one, to be denoted by Z3, is based on the language L and

can roughly be described as follows : 1) it contains suitableaxioms for +,',-, 2) it
contains ail formulas mo (m + l)o as axioms, 3) the usual axioms of intuitionistic
propositional calculus are in Z3, 4) for every i and for every nonempty séquence
number w <u0,..., u^^ with i<s it contains ail the formulas G(i)0 Ui as axioms,

provided u £ G holds, 5) it contains modus ponens, 6) it contains the axioms (x)

A(x)DÂ(t), A(t)=>(Ex)A(x), (£)A(É)=>A(F), A(F):d(Eé) A(£) where x and
Ç are bound variables not occurring in A (a) and A (a) respectively,
7) it contains the four rules A=>B(a)/A=>(x) B(x), ÀDB(aj;>)/A=>(£) B(£),
B(a)=>A/(Ex) B(x):dA and B(a^ >)3Â/(EQ B({)dA where a and o^ > do not occur
in A respectively and where x and £ do not occur in B(a) and B(a< >) respectively,
8) it contains the induction schéma. The system Z3 contains in addition the functor
symbol * and suitable axioms for it.

3.2. A realizability notion of Kleene

In [3] Kleene introduced a realizability notion "realizable and provable" for
formulas without free variables belonging to the language LN; below we dénote the

statement "A is realizable" by /A. This notion, in its simplest version, is defined as

follows: 1) /p q iff Zthp q, 2) /A aB iff /A and /B, 3) /(x) A(x) iff/A(n) for ail n,
4) /A v B iff either /A and Ztf-A or else /B and Z^B, 5) /(Ex) A(x) iff there is an n

suchthat/A(n)andZ1hA(n),6)/A3Biff/AandZ1hAimply/B,7)/nAiff/A=>0 l,
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The main resuit in [3] says: if Z^A then /A. From this one can deduce the following
familiar properties of intuitionistic number theory: I) if Z^AvB then ZthA or
Zjf-B, if Z^Ex) A(x) then there is an n with Z^Afo). Hère, A, B and (Ex) A(x)
are formulas without free variables. We can distort the above définition slightly as

follows : 1) /p q iff p q is true, 2) /A a B iff /A and /B, 3) /(x) A (x) iff /A (n) for ail

n, 4) /A v B iff we can effectively affirm either /A or /B, 5) /(Ex) A(x) if we find effec-

tively an n such that /A(n) holds. This définition is of course somewhat vague in that
the précise meaning of "effective" is not clear. But it would be easy to sharpen

"effectively" by using Gôdelnumbers of certain recursive functions; in this way we
would end up with Kleenes realizability notion introduced in [1], Corresponding to
the main resuit above one can show: if ZjhA then /A. This resuit is of course wheaker
than the first one and its only immédiate conséquence is that Zx is consistent.

3.3. The intuitive motivation for the mode!

We now corne to the description of the intuitive motivation of the model. We must

point out that this motivation is by no means stringent; it has rather the character of
an "Ansatz" and there is no philosophicai basis for it. To begin with, let us briefly look
at Kleenes realizability notion, presented in [3]. The situation is this: one starts with

a suitable realizability notion and ends up with proof theoretic properties (resuit I) in

3.2.) of a certain intuitionistic System, namely Zt. A closer look at the définition of the

first realizability notion in 3.2. shows that the properties of Zl5 described by resuit

I) are built in a certain sensé into this définition. Now let us proceed in the converse
direction. To this end let P be an intuitionistic formai System, whose detailed structure

is not relevant at the moment. Assume that for some reason or other we

know the proof theoretic properties of P. Assume that thèse proof theoretic properties

are described by a theorem I* which is of the same kind as resuit I in 3.2. ; again it is

not relevant at the moment to know the detailed form of I*.
Then we might be tempted to define a certain notion "realizable" by incorpo-

rating in the définition the properties of P, described by I*, in the same way as the

properties of Zt hâve been incorporated in the first realizability notion in 3.2. Let us

dénote this new realizability notion by RI. In virtue of the relation between first and

second realizability notion presented in 3.2. it is not unreasonable to try a second step:

we drop every référence to provability which might occur in RI and hope to end up

with a new realizability notion R2 which is a "model" of P. This is more or less the

way we will proceed below. More precisely, we will simplify the procédure a little bit

by going from P directly to R2 instead of making the détour via RI. This is not

unreasonable since a closer look at the définition of the second realizability notion in

3.2. shows that*even there the properties of Zt given by I) are in some sensé contained

in this définition. Hence let us try to start with Z2 in place of P. In order to work out

the above program we hâve to know the proof theoretic properties of Z2, more
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precisely we hâve to know the behaviour of Z2 with respect to disjunctial and existen-
tial statements, that is we hâve to know what to take for I*. In order to list the essential

properties of Z2 let A (a) v B(a), (Ex) A (a, x) and (E^) D(a, {) be formulas from the
language LK, which for simplicity do not contain other free variables then possibly
eventually a. Then the following is true: 1) if Z2hA(a) v B(a) then there exists a prim.
rec. continuity function t(x) such that for every u with t(w)#0 either Z2hA(w*a) or
else Z2hB(w*a) holds, 2) if Z2h(Ex) A (a, x) then there is a prim. rec. continuity
function t(x) such that for every u with t(w)^0 there is a term tu which does not
contain other free variables than eventually a for which Z2hA(w*a, tu) holds, 3) if
Z2h(E£) D(a, 0 then there is a prim. rec. continuity function t(x) such that for every
u with t(w)#0 there is a functor FU which contains at most a free and for which
Z2I-D(m*oc, Fu) holds. On the basis of thèse properties it wouldbe possible to work out
our programm outlined above for the language LK. However it has turned out that it is
easier to work with the language L. Therefore let us list the properties of Z3 which
correspond to the properties l)-3) of Z2 just listed. To this end let A(au) vB(au),
(Ex) C(au, x) and (E£) D(au, Ç) be formulas from the language L which do not contain

other free variables than eventually au. Then the following is true: 1) if
Z3hA(au) v B(au) then there is a prim. rec. continuity function t(x) such that x(v)^0
implies Z3hA(au*v) or Z3hB(au+v), 2) if Z3h(Ex) C(au, x) then there is a prim. rec.
continuity function t(x) such that for v with t(v)#0 there is a term tv which contains
at most au*v free for which Z3hC(UIItv, tv) holds, 3) if Z3h(E^) D(au, Ç) then there is a

prim. rec. continuity function t(x) such that for every v with t(î;)#0 there is a functor
Fv containing at most au#v free and for which Z3f-D(au*v, Fv) holds. Thèse properties
can be proved in many ways; one possibility e.g. is to use the methods described in [4],
The gênerai form of a realizability notion based on 1) —3) just listed will look roughly
speaking as follows: "A is realizable iff there is a continuity function t such that...".
Another possibility is to take as gênerai schéma of définition the following: "The
continuity function t realizes A iff ...". Both forms of définition are fully équivalent
and we choose the second one because it has some technical advantages. We express
the fact that t realizes A notationally by t/A.

We now présent a first, provisional and incomplète définition of t/A. In this
définition we omit every référence to recursiveness. For simplicity we assume that the
formula A has exactly one free variable, namely the free choice variable au. The
définition we hâve in mind is as follows: 1) T/p(au) q(au) off t(v)^0 implies p(au+v),

q(aul>v) saturated and |p(au*v)| |q(au#v)| ,2) t/A aB iff there are continuity functions

t15 t2 with xJA and T2/B, 3) t/(x) A(x) iff for every term t there is a continuity
function at with <rt/A(t), 4) t/({) A(£) iff for every functor F there is a continuity
function crF with crF/A(F), 5) t/A^B iff for every t1 with xJA there is a t2 with T2/B,

6) t/~1 A iff t/A=>0= 1, 7) T/A(au) v B(au) iff t{v)¥=O implies the existence of a continuity

function ay such that either <7V/A(au#v) or else <7V/B(au,v) holds, 8) t/(Ex) A(x,
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au) iff t(v)^O implies the existence of a cry and of a term tv containing at most au#v

free such that (xv/A(tv, au#v) holds, 9) t/(E{) A(£, au) iff t(v)#0 implies the existence

of a ay and of a functor Fv containing at most au*v free such that av/A(Fv, au*v)

holds. Let us say that A is realizable if there is a x with t/A. If we try to verify that

every axiom of intuitionistic analysis is realizable, then everything works well with
the exception of the axiom of continuity. The fuli continuity axiom could only be

proved to be realizable if the foliowing were true: if A(au) is realizable and if wgF
then A (F) is realizable. However there are simple counterexamples which show that
the latter statement is not true in gênerai. In order to include the continuity axioms we
hâve to change the above définition, which will be denoted by Dl, in one essential

point. In order to explain this point, let us reconsider Kleenes realizability définition
in [3]. In this définition the notion of provability takes part. Now let P be an arbitrary
but fixed property of formulas; P(A) indicates that A has the property P. Now let us

alter Kleenes définition by replacing ZthA wherever it occurs by P(A): 1) /n m iff
P(n=m), 2) /A a B iff /A and /B, 3) (x) A(x) iff /A(n) for ail n, 4)/AdB iff /B when-

ever /A and P(A) hold, 5) /A vB iff /A and P(A) or /B and P(B), 6) /(Ex) A(x) iff
there is an n such that /A (n) and P (A (n)) hold, 7) / "1A iff /A =d 0 1. Dénote this
définition by Dp. Now assume that a realizability notion has been defined for ail formulas
from L having at most n logical symbols, that is that the meaning of t/A is known
for ail such formulas. Let A(au) be a formula containing at most n logical symbols
and assume for simplicity that its only free variable is au. Let S be the foliowing
property: for ail functors F with weF there is a continuity function tf such that

t/A (F) holds. S is called the substitutivity property. Now we dérive from définition

Dl a new définition D2 by building the property S into D2 in a way which is very
similar to the way the property P has been built into the définition DP. The définition
D2 introduces the binary relation t/A and the one place predicate S by simultaneous

inductive définition : if t/A has already been defined for ail formulas with at most n

logical symbols for a certain n then S is the substitutivity property described above.

