Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 45 (1970)

Artikel: A Model of Intuitionistic Analysis.
Autor: Scarpellini, Bruno

DOl: https://doi.org/10.5169/seals-34670

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 04.07.2025

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-34670
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

440

A Model of Intuitionistic Analysis

by BRUNO SCARPELLINI

Introduction

The aim of the present paper is to present a new model of intuitionistic analysis
where by “intuitionistic analysis’’ we mean essentially the formal system codified in
[2]. The intuitive background of the model (explained in section 3.3) is technical in
nature and has nothing to do with any philosophy of free choice sequences. More
precisely the model is derived from known proof theoretic properties of intuitionistic
formal systems as will be explained below. In chapters I, II we present the preliminaries
needed in order to understand the intuitive background and the model, described in
chapters III and IV respectively. In 1V, the main chapter, we develop the full model.
Chapter V contains additional comments and conclusive remarks.

1. Continuity functions

1.1. Sequence numbers.

Let po, P15 P25 --- be the list of primes, listed in increasing order and starting with 2.
With the finite sequence of natural numbers a,, a,, ..., a,_; we associate the natural
number m=H?)"1 pi*1. We call m the sequence number associated with a,, ..., a,_;
and denote it by <{ay, ..., a,_;». Its length, denoted by length (m), is s. With the
empty sequence we associate the number 1, also denoted by  ); by definition length
(1)=0. N is the set of natural numbers and N, denotes the set of m-place number
theoretic functions; Ny, is identified with N. For feN; we put f(0)=1 and f(n)=
={f(0), ..., f(n—1)> for n>0. In order to denote sequence numbers we use italic
letters u, v, w, uy, u,,... etc. We say that w=<{a,,..., a,_,» is an extension of v=
={by, ..., b,—1D if t<s and a;=b, for i<t; in this case we write vcw. vSw is short
for “vew or v=w". We also write v=f if v={(n) for some n. With v, w as before we
denote by wxv the sequence number <a,,..., a,_4, by, b,_,>; for feN; we denote
by waf the element of N, given by wxf(i)=a, for i<s and wf(i)=f(i—s) fori>s.

1.2. Continuity functions.

An element 7€ N, is called a continuity function if a) if t (n, ..., n;) #0 then all n; are
sequence numbers all having one and the same length, b) for elements f;eN; (i<s), if
7(Fy(n), .., f,(n))#0 then t(f,(n), ..., f,(n))=1(f,(m), .., f,(m)) for all n<m, c) for
every s-tupel f;e N, (i<s) there is an n with 7 (f,(n),..., f,(n))#0. More generally an
element T(Xy, ..., X, Yi,-..» Y)EN, 4 is said to be a continuity function of type (s, t) if
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T(Xq,..+5 X Ny,..., N is @ continuity function with respect to x,,..., X, for all t-tupel
ny,..., n,. Clearly, every continuity function t(x,,..., X;) is a continuity function of
type (s, 0); every element from N, whose range does not contain 0 can be considered

as a continuity function of type (0, t), and every neN different from 0 is a continuity
function of type (0, 0).

1.3. Continuous functionals.

If A is any set then A® denotes the s-fold cartesian product of A. A functional of
type (s, t) is a mapping of Nj x N'into N. If e is a functional of type (s, t), if f,, ..., f,
and n,, ..., n, are elements of N; and N respectively then we denote the value of e for
f,..., fyand nq, ..., n by e(f,,..., f,, n4,..., n). As functionals of type (0, 0) we simply
take the natural numbers. With every continuity function 7 of type (s, t) we associate
in a unique way a functional of type (s, t) denoted by e, as follows: if ©(f;(m),...,
f,(m), n,..., n,) is #0 then e,(fy,..., f,, ny,---, n) =7(f; (m), -+, {,(m), n;,-, n)—1.
Every functional of type (s, t) which is of the form e, is said to be continuous. We call
e, the functional induced by 7. Among the continuous functionals we mention four of
type (0,1), (0,2), (0,2) and (0,2) respectively. The first is the successor function ’, the
second is addition +, the third is multiplication - and the fourth is concatenation =.

1.4. Continuous operators.

A mapping F from Nj x N'into N; is called an operator of type (s, t). As operators
of type (0,0) we simply take the elements of N;. If F is an operator of type (s, t), if
fi,..., f;and n,,..., n, are elements of N, and N respectively then we denote the value
of F for these arguments by F [f}, ..., f, n,, ..., n,]. With every continuity function 7 of
type (s, t +1) we can associate a functor F, as follows: if © (f; (m), ..., {,(m), n,,..., n,,
Q)#0 then F,[f,...,f, n;,...,n](@Q=t(fi(m),..., f(m), n4,..,n,q)—1. An
operator which is of the form F, is said to be continuous. We call F, the functor
induced by t. Among the continuous operators we mention a particular one, of type
(1,1), denoted by C. The definition of C is as follows: a) if n is not a sequence number
then C[f, n] (i)=0 for all i, b) if u=<{u,,..., u,_y» then C[f, u] (i)=y; for i<s and
=f(i—s) if i=s. We also write more suggestively u*f in place of C[f, u].

2. A formal language

2.1. The alphabet.

Let e and G be two distinct and fixed symbols. With every continuity function t of
type (s, t) we associate the expression e; ,, with every continuity function ¢ of type
(s, t+1) we associate the expression G ,. In order to avoid complex notations we
often omit the indices s, t and merely write e* and G respectively. Now we introduce a
formal language L, which contains a nondenumerable set of constants. The alphabet
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of L contains the following symbols: a) the logical connectives A, v, 71, o,V E,
b) the equality sign = and the abstraction operator A, c) for every natural number m
an individual constant m,, d) a denumerable list a,, a,,..., a, b, c... of free individual
variables, €¢) a denumerable list x,, X,,..., X, ¥, Z,... of bound individual variables,
f) a denumerable list &,, &,,..., ¢, n, (,... of bound function variables, g) for every
sequence number u= Uy, ..., U;_,» (u=< ) included) a denumerable list oy, o2, ..., a,,
B, ... of free choice variables, h) for every continuity function t of type (s, t) the
symbol ¢; ,, i) for every continuity function o of type (s, t +1) the symbol Gg |, j) two
pairs of brackets [,] and (,). The symbols ¢; , are called functional constants of type
(s, t), the symbols Gg , are called functor constants of type (s, t). The free choice
variables a., a, etc. are assumed to range over number theoretic functions f such that
f(s)=<uy, ..., u,_;>=u. The alphabet of L is highly nonconstructive in that it con-
tains a nondenumerable set of constants. It would not be difficult below to avoid the
use of uncountable many constants, however their use turns out to be very convenient
in that we can save quite a bit of notation. In the cases where 7is’, +, -, * we obtain
corresponding functional constants e;, ; and €, , respectively, which for simplicity will
also be denoted by ', +, -, * respectively. The operator C (see end of 1.4) is of course
continuous, that is of the form F, for some ¢ of type (1,2). The operator constant
G1, 4 corresponding to this o will also be denoted by C. Without confusion we often
omit the index o in my and simply write m.

2.2. Terms, functors and formulas.

Starting with the alphabet we build up terms and functors by simultaneous in-
ductive definition as follows: a) the m,’s and all free individual variables are terms,
b) free choice variables and functor symbols of type (0,1) are functors, c) if e is a
functional constant of type (s, t), if Fy,..., F, are functors and q,, ..., q, terms then
e(F,,...,F,q,,..., q) is aterm, d)if Gis a functor symbol of type (s, t), if F,,..., F;are
functors and q,,..., q, terms then G[F,,..., F,, q,..., q,] is a functor, e) if F is a
functor and t a term then F(t) is a term, f) if t(a) is a term and a free individual
variable then (Axt(x)) is a functor, where x is a bound inividual variable not occurring
in t(a). Prime formulas are those of the form p=q with p, q terms. Formulas are
given as follows: 1) prime formulas are formulas, 2) if A, B are formulas, then so are
AAB, AvB, T1A, AoB, 3)if A(a)isaformula and a a free individual variable then
(Vx) A(x) and (Ex) A(x) are formulas, where x is a bound variable not occurring in
A(a), 4) if A(ai< y) is a formula and oci< » a free choice variable associated with the
empty sequence then (V&) A(¢) and (E£) A(&) are formulas where & is a bound
function variable not occurring in A(a{ ,). Universal quantification is often written
more briefly as (x) A(x), (£) A(¢) instead of (Vx) A(x), (V&) A (&) respectively.

2.3. Other languages.
In one place below we will use the language of second order analysis used in 2]
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we denote it by L. In [1] a certain formalisation of number theory is presented. The
language on which this formalisation is based is denoted by Ly.

2.4. Saturation.

There are two important notions, namely that of a saturated term and that of its
value. By definition only closed terms, that is terms without free individual variables
will be saturated. If t is a saturated term then we denote its value by |t|. The definitions
are given by induction with respect to the number of symbols contained in t, observing
thereby the following conventions: a) the symbols 4, [,],=, (,), m, x,, X,,... are coun-
ted once, b) the symbols a}, e, G, are counted twice. We say that t is saturated and
that its value is |t] if one of the clauses below is satisfied.

Clause 0: t is my. Then t is saturated and |t|=m.

Case 1: tis ak(p), p is a saturated term, |p|=j, u=<a,,..., a,_,> and j<s. Then t
is saturated and [t|=a;.

Case 2: t is G,(p), p is saturated, |p/|=n and is of type (0,1). Then G.(p) is
saturated and |G,(p)|=1t(n)—1.

Case 2: t is e,(Gy,..., G, q;,...,q,). Then t is called saturated if the following
conditions are satisfied: 1) all q;’s are saturated and |q;|=n;, 2) for every i<s there
is a k; >0 such that G;(j,) is saturated for all j<k;, 3) 7(uy,..., 4, ny, ..., n,)#0 where
u; is the sequence number {|G;(0p)l,..., |G;((k;—1)o)|>. We put |t|=1(u,,..., u,,
ng,..., n)—1. We note that in view of our convention G;(j,) contains less symbols
than t.

Case 3: tis G,[G,,..., G,,q;,---, .} (p)- Then t is called saturated if the following
conditions are satisfied: 1) all q,’s are saturated and |q;|=n;, 2) p is saturated and
|pl=m, 3) for every i<s there is a k; >0 such that G;(j,) is saturated for all j<k;,
4) t(uy,..., u, ny,...,n, m)#0 where u; is {|G;(0p)l,..., |G;((k;—1)o)|>. We put
It|=1(uy,..., 4, n,,...,n, m)—1. As before, G,(jo) contains less symbols than t in
view of our counting convention. "

Case 4: t is (Axp(x)) (q). Then t is saturated if 1) q is saturated, 2) p(my) is
saturated where m=|q|. We put |t| =|p(m,)].

In connection with this definition we introduce a notation. Let u={a,, ..., a,_;) be
a sequence number and G a constant functor having the property: if i <s then G(iy) is
saturated and |G(i,)| =a;. Then we write ucG.

A few properties of saturation have to be known. To this end we need a lemma on
continuity functions.

LEMMA 1: Let t have type (p, Q). Let 4, ..., 6, and p,, ..., p, have type (s, 1) and
(s, 0) respectively. Then there is a continuity function v of type (s, 0) having the following
property: if v(wy,..., w)#0 then 1) u;(wy,..., w)#0 for all j=1,..., q, 2) there is an
i< length(w,) such that (W, k)#0 for all k<iand all < s and such that ©(u,, ..., u,,
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ny,..., ng)#0 where u;={o;(W, 0)—1,..., 6;(W, i—1)—1), n;=p;(W)—1 and where w
is an abbreviation for wy,..., w,.

