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Sur les actions a deux points fixes de groupes finis sur les sphéres

MARCOS SEBASTIANI

Quand on essaye de classifier (dupoint de vue différentiable) les actions d’un groupe
fini G sur les spheres homotopiques on trouve comme premier invariant le type de
difféfomorphisme de ’ensemble des points fixes: deux actions équivalentes ont des
ensembles de points fixes difféomorphes. Dans ce travail on aborde le probléme de la
classification des actions semilibres pour lesquelles I’ensemble des points fixes est
non-vide et de dimension 0. Par un théoréme de P. A. Smith on sait que cet ensemble
contient alors exactement deux points. Le résultat central est le théoréme de finitude
du § 6 et de ’appendice. On prouve que si G=Z, alors il n’existe qu’'un nombre fini
d’actions non-équivalentes en dimension paire >6. Si G est cyclique fini d’ordre
quelconque on prouve que le méme ennoncé est conséquence d’une conjecture
algébrique de C. T. C. Wall.

Les methodes de ce travail peuvent étre appliqués, dans une certaine mesure, au
cas ou ’ensemble des points fixes est de dimension > 1. Voir aussi [23] ou le probléme
de la classification est abordé dans une situation beaucoup plus générale.

Dans le § 1 on introduit les notions de a-sphére homotopique (définition 1), «
étant une représentation linéaire o: G—S0(m) d’un groupe fini G, et de G — h-cobordis-
me (definition 3). On prouve que les classes de G —h-cobordisme de a-sphéres homo-
topiques forment un groupe, noté ©,,(«), avec I'opération de somme connexe.

Dans le § 2 on étudie la relation entre le G—h-cobordisme et I'isomorphisme de
a-sphéres homotopiques. On prouve, en particulier, qu’il n’y a qu’un nombre fini de
a-spheres homotopiques non-isomorphes et G —h-cobordantes & une a-sphére homo-
topique donnée.

Dnas le § 3 on fait une version équivariante de la construction de Pontrjagyn-
Thom et on prouve que ©,, («)contientun sous-groupe d’indice fini A4,,(«) avec la pro-
priété que tout élement de A,,() est la classe d’une a-sphére homotopique M qui est
le bord d’une G-variété W o — s-parallelisable (définitions 1, 2, 3, 4).

Dans le § 4 on prouve, par une construction appropriée, qu’on peut rendre ’ensem-
ble des points fixes de W difféomorphe a [0,1].

Dans le § 5 on introduit les modifications sphériques et on prouve que A,(«)
contient un sous-groupe d’indice fini @,,(«) qui satisfait: tout élement de @,,(«) est la
classe d’une a-sphére homotopique M qui est le bord d’une G-variété a — s-parallelis-
able (n—1)-connexe W avec H,(W, Z) fini (n=m/2).

Dans le § 6 et I'appendice on applique les résultats de C. T. C. Wall [15] pour
obtenir les théorémes de finitude.
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1. Définition des groupes @, («)

Dans tout cet article G désignera un groupe fini non-trivial et « une représentation
a:G—S0(m) telle que pour tout geG, g#1, a(g) ne possede pas la valeur propre 1.
(Ceci implique que m est pair [14] § 7.3.) Dans ce § 1 on supposera de plus G d’ordre
impair. On considéréra toujours B™ comme G-variété au moyen de a.

Sauf mention expresse du contraire le mot «variété» voudra toujours dire «variété
différentiable (C®) compacte et orientée» et toute action de G sur une variété sera
supposée différentiable et conservant I'orientation. Si M est une variété on notera
0M son bord.

DEFINITION 1. Une a-sphére homotopique est la donnée d’une sphére homoto-
pique (au sens de [7]) M de dimension m et d’une action de G sur M qui satisfait aux
propriétés suivantes:

a) Elle admet deux points fixes distincts x,, x, et G opére librement dans
- M—{xo, x;}.

b) Les représentations de G qu’elle induit dans les espaces tangents a M aux
points x, et x, sont équivalentes & « en tant qui représentations linéaires.

Remarque. Si G opére sur une sphére homotopique en laissant deux points fixes
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et librement dans le complémentaire de ces deux points, alors on a une o-sphére
homotopique pour une a convenable ([1]§ 3). (Voir aussi § 6.)