The incomplète and provisorial définition D2 goes as foliows: 1) T/p(au) q(au) iff for
ail v with t(v)^0 both p(au#v) and q(au#v) are saturated and hâve the same value,

2) t/A a B iff there are ru x2 with tJA and T2/B, 3) t/(x) A(x) iff for ail terms t there

is a Tt with tt/A(t), 4) t/({) A(£) iff for ail functors F there is a tf with tf/A(F),
5) T/A(au)vB(au) iff for ail v with t(î?)#0 either S(A(au,v)) or S(B(au,v)) holds,

6) t/(Ex) A(au, x) iff for ail v with t(i?)#0 there is a term t, containing at most au*,

free such that S(A(au,v, t)) holds, 7) t/(E{) A(au, {) iff for ail v with t(î;)#0 there is a

functor F containing at most autv free such that S(A(ocu*V9 F)) holds, 8) T/A(au)=>

z>B(au) iff there is a a with <r/B whenever S(A(au)) holds, 9) t/1â iff t/A=>0 1.

It is clear that we could formulate D2 without the aid of S. Clause 7) eg. would then

be read as follows: t/(E£) A(<xu, Ç) iff for ail v with t(î;)#0 there is a lunctor FV [ocu*v]

containing at most au,v free such that for every functor G with u*v&G there is a o
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with cr/A(G, F [G]). For the définition D2 one can indeed show that if a formula A is

provable in intuitionistic analysis then it is realizable (that is there exists a t with t/A).

4. A model of intuitionistic analysis

4.1. A System of intuitionistic analysis
By adding to Z3 a number of new axioms we obtain a System of intuitionistic

analysis IA. The list of thèse new axioms is given as follows: 1) the set of true prime
formulas, 2) the axiom of choice for quantifierfree formulas, 3) the continuity axioms
as given in [2], 4) the axioms of transfinite induction for quantifierfree partial orde-
rings. The précise form of the axioms 2), 3), 4) will be given below. Our system is only
seemingly weaker than that of [2] ; by making heavy use of the continuity axiom and
the fact that transfinite induction and bar induction for decidable formulas are équivalent

we can reduce the System of [2] to LA (consult [5] for this respect).

4.2. Some notations
For easy reading below we introduce some notational conventions. Boldface letters
u, v, w dénote lists of séquence numbers, say ul,...,us where ail u{ are supposed to
hâve the same length. We call s the length of u (or v or w). Boldface letters a, b, c, d
dénote lists of pairwise distinct free choise variables, say aûj,..., a^ etc; there the i/j's
are not required to hâve ail the same length. In both cases the lists may be empty
(s=0). Let u, v, a dénote uu...,us and vl9...,vs and o4\,..., <xj;s respectively; then
u*v and a*u dénote ut *vt,..., us * vs and a^ » u l,..., oc^s* Us respectively. If t is a continuity
function from Ns+t, if u and v dénote uu...,u% and vl9...,vt respectively then
t(u, v) is a short way of writing x(ul9..., ws, vl9..., vt). Lists of functors are denoted by
boldface letters G, H, F and lists of terms by boldface letters t, p, q. If a, G dénote
<*uî>..-, a«I and Gi9..., Gs respectively then a£G expresses that for every i the relation
Wi^Gi holds. If G dénotes Gl9..., Gs, if a, b dénote oi|,..., <Ct and ft*\9..., j8£ respectively

and hâve no member in common, if moreover every free choice variable which
occurs in some Gi is a member of a or b then we express this by writing G [a, b]. If in
addition H, F dénote Hl,..., Ht and ¥t,..., Fr then G [H, F] dénotes the list G;,..., G^
where Gj is obtained from G{ by replacing each occurence of a^ and /££ in Gi by Hk
and Fk respectively, for ail k. In case of a single functor G we write correspondingly
G [a, b] and G [H, F]. An analogous notation is used in case of a single list a or three
pairwise disjoint lists a, b, c of free choice séquences; similarly with terms and lists of
terms. If however A is a formula, if a, b are two disjoint lists of free choice séquences
then A (a, b) expresses the fact that every free choice variable occurring in A is a member
of a or b and that conversely every member of a or b occurs somewhere in A. The
notation A (H, F) has the same meaning as before; similarly in case of a single list a or
three pairwise disjoint lists a, b, c. If two lists Ll9 L2 of objects hâve the same length
we express this by writing Lx ~L2.
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4.3. The model
The model, to be defined below, is a two place relation t/A whose domain of

définition is the set of ordered pairs (t, A) satisfying the following conditions: 1) % is a

continuity function of type (s, 0), 2) A is a formula containing precisely s distinct free

choice variables and otherwise no other free variables, 3) if s=0 then t is the natural
number 1. In this connection we adopt the following notation: the continuity function
of type (s, 0) (s=0 included) whose value is always 1 will be denoted by xf and without
danger of confusion we omit the index s and write simply t*. In the définition below

//A(a) is an abbreviation of the following statement: for every list F such that a~F
and acF there is a continuity function t such that t/A (F) holds. The sign // in the

définition below plays exactly the same rôle as S in D2. We define t/A by induction
with respect to the number of logical symbols in A. AU formulas, terms and functors

appearing in the définition do not contain free number variables; in addition we

always assume that a~u, b~v, e~w, a~u', b~v' holds whenever thèse symbols

appear below.

/. r/p(a, b) q(a, c) iff for ail u, v, w with t(u, v, w)#0 both p(a*u, b*v), q(a*u,
c*w) are saturated and hâve the same value.

2. t/A (a, b)AB(a, c) iff there exist r1 and t2 with Ti/A(a, b) and t2/B(a, c).
3. t/(x) A(x, a) iff for every term t there is a a with c/A(t, a).
4. t/(£) A(£, a) iff for every functor F there exists a a with c/A(F, a).
5. t/A (a, b) vB(a, c) iff for every u, v, w with t(u, v, w)#0 either //A(a*u, b*v)

or //B(a*u, c*w) holds.
6. t(/Ex) A (a, x) iff for every u with t(u)^0 there exists a term t containing no

other free variables than those occurring in a*u, such that //A(a*u, t) holds.
7. t/(E£) A (a, Ç) iff for every u with t(u)#0 there exists a functor F containing no

other free variables than those occurring in a*u such that //A(a*u, F) holds.
8. t/A (a, b)=>B(a, c) iff there exists a a with <r/B(a, c) whenever //A (a, b) holds.

9. T/lAiffT/ÂD0=l.
One easily recognizes that the above définition is nothing else than an élaboration

ofD2.

DEFINITION 3: If A (ai,..., as) is a formula whose free number variables are

among al5..., as then we call A(al9..., as) strongly realizable if //(x1?..., xs) A holds.

A formula without free individual variables, say A, is called realizable if there is a t
with t/A.

Our main effort is devoted to the proof of

THEOREIvI 1 : If IAVK then A is strongly realizable.

COROLLARY: IA is consistent.
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Proof: Evident from the theorem since 0 1 is not realizable.

4.4. Sorne preliminary lemmas

In order to prove theorem 1 we need some preliminary lemmas. They are easy

conséquences of the définition of the model. Proofs will therefore only be sketched. In
order to distinguish those lemmas from the lemmas in the next section we dénote them
by Hl, H2, etc.

Hl: If IIA (a) and açF then //A (F).

Proof: Let d be the list of those variables which occur in F ; we express this by
writing F [d]. Assume dçG. Then a^F [G] according to lemma 5; hence o\A (F [G])
for some a. Since G has only to satisfy dç=G and is otherwise arbitrary we hâve

//A(F[d])by définition.
H2: If P(a) is a prime formula and if <r/P(a) then //P(a).

Proof: Let P(a) be p(a) q(a) and assume açF[b]. According to lemma 8 there
is a t with the property : if t(v)^0 then there is an u such that a*ueF [b*v] and such

that <t(u)t*0. But then p(a*u) and q(a*u) are saturated and have the same value,
hence |p(F[b*v])| |q(F[b*v])| according to lemma 4. Hence r/p(F[b]) q(F[b]).
Since F[b] was arbitrary apart from açF[b] we conclude //P(a).