Proof: Call an s-tupel wy, ..., w, of sequence numbers secured if they all have the
same length and if in addition 1) and 2) of the lemma are satisfied. Put v(w,..., w)=1
iff wy,..., w, is secured and O otherwise. It remains to show: if f,, ..., f; are number-
theoretic functions then there is an N such that v(f; (N),..., f,(N))=1. To this end we
define numbertheoretic functions g;, j=1,..., p as follows: g;(n)=m iff there is a k
with a;(f; (k), ..., f,(k), n)=m +1. Next we determine an M so large that u;(f; (M), ...,
f,0M))=n;+1 for j=1,...,q. Then we clearly find an i such that t(g,(i),..., g, (),
ny,..., ny)#0. With this i given we finally determine an N2 M so large that g, (f; (N),

., I,(N), k)#0 for all j=1,..., p and all k <i. Necessarily

g(i) = (o;(F.(N), ..., E(N), 0) — 1, ..., 0y (FL (N), ..., EL(N),i — 1) — 1)

and n;+1=p;(f;(N),..., ,(N)) holds. Then clearly v(f;(N),..., {,(N))=1 what
concludes the proof.

LEMMA 2: Let t be a term without free individual variables whose choice variables
are among «,., ..., a,'; we indicate this by writing t(a,!,..., o). Then there is a con-
tinuity function of type (s, 0), say t, with the property: if t(vy,...,v)=m+1 then

(0, avys - o5 Oumay,) 8 Saturated and its value is m.

Proof: We proceed by induction with respect to the number of symbols in t,
respecting thereby the counting convention. In order to avoid heavy symbolism we
content ourself with the discussion of some typical cases. Case 1: t is e,(G [ay, ]
q (o, B,)) where G and q do not contain other choice variables than a,, f,. For every
n, G[a,, B,] (n) has less symbols than t. By induction there are continuity functions
of type (2,0), say o, with the property: if o,(;, v;)=m+1 then G [tyey,s Bsv,] (V)
is saturated and has value m. We piece the o,’s together in order to obtain a conti-
nuity function ¢ of type (2,1) with the property: if a(u;, v;, n)=m+1 then G [0y,
Byev,] (n) is saturated and has value m. On the other hand q(«,, B,) has less symbols
than t. Hence there is a continuity function u of type (2,0) with the property: if
p(uy, v))=m+1 then q(tyey,> Brey,) is saturated and has value m. According to the
previous lemma there is a continuity function v of type (2,0) with the property: if
v(uy, v,)#0 then 1) q(dye,, Byay,) is saturated with value say m, 2) there is an i=
length (1;) such that G [y, Bvey,] (k) is saturated for all k <i with value say m, and
in addition t({my,..., m, _,>, m)#0. But according to the definition of saturation
this means that €,(G [0ty,s Byev,]> Q(%ueu,s Bvey,)) is saturated and has value t({mo,
...,m;_y>, m)—1. The continuity function whose existence is postulated by thc
lemma is now given by v whose definition goes as follows: 1) v*(u,, v;)#0 iff
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v(uy, v,)#0, 2) if v(uy, v)#0 then v+ (uy, v)=1({(my,..., m; _;», m) withm,,..., m;_,
and m as above.

Case 2: tisF,[G[ay, B,], q(2, B,)] (0(2y, B,)). This is treated in exactly the same
way as the previous case; the fact that 7 is of type (1,2) has no influence on the
argument. Case 3: t is a, (p(a,, f,))- We leave the easy construction of v (on the basis
of u associated with p(«,, B,) according to the induction hypothesis) to the reader.
Case 4: t is (Axp(ay, By, X)) (q(2y, B,)). This case can be reduced to an application of
lemma 1, however we prefer to sketch a direct argument. According to the induction
hypothesis there exists a continuity function 7 of type (2,1) with the property: if
T(uy, vy, nN)=m+1 then p(tyu,, By, D) is saturated and its value is m. Again
according to the induction hypothesis there is a continuity function u of type (2,0) such
that q(®ye,> Bisv,) 15 saturated with value n whenever u(y, v;)=n+1. Call u,, v,
secured if it is a pair of sequence numbers, both of equal length, with the property: 1)
p(uy, v))=n+1, 2) t(uy, v;, n)=m+1. If uy, v, is secured, then (AXp(tyeu;> Brav,> X))
(q(&yeu;> Byey,)) is saturated by definition and its value is m with m as above. Define v
as follows: v(uy, v;)=m+1if t(y;, v;, n)=m+1 (with n=pu(y,, v;)— 1) where u,, v, is
secured, and O otherwise. In order to show that v is indeed a continuity function (of
type (2,0)) one proceeds in the same way as in the proof of lemma 1.

LEMMA 3: Let p(n,) be a saturated term and let t be a saturated term whose value
is n. Then p(t) is saturated and |p(ny)|=|p(t)l.

Proof: We proceed by induction with respect to the number of symbols in p. We
content ourself to treat one typical case among the induction steps. All other cases are
similar but simpler to treat. Let p be F,[G [n,], q(ng)] (r(no)). Since p is saturated,
the following holds: 1) there is an u with u<= G [n,], 2) |q(ny)|=my, 3) |r(ng)|=m,,
4) t(u, my, m,)=|p(ny)| +1. From 1) we conclude that G [n,] (i) is saturated for all
i<length(u)=s and that |G [n,] (i)|=u; where u={uy,..., u,_1). G[n] (i) has less
symbols than p, hence we can apply the induction hypothesis: G [t] (i)=u; for all
i<s. Similarly |q(t)| =m,, |r(t)|=m, according to the induction hypothesis. In view
of the definition of saturation it follows that F,[G(t), q(t)] (r(t)) is saturated with
value t(u, m,, m,)—1=|p(ny)|; this proves the statement in this case.

LEMMA 4: Let p(a,) be a saturated term and assume u< G. Then p(G) is satura-
ted and |p(«,)| =Ip(G)I.

Proof: We proceed by induction with respect to the number of symbols in p. We
content ourself by treating two typical cases among the induction steps. The re-
maining cases are similar but simpler to treat. Case 1: p(«,) is a,(q(a,)). Let u be
Uy, ..., U,_y ). Since p is saturated, it follows by definition that q(«,) is saturated with
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value i <s. Since q has less symbols than p we can apply the induction hypothesis and
conclude: q(G) is saturated and |q(G)|=i. On the other hand u= G, that is, G(iy) is
saturated and |G(ig)|=u; for i<s. In virtue of the previous lemma we find that
G(q(Q)) is saturated too and that its value is again u;. Hence |p(G)|=u;. Case 2:
p(e) is F[H][a,], q(a,)] (r(a,)). Since p(x,) is saturated, the following holds by
definition: 1) there is a v with v H [«,], 2) q(a,) and r(e,) are saturated and have
values say m; and m,, 3) 7(v, my, m,;)—1=|p(x,)|. Let v be {v,,..., Vo1 ). Since
v< H it follows that H [«,] (i) is saturated for i<s and that its value is v;. H [«,] (i,)
has less symbols than p. Hence it follows from the induction hypothesis that H [G] (i,)
is saturated for all i <s and that its value is v,. Similarly we find |q(G)|=m,, |[r(G)|=
=m,. From the definition of saturation it follows that F,[H[G], q(G)] (r(G)) is
saturated and has value 7(v, m,, m,)—1, that is |p(x,)|. Hence |p(G)|=|p(x,)|.

LEMMA §: If p(ocu,, cxf,:) is saturated with value m, if u, =Gy,..., u, =G,
then p(G,, ..., G,) is saturated with value m.

Proof: This is obtained by a repeated application of the previous lemma.

DEFINITION 1: Leti,..., i, and ky,..., k, be two sets of pairwise distinct num-

bers. Let u,..., u, be a list of sequence numbers Then the two lists aul, ocfl: and

aﬁi, ey cxﬁ: are said to be of the same type.

LEMMA 6: Let a',..., a and X', ..., as* be of the same type Let p(ay}, ... %)
be a saturated term whose chozce varzables are among ocul, u_ * and whose value is m.
Then p(cxul, u,) is saturated and has value m.

Proof: The proof proceeds by an easy induction with respect to the length of p.

LEMMA 7: Let p(ai,..., oi), &L, ..., ai® and o}, .. f,: be as in lemma 6. Let t
have the property:if 1(vq, ..., vs)¢0 then p(oz“1 evpsoees Oumuy,) IS Saturated. Then: if
T(Vy,..., V) #0 then p(ak!,, ,..., aus ) is satured with value PO wyyseers OO ovy)-

Proof: ol .y, 02, and ak’,, ..., o, have the same type. Apply lemma 6.

LEMMA 8: Let u,,...,u; be a list of sequence numbers and F; [ocvl, aiﬁ],
i=1,---, s a list of functors containing no other free variables than those mdzcated and
such that u,2F, [ad', ..., alt] holds. Let © be a continuity function of type (s, 0). Then
there exists a continuity function v of type (t 0) with the property: if v(wy, ..., w)#0
then there exist uy,..., u, such that i ,u; < Fy[od ..., 3., ] and such that
7(uy, ..., ;) #0,
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Proof: Let o; be the continuity function of type (t, 1) with the property: if
;(wy, -+, Wy, D)=k +1 then F; [o]**™, ..., ad, ] (n) is saturated and has value k.
Specializing lemma 1 to the present case we get a v of type (t, 0) with the property: if
v(wy,..., w)#0 there is an i<length(w,) such that F*[od!,, ,..., 0, ] (m) is
saturated with value aj, for all m<i, k=1,..., s and (u}, -, u¥)#0 where u} =
=(a§,..., a‘_ ). If i<length(u,)=p then we put u, = ), otherwise we put u =
=<ap9"" ali‘—-1>-

DEFINITION 2: A formula p(,!, ..., &%) =q(ay’, ..., ) is called true if there is

1 S

a continuity function t of type (s, 0) such that p(al. .,,, ..., o ,..), q (@i i)

s vys o0y a vy

are both saturated and have the same value whenever 1(v,,..., v,) #0.
3. Intuitive background of the model

3.1. Three systems of number theory

Below we use three systems of intuitionistic number theory in order to explain the
intuitive background of the model. The first system, to be denoted by Z,, is that one
described in [1]. The second, to be denoted by Z,, is obtained by omitting the axiom
of choice, of bar induction and continuity from the system of intuitionistic analysis
described in [2]. The third one, to be denoted by Z,, is based on the language L and
can roughly be described as follows : 1) it contains suitable axioms for +, ’, -, 2) it
contains all formulas mg=(m +1), as axioms, 3) the usual axioms of intuitionistic
propositional calculus are in Z;, 4) for every i and for every nonempty sequence
number u=<{u,,..., u,_,» with i<s it contains all the formulas G (i), =u, as axioms,
provided ¥ =G holds, 5) it contains modus ponens, 6) it contains the axioms (x)
AX)2A(M), AD2(EX) ARX), (E)AQ>AF), AF)>(EE) A where x and
¢ are bound variables not occurring in A(a) and Af(x) respectively,
7) it contains the four rules A>B(a)/A>(x)B(x), A>B(x;)/A>(£)B(&),
B(a)>A/(Ex) B(x)> A and B(«} ,)2>A/(EE) B(£)> A where a and o y, do not occur
in A respectively and where x and £ do not occur in B(a) and B(a ) respectively,
8) it contains the induction schema. The system Z, contains in addition the functor
symbol * and suitable axioms for it.