DEFINITION 2. Deux a-sphéres homotopiques M et N sont isomorphes s’il
existe un difféomorphisme de M sur N qui soit équivariant et compatible avec les
orientations.

DEFINITION 3. Deux a-sphéres homotopiques M et N sont G— h-cobordantes
s’il existe une variété W sur laquelle G opére et telle que son bord oW est réunion
disjointe de deux variétés V,, et V,, stables par G, qui sont des rétractes par déforma-
tion de W, et qui admettent des difféomorphismes équivariants f,: Vo> Metf,:V,>N

fo conserve I'orientation et f; change I’orientation.
ou Il est évident que deux a-sphéres homotopiques isomorphes sont G — h-cobordantes.

LEMME 1. La relation de G — h-cobordisme est une relation d’ équivalence.
La démonstration suit la méme marche que dans le cas classique, compte tenu du
lemme suivant relatif & I’existance d’un collier équivariante.

LEMME 2. Soit W une variété et soit V=0W. Supposons que G opére sur W.
Alors il existe un voisinage U de V dans W et un difféomorphisme f :U—-V x [0, 1]
tel que f (y)=(»,0) si yeV, et pour tout xeU et tout geG, f(x)=(y,t) implique
f(gx)=(gy, 1).

Démonstration. Voir [4] theor. 21.2.

LEMME 3. Soir M une a-sphére homotopique et soient x,, x, les points fixes de
M. Soient T, et T, les espaces tangents a M dans x, et x, respectivement. Alors il
n’existe aucun isomorphisme linéaire équivariant de T, sur T, qui soit compatible avec
les orientations. (C’est-a-dire, les représentations induites de G dans T, et T; ne sont
pas équivalentes sous GL* (m, R), groupe de matrices a determinant positif.)

Démonstration. Soient W,, W, voisinages disjoints de x,, x, stables par G et difféo-
morphes de fagon équivariante a la boule B™ (sur laquelle G opére au moyen de a).
Soit V,=0W, et V, =0W,. Orientons V;, et ¥; comme bords de W,, W,. On sait que
'adhérence W de M — (W, u W,) est un h-cobordisme entre V, et V. (Cf. [8]§9.)
Donc, W est une sphére homologique de dimension m—1. La suite spectrale des
espaces avec un groupe fini d’opérateurs ([2] exp. 12) appliquée a V,, V;, W nous
donne des homomorphismes surjectifs

Qa:H" "' (Vo, Z) > H"(G,Z) (a=0,1)
@:H"" Y (W, Z)- H"(G, Z)

et H™(G, Z) est cyclique d’ordre égal a l'ordre de G.
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Soient i,: V,— W les inclusions (a=0, 1). Comme elles sont équivariantes il resulte
de la fonctorialité de la suite spectrale le diagramme commutatif’:

H"(G, Z)

v

/ . I Pa
H™ (W, 2)—LSH"'(V,,Z) (a=0,1)

Mais il est facile de prouver que si pu,e H" '(V,, Z) est la classe fondamentale de
Va (a=0, 1) alors:

(10)™ " (o) = — (i) ™" (ma).

Donc, ¢q(1e)= —¢,(1,). Ceci implique qu’il n’existe pas de difféomorphisme équi-
variante de ¥V, sur V; qui conserve I'orientation, parce que dans ce cas on aurait aussi
©o(to)=®; (1), donc 2¢4(11,)=0 ce qui contredit le fait que G est d’ordre impair et
#1. Le lemme s’en suit immédiatement.

Il résulte du lemme 3 qu’on peut distinguer ’'un de I'autre entre les deux points
fixes d’'une a-sphére homotopique.

On adoptera dorénavant la notation suivante: Si une a-sphére homotopique est
representée par une lettre capitale telle que M, les deux points fixes seront designes par
la minuscule correspondante m affectée des indices 0, 1, ou m, est le point ot la represen-
tion tangente de G est équivalente a a par un isomorphisme compatible avec les orien-
tations, en supposant R™ muni de I’orientation canonique.

DEFINITION 4. Soient M et N deux a-sphéres homotopiques. Alors la somme
connexe M # N est une a-sphére homotopique obtenue de la fagon suivante:
On choisit deux plongements équivariants et compatibles avec les orientations:

fi:B">—-M et f,:B"> N
(le lemme 3 donne f;(0)=m; et f,(0)=n,). On considére la somme disjointe

et on prend le quotient par l'identification de f,(tu) avec f,((1—¢)u) pour tout
ueS™ et tout £,0<r<1.
On doit prouver que cette opération est bien définie. Ceci résulte du lemme suivant.