H3: Let a and b be two lists of the same type. Then: 1) if x/A(a) then x/A(b),
2)if//A(a)then//A(b).

Proof: For prime formulas the statement is an easy conséquence of lemma 7 and
H2. For arbitrary formulas A we prove 1) and 2) by an easy simultaneous induction
with respect to the number of logical symbols in A.

H4: t*/(x) A(x) iff a/(x) A(x). Similarly with (<J) A({), A a B and Aid B.

Proof: The statement is évident since in ail thèse cases the définition of <r/(x) A(x)
etc. does not dépend on a.

H5: Let (x1?..., xs) A(xl5..., xs) not contain free individuai variables. Then

//(xl9..., xs) A(x1?..., xs) iff //A(q!,..., qs) for ail s-tuples ql5..., qs of terms not con-
taining free individuai variables.

Proof: Case 1: s l. Let (x)A(x) be more explicitly (x)A(a, x). Assume

//(x) A (a, x) and let q(a, b) be given. We have to show: //A (a, q(a, b)). Assume

acG, bçH, According to Hl we have //(x) A (G, x) and hence a/A ((G, q(G, H)) for
some a. Since G, H where essentially arbitrary we have //A (a, q(a, b)). Now assume

conversely //A(a, q) for ail q. Let G [b] be such that as G [b] holds. We have to show

t*/(x) A(G[b], x) (see H4). This amounts to show: for any q (b, c) there is a a with
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a/A (G [b], q(b, c)). Let b', c' be of the same type as b, c and such that a has no élément

in common with b', c'. Then still acG[b'] by lemmas 4,5. Therefore agG[b'],
b'£b' and c'^c'. On the other hand //A(a, q(b'? c')) by assumption and hence

<r/A(G[b'], q(b', c')) by définition. By H3 we obtain (x/A(G[b], q(b, c)), what proves
the converse direction of H5 in case s= 1. Case 2: s> 1. One proceeds by induction
with respect to s. Since the inductive step is rather trivial, we omit it.

In order to prove the next lemma we need

DEFINITION 4 : Let t be a continuity function of type (s, 0) having the property :

with every v such that t(v)^0 there is associated a continuity function tv of type
(s, 0). Then there is evidently a continuity function a with the property: if cr(w)^0
then there is a décomposition w=v*v' such that t(v)^0 and tv(v')#0. The well-
determined a will be denoted by t*.

H6: Let t be as in the above définition. Assume that the following holds: if
t(v)#0 then Tv/A(a*v). Then there is a t' with T'/A(a).

Proof: The proof proceeds by induction with respect to the number of logical
symbols in A. Case 1 : A is prime, say p(a) q(a). Then it is trivial to verify x*/p(a)

q(a) where t* is derived from t according to the previous définition. Case 2: A is

B(a, b)AC(a, c). According to H4 we hâve x^/B(a#u, b*v)AC(a*u, c*w) whenever

t(u, v, w)^0 holds. From this one easily gets two continuity functions xt and t2

having the property: 1)if Tt(u, v)t£0 then there exists a t\ with Ti/B(a*u, b*v), 2) if
t2(u, w)#0 then there exists t2 with x2/C(a*u, c*w). From the induction hypothesis

we conclude that there exist au a2 with aJBCa, b) and cr2/C(a, c). But this implies

T*/B(a, b)AC(a, c). Case 3: A is (£)B(a, {)• BY définition and H4 we hâve

t*/(£) B(a*u, 0 whenever t(u)^0 holds. Let F [a, b] be arbitrary. We are through if
we can find a a¥ with <xF/B(a, F [a, b]). Define a0 as foliows: ero(u, v)#0 iff t(u)^0.
If <70(u, v)^0 then t(u)#0, hence x*j{Ç) B(a*u, Ç) by H4, hence there is a alt v with

a*t V/B(a*u, F [a*u, b*v]). According to the induction hypothesis there is a a¥ such

Case 4: A is (x) B(a, x). We proceed in the same way as in case 3.

Case 5: A is (E<J) B(a, £). Let t* be associated with t according to def. 4. If
t*(u)#0 then there is a décomposition u=u/*u/f such that i(u')#0 and %n,(u")^0-

Since v/(E£) B(a*u', Ç) by assumption there is a F[a*u'*u"] (depending on u of

course) such that //B(a*u'*u/ir, F [a*u'«u/!f]), or what amounts to the same, such that

//B(a*u, F[a*u]) holds. Hence t*/(E£) B(a, Ç) by définition.
Case 6: A is (Ex) B(a, x). We proceed in the same way as in case 5.

Case 7: A ïs B(a, b)z>C(a, c). We hâve by assumption and H4: if t(u, v, w)^0
then t*/B(a*u,b*v)=>C(a*u, c*w). Now assume //B(a, b). By Hl we hâve //B(a*u,
b*v) for ail u, v. Obviously there is a continuity function a having the property: if
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<t(u, w)#0 then t(u, v0, w)#0 where v0 is a list of séquence numbers of the form
<0,..., 0>. If a(u, w)#0 then t(u, vo> w)^0 and hence r*/B(a*u, b*vo)=>C(a*ii, c*w).
Clearly //B(a*u, b*v0). Therefore there is a auw such that aU)W/C(a*u, c*w). From
the induction hypothesis it follows that there is a a0 such that oro/C(a, c), what proves
the statement, also in this case.

H7: //AABiff//Aand//B.
We omit the rather trivial proof.

H8: Let t be saturated and assume |t| n. Then: 1) if x/A(t) then T'/(n) for some
x and conversely, 2) if//A(t) then //A(n) and conversely.

Proof: The statement is obtained by an easy simultaneous induction with respect
to the number of logical symbols in A, making thereby use of lemmas 4, 5 in case
where A is prime. At each step of the induction we first prove 1) with the aid of the
inductive assumption and afterward 2) with the aid of 1).

H9: Assume that for every u with t(u)#0 and every m there is a t™ with
C/A(a*u, m). Then t*/(x) A (a, x).

Proof: We hâve to show : for any term t (without free individual variables) there is

a ct such that <xt/A(a, t) holds. Let t(a, b) be such a term. Evidently there is a conti-
nuity function a0 having the following properties: if co(u, v)^0 then 1) t(a*u, b*v) is

saturated, 2) t(u)^0. Assume <ro(u, v)^0 and let |t(a*u, b*v)| be m. Since t(u)^O
there is a t™ with t™/A(a*u, m). According to H8 there is a C with C/A(a*u, t(a*u,
v*b)). By combining this fact with H6 we obtain the desired at with 0"t/A(a, t).

H10: //(x) A (a, x) iff //A (a, n) for ail n.

Proof: a) Assume a<=F[b] and //(x) A (a, x). We conclude t*/(x) A(F[b], x), that
is <tJA(F [b], n) for every n and some suitable an. Since F [b] was essentially arbitrary
we obtain //A (a, n) for ail n. b) Assume conversely //A (a, n) for ail n and let F [b] be

such that acF[b] holds. Then //A(F[b], n) for ail n by Hl. This implies that for
every u and every n there is a al with cr^/A(F [b*u], n). That is we are in the situation
of lemma H9 with t* in place of t. By H9 we hâve t*/(x) A (F [b], x). Since F [b] was

essentially arbitrary we conclude //(x) A (a, x).

Hll: Assume //p(a) q(a)30=l and let abea continuity function with the

property: if <x(u)#0 then p(a*u) and q(a*u) are both saturated. For such an u:

Proof: From the assumption we conclude i^/p(a*u) q(a*u) 30 1 for ail u. Let a
be as stated by the lemma. For an u with (r(u)=^|0p(a*u)| and |q(a*u)| are clearly
différent, since otherwise //p(a*u) q(a*u) would hold implying |0| |l|.

H12: //(<*!,..., £s)A(al5£...,£s) iff for ail G1?...,GS and ail F with açF we

have//A(F,G1>...,G1).
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The proof is essentially the same as that of the previous lemma and is therefore
omitted.

HÎ3: Let a and p(a) prime be such that the foliowing holds: if <x (11)7*0 then

p(a*u) is saturated and |p(a*u)| #0. Then //p(a):=>0= 1, that is //p(a)#0 holds.

Proof: It is sufficient to observe that //p(F [b]) 0 never holds provided açF [b] is

true. The observation is an easy conséquence of lemmas 2,8.
H14: Assume //p(à)^0. Let a be such that a(11)7*0 implies p(a*u) saturated. Then

|p(a*u)| #0 for such an u.

Proof: This is a spécial case of Hll.
H15: //A(a, F [a]) implies t*/(E0 A(a, 0.

Proof: From //A (a, F [a)) and Hl we conclude //A(a*u, F fa*u)) for ail u. Therefore

t*/(E£) A(a, 0 by définition.
H18: //A(a, F [a]) implies //(E{) A(a, £).