3.2. A realizability notion of Kleene

In [3] Kleene introduced a realizability notion “realizable and provable” for
formulas without free variables belonging to the language Ly; below we denote the
statement A is realizable” by /A. This notion, in its simplest version, is defined as
follows: 1) [p=qiff Z,p=q, 2) /AABIff /A and /B, 3) /(x) A(x) iff /A(n) for all n,
4) /A v B iff either /A and Z,}A or else [B and Z,}B, 5) [(Ex) A(x) iff there is an n
such that /A (n) and Z, A (n), 6) /A>Biff /A and Z;}-A imply /B, 7) [Aiff [AS0=1,
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The main result in [3] says: if Z,A then /A. From this one can deduce the following
familiar properties of intuitionistic number theory: I) if Z,FAv B then Z;FA or
Z,FB, if Z;}(Ex) A(x) then there is an n with Z;FA(n). Here, A, B and (Ex) A(x)
are formulas without free variables. We can distort the above definition slightly as
follows: 1) /[p=qiff p=q s true, 2) /A AB iff /A and /B, 3) /(x) A(x) iff /A(n) for all
n, 4) /A v B iff we can effectively affirm either /A or /B, 5) /(Ex) A(x) if we find effec-
tively an n such that /A (n) holds. This definition is of course somewhat vague in that
the precise meaning of ‘“‘effective’ is not clear. But it would be easy to sharpen
“effectively’” by using Godelnumbers of certain recursive functions; in this way we
would end up with Kleenes realizability notion introduced in [1]. Corresponding to
the main result above one can show: if Z,;FA then /A. This result is of course wheaker
than the first one and its only immediate consequence is that Z, is consistent.

3.3. The intuitive motivation for the model

We now come to the description of the intuitive motivation of the model. We must
point out that this motivation is by no means stringent; it has rather the character of
an “Ansatz’’ and there is no philosophical basis for it. To begin with, let us briefly look
at Kleenes realizability notion, presented in [3]. The situation is this: one starts with
a suitable realizability notion and ends up with proof theoretic properties (result I) in
3.2.) of a certain intuitionistic system, namely Z,. A closer look at the definition of the
first realizability notion in 3.2. shows that the properties of Z,, described by result
I) are built in a certain sense into this definition. Now let us proceed in the converse
direction. To this end let P be an intuitionistic formal system, whose detailed struc-
ture is not relevant at the moment. Assume that for some reason or other we
know the proof theoretic properties of P. Assume that these proof theoretic properties
are described by a theorem I* which is of the same kind as result I in 3.2.; again it is
not relevant at the moment to know the detailed form of I*.

Then we might be tempted to define a certain notion ‘“‘realizable” by incorpo-
rating in the definition the properties of P, described by I*, in the same way as the
properties of Z, have been incorporated in the first realizability notion in 3.2. Let us
denote this new realizability notion by R1. In virtue of the relation between first and
second realizability notion presented in 3.2. it is not unreasonable to try a second step:
we drop every reference to provability which might occur in R1 and hope to end up
with a new realizability notion R2 which is a “model’’ of P. This is more or less the
way we will proceed below. More precisely, we will simplify the procedure a little bit
by going from P directly to R2 instead of making the detour via R1. This is not
unreasonable since a closer look at the definition of the second realizability notion in
3.2. shows that even there the properties of Z, given by I) are in some sense contained
in this definition. Hence let us try to start with Z, in place of P. In order to work out
the above program we have to know the proof theoretic properties of Z,, more
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precisely we have to know the behaviour of Z, with respect to disjunctial and existen-
tial statements, that is we have to know what to take for I*. In order to list the essential
properties of Z, let A(x) v B(x), (Ex) A(a, x) and (E¢) D(a, ¢) be formulas from the
language Ly, which for simplicity do not contain other free variables then possibly
eventually «. Then the following is true: 1) if Z,FA (o) v B(«) then there exists a prim.
rec. continuity function 7(x) such that for every u with 7(u)#0 either Z,FA (u*a) or
else Z,tB(u*a) holds, 2) if Z,F(Ex) A(x, x) then there is a prim. rec. continuity
function 7(x) such that for every u with 7(u)#0 there is a term t, which does not
contain other free variables than eventually o for which Z,FA (u*a, t,) holds, 3) if
Z,H(E&) D(a, &) then there is a prim. rec. continuity function 7(x) such that for every
u with 7(u)#0 there is a functor F, which contains at most « free and for which
Z,FD(u*a, F,) holds. On the basis of these properties it would be possible to work out
our programm outlined above for the language Ly. However it has turned out that it is
easier to work with the language L. Therefore let us list the properties of Z; which
correspond to the properties 1)-3) of Z, just listed. To this end let A(«,) v B(x,),
(Ex) C(ay, x) and (E&) D(«,, &) be formulas from the language L which do not con-
tain other free variables than eventually «,. Then the following is true: 1) if
Z;+A () v B(x,) then there is a prim. rec. continuity function 7(x) such that t(v)#0
implies Z3FA (a,,,) or Z;3FB(a,,,), 2) if Z;F(Ex) C(a,, X) then there is a prim. rec.
continuity function 7(x) such that for v with 7(v)#0 there is a term t, which contains
at most a,,, free for which Z;+C(,.,, t,) holds, 3) if Z;F(E£) D(x,, &) then there is a
prim. rec. continuity function t(x) such that for every v with 7(v) #0 there is a functor
F, containing at most a,,, free and for which Z;+D(a,,,, F,) holds. These properties
can be proved in many ways; one possibility e.g. is to use the methods described in [4].
The general form of a realizability notion based on 1) — 3) just listed will look roughly
speaking as follows: “A is realizable iff there is a continuity function t such that...”.
Another possibility is to take as general schema of definition the following: “The
continuity function t realizes A iff ...””. Both forms of definition are fully equivalent
and we choose the second one because it has some technical advantages. We express
the fact that 7 realizes A notationally by t/A.

We now present a first, provisional and incomplete definition of 7/A. In this defi-
nition we omit every reference to recursiveness. For simplicity we assume that the
formula A has exactly one free variable, namely the free choice variable a,. The defi-
nition we have in mind is as follows: 1) 7/p(2,)=q(a,) off 7(v)#0 implies p(a,..),
q(t,4,) saturated and |p(o,.,)| =19 (%)l 2) /A AB iff there are continuity functions
T4, T, With 7,;/A and t,/B, 3) 7/(x) A(x) iff for every term t there is a continuity
function ¢, with a,/A(t), 4) /(&) A(¢) iff for every functor F there is a continuity
function oy with o/A(F), 5) t/A > B iff for every 1, with 7,/A there is a 7, with 7,/B,
6) /1A iff 1/A>0=1, 7) t/A(x,) v B(x,) iff 7(v)#0 implies the existence of a conti-
nuity function o, such that either o,/A («,.,) or else o,/B(«,.,) holds, 8) t/(Ex) A(x,
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a,) iff 7(v)#0 implies the existence of a ¢, and of a term t, containing at most o,
free such that o,/A(t,, a,.,) holds, 9) T/(E{) A(&, a,) iff T(v)#0 implies the existence
of a o, and of a functor F, containing at most «,,, free such that o,/A(F,, «,,,)
holds. Let us say that A is realizable if there is a t with t/A. If we try to verify that
every axiom of intuitionistic analysis is realizable, then everything works well with
the exception of the axiom of continuity. The full continuity axiom could only be
proved to be realizable if the following were true: if A(a,) is realizable and if ucF
then A(F) is realizable. However there are simple counterexamples which show that
the latter statement is not true in general. In order to include the continuity axioms we
have to change the above definition, which will be denoted by D1, in one essential
point. In order to explain this point, let us reconsider Kleenes realizability definition
in [3]. In this definition the notion of provability takes part. Now let P be an arbitrary
but fixed property of formulas; P(A) indicates that A has the property P. Now let us
alter Kleenes definition by replacing Z,FA wherever it occurs by P(A): 1) /n=m iff
P(n=m), 2) /A ABiff /A and /B, 3) (x) A(x) iff /A(n) for all n, 4) /A > B iff /B when-
ever /A and P(A) hold, 5) /AvB iff /A and P(A) or /B and P(B), 6) /(Ex) A(x) iff
there is an n such that /A (n) and P(A(n)) hold, 7) / 1A iff /A>0=1. Denote this defi-
nition by D,. Now assume that a realizability notion has been defined for all formulas
from L having at most n logical symbols, that is that the meaning of /A is known
for all such formulas. Let A(a,) be a formula containing at most n logical symbols
and assume for simplicity that its only free variable is a,. Let S be the following
property: for all functors F with u<F there is a continuity function 7y such that
t/A(F) holds. S is called the substitutivity property. Now we derive from definition
D1 a new definition D2 by building the property S into D2 in a way which is very
similar to the way the property P has been built into the definition Dp. The definition
D2 introduces the binary relation 7/A and the one place predicate S by simultaneous
inductive definition: if 7/A has already been defined for all formulas with at most n
logical symbols for a certain n then S is the substitutivity property described above.
The incomplete and provisorial definition D2 goes as follows: 1) t/p(a,)=q(a,) iff for
all v with 7(v)#0 both p(a,.,) and q(o,,,) are saturated and have the same value,
2) /A A B iff there are 1,, 7, with 7,/A and t,/B, 3) 7/(x) A(x) iff for all terms t there
is a 7, with 7,/A(t), 4) t/(&) A(¢) iff for all functors F there is a 1 with t¢/A(F),
5) t/A(e,) v B(a,) iff for all v with 7(v)#0 either S(A(0.,)) or S(B(a.,)) holds.
6) t/(Ex) A (a,, x) iff for all v with t(v)#0 there is a term t, containing at most %,
free such that S (A (&ty.y, t)) holds, 7) t/(E&) A (o, &) iff for all v with 7(v)#0 thereis a
functor F containing at most «,,, free such that S(A (.., F)) holds, 8) /A (x,)>
>B(a,) iff there is a ¢ with o/B whenever S(A(x,)) holds, 9) 7/ 1A iff 1/A>0=1.
It is clear that we could formulate D2 without the aid of S. Clause 7) eg. would then
be read as follows: 1/(E&) A(a,, &) iff for all v with 7(v)0 there is a functor F, [ttu,]
containing at most «,,, free such that for every functor G with u»v< G there is a ¢
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with o/A (G, F [G]). For the definition D2 one can indeed show that if a formula A is
provable in intuitionistic analysis then it is realizable (that is there exists a T with 7/A).

4. A model of intuitionistic analysis

4.1. A system of intuitionistic analysis

By adding to Z; a number of new axioms we obtain a system of intuitionistic
analysis IA. The list of these new axioms is given as follows: 1) the set of true prime
formulas, 2) the axiom of choice for quantifierfree formulas, 3) the continuity axioms
as given in [2], 4) the axioms of transfinite induction for quantifierfree partial orde-
rings. The precise form of the axioms 2), 3), 4) will be given below. Our system is only
seemingly weaker than that of [2]; by making heavy use of the continuity axiom and
the fact that transfinite induction and bar induction for decidable formulas are equiva-
lent we can reduce the system of [2] to I.A (consult [5] for this respect).