LEMME 4. Soit X une variété sans bord laquelle G opére. Supposons que Xo€X
est un point fixe et qu'il existe deux plongements équivariants f, g: B"—»X compatibles
avec les orientations tels que f(0)=g(0)=x,. Alors il existe un difféomorphisme équi-
variant h de X sur X qui conserve I’orientation tel que hof =g.
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La démonstration est analogue a celle du lemme de Palais-Cerf dans [10] et [11].
11 suffit d’utiliser le lemme suivant.

LEMME 5. Soit
H = {xeGL(m, R) | xa(g) = «(g) x pour tout geG}.

Alors H est un sous-groupe connexe de GL(m, R).

Démonstration. En décomposant R™ en ses composantes irréductibles on peut
écrire R"=W,@---@ W, comme R[G]-module, ou chaque W, est somme de compo-
santes irréductibles isomorphes et W;, W, ne contiennent pas de composantes irréduc-

tibles isomorphes pour i#j. Alors Homg(W;, W;)=0 pour i#j par le lemme de Schur
et donc

Endg(R™) = Endg(W,) @+ ® Endg (W)
Alors
H = U (Endg(W))) x -+ x U(Endg (W)

ou U indique le groupe des unités de 1’algebre. 11 suffit donc, pour prouver le lemme,
de prouver que U(Endg(W))est connexesi W=V ®-"-®V ol ¥ est un R[G]-module
irréductible tel que G opére librement sur ¥ —{0}.

De nouveau par le lemme de Schur on sait que Endg (V) est un corps gauche K ou
K=R, C ou H. Alors U(End(W))= GL(r, K). 1. suffira donc de prouver que K# R.

Comme G est d’ordre impair on sait qu’il est métacyclique; c’est-a-dire qu’il
contient un sous-groupe cyclique normal G, tel que G/G, est cyclique. Soit g, un
générateur de G, et g, un générateur de G modulo G,. Soit G, le sous-groupe de
G engendré par g,.

Soit V=V,®--- @V, la décomposition de V" en facteurs irréductibles sur R[G,], en
regroupant les composantes isomorphes. G; opére de fagon transitive sur {V,,..., V;}
et on peut supposer g; (V,)=V;. L’endomorphisme f: V- V défini par f|V;=g' g, g1’
est un G-endomorphisme et donc Endg(¥)# R parce qu’il contient f qui n’est pas la
multiplication par un scalaire.

LEMME 6. Si M, M', N, N', sont des a-sphéres homotopiques, M G — h-cobordante
avec M' et N G — h-cobordante avec N', alors M # N est G — h-cobordante avec M' # N'.
La démonstration est analogue a celle de [7] compte tenu du lemme suivant.

LEMME 7. Soit W un G — h-cobordisme entre deux o-sphéres homotopiques M et
N. Alors I’ensemble F des points fixes de G dans W est la réunion disjointe de deux sous-
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variétés F, et F, difféormorphes a [0, 1] telles que 0F,={mg, no} et OF, ={m,, n,} et G
opére librement dans le complémentaire de F.

Démonstration. Evidemment F est une sous-variété fermée de W et OFcoW. Soit
g€ G d’ordre premier p # 1. Alors, comme W est une sphére cohomologique de dimen-
sion m, H*(F,, Z,)=Z,0u H*(F,, Z,)=Z,®Z, (F,={xe W|gx=x}). ([16] chap. Il
§4.)

Dans le premier cas F, serait connexe ce qui est impossible parce que {m,, m,, n,,
n,} < F,. Donc, F, posséde deux composantes connexes F, et F,, et dim(F;)=dim(F,)
=1. G opere sur la variété topologique W'’ obtenue de W en identifiant M a un point
a et N a un point b. 1l est facile a voir, puisque W—(MuUN) s’applique homéomorphi-
quement sur W’ —{a, b}, que W' est une sphere cohomologique sur Z, de dimension
m+1. Donc ’ensemble de points fixes pour g dans W', qui est I'image de F,, est aussi
une sphére cohomologique sur Z,. Supposons 0F, ={my, m,}. Alors OF, ={ny, n,} et
Iimage de F dans W' serait la réunion disjointe de deux cercles, ce qui ne peut pas
étre une spheére cohomologique sur Z,. Donc, par [16] chap. Il § 4, on a 0F,n M #0
et 0OF, N N#0.