- Assume agG. By Hl we hâve //A(G, F [G]) and from H17 we obtain
£)• In other words, whenever açG then t*/(E{) A (G, £). This implies

if79; //A (a, t(a)) implies //(Ex) A (a, x).

Proof: Exactly the same as that of H18.

4.5. Therules
Now we can pass to the proof of theorem 1. This is done by showing that each

axiom of IA is strongly realizable and that the rules préserve strong realizability. We

start with the rules. The lemmas below will be denoted by Ll, L2, etc.

Ll: If //A(a, b), //A(a, b)=>B(a, c) then //B(a, c).

Proof: Let F, H be lists of functors such that a^F, c^H, agF, cçH. Take any

list G such that b~G, b^G. Such a list G can be found in many ways. Then there

exists a t with t/A(F, G)3B(F, H). On the other hand //A(F, G) by Hl and the

assumption //A (a, b). Hence a/B(F, H) for some a. Hence //B(a, b).

L2: If A and A z> B are strongly realizable then B is strongly realizable.

Proof: Let the free choice variables of A, B be those of the lists a, b and a, c res-

pectively, let the free number variables of A, B be among al5..., as, to be abbreviated

by a. We express this by writing A (a, b, a) and B(a, c, a). According to the définition
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of strong realizability we hâve //(x1?..., xs) A (a, b, x) and //(xl9..., xs) (A (a, b, x)=>

DB(a, c, x)) (with x short for xl9..., xs). H2 implies //A(a, b, q) and //A(a, b, q)=>

DB(a, c, q) for any list q of terms not containing free number variables. From Ll we

conclude that //B(a, c, q) holds for any such list, that is //(x) B(a, c, x) holds by H2
what proves the statement.

L3: If //(x) (A (a, b):z>B(a, c, x)) then //A (a, b)=>(x) B(a, c, x) where x does not
occur in A (a, b).

Proof: Assume //(x) (A (a, b) z> B(a, c, x)). The statement is proved if we can show :

if açF, bçG, ce H and //A (F, G) then for every term q without free individual
variables there is a <rq with <rq/B(F, H, q). Hence let q be such a term and assume

agF, b^G, cçH and //A(F, G). From //(x) (A(a, b)3B(a, c, x)) we conclude
t*/(x) (A(F, G)=>B(F, H, x)) that is t*/A(F, G)=>B(F, H, q). From //A(F, G) it
foliows that there is a aq with <rq/B(F, H, q), concluding the proof.

L4\ If (x) (A=>B(x)) is strongly realizable then A=>(x) B(x) is strongly realizable
(where x does not occur in A (a, b)).

Proof: The réduction of L4 to L3 is essentially the same as that of L2 to Ll.
L5: If //(x) (A (a, b, x)=>B(a, c)) then t*/(Ex) A (a, b, x)DB(a, c) (where x does

not occur in B(a, c)).

Proof: Assume //(Ex) A(a, b, x). Then there exists a t with t/(Ex) A(a, b, x). Let a

and b hâve length s and t respectively and let u be the list uu..., ws of séquence num-
bers, ail having the same length, say n. Let rn be the séquence number <0,..., 0> of

length n and let rn be the list rn,..., rn of séquence numbers having t members. Define

t* as follows: t*(u, w)=^0 iff t(u, rn)#0 where rn is determined by u in the way just

described. t* is of course a continuity function. Assume t*(u, v)#0. Then t(u, rn)^0

and hence there is a term q without free individual variables such that //A(a*u, b*rn, q)

holds. From Hl on the other hand we get t0/(x) (A(a*u, b*rn, x)=>B(a*u, c*w)) and

hence T*/A(a*u, b*rn, q)=>B(a*u, c*w). But //A(a*u, b*rn, q). Hence there is a a' with
ff'/B(a*u, c*w). That is: if t*(u, w)^0 then there is a & with <r'/B(a*a, c*w). Ac-

cording to H4 this implies the existence of a a with <x/B(a, c) what proves the statement.

L6: If//(x) (A(a, b, x)=)B(a, c)) then //(Ex) A(a, b, x)3B(a, c) (with x not in A).

Proof: Assume a<=F, bçG, cgH. Then //(x) (A(F, G, x)=>B(F, H)) according to
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Hl, hence t^/(Ex) A(F, G, x)=>B(F, H) according to L5, what proves the statement.
L7: If (x) (A (x) :d B) then (Ex) A (x) z> B is strongly realizable (x not occurring in B).

Proof: L7 is reduced to L6 as L2 to Ll.
L8: //(£) (AidB(£)) then //Ad© B(£) (with Ç not in A).

Proof: Exactly the same as that of L3.
L9: If ({) (A^B({)) is strongly realizable then Ad© B(£) is strongly realizable

(with £ not in A).

Proof: We reduce L9 to L8 in the same way as L2 to Ll.
L10: If //(£) (A(a, b, £)=>B(a, c)) then //(E£) A(a, b, {)dB(i, c) (with £ not in

B(a,c)).

Proof: Exactly the same as that of L6.
LU: If (0 (A({)=>B) is strongly realizable then so is (E£) A(£):=>B (with £ not in

B).

Proof: Réduction to L10 in the same way as L2 is reduced to Ll. Lemmas Ll-Ll 1

settle the questions connected with the rules of IA, which corne up in the proof of
theorem 1.

4.6. The true prime formulas
By définition, if P is a true prime formula (without free number variables) then

er/P for some continuity function a. From H2 we obtain //P for such a prime formula
P. If finally P(a1,..., as) is a true prime formula whose free number variables are

among a1?..., as then by définition P(q1?... qs) is true for ail terms not containing free

number variables. Hence again by H2 //P(ql5..., qs) for ail such terms. According to

H5 this implies //(x^..., xs) P^,..., xs), that is P is strongly realizable. We note in

this connection that IA contains the whole body of primitive recursive arithmetic:

formulas such as (p+q') (p +q) ', p • q'=p q+p, (Axt(x)) (q) t (q) etc. are obviously

ail true. For later use we also note
L12: For every quantifierfree formula Q there is a term tQ containing exactly the

same free variables as Q such that the following formulas are provable in Z3 and

hence in IA: 1) tQ=OvtQ=l, 2) tQ=0z>Q, 3) Q3tQ=O.
We omit the routine proof which is based on the fact that IA contains primit. rec.

Arithmetic.

4.7. The axioms ofpropositional calculus.

L13: If A is an axiom of intuitionistic propositional calculus which does nol

contain free number variables then //A.
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Proof: We content ourself with proving the statement for those two axioms of
propositional calculus which contain disjuntions. Ail other axioms are trivial to treat.

a) The formula in question is A (a, b)DA(a, b)vB(a, c). Assume //A (a, b). We
claim T*/A(a, b)vB(a, c). Indeed, since //A(a, b) it follows from Hl that //A(a*u,
b*v) holds for ail u, v what proves the claim. That is we hâve proved r*/A(a, b)=^

3>A(a,b)vB(a,c)forallformulasA(a,b),B(a,c).ïfaçF,bçG,ccHthenA(F,G)iD
3 A (F, G)vB(F, H) is again such an axiom hence t*/A(F, G) 3 A (F, G)vB(F, H)
according to the arguments just given. Therefore //A(a, b)3A(a, b) vB(a, c).

b) The formula in question is (AdCaBdC)d(AvBdC). Let us assume for
simplicity that every member of the list a of free choice variables occurs in each of the
formulas A, B, C and that the formulas A, B, C contain only free choice variables
from the list a; we indicate this by writing A (a), B(a), C(a). The case where the
distribution of variables is more gênerai is treated in exactly the same way as this particular
case. First we show : t0/(A dCaBdC)d(AvBdC). Hence assume //A => C a B => C.

We hâve to prove t^/AvBdC, or what amounts to the same, that //A(a)vB(a)
implies 0"/C(a) for some a. Hence assume in addition //A(a)vB(a). Then there is

clearly a x with r/A(a)vB(a). Assume t(u)#0. Then either //A(a*u) or //B(a*u);
assume eg. //A(a*u). From //AidCaBidC we obtain //A=>C and //BdC by H7.
From this we get in particular T^/A(a*u)=>C(a*u). Since //A(a*u) by assumption it
follows that there is a a' with a7C(a*u). Similarly if //B(a*u) holds in place of
//A(a*u). Hence: if x (11)7*0 then there is a a' with ff'/C(a*u). But then it follows from
H6 that there is a a with <x/C(a). Hence t*/(AdC)a(BdC)d(AvBdC) has been

proved. From this the stronger statement //(A dC)a(B=>C)d(AvBdC) immediately
follows; we only hâve to use the fact that performing a substitution on such an
axiom transforms it into another axiom of the same form, say (A' 3 C) a (B' 3 C) 3
d(A'vB'dC).

L14: If A is an axiom of intuitionistic propositional calculus then A is strongly
realizable.

Proof: L15 follows from L14 in the same way as L2 from Ll.

4.8. The quantification axioms

LIS: //«)A(a,{)=>A(a,F).