4.2. Some notations

For easy reading below we introduce some notational conventions. Boldface letters
u, v, w denote lists of sequence numbers, say u,,..., u; where all ; are supposed to
have the same length. We call s the length of u (or v or w). Boldface letters a, b, ¢, d
denote lists of pairwise distinct free choise variables, say af,i, ooy ozj: etc; there the u;’s
are not required to have all the same length. In both cases the lists may be empty
(s=0). Let u, v, a denote u,..., u;, and v,,..., v, and ociv‘l,..., ai:s respectively; then
uxv and a*u denote u,*v,, ..., u*v and all .y, ..., % ., respectively. If 7 is a continuity
function from N,,,, if u and v denote u,,...,u, and v,,..., v, respectively then
7(u, v) is a short way of writing t(u,, ..., u,, vy, ..., v,). Lists of functors are denoted by
boldface letters G, H, F and lists of terms by boldface letters t, p, q. If a, G denote
aéi, aanp ozj: and G,, ..., G, respectively then a = G expresses that for every i the relation
;< G; holds. If G denotes Gy, ..., G, if a, b denote «.!,..., a)t and i, ..., BIr respec-
tively and have no member in common, if moreover every free choice variable which
occurs in some G; is a member of a or b then we express this by writing G [a, b]. If in
addition H, F denote H,, ..., H,and F, ..., F, then G [H, F] denotes the list G, ..., G;
where G is obtained from G, by replacing each occurence of .« and Bi* in G; by H,
and F, respectively, for all k. In case of a single functor G we write correspondingly
Ga, b] and G [H, F]. An analogous notation is used in case of a single list a or three
pairwise disjoint lists a, b, ¢ of free choice sequences; similarly with terms and lists of
terms. If however A is a formula, if a, b are two disjoint lists of free choice sequences
then A (a, b) expresses the fact that every free choice variable occurring in A isa member
of a or b and that conversely every member of a or b occurs somewhere in A. The
notation A (H, F) has the same meaning as before; similarly in case of a single list a or
three pairwise disjoint lists a, b, c. If two lists L, L, of objects have the same length
we express this by writing L, ~L,.
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4.3. The model

The model, to be defined below, is a two place relation ©/A whose domain of
definition is the set of ordered pairs (7, A) satisfying the following conditions: 1) tis a
continuity function of type (s, 0), 2) A is a formula containing precisely s distinct free
choice variables and otherwise no other free variables, 3) if s=0 then 7 is the natural
number 1. In this connection we adopt the following notation: the continuity function
of type (s, 0) (s=0 included) whose value is always 1 will be denoted by ¢ and without
danger of confusion we omit the index s and write simply 7%. In the definition below
//A(a) is an abbreviation of the following statement: for every list F such that a~F
and acF there is a continuity function t such that /A (F) holds. The sign // in the
definition below plays exactly the same role as S in D2. We define 7/A by induction
with respect to the number of logical symbols in A. All formulas, terms and functors
appearing in the definition do not contain free number variables; in addition we
always assume that a~u, b~v, c~w, a~u’, b~V holds whenever these symbols
appear below.

1. 1/p(a, b)=q(a, c) iff for all u, v, w with 7(u, v, w)#0 both p(a*u, bxv), q(a*u,
c»w) are saturated and have the same value.

2. 7/A(a, b) A B(a, c) iff there exist 7, and 7, with 7,/A(a, b) and 7,/B(a, ¢).

3. 1/(x) A(x, a) iff for every term t there is a ¢ with o/A(t, a).

4. t/(&) A(¢, a) iff for every functor F there exists a ¢ with a/A(F, a).

5. 7/A(a, b) v B(a, c) iff for every u, v, w with t(u, v, w)#0 either //A (a%u, bxv)
or //B(a%u, c*w) holds.

6. t(/Ex) A(a, x) iff for every u with 7(u)#0 there exists a term t containing no
other free variables than those occurring in a*u, such that //A (a*u, t) holds.

7. t/(E&) A(a, &) iff for every u with 7(u) 50 there exists a functor F containing no
other free variables than those occurring in a*u such that //A (a*u, F) holds.

8. t/A(a, b)>B(a, c) iff there exists a o with ¢/B(a, ¢) whenever //A(a, b) holds.

9. 7/1A iff 1/A>0=1.

One easily recognizes that the above definition is nothing else than an elaboration
of D2.

DEFINITION 3: If A(a,,..., a,) is a formula whose free number variables are
among a,,..., a, then we call A(a,, ..., a,) strongly realizable if //(x,,..., X;) A holds.
A formula without free individual variables, say A, is called realizable if there is a 7
with 7/A.

. Our main effort is devoted to the proof of

THEOREM 1: If IAFA then A is strongly realizable.

COROLLARY: IA is consistent.



A Model of Intuitionistic Analysis 453

Proof: Evident from the theorem since 0=1 is not realizable.

4.4, Some preliminary lemmas

In order to prove theorem 1 we need some preliminary lemmas. They are easy
consequences of the definition of the model. Proofs will therefore only be sketched. In
order to distinguish those lemmas from the lemmas in the next section we denote them
by HI1, H2, etc.

HI: 1f /[[A(a) and a<F then //A(F).

Proof: Let d be the list of those variables which occur in F; we express this by
writing F [d]. Assume d=G. Then a=F [G] according to lemma 5; hence o/A (F [G])
for some o. Since G has only to satisfy d=G and is otherwise arbitrary we have
//|A(F [d]) by definition.

H2: 1f P(a) is a prime formula and if ¢/P(a) then //P(a).

Proof: Let P(a) be p(a)=q(a) and assume a<F [b]. According to lemma 8 there
is a 7 with the property: if 7(v)#0 then there is an u such that asu = F [bxv] and such
that o(u)#0. But then p(a*u) and q(a*u) are saturated and have the same value,
hence |p(F [b*v])|=|q(F [b*v])| according to lemma 4. Hence t/p(F [b])=q(F [b]).
Since F [b] was arbitrary apart from a<F [b] we conclude //P(a).

H3: Let a and b be two lists of the same type. Then: 1) if 7/A(a) then /A (b),
2) if //A(a) then //A(b).

Proof: For prime formulas the statement is an easy consequence of lemma 7 and
H2. For arbitrary formulas A we prove 1) and 2) by an easy simultaneous induction
with respect to the number of logical symbols in A.

H4: t?/(x) A(x) iff 6/(x) A(x). Similarly with (£) A(¢), AAB and A>B.

Proof: The statement is evident since in all these cases the definition of o/(x) A (x)
etc. does not depend on o.

HS5: Let (x4,..., X) A(Xy,..., X)) not contain free individual variables. Then
H(Xy,.evy X5) A(Xy, ..., X) iff [/A(qy, ..., q,) for all s-tuples qy,..., q, of terms not con-
taining free individual variables.

Proof: Case 1: s=1. Let (x) A(x) be more explicitly (x) A(a, x). Assume
//(x) A(a, x) and let q(a, b) be given. We have to show: //A(a, q(a, b)). Assume
ac G, b= H. According to H1 we have //(x) A(G, x) and hence o/A ((G, q(G, H)) for
some o. Since G, H where essentially arbitrary we have //A (a, q(a, b)). Now assume
conversely //A(a, q) for all g. Let G [b] be such that a= G [b] holds. We have to show
1°/(x) A(G [b], x) (see H4). This amounts to show: for any q (b, ¢) there is a ¢ with
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a/A(G [b], q(b, ¢)). Let b’, ¢’ be of the same type as b, ¢ and such that a has no element
in common with b’, ¢. Then still acG[b’] by lemmas 4,5. Therefore a<G [b'],
b’'ch’ and ¢’cc’. On the other hand //A(a, q(b’, ¢’)) by assumption and hence
a/A(G[b'], q(b, ¢’)) by definition. By H3 we obtain ¢/A (G [b], q(b, ¢)), what proves
the converse direction of H5 in case s=1. Case 2: s> 1. One proceeds by induction
with respect to s. Since the inductive step is rather trivial, we omit it.

In order to prove the next lemma we need

DEFINITION 4: Let t be a continuity function of type (s, 0) having the property:
with every v such that t(v)#0 there is associated a continuity function 7, of type
(s, 0). Then there is evidently a continuity function ¢ with the property: if ¢(w)#0
then there is a decomposition w=vxv' such that 7(v)#0 and 7,(v')#0. The well-
determined o will be denoted by 7*.

H6: Let t be as in the above definition. Assume that the following holds: if
1(v)#0 then 7,/A(axv). Then there is a 7° with v'/A(a).

Proof: The proof proceeds by induction with respect to the number of logical
symbols in A. Case 1: A is prime, say p(a)=q(a). Then it is trivial to verify 7x/p(a)=
=q(a) where t* is derived from 7 according to the previous definition. Case 2: A is
B(a, b) A C(a, ¢). According to H4 we have 7%/B(a*u, bxv) A C(a*u, c+w) whenever
t(u, v, w)#0 holds. From this one easily gets two continuity functions 7; and 7,
having the property: 1)if 7, (u, v)£0 then there exists a t; with 7} /B(a*u, b*v), 2) if
7, (u, w) #0 then there exists 7, with 75,/C(a*u, c#w). From the induction hypothesis
we conclude that there exist g,, o, with o,/B(a, b) and ¢,/C(a, c). But this implies
°/B(a, b))AC(a, ¢). Case 3: A is () B(a, £). By definition and H4 we have
7%/(&) B(a*u, &) whenever t(u)#0 holds. Let F [a, b] be arbitrary. We are through if
we can find a oF with ¢¥/B(a, F [a, b]). Define o, as follows: a,(u, v)#0 iff 7(u)#0.
If 64 (u, v)#0 then t(u)#0, hence t%/(£) B(a*u, ¢) by H4, hence there is a af,,, with
af, ,/B(asu, F [a*u, bsv]). According to the induction hypothesis there is a ¢* such
that o¥/B(a, F [a, b]).

Case 4: A is (x) B(a, x). We proceed in the same way as in case 3.

Case 5: A is (E€) B(a, £). Let 7+ be associated with 7 according to def. 4. If
7#(u) #0 then there is a decomposition u=u’+u" such that t(u’)#0 and 7,.(u")#0.
Since 7,./(E€) B(asuw’, £) by assumption there is a F[asu'su’] (depending on u of
course) such that //B(asu’»u’, F [asu’+u’]), or what amounts to the same, such that
//B(a*u, F [a*u]) holds. Hence 7*/(E{) B(a, £) by definition.

Case 6: A is (Ex) B(a, x). We proceed in the same way as in case 5.

Case 7: A is B(a, b)>C(a, ¢). We have by assumption and H4: if t(u, v, w)#0
then 7¢/B(a*u, bxv) > C(a*u, cxw). Now assume //B(a, b). By H1 we have //B(a*u,
bxv) for all u, v. Obviously there is a continuity function ¢ having the property: if
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o(u, w)#£0 then t(u, vy, w)#0 where v, is a list of sequence numbers of the form
€0, ..., 0). If o(u, w)#0 then (u, vy, w)#0 and hence t#/B(a*u, bxv,) > C(a*u, cxw).
Clearly //B(au, b*v,). Therefore there is a g, ,, such that o, ,/C(a*u, cxw). From
the induction hypothesis it follows that there is a o, such that o,/C(a, c), what proves
the statement, also in this case.

H7: [|AABIiff /[A and //B.

We omit the rather trivial proof.
H8: Let t be saturated and assume |t|=n. Then: 1) if 7/A(t) then t'/(n) for some
7" and conversely, 2) if //A(t) then //A(n) and conversely.

Proof: The statement is obtained by an easy simultaneous induction with respect
to the number of logical symbols in A, making thereby use of lemmas 4, 5 in case
where A is prime. At each step of the induction we first prove 1) with the aid of the
inductive assumption and afterward 2) with the aid of 1).

H9: Assume that for every u with t(u)#0 and every m there is a 7}, with
1™/A(a*u, m). Then 1%/(x) A(a, x).

Proof: We have to show: for any term t (without free individual variables) there is
a g, such that o,/A(a, t) holds. Let t(a, b) be such a term. Evidently there is a conti-
nuity function o, having the following properties: if o (u, v) #0 then 1) t(a*u, b*v) is
saturated, 2) 7(u)#0. Assume o, (u, v)#0 and let [t(a*u, bxv)] be m. Since 7(u)#0
there is a T with /A (a*u, m). According to HS8 there is a ] with £ /A (a*u, t(a*u,
vsb)). By combining this fact with H6 we obtain the desired o, with o,/A(a, t).

HI10: //(x) A(a, x) iff //A(a, n) for all n.