Proof: It is sufficient to prove t*/(£) A (a, Ç)^ A(a> F)« The statement then follows
from the observation that substitution does not change the form of the axiom. Assume

//(£) A (a, £). Then we get t*/(é) A(a, Ç) as a particular case, hence cr/A(a, F) for some
o" what proves the statement.

L16: (0 A({)=> A(F) is strongly realizable.
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Proof: This foliows from L15 as L2 from Ll.
L17: (x) A(x)z> A(t) is strongly realizable.

Proof: Exactly the same as that of L16.
In the lemma 19 below let a be a free choice variable not occurring in the list a and c

the list of those free choice variables which occur in the functor F but not in a; we

express this by writing F [a, c].
L18: T*/A(a, F [a, c))=>(E£) A(a, £).

Proof: Assume //A (a, F [a, c]). Let in addition G be a list of functors, none con-
taining free variables and such that csG. From the assumption we obtain
IIA (a, F [a, G)) according to Hl. Clearly the free variables of F [a, G] ail belong to
the list a. Moreover //A(a*u, F[a*u, G]) again by Hl. Therefore t*/(E£)A(a, £)

since for every list u with a~u there is a functor H, namely F [a*u, G] with //A(a*u,
F[a*u,G]).

L19: With A (a, a) and F [a, c] as before, //A (a, F [a, c])=>(E£) A (a, Ç).

Proof: Substitution transforms A (a, F [a, c])3(E<^) A (a, Ç) into another axiom of
the same kind. The statement then follows from L18.
L20: A(F)=>(E0 A(f) is strongly realizable.

Proof: Follows from L19 as L2 from Ll.
L21: A(t)z>(Ex) A(x) is strongly realizable.

Proof: The same reasoning which leads to L20 is used.

4.9. The induction axiom
L24: //A(a, 0)= -(x) (A (a, x)=> A (a, x'))=>(z) A (a, z).

Proof: As before it is sufficient to prove the statement r*/A(a, 0) => • (x) (A (a, x) =>

3 A (a, x'))z>(z) A (a, z). The lemma then follows from the invariance of the form of
the axiom against substitution. Assume //A (a, 0) and //(x) (A (a, x) z>A(a, x')). The

statement then follows if we can show t*/(z) A (a, z). CombiningLl and H9 we obtain

UA (a, n) for ail numerals n. In order to prove t*/(z) A (a, z) we hâve to find for every

term t a continuity fonction a of suitable type such that <r/A(a, t) holds. Let t be

t(a, b) with b the list of those free choice variables which do not occur in the list a.

With t there is associated a continuity fonction t such that t(u, \)^0 implies

t(a*u, b*v) saturated. Assume t(u, v)#0; put |t(a*u, b*v)| m. Since //A(a, n) for ail n

we hâve in particular //A (a, m). From this we conclude that there is a î with

t/A(a*u, m). According to H8 there is a x' with x7A(a*u, t(a*u, b*v)). Hence: if
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t(u, v)#0 then there exists a t' with T'/A(a*u, t(a*u, b*v)). From H6 it follows that
there is a a with <r/A(a, t), what concludes the proof.

L23: The induction axiom is strongly realizable.

Proof: Follows from L22 in the same way as L2 from Ll.

4.10 The axiom of transfinite induction

Let t(a, b) 0 be a prime formula containing the distinct free numbervariables

a, b. Let us write a<b in place of t(a, b) 0. Let W(-<) be an abbreviation for the

following formula: (£)(Ex)~l£(x + l)-<£(x). A formula is said to be an axiom of
transfinite induction if it is of the following form: W(-<)z> -(y) ((x) (x<y=> A(x))=d
=> A(y))=>(z) A(z) (to be denoted by TI(-<, A)). By définition every axiom of transfinite

induction is an axiom of IA. In virtue of L12 a slightly more gênerai form of
transfinite induction is available in IA: namely formulas of the above form but with a
quantifierfree formula Q(a, b) in place of t(a, b) 0. In [5] it is shown that with
the continuity axiom (which is available in IA) even the most gênerai form of transfinite

induction or bar induction can be reduced to our particular formulation above.

In order to show that each axiom TI(-<, A) is strongly realizable it is again suffi-
cient to prove //TI«, A) for ail formulas -<, A which do not contain free number
variables. Since substitution transforms TI«, A) into another such axiom, say

TI«', A'), it is sufficient to show that t0/TI«, A) holds for -<, A not containing
free number variables. Hence our aim is to prove

L24: Let t(a,b) 0 and A (a) be a prime formula and an arbitrary formula
respectively not containing free number variables. Then r*/TI(-<, A) holds.

From L24 we obtain according to our remarks immediately
L25: Every axiom TI«, A) is strongly realizable. Before coming to the proof

of L24 we need a définition.

DEFINITION 5: Let t(o^J,..., a£, a, b) be a term whose only free variables

are those indicated (a, b number variables). A set D of natural numbers can be associ-

ated with the primeformula t=0 as follows: its éléments are ordered pairs «t^,..., t?s>,

n> (also written more briefly as (vu...9 vjn}) such that vl9...9 vs is an s-tupel of
séquence numbers, ail having the same length. A partial ordering EU of D can be

associated with t=0 as follows: <i>l9..., i?8/n>CZ<iv1,..., ws/m> iff a) each v{ is a

proper extension of w{ (that is w{ c v,), b) t(a^, Vl,..., a^ „ Vs, n, m) is saturated and its
value is 0. The main property ofd is given by

L26: Let t(o£,..., <;, a, b) and HZ be as in définition 5. Let a<b be short for
t(a^J,..., a^;, a, b) 0. If W(-<) is realizable then d is wellfounded. The easy proofof
this lemma is omitted.
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Proof of L24: For typographical reasons we treat a slightly simplified case, in
which t(a, b) contains precisely one free choice variable namely a< >, and where the
formula A in TI(-<, A) contains precisely two free choice variables, namely aj^a^.
We indicate this by writing t(a< >, a, b) and A(a< >, a< >, a) respectively. This particular
case is typical in that the proof below can be generalized in a straight forward way
to the case where an arbitrary set of free choice variables is présent. For convenience we

will also write the prime formula t (a< >, a, b)=0 briefly as p(a* >5 a, b). We want to prove
t*/TI«, A). This is done ifwe can show : if//W (<) and //(y) ((x) (x^yDÂ (x)) => A (y))
then t*/(x) A(x). Hence let us assume: I) //W(-<), II) //(y) ((x) (x-<y=> A(x))=> A(y)).
In virtue of H10 we are through ifwe can prove for every numéral m: //A(a< >, a< >, m).
From assumption I) and L26 it follows thatd is well-founded. In order to proceed by
transfinite induction let <t//m>eD be fixed and let us make the inductive assumption:
III) if <tVn>[H<w/m> then //A(av v a< >, n). The transfinite induction is accomplished if
we can show : if F [a] and G [a] are two functors such that «çF[a] holds then there is

a t such that t/A(F [a], G [a], m) holds (with a the list of choice variables occurring
either in F or in G). Hence let F [a] and G [a] with we F [a] be given. From II), Hl and

H10 we conclude: t*/(x) (p(F[a], x, m) A (F [a], G [a], x)):=>A(F[a], G [a], m). The

desired t with t/A(F [a), G [a), m) is found if on the basis of III) we can show IV):
//(x) (p(F [a], x, m)=> A(F [a], G [a], x)). In virtue of H10 this is proved if we can show

for every numéral n the statement V): //p(F[a], n, m) 3 A (F [a], G [a), n). The last

statement finally is a conséquence of the following statement VI) : for every n, if
acH[b] then T*/p(F[H[b]], n, m) 3 A (F [H [b]], G[H[b]], n). Hence let us con-

centrate on the proof of VI). To this end let n be an arbitrary numéral and H [b] an

arbitrary list of functors, only subject to the restriction açH[b]. In virtue of lemma 8

there is a continuity function a having the following property : if <r(w) ^ 0 then there is

a séquence number v such that «çn, t?cF[H[b*w]] and such that t(av, n, m)

is saturated. We claim that the following statement VII) is true: if <x(w)t*0

then t0/p(F[H[b*w]], n, m)3A(F[H[b*w]], G[H[b*w]], n) holds. Hence assume

//t(F[H[b*w]], n, m)=0. Since t(av, n, m) is saturated and since t;cF[H[b*w]] it
follows that t(F[H[b*w]], n, m) is saturated and has the same value as t(av, n, m).

From //t(F[H[b*w]], n, m)=0 it follows that this value must necessarily be 0. In

combination with uav this implies <v/n>CZI<t//m>. In virtue ofour inductive assumption

we hâve //A(av, a< >, n) and hence t/A(F[H [b*w]], G[H [b*w]], n) for some t
what proves statement VII). From VII), H4 and H6 it follows that T*/p(F[H [b]], n, m)

=>A(F[H[b]], G[H[b]], n) is true. Since n, H[b] where arbitrary (apart from

açH[b]) it follows that statement VI) is true. From VI) we deduceIV)and from

IV) and t*/O0 (p(F [a], x, m)=> A(F [a], G [a], x)=> A(F [a], G [a],m) we obtain the

existence of a t with t/A(F [a], G [a], m). But F [a] and G [a] where only subject to

the condition wçF[a] and otherwise arbitrary. Hence //A(ai, a< >5 m) is true. The

transfinite induction is done and the lemma proved.
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4.11. The axiom of choice

As will be sketched in the appendix, we can dérive the gênerai axiom of choice from
the full continuity axiom and the following spécial instance of the axiom of choice:
(x) (Ex) Q(x, y)=>(E£) (x) Q(x, <^(x))1 with Q a quantifierfree formula. On the other
hand we know from L12 that every quantifierfree formula is provable équivalent to a
certain prime formula. Therefore it is even sufficient to include among the axioms of
IA only the following very particular instances of the axiom of choice: ACP)
(x) (Ey) p(x, y):z>(EÇ) (x) p(x, Ç (x)) where p(x, y) is a prime formula.
L27: (x) (Ey) p(x, v):d(EO (x) p(x, {(x)) is strongly realizable (p prime).

Proof: As before it is sufficient to prove t*/(x) (Ey) p(a, x, y)3(EC) (x) p(a, x,
£(x)) where p(a, slu a2) is any prime formula whose only free variables are the choice
variables from the list a and the free number variables al5 a2. For simplicity we
assume that the list a has the particular form a< >,..., a<>. Hence assume

//(x) (Ey) p(a, x, y). This implies: for every n there is a tn such that tn/(Ey) p(a, n, y)
holds. Therefore: if in(u)^0 then //p(a*u, n, tn(a*u)) for some term tn which con-
tains only free variables from the list a*u. This in turn implies the existence of a continuity

function a" having the property: if o-"(v)^0 then p(a*u*v, n, tn(a*u*v)) and

tn(a*u*v) both are saturated and p(a*u*v, n, tn(a*u*v)) is true. In particular if
|tn(a*u*v)| m then also p(a*u*v, n, m) is saturated and true (calling qt q2 saturated

if qA and q2 are saturated). Let // be any continuity function of type (s, 1) having the

following properties: 1) if /i(w, n)^0 then w admits a représentation w u*v with
xn(u)#0 and <(v)#0, 2) if ^(w, n)#0, w u*v, tn(u)^0 and <(v)#0 then ju(w, n)

|tn(a*w)| -4-1. It is easy to prove the existence of such a \x. The language L contains

by définition a functor constant G^oî we write F instead of G£o. By définition

F[a*w](n) is saturated iff ju(w, n)^0 and in this case |F[a*w] (n)| |tn(a*w)|
=ju(w, n)-l. Let fin be given by jun(w) ju(w, n). We claim /wn/p(a, n, F [a (n)). If
/in(w)=^0 then there is a splitting w u*v such that Tn(u)^0 and cr^v^O. But then

p(a*w, n, tn(a*w)) is saturated and true. Since tn(a*w) is also saturated and since

|F [a*w] (n)| |tn(a*w)| by définition of \i it follows that p(a*w, n, F [a*w] (n)) is also

saturated and true; hence jUn/p(a, n, F[a](n)) for ail n. According to H2 we hâve

//p(a, n, F [a] (n)) for ail n and this together with H10 yields //(x) p(a, x, F [a] (x)).
From the définition of / and // one finally concludes that ^/(EÇ) (x) p(a, x, Ç(x)) what

proves the statement. Only minor modifications are needed in order to treat the case

where the list a is of the more gênerai type a^,..., a^.

4.12. The continuity axiom
In order to discuss the continuity axiom let çu q>2> 93 be two twoplace and a one

place primitive recursive function respectively having the properties: a) (p^u, v)=0
iff w, v are séquence numbers with u^v, b)(j92(a,b) i((a+b)2+3a+b),c)(p3(n)
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is the length of n if n is a séquence number and 0 otherwise. Thèse fonctions are re-
presented in IA by certain functional constants c1? c2, c3 of types (0,2), (0,2) and (0,1)

respectively; IA contains suitable axioms with respect to cl9 c2, c3 which permit to
dérive the familiar properties of q>l9 cp2, <p3. For easy reading we adopt the following
conventions : a) cx (p, q) 0 is written as p £ q, b) c2 (p, q) is written as <p, q>, c) if F is

a functor we write F(p, q) in place of F«p, q», d) v^F is an abbreviation for
yçF(c3(t?)). Let CT^a) and CT2(a) be the following formulas respectively: a)

(x, y)(xcyAa(x)#0Da(y)#0), b) ({)(Ex)a(£(x))?*0. Let CT(a) be CT^a
ACT2(a). A suitable form of the continuity axiom, which is équivalent to that one

presented in [2] is

=> (E<x) {(x) CT(Ay<r(y, x)) a

(C, ji) [(x, v)(vc(A <7(v, x)^0d <t(v, x) fi(x) + 1) z> A(C, ai)]}

Dénote this formula by CT(A). Our goal is to prove
LIS: CT(A) is strongly realizable. As in earlier cases this is achieved if we can

show
L29: //CT(A) for ail A not containing free number variables. But CT(A) is

clearly invariant against substitution and hence L29 follows from
L30: For A without free number variables t^/CT(A) holds. Before coming to

the proof of this lemma, which will be given below we note

THEOREM 0: IfZ^A then A is strongly realizable.

Proof: According to the lemmas proved so far it follows that every axiom of Z3 is

strongly realizable and that if the premiss or the prémisses of any inference are

strongly realizable then the conclusion is strongly realizable.

COROLLARY 1 TO THEOREM 0: Let F, G be two functors and A (a) aformula
nom containing free number variables. Then t0/(x) (F(x) G(x))s(A(F)=>A(G))
holds.

Proof: The formula on the righthandside of / (to be denoted by B) is obviously

provable in Z3 ; hence //B by theorem 0 and so t*/B.

COROLLARY 2 TO THEOREM 0: Let F, G, A (a) be as in corollary L Iffor

every n there is a xn with tn/F(n) G(n), i///A(F), then a/A (G) for some a.

Proof: This is an immédiate conséquence of theorem 0, corollary 1, H2, H10 and

the définition of
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Proof of L30: The proof is performed in several steps. In order to simplify the
notation somewhat, we assume that A contains precisely the free variables au, p, y
and write therefore A(au, p, y) and ({) (Erj) A(au, £, r\) respectively. This spécial case

is représentative in that the généralisation to the arbitrary case is straightforward.
Step 1: We make the basic assumption //(£) (Erç) A(au, Ç, r\). This implies in particular
t*/(E£) A(au, p, Ç) where P is a free choice variable associated with the empty sequent
and différent from au. By définition there is a functor T[au, /?], whose only free
variables are au, p such that the following statement I) holds: //A(au, P, T [au, p]).
According to lemma 2 there is a continuity function a0 of type (2,1) such that
(7O(0, w, n)#0 implies T[av, j5w] (n) saturated with value cro(v9 w, n)— 1. Define a

continuity function t of type (1,1) as follows: 1) if m is not a séquence number then
t(F(i), <m, k»= 1,2)if i<j then r(F(i), <g(j), k»= 1, 3)ifj <i andifcro(fû), g(J),k)=O
then t (F(i), < g(j), k» 1,4) ifj ^ i and if <r0 (F(j), g(j), k) m +1 then t (f(i), <g(j), k»

m+2 |T[af(i), j5g(j)] (k)|+2. The language L contains an operator symbol F of
type (1,0) associated with t. By définition F [oCvJKw, k» is saturated iff x(v9 <w, k»

m-h 1 #0 and its value in this case is m. Step 2: Let us abbreviate in the sequel the
formula (x, v) (vçj? a<x(v, x)^0:Da(v, x) y(x) +1) by E(oc/jS, y). According to H10,
H18 the lemma is proved if we can show: 1) for each n //CT(AyF [au] (y, n)), 2) for ail
G, H and F such that wçFwe hâve t*/E(r [F]/G, H)dA(F, G, H). We first concen-
trate on the vérification of 2). As noted, we hâve //A(F, G, T [F, G]) for ail F, G with
wçF. Let F[b], G[b] and H[b] be fixed functors such that «çF[b] holds. Then we
hâve II): //A (F [b], G [b], T [F [b], G [b]]). In virtue of corollary 2) to theorem 0 the
vérification of 2) is accomplished if we can show: if E(r[F[b]]/G[b), H[b]) then
there is for every n a xn such that tn/T [F [b], G [b]] (n) H [b] (n) holds. Hence let us

assume III): //E(F[F[b]]/G[b], H[b]). Step 3: From lemma 8 it follows that for
every n there is a continuity function an such that: if crn(w)^0 then there exist F(i) and

g(j) such that w*F(i)£F[b*w], g(j)^G[b*w] and such that (70(w*F(i), g(j), n)#0.
Hint : 1) Put A (x) 1 if x is a séquence number with length (u) < length (x) and A (x) 0