Proof: a) Assume a=F[b] and //(x) A(a, x). We conclude 7%/(x) A (F [b], x), that
is 0,/A(F [b], n) for every n and some suitable o,,. Since F [b] was essentially arbitrary
we obtain //A(a, n) for all n. b) Assume conversely //A(a, n) for all n and let F [b] be
such that ac<F [b] holds. Then //A(F [b], n) for all n by HI. This implies that for
every u and every n there is a o with o;/A (F [b+u], n). That is we are in the situation
of lemma H9 with 1% in place of 7. By H9 we have t?/(x) A(F [b], x). Since F [b] was
essentially arbitrary we conclude //(x) A(a, x).

H1l: Assume //p(a)=q(a)>0=1 and let ¢ be a continuity function with the
property: if c(u)#0 then p(axu) and q(a+u) are both saturated. For such an u:
Ip(asu)| #|q(axu)].

Proof: From the assumption we conclude t?/p(a*xu)=q(a*u)>0=1for allu. Let ¢
be as stated by the lemma. For an u with ¢(u)#|0 p(a*u)| and |q(a*u)| are clearly
different, since otherwise //p(a*u)=q(as*u) would hold implying [0] =|[1].

HI12: ||(¢,,..., &) Aay, ..., &) iff for all Gy,..., G, and all F with acF we
have //A(F, Gy, ..., G).
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The proof is essentially the same as that of the previous lemma and is therefore
omitted.

HI13: Let 6 and p(a) prime be such that the following holds: if a(u)#0 then
p(axu) is saturated and |p(a*u)| #0. Then //p(a)>0=1, that is //p(a) #0 holds.

Proof: 1t is sufficient to observe that //p(F [b]) =0 never holds provided a=F [b] is
true. The observation is an easy consequence of lemmas 2,8.

HI14: Assume //p(a)#0. Let ¢ be such that ¢ (u) # 0 implies p(a*u) saturated. Then
|p(a*u)] #0 for such an u.

Proof: This is a special case of H11.
HI15: ||A(a, F[a]) implies °/(E&) A(a, &).

Proof: From //A(a, F [a)) and H1 we conclude //A (a*u, F [a*u)) for all u. Therefore
1?/(EE) A(a, ¢) by definition.
HI8: |/A(a, F [a]) implies //(EE) A(a, &).

Proof: Assume a<G. By Hl we have //A(G, F[G]) and from H17 we obtain
1?/(E€) A(G, &). In other words, whenever a= G then 1%/(E{) A(G, &). This implies

[I(E) A(a, &)
HI19: ||A(a, t(a)) implies //(Ex) A(a, x).

Proof: Exactly the same as that of H18.

4.5. The rules

Now we can pass to the proof of theorem 1. This is done by showing that each
axiom of IA is strongly realizable and that the rules preserve strong realizability. We
start with the rules. The lemmas below will be denoted by L1, L2, etc.

Li: If [/A(a, b), //A(a, b)>B(a, c) then //B(a, c).

Proof: Let F, H be lists of functors such that a~F, c~H, acF, ccH. Take any
list G such that b~G, b= G. Such a list G can be found in many ways. Then there
exists a © with t/A(F, G)>B(F, H). On the other hand //A(F, G) by H1 and the
assumption //A(a, b). Hence o/B(F, H) for some ¢. Hence //B(a, b).

L2: If A and A o> B are strongly realizable then B is strongly realizable.

Proof: Let the free choice variables of A, B be those of the lists a, b and a, ¢ res-
pectively, let the free number variables of A, B be among a, ..., a,, to be abbreviated

by a. We express this by writing A (a, b, a) and B(a, ¢, a). According to the definition



A Model of Intuitionistic Analysis 457

of strong realizability we have //(x,,..., X;) A(a, b, ;) and //(xy,..., X;) (A(a, b, ;):

> B(a, ¢, x)) (with x short for x;,..., x,). H2 implies //A(a, b, q) and //A(a, b, @)>
> B(a, ¢, q) for any list q of terms not containing free number variables. From L1 we

conclude that //B(a, ¢, q) holds for any such list, that is //(x) B(a, ¢, ;) holds by H2
what proves the statement.

L3: If [/(x) (A(a, b)>B(a, ¢, x)) then //A(a, b)>(x) B(a, ¢, x) where x does not
occur in A(a, b).

Proof: Assume [/(x) (A(a, b)>B(a, ¢, x)). The statement is proved if we can show:
if acF, beG, ccH and //A(F, G) then for every term q without free individual
variables there is a o, with o /B(F, H, q). Hence let q be such a term and assume
acF, b=G, ccH and //A(F, G). From //(x) (A(a, b)>B(a, ¢, x)) we conclude
/(x) (A(F, G)>B(F, H, x)) that is t*/A(F, G)>B(F, H, q). From //A(F, G) it
follows that there is a g, with ,/B(F, H, q), concluding the proof.

L4: If (x) (A>B(x)) is strongly realizable then A >(x) B(x) is strongly realizable
(where x does not occur in A(a, b)).

Proof: The reduction of L4 to L3 is essentially the same as that of L2 to L1.
L5: If [/(x) (A(a, b, x)>B(a, ¢)) then t%/(Ex) A(a, b, x)>B(a, ¢) (where x does
not occur in B(a, ¢)).

Proof: Assume [/(EX) A(a, b, x). Then there exists a T with 7/(Ex) A(a, b, x). Let a
and b have length s and t respectively and let u be the list u,, ..., 4, of sequence num-
bers, all having the same length, say n. Let r, be the sequence number (0,..., 0) of

length n and let ;n be the list 7, ..., r, of sequence numbers having t members. Define
©* as follows: 7+(u, w)#0 iff r(u,;n)¢0 where ;,, is determined by u in the way just
described. 7+ is of course a continuity function. Assume 7*(u, v)#0. Then 7 (u, ;.)%O
and hence there is a term g without free individual variables such that //A (a+u, b*;n, q)
holds. From H1 on the other hand we get %/(x) (A (a*u, b*;n, X) > B(a*u, cxw)) and

hence t%/A (a*u, b*;n, q) = B(a*u, cxw). But //A(a*u, b*r,, q). Hence there is a ¢’ with
o'/B(a*u, cxw). That is: if t*(u, w)#0 then there is a ¢’ with ¢'/B(a*u, cxw). Ac-
cording to H4 this implies the existence of a ¢ with o/B(a, ¢) what proves the state-
ment.

L6: If |[(x) (A(a, b, x)>B(a, c)) then //(Ex) A(a, b, x) > B(a, ¢) (with x not in A).

Proof: Assume acF, b= G, ccH. Then //(x) (A(F, G, x)=B(F, H)) according to
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H1, hence %/(Ex) A(F, G, x)>B(F, H) according to L5, what proves the statement.
L7: If (x) (A (x) > B) then (Ex) A (x) o Bis strongly realizable (x not occurring in B).

Proof: L7 is reduced to L6 as L2 to L1.
L8: /(&) (A>B(&)) then [[A> (&) B(&) (with & not in A).

Proof: Exactly the same as that of L3.
L9: If (&) (Ao B(¢)) is strongly realizable then A > (&) B(¢) is strongly realizable
(with £ not in A).

Proof: We reduce L9 to L8 in the same way as L2 to L1.
L10: If [/(¢) (A(a, b, £)>B(a, c)) then //(E) A(a, b, £)>B(a, ¢) (with ¢ not in
B(a, ¢)).

Proof: Exactly the same as that of L6.
L11: If (¢) (A(¢&)> B) is strongly realizable then so is (E&) A(&)> B (with & not in
B).

Proof: Reduction to L10 in the same way as L2 is reduced to L1. Lemmas LI-L11
settle the questions connected with the rules of IA, which come up in the proof of
theorem 1.

4.6. The true prime formulas

By definition, if P is a true prime formula (without free number variables) then
/P for some continuity function . From H2 we obtain //P for such a prime formula
P. If finally P(a,,..., a;) is a true prime formula whose free number variables are
among a,, ..., a, then by definition P(q,, ... q,) is true for all terms not containing free
number variables. Hence again by H, //P(q,, ..., q,) for all such terms. According to
HS5 this implies //(X;, ..., X,) P(Xy,..., X,), that is P is strongly realizable. We note in
this connection that IA contains the whole body of primitive recursive arithmetic:
formulas such as (p+q')=(p+9q)’, p-q'=p q+p, (Axt(x)) (q)=t(q) etc. are obviously
all true. For later use we also note

L12: For every quantifierfree formula Q there is a term tq containing exactly the
same free variables as Q such that the following formulas are provable in Z; and
hence in IA: 1) ta=0vty=1, 2) t=020Q, 3) Q>ty=0.

We omit the routine proof which is based on the fact that IA contains primit. rec.
Arithmetic.

4.7. The axioms of propositional calculus.
L13: If A is an axiom of intuitionistic propositional calculus which does not
contain free number variables then //A.
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Proof: We content ourself with proving the statement for those two axioms of
propositional calculus which contain disjuntions. All other axioms are trivial to treat.

a) The formula in question is A(a, b)>A(a, b)v B(a, ¢). Assume //A(a, b). We
claim t°/A(a, b) v B(a, ¢). Indeed, since //A(a, b) it follows from H1 that //A (a*u,
b*v) holds for all u, v what proves the claim. That is we have proved t%/A(a, b)>
>A(a,b) v B(a, ¢) for all formulas A (a, b), B(a,c).IfacF,b=G,ccHthen A(F,G)>
>A(F, G)v B(F, H) is again such an axiom hence /A (F, G)>A(F, G) v B(F, H)
according to the arguments just given. Therefore //A(a, b)> A(a, b) v B(a, ¢).

b) The formula in question is (ADCAB>C)2(AvB>C). Let us assume for
simplicity that every member of the list a of free choice variables occurs in each of the
formulas A, B, C and that the formulas A, B, C contain only free choice variables
from the list a; we indicate this by writing A (a), B(a), C(a). The case where the distri-
bution of variables is more general is treated in exactly the same way as this particular
case. First we show: 1?/(A>CAB>C)>(A v B>C). Hence assume //A>CAB>C.
We have to prove t*/AvB>C, or what amounts to the same, that //A(a)v B(a)
implies o/C(a) for some o. Hence assume in addition //A(a)v B(a). Then there is
clearly a 7 with 7/A(a) v B(a). Assume 7(u)#0. Then either //A(a*u) or //B(a*u);
assume eg. //A(a*u). From [[A>CAB>C we obtain //A>C and //B>C by H7.
From this we get in particular 7%/A (a*u) > C(a*u). Since //A (axu) by assumption it
follows that there is a ¢’ with ¢'/C(a*u). Similarly if //B(asu) holds in place of
//A(a*u). Hence: if 7(u)#0 then there is a ¢’ with ¢’/C(a*u). But then it follows from
H6 that there is a ¢ with ¢/C(a). Hence t?°/(A>C)A(B>C)>(A v B>C) has been
proved. From this the stronger statement //(A>C) A (B2 C)o (A v B> C) immediately
follows; we only have to use the fact that performing a substitution on such an
axiom transforms it into another axiom of the same form, say (A'>C)A(B'>C)>
>(A'vB' ().

L14: If A is an axiom of intuitionistic propositional calculus then A is strongly
realizable.

Proof: L15 follows from L14 in the same way as L2 from L1.

4.8. The quantification axioms
L15: [[(§) A(a, §)>A(a, F).

Proof: It is sufficient to prove t°/(¢) A(a, £)> A(a, F). The statement then follows
from the observation that substitution does not change the form of the axiom. Assume
11(€) A(a, £). Then we get t%/(£) A(a, &) as a particular case, hence /A (a, F) for some
o what proves the statement.

L16: (&) A(¢)o A(F) is strongly realizable.
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Proof: This follows from L15 as L2 from L1.
L17: (x) A(x)> A(t) is strongly realizable.

Proof: Exactly the same as that of L16.

In the lemma 19 below let a be a free choice variable not occurring in the list a and ¢
the list of those free choice variables which occur in the functor F but not in a; we
express this by writing F [a, c].

L18: °/A(a, F|[a, ¢))>(E¢f) A(a, &).

Proof: Assume [[A(a, F [a, ¢]). Let in addition G be a list of functors, none con-
taining free variables and such that ¢=G. From the assumption we obtain
/|A(a, F [a, G)) according to H1. Clearly the free variables of F [a, G] all belong to
the list a. Moreover //A(a*u, F[a*u, G]) again by HI. Therefore t?/(E¢) A(a, ¢)
since for every list u with a~u there is a functor H, namely F [a*u, G] with //A (axu,
F [a*u, G]).

L19: With A(a, a) and F [a, c¢] as before, //A(a, F [a, c])>(E&) A(a, &).

Proof: Substitution transforms A (a, F [a, ¢]) > (E&) A(a, &) into another axiom of
the same kind. The statement then follows from L18.
L20: A(F)>(E&) A (&) is strongly realizable.

Proof: Follows from L19 as L2 from L1.
L21: A(t)o(Ex) A(x) is strongly realizable.

Proof: The same reasoning which leads to L20 is used.

4.9. The induction axiom
L24: [[A(a, 0)> - (x) (A(a, x)DA(a, x'))>(2) A(a, 2).

Proof: As before it is sufficient to prove the statement 7%/A (a, 0)> - (x) (A(a, X)>
>A(a, x'))>(z) A(a, z). The lemma then follows from the invariance of the form of
the axiom against substitution. Assume //A(a, 0) and //(x) (A(a, x) > A(a, x’)). The
statement then follows if we can show 1%/(z) A (a,z). Combining L1 and H9 we obtain
//A(a, n) for all numerals n. In order to prove 1°/(z) A(a, z) we have to find for every
term t a continuity function ¢ of suitable type such that /A (a, t) holds. Let t be
t(a, b) with b the list of those free choice variables which do not occur in the list a.
With t there is associated a continuity function 7 such that t(u, v)#0 implies
t(asu, bxv) saturated. Assume 7(u, v)#0; put |[t(a*u, b+v)| =m. Since //A (a, n) for all n
we have in particular //A(a, m). From this we conclude that there is a £ with
/A (a*u, m). According to H8 there is a 7’ with 7'/A(a*u, t(axu, bsv)). Hence: if
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t(u, v)#0 then there exists a 7" with t'/A (a*u, t(a*u, b+v)). From H6 it follows that
there is a ¢ with o/A(a, t), what concludes the proof.
L23: The induction axiom is strongly realizable.

Proof: Follows from L22 in the same way as L2 from LI.

4.10 The axiom of transfinite induction

Let t(a, b)=0 be a prime formula containing the distinct free numbervariables
a, b. Let us write a<b in place of t(a, b)=0. Let W(<) be an abbreviation for the
following formula: (&) (Ex) 1€(x+1)<&(x). A formula is said to be an axiom of
transfinite induction if it is of the following form: W(<)> - (y) ((x) x<y>A(x))>
>A(y))=(z) A(z) (to be denoted by TI(<, A)). By definition every axiom of trans-
finite induction is an axiom of IA. In virtue of L12 a slightly more general form of
transfinite induction is available in IA : namely formulas of the above form but with a
quantifierfree formula Q(a, b) in place of t(a, b)=0. In [5] it is shown that with
the continuity axiom (which is available in IA) even the most general form of trans-
finite induction or bar induction can be reduced to our particular formulation above.

In order to show that each axiom TI(<, A) is strongly realizable it is again suffi-
cient to prove //TI(<, A) for all formulas <, A which do not contain free number
variables. Since substitution transforms TI(<, A) into another such axiom, say
TI(<’, A'), it is sufficient to show that 1?/TI(<, A) holds for <, A not containing
free number variables. Hence our aim is to prove

L24: Let t(a,b)=0 and A(a) be a prime formula and an arbitrary formula
respectively not containing free number variables. Then t%/TI(<, A) holds.

From L24 we obtain according to our remarks immediately

L25: Every axiom TI(<, A) is strongly realizable. Before coming to the proof
of L24 we need a definition.

DEFINITION 5: Let t(cxj;, cen ocf,:, a, b) be a term whose only free variables
are those indicated (a, b number variables). A set D of natural numbers can be associ-
ated with the primeformula t =0 as follows: its elements are ordered pairs ({v,, ..., v),
n) (also written more briefly as {v,..., v/n)) such that v,..., v, is an s-tupel of
sequence numbers, all having the same length. A partial ordering [ of D can be
associated with t=0 as follows: {vy,..., v,/n)L_{wy,..., w/m) iff a) each v; isa
proper extension of w; (that is w; = v;), b) t(af,‘l evps s acf,’s «ve» N, M) is saturated and its
value is 0. The main property of [ is given by

L26: Let t(a!,..., &k, a, b) and [ be as in definition 5. Let a<b be short for
t(ocj;, vers ozj:, a, b)=0. If W(<) is realizable then [ is wellfounded. The easy proof of
this lemma is omitted.
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Proof of L24: For typographical reasons we treat a slightly simplified case, in
which t(a, b) contains precisely one free choice variable namely océ y» and where the
formula A in TI(<, A) contains precisely two free choice variables, namely océ 35 af N
We indicate this by writing t(«g y,a, b) and A (ag , af y, a) respectively. This particular
case is typical in that the proof below can be generalized in a straight forward way
to the case where an arbitrary set of free choice variables is present. For convenience we
will also write the prime formula t(«¢ y, a,b)=0 briefly as p(a s, a, b). We want to prove
1®/TI(<, A). Thisis done if we can show:if //W (<) and //(y) ((x) x<y> A(x))2 A(y))
then 7%/(x) A(x). Hence let us assume: I) //W(<), I) //(v) ((x) (x<y=>A(X))2 A(y)).
In virtue of H10 we are through if we can prove for every numeralm: //A («¢ y, a7 y, m).
From assumption I) and L26 it follows that [__ is well-founded. In order to proceed by
transfinite induction let (u/m»€eD be fixed and let us make the inductive assumption:
II0) if {v/n)_Cu/m) then //A(a,%a? y,n). The transfinite induction is accomplished if
we can show: if F [a] and G [a] are two functors such that u = F [a] holds then there is
a 7 such that 7/A(F [a], G [a], m) holds (with a the list of choice variables occurring
either in F or in G). Hence let F [a] and G [a] with u< F [a] be given. From II), H1 and
H10 we conclude: 7%/(x) (p(F [a], x, m) A(F[a), GI[a], x))>A(F[a], G[a], m). The
desired t with 7/A(F [a), G [a), m) is found if on the basis of III) we can show IV):
//(x) (p(F [a], x, m)> A(F [a], G [a], x)). In virtue of H10 this is proved if we can show
for every numeral n the statement V): //p(F [a], n, m)> A(F [a], G [a), n). The last
statement finally is a consequence of the following statement VI): for every n, if
acH [b] then */p(F[H[b]], n, m)>A(F[H [b]], G[H [b]], n). Hence let us con-
centrate on the proof of VI). To this end let n be an arbitrary numeral and H [b] an
arbitrary list of functors, only subject to the restriction a=H [b]. In virtue of lemma 8
there is a continuity function ¢ having the following property: if o(w)#0 then there is
a sequence number v such that ucv, v<F[H[b*w]] and such that t(xl, n, m)
is saturated. We claim that the following statement VII) is true: if o(w)#0
then t¢/p(F[H [b*w]], n, m)>A(F[H [b*w]], G[H [b*w]], n) holds. Hence assume
//t(F[H [b+w]], n, m)=0. Since t(x}, n, m) is saturated and since v < F[H [bxw]] it
follows that t(F[H [b*w]], n, m) is saturated and has the same value as t(al, n, m).
From //t(F[H [b*w]], n, m)=0 it follows that this value must necessarily be 0. In
combination with u < v this implies {v/n)__{u/m}. In virtue of our inductive assump-
tion we have //A(al, «f y, n) and hence t/A (F[H [bxw]], G[H [b*w]], n) for some 7
what proves statement VII). From VII), H4 and H6 it follows that t%/p(F[H [b]], n, m)
>A(F[H[b]], G[H[b]], n) is true. Since n, H[b] where arbitrary (apart from
acH b)) it follows that statement VI) is true. From VI) we deduce IV) and from
IV) and °/(x) (p(F [a], x, m)> A(F [a], G [a], x) > A(F [a], G [a},m) we obtain the
existence of a 7 with t/A(F [a], G [a], m). But F [a] and G [a] where only subject to
the condition #<F [a] and otherwise arbitrary. Hence //A (al, ocf 5, M) is true. The
transfinite induction is done and the lemma proved.
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4.11. The axiom of choice

As will be sketched in the appendix, we can derive the general axiom of choice from
the full continuity axiom and the following special instance of the axiom of choice:
(x) (Ex) Q(x, y)=(E&) (x) Q(x, £(x)), with Q a quantifierfree formula. On the other
hand we know from L12 that every quantifierfree formula is provable equivalent to a
certain prime formula. Therefore it is even sufficient to include among the axioms of
IA only the following very particular instances of the axiom of choice: ACP)
(x) (Ey) p(x, y)2(EQ) (x) p(x, ¢ (x)) where p(x, y) is a prime formula.
L27: (x) (Ey) p(x, y)=(E{) (x) p(x, {(x)) is strongly realizable (p prime).

Proof: As before it is sufficient to prove 1%/(x) (Ey) p(a, x, y)=(E{) (x) p(a, X,
{(x)) where p(a, a,, a,) is any prime formula whose only free variables are the choice
variables from the list a and the free number variables a,, a,. For simplicity we
assume that the list a has the particular form oc} ys+--5 O¢ 5. Hence assume
[[/(x) (Ey) p(a, X, y). This implies: for every n there is a 7, such that t,/(Ey) p(a, n, y)
holds. Therefore: if 7,(u)#0 then //p(a*u, n, t,(a*u)) for some term t, which con-
tains only free variables from the list a*u. This in turn implies the existence of a conti-
nuity function oy having the property: if oy(v)#0 then p(a*usv, n, t,(a*uxv)) and
t,(a*uxv) both are saturated and p(a*uxv, n, t,(a*uxv)) is true. In particular if
t, (asu*v)| =m then also p(a*u*v, n, m) is saturated and true (calling q, =q, saturated
if q; and q, are saturated). Let u be any continuity function of type (s, 1) having the
following properties: 1) if u(w, n)#0 then w admits a representation w=uxv with
7,(W)#0 and o7 (v) #0, 2) if u(w, n)#0, w=u=v, 7,(u) #0 and a3 (v) #0 then u(w, n)=
=|t,(axw)| +1. It is easy to prove the existence of such a u. The language L contains
by definition a functor constant G{ ,; we write F instead of Gf,. By definition
F [a*xw] (n) is saturated iff pu(w, n)#0 and in this case |F[a*xw](n)|=|t,(a*w)|=
=u(w, n)—1. Let p, be given by u,(w)=u(w, n). We claim u,/p(a, n, F[a (n)). If
U, (W) #0 then there is a splitting w=u=*v such that 7,(u)#0 and o;(v)#0. But then
p(a*w, n, t,(a*w)) is saturated and true. Since t,(a*w) is also saturated and since
|F [a*w] (n)| =|t,(a*w)| by definition of u it follows that p(a*w, n, F [a*xw] (n)) is also
saturated and true; hence u,/p(a, n, F[a](n)) for all n. According to H2 we have
//p(a, n, F[a] (n)) for all n and this together with H10 yields //(x) p(a, x, F [a] (x)).
From the deflnition of / and // one finally concludes that ?)(EQ) (x) p(a, X, {(x)) what
proves the statement. Only minor modifications are needed in order to treat the case
where the list a is of the more general type o', ..., o,