otherwise, 2) take as t in lemma 1 the continuity function min (^d(x), (7n(x, y, n)), 3)

observe that w£F[b] already holds. Then by définition of t in step 1, x(w*F(i),

<g(j), n» |T [au#F(i), j85(j)] (n)| +2 and by définition of F the term F [au,F(i)] (g(j), n)
is saturated and its value |T [au,?(i), j8g(j)] (n)| +1. Now take a fixed n and a fixed w
such that (7n(w)^0 and let F(i) and g(j) be as in 1), 2) above. From assumption III) we
infer T^/E(r[F[b*w]]/G[b*w), H[b*w]). This in turn implies T*/g(j)gG[b*w]a
Ar[F[b*W]] (g(j), n)#0=>r[F[b*w]] (g(j), n) H[b*w] (n) + l. Clearly, g(j)s
£G[b*w] is saturated and true, hence //g(j)^G[b*w]. Furthermore T[F[b*w]]
(g(j), n) is also saturated and its value #0; hence //r [F [b*w]] (g(j), n)^0 by H13. It
follows from H7 that there exists a continuity function fi* with the property IV): if

then H[b*w*w'](n) and F[F[b*w*w']] (g(j), n) are saturated and

)| |H[b*w*w/] (n)| + l. But T[F[b*w]] (g(j), n) and
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T[F[b*w], G[b*w]] (n) are already saturated and the value of the first equals the
value of the second plus one. Hence both F [F [b*w*w']] (g(j), n) and T[F [b*w*w'],
G [b*w*w']] (n) are saturated and the value of the first equals the value of the second

plus one. With the aid of property IV) we can sum up thèse considérations as follows:
if (jn(w)#O then there exist a /C such that T[F[b*w*w'], G[b*w*w']] (n) and

H[b*w*w'](n) both are saturated and hâve the same value whenever /jw(w')#0
holds. But according to H6 this implies the existence ofa xn with xn/T [F [b], G [b]] (n)

H [b] (n). This concludes the proof of statement 2) mentioned at the beginning of
step 2. Step 4: It remains to verify statement 1) mentioned at the beguinning of step 2.

This amounts to prove for ail n: a) //(x, y) (xçy a F [oj (x, n)#0 =>F [au] (y, n)#0),
b) //(£) (Ex) F [aj (|(x), n)^0. We start with the vérification of a). We hâve to prove
for ail séquence numbers v, w: //^CDAf^J (w, n)#0z>r[au] (u, n)#0. Hence let

F[b] be a functor such that «gF[b] holds and assume V): a) //ws», p) //[F[b]]
(w, n)#0.1', a) implies that w and v are indeed séquence numbers and that v is a

proper extension of w. From I', /J) and lemma 8 we infer the existence of a continuity
function a such that a(r)#0 has the foliowing conséquences: 1) there is an F(i) such

that w*F(i)çF[b*r] and length (i?)<length (w*F(i), 2) F[au,F(i)] (v, n) and r[au,f(i)]
(h>, n) both are saturated and the value of the second is #0. Fix a list r such that

cr(r)#O. Since v^w, w*f(i)cF[b*r] and since F[au*f(i)] (w, n) is saturated with value

#0 we conclude from Lemma 4 that F [F [b*r]] (v, n) is saturated and has value #0.
To sum up: if (x(r)#0 then F [F [b*r]] (v, n) is saturated and has value ^0. According
to H13 this implies t^/F[F [b]] (v, n)^0 what concludes the vérification of a). Step 5:

It remains to verify b), that is //({) (Ex)F [aj (|(x), n) #0 for ail n. Let n henceforth be

fixed. Let /? be a free choice variable, associated with the empty séquence and différent

from au. Combining Hl, H12, H19 and H13 it is clear that b) is verified if we can find

a term t(au, P) and a t such that the foliowing holds: if x(v, w)#0 then F[au*v]

(/?w(t(au*v> Pw))9 n) is saturated and its value is différent from 0. In step 1 we hâve

introduced a continuity function cr0 of type (2,1). Clearly there exists a continuity
function \i of type (2,0) having the properties: if /j(F(i), g(i))#0 then 1) k + l
=/i(F(i), g(i))<i + l, 2) <xo(F(k), g(k), n)^0. To \i there corresponds a functional

symbol t of type (2,0) such that the following holds: 1) for i? F(i), w g(i) t(av, j8w) is

saturated iïïfi(v, w)#0, 2) in this case |t(av, pw)\ =fi(v, w)-1. Obviously there exists a

continuity function v of type (2,0) having the following property: if v(v9 w)#0 then v

allows a décomposition vi*v2:=v such that fi(u*vl9 w)#0. We claim: v/r[au]
))> n)#0. Assume v(v, w)#0 andlet t^i^t^b6 a décomposition such that

)t£0. Put w*t?1=F(i), w=g(i) and k + l =*ii(u+vi9w). According to the

définition of fi we hâve k ^ i and er0 (F(k), g(k), n) # 0. Hence t (F(k), < g(k), n» < 2 and

therefore F[ay(k)] (g(k), n) is saturated with value ^0. Since u*vt^u*v and F(k)£

cm^j it follows that F[olw] (g(k), n) is saturated with value #0. Since k^i one

easily vérifies that ]5w(k) is saturated with value g(k). Since fi(u*vu w) i
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follows that t(au#Vl, /?w) is saturated with value k. Hence t(au,v, j?w) is also saturated
and its value is still k. Therefore j5w(t(au*v, /?w)) is saturated and its value is the same
as that of J5w(k), namely g(k). Hence F[ocu+V] (jSw(t(au,v, j5w)), n) is saturated and its
value is ^0. This concludes the proof.

Theorem 1 : If A is provable in the System IA of intuitionistic analysis gehn A is

THEOREM 1 : IfA is provable in the system IA of intuitionistic analysis then A is

strongly realizable.

Proof: According to the lemmas proved up to now it follows that ail axioms of IA
are strongly realizable. Furthermore, if the premiss or the prémisses of an inference

are strongly realizable then so is the conclusion according to lemmas Ll — LU. The
theorem then follows by induction with respect to the length of proofs. Kleene-Vesleys

system of intuitionistic analysis is contained in our system IA, as pointed out earlier,
that is every formula provable in Kleene-Vesleys system is provable in IA (after
eventually replacing some bound variables by others). Hence

COROLLARY TO THEOREM 1: If a formula A is provable in the system of
Kleene- Vesley then it is strongly realizable.

5. A remark on Troelstras axiom

In [6] A. S. Troelstra introduces a certain system of intuitionistic analysis which
contains the system of Kleene-Vesley as subsystem. An essential feature of this system
is that it contains a new axiom, which for simplicity will be called Troelstras axiom.
In order to state it let Rec (a) be a suitable formula expressing that a is a recursive
function. Let CT(a) and E(a/jS, y) hâve the same meaning as in the proof of lemma
L30. Let A (a) be a formula whose only free choice variable is a (associated with the

empty séquence). Troelstras axiom looks as follows:

A(a) 3 (Eor) {Rec((x) a (x) Cl(Xye(y, x)) a (Erj) E(a/iy, a)

Let us dénote this formula by Tr(A). If we drop Rec (a) in this formula then we

obtain another formula to be denoted by Tr*(A). While Tr(A) is an essential new
axiom this is not the case with Tr*(A): it is easy to show that Tr*(A) is provable in
the system of Kleene-Vesley. Therefore, by corollary to theorem 1, Tr*(A) is strongly
realizable. In the model presented in the last chapter, Tr(A) cannot be proved to be

strongly realizable since this model has essentially set theoretic character: it contains

no ingrédients of recursive function theory. However, there is a constructive version
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of this model in which everything is codifiée in a suitable way by Goedel numbers ;

this constructive version will be presented in a subséquent paper. It can be shown that
Tr(A) is strongly realizable in this constructive model. The proof of this splits up in
two parts : an abstract, rather set theoretic part and a constructive part, which uses the
fixed point theorem and whose main concern is to translate the abstract part in an

appropriate way in the language of recursive function theory. Now it is quite usefull
to hâve a direct vérification of the strong realizability of Tr*(A) at hand: it turns out
that this direct vérification essentially coincides with the abstract part of the above

mentioned proof. Hence let us proceed to a direct vérification of the strong realizability.

One easily vérifies on the basis of H5 that this is achieved if we can show
L31: If A (a) is a formula whose only free variable is the free choice variable

associated with the empty séquence then //Tr*(A).