4.12. The continuity axiom

In order to discuss the continuity axiom let ¢,, @,, @3 be two twoplace and a one
place primitive recursive function respectively having the properties: a) ¢ (v, v)=0
iff u, v are sequence numbers with ucwv, b) ¢,(a, b)=4((a +b)? +3a+b), ¢) @;(n)
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is the length of n if n is a sequence number and 0 otherwise. These functions are re-
presented in IA by certain functional constants c,, c,, c; of types (0,2), (0,2) and (0,1)
respectively; IA contains suitable axioms with respect to c,, c,, c; which permit to
derive the familiar properties of ¢,, ¢,, ¢3. For easy reading we adopt the following
conventions: a) ¢, (p, q)=0is written as p=q, b) ¢, (p, q) is written as {p, q), ¢) if F is
a functor we write F(p, q) in place of F({p, q)), d) v F is an abbreviation for
v=F(c;(v)). Let CT,(x) and CT,(x) be the following formulas respectively: a)
(%, ¥) (xsyAra(x)#02a(y)#0), b) (&) (Ex) a(£(x))#0. Let CT(x) be CT,(x)A
A CT, (). A suitable form of the continuity axiom, which is equivalent to that one
presented in [2] is

(&) (En) A (&, n) = (Eo) {(x) CT(4yo (y, x)) A
CwEvY(velaox)#£0>0(v,x)=pu(x)+1)> A, W]}

Denote this formula by CT(A). Our goal is to prove

L28: CT(A) is strongly realizable. As in earlier cases this is achieved if we can
show

L29: //[CT(A) for all A not containing free number variables. But CT(A) is
clearly invariant against substitution and hence L29 follows from

L30: For A without free number variables t?/CT(A) holds. Before coming to
the proof of this lemma, which will be given below we note

THEOREM 0: If Z;tA then A is strongly realizable.

Proof: According to the lemmas proved so far it follows that every axiom of Z; is
strongly realizable and that if the premiss or the premisses of any inference are
strongly realizable then the conclusion is strongly realizable.

COROLLARY 1 TO THEOREM 0: Let F, G be two functors and A (&) a formula

none containing free number variables. Then 1%/(x) (F(x)=G(x))<=(A(F)>A(G))
holds.

Proof: The formula on the righthandside of / (to be denoted by B) is obviously
provable in Z, ; hence //B by theorem 0 and so t%/B.

COROLLARY 2 TO THEOREM 0: Let F, G, A(®) be as in corollary 1. If for
every n there is a t, with 1,/F(n)=G(n), if /| A(F), then a/A(G) for some o.

Proof: This is an immediate consequence of theorem 0, corollary 1, H2, H10 and
the definition of t*/U>YV.
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Proof of L30: The proof is performed in several steps. In order to simplify the
notation somewhat, we assume that A contains precisely the free variables o,, B, v
and write therefore A («,, §, y) and (&) (En) A(«,, &, n) respectively. This special case
is representative in that the generalisation to the arbitrary case is straightforward.
Step 1: We make the basic assumption //(¢) (En) A(a,, &, 1). This implies in particular
1?/(E€) A (,, B, &) where B is a free choice variable associated with the empty sequent
and different from a,. By definition there is a functor T [«,, ], whose only free
variables are «,, B such that the following statement I) holds: //A (e, B, T [y, B]).
According to lemma 2 there is a continuity function g, of type (2,1) such that
oo(v, w, n)#0 implies T [a,, B4](n) saturated with value o,(v, w, n)—1. Define a
continuity function t of type (1,1) as follows: 1) if m is not a sequence number then
1(f(@), ¢m, kD)=1, 2)if i <j then 7 ((i), (@), kD) =1, 3)ifj <iandif a4 (T(j), (), k) =0
then (f(i), (@), kD) =1,4)ifj<iandif o4 (T(j), £(j), k) =m +1 then 7 (f(Q), (), kD)=
=m+2=|T [e5), Bz()] (k)| +2. The language L contains an operator symbol I" of
type (1,0) associated with 7. By definition I' [a,]({w, k) is saturated iff (v, {w, kD)=
=m+1#0 and its value in this case is m. Step 2: Let us abbreviate in the sequel the
formula (x, v) (v Aa(v, X)#0>2a(v, Xx)=y(x)+1) by E(a/f, y). According to H10,
H18 the lemma is proved if we can show: 1) for each n //CT (AyT [«,] (¥, n)), 2) for all
G, H and F such that u< F we have t*/E(I' [F]/G, H)>A(F, G, H). We first concen-
trate on the verification of 2). As noted, we have //A(F, G, T [F, G]) for all F, G with
uc<F. Let F[b], G[b] and H [b] be fixed functors such that ¥ < F [b] holds. Then we
have II): //A(F [b], G [b], T [F [b], G [b]]). In virtue of corollary 2) to theorem O the
verification of 2) is accomplished if we can show: if E(I'[F [b]]/G [b), H [b]) then
there is for every n a 1" such that t*/T[F [b], G [b]] (n)=H [b] (n) holds. Hence let us
assume III): //E(I [F[b]]/G [b], H[b]). Step 3: From lemma 8 it follows that for
every n there is a continuity function ¢” such that: if 6" (w)#0 then there exist f(i) and
8(j) such that u*f(i)cF [b*w], £(j)<G [b*w] and such that &, (u+f(i), &(j), n)#O0.
Hint: 1) Put 4(x) =1 if x is a sequence number with length (¢) <length (x) and 4(x)=0
otherwise, 2) take as 7 in lemma 1 the continuity function min (4(x), 6,(x, y, n)), 3)
observe that u< F [b] already holds. Then by definition of t in step 1, t(u*f(i),
C8(G), n))=IT [otyz i)» P53yl () +2 and by definition of I' the term I [otyiz ;)] (8()), 1)
is saturated and its value |T [ot,e (i), Becjy] (M| +1. Now take a fixed n and a fixed w
such that ¢ (w)#0 and let f(i) and g(j) be as in 1), 2) above. From assumption III) we
infer 7¢/E(I'[F [b*w]]/G [b*w), H [bsw]). This in turn implies %/g(j)<G [b*w]A
AT [F [bxw]] (E(§), n)#0> ' [F [bxw]] (2(3), n)=H [bxw] (n) +1. Clearly, Z(j)<
=G [baw] is saturated and true, hence //g(j)=G [b*w]. Furthermore I'[F [bxw]]
(£(j), n) is also saturated and its value #0; hence //I'[F [b*xw]] (8(j), n)#0 by H13. It
follows from H7 that there exists a continuity function u, with the property 1V): if
Ha(w)#0 then H[bswxw'](n) and I [F[bxwsw']](g(j), n) are saturated and
IT[F Ibswsw']] (£(), n)|=|H [bswsw'] (n)|+1. But T[F[bsw]] (&G), n) and
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T[F [b*w], G [b*w]] (n) are already saturated and the value of the first equals the
value of the second plus one. Hence both I'[F [b*w*w']] (g(j), n) and T[F [bxwxw'],
G [bxwxw']] (n) are saturated and the value of the first equals the value of the second
plus one. With the aid of property IV) we can sum up these considerations as follows:
if 6"(w)#0 then there exist a p, such that T[F [bxww’], G [bxw*w']] (n) and
H [bxw*w'] (n) both are saturated and have the same value whenever u, (w)#0
holds. But according to H6 this implies the existence of a t" with t"/T[F [b], G [b]] (n)=
=H [b] (n). This concludes the proof of statement 2) mentioned at the beginning of
step 2. Step 4. It remains to verify statement 1) mentioned at the beguinning of step 2.
This amounts to prove for all n: a) //(X, y) (x€y AT [o,] (x, n)#0 oI [a,] (y, n)#0),
b) //(€) (Ex) I [o,] (E(x), n)#0. We start with the verification of a). We have to prove
for all sequence numbers v, w: [[wsvA T [a,] (W, n)#0>T [a,] (v, n)#0. Hence let
F[b] be a functor such that u< F [b] holds and assume I'): a) //w<v, B) //[F[b]]
(w, n)#0. I', o) implies that w and v are indeed sequence numbers and that v is a
proper extension of w. From I, ) and lemma 8 we infer the existence of a continuity
function o such that o(r)#0 has the following consequences: 1) there is an f(i) such
that u+f(i) = F [b+r] and length (v) <length (uxf(i), 2) '] (v, n) and T [otyee )
(w, n) both are saturated and the value of the second is #0. Fix a list r such that
o (r)#0. Since v w, usf(i) = F [bar] and since I' [x,.; @] (w, n) is saturated with value
#0 we conclude from Lemma 4 that I'[F [b*r]] (v, n) is saturated and has value #0.
To sum up: if 6(r) #0 then I'[F [b#r]] (v, n) is saturated and has value #0. According
to H13 this implies t#/I"[F [b]] (v, n)# 0 what concludes the verification of a). Step 5:
It remains to verify b), that is //(£) (Ex) T [a,] (é(x), n) #O0 for all n. Let n henceforth be
fixed. Let B be a free choice variable, associated with the empty sequence and different
from «,. Combining H1, H12, H19 and H13 it is clear that b) is verified if we can find
a term t(a,, B) and a 7 such that the following holds: if (v, w)#0 then I [x,.]
(Bw(t(ayeys By)), n) is saturated and its value is different from 0. In step 1 we have
introduced a continuity function o, of type (2,1). Clearly there exists a continuity
function pu of type (2,0) having the properties: if u(f(i), g(i))#0 then 1) k+1=
=u(f@), g@))<i+1, 2) oo(f(k), g(k), n)#0. To u there corresponds a functional
symbol t of type (2,0) such that the following holds: 1) for v="{(i), w= g(i) t(x,, Bv) IS
saturated iff u(v, w) #0, 2) in this case |t(a,, B,)| = u(v, w)— 1. Obviously there exists a
continuity function v of type (2,0) having the following property: if v(v, w)#0 then v
allows a decomposition v,*v,=v such that pu(u*v,, w)#0. We claim: v/l [«]
(B(t(oey, B)), n)#0. Assume v(v, w)#0 and let v=v;*v, be a decomposition such that
p(urvy, w)#0. Put urv, =f(@i), w=g(>) and k+1=p(u*v,, w). According to the
definition of u we have k<iand g, (fk), g(k), n)#0. Hence 7 (f(k), {g(k), n)) <2 and
therefore I [0z y] (£(K), n) is saturated with value #0. Since usv, Susv and f(k)<
Cusv, it follows that I' [a,,,] (§(k), n) is saturated with value #0. Since k<i on¢
easily verifies that B, (k) is saturated with value (k). Since p(uxv,, w)=k+1 il
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follows that t(«,.,,, By) is saturated with value k. Hence t(a,.,, B,) is also saturated
and its value is still k. Therefore B, (t(0y.,, By)) is saturated and its value is the same

as that of B, (k), namely g(k). Hence I' [ot,,,] (B (t(%uey, B4)), n) is saturated and its
value is #0. This concludes the proof.

Theorem 1: If A is provable in the system 1A of intuitionistic analysis gehn A is

THEOREM 1: If A is provable in the system 1A of intuitionistic analysis then A is
strongly realizable.