Proof: We will not consider ail the détails but rather concentrate on the main

points. Let F [b] be any functor without free number variables. Our aim is to show:

r*/A(F [b]) => (E<r) {(x) CT(Ay<r(y, x) a (EÇ) E(«r/£, F [b])

To this end assume //A(F [b]). For simplicity we consider the case where b consists of
two choice variables, a, fi both associated with the empty séquence. The case where b

is more gênerai is treated in exactly the same way. We proceed by steps. Step 1:

Clearly there are continuous operators F, G1? G2 of type (2,0), (1,0) and (1,0) respec-

tively having the properties: 1) F maps the set of ordered pairs of numbertheoretic
functions in a one one way onto the set of numbertheoretic functions, 2)

X£(Gt [£], G2 [£]) maps the set of numbertheoretic functions in a one one way onto

the set of ordered pairs of numbertheoretic functions, 3) the mappings a->(Gi [a],

G2 [a]) and (a, fi)-+F [a, fi] are inverses of each other. It is clear that F, Gl9 G2 can be

chosen in such a way that there are continuity functions t, fil9 \i2 of suitable types

such that F=FT, G1 FMl and G2 F^2; concrète examples can easily be found in

connection with the pairing function ^((x-fy)2 + 3x+y). The language L contains by

définition constants C, Kt and K2 which formally represent F, Gl9 G2 in IA. In

addition there are sufficiently many axioms about C, K1? K2 in IA which permit us to

dérive ail essential properties of F, Gu G2. In order to list them let <x~fi be an

abbreviation for (x) (a(x) fi(x)). Then we can prove in Z3 :1) C [a, fi] ~ y a C [a', fi']~
~yz><x~<x'Ap~fi'9 2) Cfo [y], K2 [y]]-y, 3) K^Cfa, jff]]~a, 4) K2[C[a, j8]]~£
Step 2: Concerning E(a/a, fi) we note that the following is provable in Z3 : E(c/a, fi) =>

3 -(E^/a, fi')=>fi~fi'). Step 3: Let for the moment being G [a] be a functor whose

only free variable is a. According to lemma 2 there is a continuity function <ro(x, y) &

type (1,1) with the property: if (T0(v, n) m-f 1 then G [av] (n) is saturated with value
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m. Put ju(y, x) cro(y, x) +1. We can consider /z(y, x) as a continuity function of type
(0,2). With n there is associated a functional constant e^eL; dénote e^ by A. According
to its définition A(v, n) is saturated for ail v, n and its value is <ro(v, n). Now the
following is true: //E(J/a, G [a]). The vérification of this statement, referred to as

statement I), is entirely routine and is left to the reader. The particular case which we
are interested in is where G is F[Kt [a], K2 [a]] ; the A associated with this particular
G [a] is now denoted by t. ¥\JLx [a], K2 [a]] will also be written as F[K[a]]. Hence
we hâve II): //E(i/a, F[K [a]]). Step 4: In virtue of section 4.4 we hâve accomplished
our proof if we can show: a) //(x) CT(Ayt(y, x)), b) //E(t/C[oc, j8], F [a, 0]), c) for ail
G, H without free number variables we hâve t*/E(t/G, H)=>A(H). We omit the
vérification of a) which is the same as in the proof of L31. In order to verify b) we use

Zaha-K^Cta, j5]] and Z3hj3~K2[C[a, j8]]. From this and Z3ha~£3(A(a)3
=>A(j8)) we dérive in Z3 the formula E(t/C[<x, fi], F[K[C[a, j5]]])=>E(T/C[a, fi],
F [a, /?]]), to be denoted by U. Since //E(r/a, F[K [a]]) holds by construction of t, it
follows that //E(i/C[a, j8], F[K [C [a, fi]])) holds. This, combined with U (theorem 0)
and Ll yields //E(t/C[<x, jff], F[a, 0]). But this, combined with H18 implies
//(Ef) E(t/£, F [a, PI). Step 5: It remains to verify c). Hence assume //E(t/G, H).
According to the remarks made in step 2 it follows that the following formula V is

provable in Z3: E(t/G, H)=>-E(t/G, F[K[G]])3(H-F[K[G]]). Hence //V. But
//(t/G, H) by assumption and //E(t/G, F[K [G]]) by construction. Using Ll we ob-
tain //H~F[K [G]]. Now a-j?3(A(a)3 A(jS)1 (to be denoted by W in the sequel) is,

as mentioned, provable in Z3; hence //W. From this we obtain //H~F[K[G]]=d
3 • A (F [K [G]]) 3 A (H). Now //A(F[b]) is our basic assumption; therefore

//A(F[K[G]]). But //H~F[K[G]] has already been proved. Therefore, using //W,
we obtain //A (H) and hence in particular ajA (H) for some a. This concludes the

proof of the lemma.

Appendix. Axiom of choice and continuity

It remains to show that the gênerai axiom of choice can be derived in IA. We

proceed rather informally, but in such a way that it is évident that the reasoning given

can be formalized in IA. Hence assume (x) (E^) A(x, Ç). From this one easily deduces

(rj) (E£) A(rç(0), 0- From the continuity axiom we infer the existence of a continuity
function of type (1,1), say t, satisfying I): (£, rj) E(t/ij, {)d A0/(0)), £)• Let p(z, y) be

such that <p(z, y) z is an axiom of IA (there is of course such a constant cp). As

conséquence of I) we obtain II): (z,£) (E(r/;iy<p(z, y), O3A(Z> 0), where

ty(p(z, y) (0) z has been used. Clearly we can prove III): (z, x) (Ev) (vçly^(z, y) a
a t(v, x)t*0). Put <x, y> K(x+y)2 +3x+y) and let p^x), p2(x) be those prim. rec.

functions which satisfy <pi(z), p2(z)> z, p!«x, y» x, p2«x, y»=y. With the aid

of thèse we dérive from III) the formula IV) : (u) (Ev) (v s Xycp (px (u), y) a t (v, p2 (u)) # 0).
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Application of the axiom of choice for quantifierfree formulas yields the existence of a

function v such that V) holds: (u)(v(u)sAyç)(p1(u), y)At(v(u), P2(u))^0). By
going back from u to pairs we get statement VI): (z, x) (v(z, x)cAy<p(z, y) a t(v(z, x),
x)^0). From the continuity property one easily dérives the following statement VII) :

if v^Ày<p(z9 y) and x(v, x)/0 then t(v, x) t(v(z, x), x). Hence we obtain VIII):
(v, x) (vçAy<p(z, y) a t(v, x)#0dt(v, x) Ay(t(v(z, y), y)-1) (x) +1). Therefore we
can dérive from the statement II) and VIII) A(z, Ay(r(v(z,y),y) — 1)). Fromthis and a

little bit of intuitionistic predicate calculus we finally obtain (E<^) (z) A(z, Ay£(z, y))
what concludes the proof.

Conclusion

A. As noted in chapter V, the model presented in this paper is so to speak the
abstract part of a more elaborate model (the "constructive" version), in which every-
thing is codified by Goedel numbers; continuity functions in particular are then

restricted to recursive ones. Actually, the author started with the investigation of this

constructive version. However it quickly turned out that the main difficulties in
proving the necessary lemmas were rather of an abstract, set theoretic nature. Once

this abstract side of the problem was understood the application of the fixed point
theorem became rather a question of routine. It was recognized that the sum of the

abstract considérations formed a selfcontained totality which could be presented in
closed form without any référence to recursiveness. This is one reason why we did

présent the abstract part of the full constructive model separately. The other reason is,

that the part of the proof, which is concerned with coding everything by Goedel

numbers is rather long and requires quite a number of applications of the fixed point
theorem. The interest in fixed point techniques stems from the fact that it yields
further interesting results. Among thèse we mention one: Kleene-Vesleys System is

consistent with Churches thesis and Troelstras axiom. The full constructive model

together with applications will be presented in another paper.
B. One might wonder, what kind of model we would get by working out définition

Dl in the same way as définition D2 has been worked out in chapter IV. We will just
mention the resuit. To this end let IA0 be the System which differs from IA in the

following points: 1) it contains only those axioms of continuity CT(A) for which A

has prenex normal form, 2) it contains ail formulas of the form (x)"1"lA(x)3
¦=> 1 ~i(x) A(x) (x a bound individual variable). By working out Dl we get a model of

IA0. The technique of proof is quite the same as that one presented in this paper.
There is also $ constructive version of this model, in which everything is coded in a

suitable way by Goedelnumbers of certain recursive functions. In this constructive

version, Churches thesis is satisfied. Troelstras axiom Tr(A) holds, provided A has

prenex normal form. The author does not know positively whether this model is



A Model of Intuitionistic Analysis 471

really différent from that one elaborated in this paper; however it seems highly
probable that this is the case. This problem is under investigation.

C. Another question arises, namely whether the notion "provability" can be built
into our model in order to obtain a notion "provable and realizable" and such that
theorems like "if hAvB then HA or hB" etc. can be reproved for IA (or rather a
constructive variant of it). This is indeed the case. However a discussion of this point
lies outside the scope of this work and will be postponed to the subséquent paper
mentioned above.

D. From Dr. Troelstra the author learned that Joane Moschowakis has found
another realizability notion in which Churches thesis and a new axiom, called "Vesleys
principle", are satisfied. He also pointed out that his own axiom Tr(A) contradicts
Vesleys principle. In virtue of our discussion (part A above) it seems that her model
and ours differ in some essential point.

E. The author is indebted to Dr. Troelstra and Prof. D. Scott for valuable
discussions. He is also indebted to Dr. Luckhardt who directed the authors attention to
the model given by Dl, mentioned in B above.
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