Proof: According to the lemmas proved up to now it follows that all axioms of IA
are strongly realizable. Furthermore, if the premiss or the premisses of an inference
are strongly realizable then so is the conclusion according to lemmas L1 —L11. The
theorem then follows by induction with respect to the length of proofs. Kleene-Vesleys
system of intuitionistic analysis is contained in our system IA, as pointed out earlier,
that is every formula provable in Kleene-Vesleys system is provable in TA (after
eventually replacing some bound variables by others). Hence

COROLLARY TO THEOREM 1: If a formula A is provable in the system of
Kleene-Vesley then it is strongly realizable.

5. A remark on Troelstras axiom

In [6] A. S. Troelstra introduces a certain system of intuitionistic analysis which
contains the system of Kleene-Vesley as subsystem. An essential feature of this system
is that it contains a new axiom, which for simplicity will be called Troelstras axiom.
In order to state it let Rec («) be a suitable formula expressing that a is a recursive
function. Let CT (o) and E(a/B, y) have the same meaning as in the proof of lemma
L30. Let A (x) be a formula whose only free choice variable is « (associated with the
empty sequence). Troelstras axiom looks as follows:

A(«) > (Eo) {Rec(o) A (x) CT (Aya(y, X)) A (En) E(a/n, @)
A (C, {y) (E(O'/Ca {y)> A(Cl))} .

Let us denote this formula by Tr(A). If we drop Rec(«) in this formula then we
obtain another formula to be denoted by Tr*(A). While Tr(A) is an essential new
axiom this is not the case with Trx(A): it is easy to show that Trx(A) is provable in
the system of Kleene-Vesley. Therefore, by corollary to theorem 1, Tr*(A) is strongly
realizable. In the model presented in the last chapter, Tr(A) cannot be proved to be
strongly realizable since this model has essentially set theoretic character: it contains
no ingredients of recursive function theory. However, there is a constructive version
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of this model in which everything is codified in a suitable way by Goedel numbers:
this constructive version will be presented in a subsequent paper. It can be shown that
Tr(A) is strongly realizable in this constructive model. The proof of this splits up in
two parts: an abstract, rather set theoretic part and a constructive part, which uses the
fixed point theorem and whose main concern is to translate the abstract part in an
appropriate way in the language of recursive function theory. Now it is quite usefull
to have a direct verification of the strong realizability of Tr*(A) at hand: it turns out
that this direct verification essentially coincides with the abstract part of the above
mentioned proof. Hence let us proceed to a direct verification of the strong realiza-
bility. One easily verifies on the basis of H5 that this is achieved if we can show

L31: If A(a) is a formula whose only free variable is the free choice variable
associated with the empty sequence then //Trx(A).

Proof: We will not consider all the details but rather concentrate on the main
points. Let F [b] be any functor without free number variables. Our aim is to show:

*/A(F [b]) = (Eo) {(x) CT (2ys (y, x) A (E¢) E(0/¢, F [b])
A (¢ 8 (E(afC, 8y) 2 A(LY))}

To this end assume //A (F [b]). For simplicity we consider the case where b consists of
two choice variables, a, § both associated with the empty sequence. The case where b
is more general is treated in exactly the same way. We proceed by steps. Step I:
Clearly there are continuous operators F, G, G, of type (2,0), (1,0) and (1,0) respec-
tively having the properties: 1) F maps the set of ordered pairs of numbertheoretic
functions in a one one way onto the set of numbertheoretic functions, 2)
2E(Gy [€], G, [€]) maps the set of numbertheoretic functions in a one one way onto
the set of ordered pairs of numbertheoretic functions, 3) the mappings a—(Gy [¢],
G, [«]) and (o, B)—F [«, B] are inverses of each other. It is clear that F, G,, G, can be
chosen in such a way that there are continuity functions 7, u,, u, of suitable types
such that F=F,, G,=F, and G,=F,,; concrete examples can easily be found in
connection with the pairing function $((x +y)* +3x +y). The language L contains by
definition constants C, K, and K, which formally represent F, G,, G, in IA. In
addition there are sufficiently many axioms about C, K, K, in IA which permit us to
derive all essential properties of F, G,, G,. In order to list them let a~f be an
abbreviation for (x) (a(x) = B(x)). Then we can provein Z;: 1) C[a, B1~y AC [, B']1~
~ysa~o AB~p',2) C[K,;[7], Ky [7]]~7, 3) K [Cla, fl]~a, 4) K, [Cle, BII~F-
Step 2: Concerning E(a/a, B) we note that the following is provable in Z;: E(o/, )=
> -(E(o/a, B)>B~P'). Step 3: Let for the moment being G [«] be a functor whose
only free variable is o. According to lemma 2 there is a continuity function a¢(x, y) of
type (1,1) with the property: if 64(v, n)=m+1 then G [«,] (n) is saturated with value
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m. Put u(y, x)=0,(y, X)+ 1. We can consider u(y, x) as a continuity function of type
(0,2). With u there is associated a functional constant e,€L; denote e, by 4. According
to its definition 4(v, n) is saturated for all v, n and its value is o4(v, n). Now the
following is true: //[E(4/a, G[a]). The verification of this statement, referred to as
statement 1), is entirely routine and is left to the reader. The particular case which we
are interested in is where G is F[ K [o], K, [«]]; the 4 associated with this particular
G [«] is now denoted by 1. F[K, [«], K, [«]] will also be written as F[K [«]]. Hence
we have II): //E(t/a, F[K[a]]). Step 4: In virtue of section 4.4 we have accomplished
our proof if we can show: a) //(x) CT(dyz(y, x)), b) //E(t/C[x, B], F [«, B]), ¢) for all
G, H without free number variables we have t*/E(7/G, H)>A(H). We omit the
verification of a) which is the same as in the proof of L31. In order to verify b) we use
Zta~K, [Clo, B]] and Z;+B~K,[Clx, B]]. From this and Zita~pB>(A(x)>
>A(p)) we derive in Z; the formula E(t/C[«, B], F[K[C[x, B11])=>E(z/C[x, 8],
F[a, 1), to be denoted by U. Since //E(z/a, F[K [«]]) holds by construction of t, it
follows that //E(t/C[a, B], F[K[C [«, f11]) holds. This, combined with U (theorem 0)
and L1 yields //E(7/C|[a, B], Flo, f]). But this, combined with HI18 implies
[[(EE) E(t/&, Fla, B]). Step 5: It remains to verify c). Hence assume //E(t/G, H).
According to the remarks made in step 2 it follows that the following formula V is
provable in Z;: E(1/G, H)> -E(7/G, F[K[G]])>(H~F[K[G]]). Hence //V. But
//(z/G, H) by assumption and //E(z/G, F[K[G]]) by construction. Using L1 we ob-
tain /[H~F[K[G]]. Now a~ (A (x)>A(f), (to be denoted by W in the sequel) is,
as mentioned, provable in Z,; hence //W. From this we obtain //H~F[K[G]]>
>-A(F[K[G]])>A(H). Now //A(F[b]) is our basic assumption; therefore
[/A(F[K[G]]). But //H~F[K[G]] has already been proved. Therefore, using //W,
we obtain //A(H) and hence in particular o/A (H) for some o¢. This concludes the
proof of the lemma.

Appendix. Axiom of choice and continuity

It remains to show that the general axiom of choice can be derived in TIA. We
proceed rather informally, but in such a way that it is evident that the reasoning given
can be formalized in 1A. Hence assume (x) (E£) A(X, £). From this one easily deduces
() (E&) A(n(0), &). From the continuity axiom we infer the existence of a continuity
function of type (1,1), say t, satisfying I): (£, n) E(t/n, &) A(#5(0)), £). Let ¢(z, y) be
such that ¢(z, y)=z is an axiom of IA (there is of course such a constant ¢). As
consequence of 1) we obtain II): (z,&) (E(t1/Aye(z, y), &)>A(z, £)), where
Ay(z, y) (0)=z has been used. Clearly we can prove III): (z, x) (Ev) (vEyo(z, y) A
AT(v, X)#0). Put (x,y)>=3((x+y)? +3x+Y) and let p; (x), p,(x) be those prim. rec.
functions which satisfy {p, (2), p»(2)) =2z, p; ({X, ¥))=X, p,({X, y))=Yy. With the aid
of these wederivefrom IITI)theformula IV): (u) (Ev) (vE Ay (py (u), y) A (v, p, (1)) #0).
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Application of the axiom of choice for quantifierfree formulas yields the existence of a
function v such that V) holds: (u) (v(u)=iye(p, (u), y)At(v(u), p,(u))#0). By
going back from u to pairs we get statement VI): (z, x) (v(z, X) S Ay@(z, y) A 1(v(z, x),
x)#0). From the continuity property one easily derives the following statement VII):
if velyo(z, y) and 7(v, x)#0 then (v, X)=1(v(z, X), X). Hence we obtain VIII):
v, x) (veEAyo(z, y) A1(v, X)#0>1(v, X)=Ay(t(v(z, ¥), ¥)— 1) (X) +1). Therefore we
can derive from the statement II) and VIII) A(z, Ay(z(v(z,y),y)—1)). From this and a
little bit of intuitionistic predicate calculus we finally obtain (E¢) (z) A(z, Ayé(z, y))
what concludes the proof.

Conclusion

A. As noted in chapter V, the model presented in this paper is so to speak the
abstract part of a more elaborate model (the ‘“constructive’ version), in which every-
thing is codified by Goedel numbers; continuity functions in particular are then
restricted to recursive ones. Actually, the author started with the investigation of this
constructive version. However it quickly turned out that the main difficulties in
proving the necessary lemmas were rather of an abstract, set theoretic nature. Once
this abstract side of the problem was understood the application of the fixed point
theorem became rather a question of routine. It was recognized that the sum of the
abstract considerations formed a selfcontained totality which could be presented in
closed form without any reference to recursiveness. This is one reason why we did
present the abstract part of the full constructive model separately. The other reason is,
that the part of the proof, which is concerned with coding everything by Goedel
numbers is rather long and requires quite a number of applications of the fixed point
theorem. The interest in fixed point techniques stems from the fact that it yields
further interesting results. Among these we mention one: Kleene-Vesleys system is
consistent with Churches thesis and Troelstras axiom. The full constructive model
together with applications will be presented in another paper.

B. One might wonder, what kind of model we would get by working out definition
D1 in the same way as definition D2 has been worked out in chapter IV. We will just
mention the result. To this end let IA, be the system which differs from IA in the
following points: 1) it contains only those axioms of continuity CT(A) for which A
has prenex normal form, 2) it contains all formulas of the form (x)71TA(X)>
> 71 71(x) A(x) (x a bound individual variable). By working out D1 we get a model of
IA,. The technique of proof is quite the same as that one presented in this paper.
There is also a constructive version of this model, in which everything is coded in a
suitable way by Goedelnumbers of certain recursive functions. In this constructive
version, Churches thesis is satisfied. Troelstras axiom Tr(A) holds, provided A has
prenex normal form. The author does not know positively whether this model is
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really different from that one elaborated in this paper; however it seems highly
probable that this is the case. This problem is under investigation.

C. Another question arises, namely whether the notion “provability’’ can be built
into our model in order to obtain a notion “provable and realizable’’ and such that
theorems like “if FA v B then FA or FB” etc. can be reproved for IA (or rather a
constructive variant of it). This is indeed the case. However a discussion of this point
lies outside the scope of this work and will be postponed to the subsequent paper
mentioned above.

D. From Dr. Troelstra the author learned that Joane Moschowakis has found
another realizability notion in which Churches thesis and a new axiom, called “Vesleys
principle”’, are satisfied. He also pointed out that his own axiom Tr(A) contradicts
Vesleys principle. In virtue of our discussion (part A above) it seems that her model
and ours differ in some essential point.

E. The author is indebted to Dr. Troelstra and Prof. D. Scott for valuable dis-
cussions. He is also indebted to Dr. Luckhardt who directed the authors attention to
the model given by D1, mentioned in B above.
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