Posons 0F,={u, v}. Alors, comme I’action d’un groupe fini au voisinage d’un
point fixe est équivalente & une action linéaire, les représentations induites du sous-
groupe engendré par g dans les espaces tangents & M dans u et & N dans v sont équi-
valentes par un isomorphisme qui conserve I’orientation. Donc, on peut supposer par
exemple 0F,={my, ny} et OF, ={m,, n,}.

F est une sous-variété fermée de F, qui contient des voisinages de m,, m,, ng, 1.
Donc, F=F,. Il reste & prouver que G opére librement dans W—F. Soit geG, g#1 et
supposons gx = x pour un xe W. Soit k 'ordre de g et soit p un diviseur premier de .
‘Alors g'=g"'? est d’ordre premier et, d’aprés ce qui précéde, F,'=F. Mais g'x=
g"Px=x, ce qui implique xeF.

PROPOSITION 1. L’opération de somme connexe de a-sphéres homotopiques passe
au quotient par la relation de G — h-cobordisme et définit un groupe qui sera noté 0,,(2).
L’élément neutre est la classe de la sphére S™ sur laquelle G opére au moyen de la
représentation B:G—S0(m+1) ot

pe= (" 1)

pour tout geG. L'inverse de M est — M. (Ceci se prouve comme dans [7]). On a un
- homomorphisme évident

0, (x)- 06,
ou O,, est le groupe défine dans [7].
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2. Le G — h-cobordisme en dimension > 6.

On conserve les notations et conventions du § 1. On supposera toujours dans ce
paragraphe que G est un groupe cyclique. On appellera G-variété une variété sur
laquelle G opére. On appellera isomorphisme entre deux G-variétés a un difféomor-
phisme équivariant de I'une sur 'autre. Si M est une G-variété, on considérera
M x I (I=[0, 1]) comme G-variété au moyen de

g(x,t)=(gx,t) pour geG,xeM et 0<t<1.

R™, B™ et S™ ! seront considérées comme G-variétés au moyen de la représentation o.
La démonstration du lemme 1 ci-dessous est analogue a celle du lemme 6.1 de [17].
Le lemme 2 est un corollaire du lemme 1.

LEMME 1. Soit M une G-variété compacte. Soit W un voisinage ouvert stable de
M x {0} dans M x1I et soit f:W—M xI un plongement équivariant qui est I'identité
sur M x {0}. Alors, il existe un plongement équivariant g: W— M x I qui est I'identité

dans un voisinage de M x {0} et qui coincide avec f dans un voisinage du complémentaire
de W.

DEFINITION 1. Soient V, V' deux G-variétés et soient f, g: V-V’ deux iso-
morphismes. On dira que f et g sont G-pseudo-isotopes s’il existe un isomorphisme
h:VxI-V'xI tel que h(x, 0)=(f(x), 0) et h(x, 1)=(g(x), 1) pour tout xe V.

LEMME 2. Soient X, Y deux G-variétés. Supposons que X=X, X, ot X, et X,
sont des sous-variétés stables de X, de la méme dimension qui X, d’intérieurs disjoints,
et telles que Xon X, n(0X)=0. Supposons donnée une décomposition analogue de
Y:Y=Y,0Y,. Soient V=X,n X, et V'=Y,nY,. Soient f:Xy,—Y,, g:X,—Y, deux
isomorphismes tels que f ] V et g| V:V—-V' soient G-pseudo-isotopes. Alors on peut
modifier f et g au voisinage de V de facon a ce qu’ils se recollent et donnent un isomorphis-
me de X sur Y.

On se propose maintenant de définir la torsion d’'un G —hA-cobordisme.

Soit W un G —h-cobordisme entre les a-sphéres homotopiques M et N, avec
dim(W)=m+12>7. D’aprés le lemme 7 du § 1, 'ensemble des points fixes de W est
la réunion disjointe de deux sous-variétés F,, F; de dimension 1 et 0F,={my, ny},
OF; ={m,, n,}; et G opére librement dans W—(F, U F,). Soit W, un voisinage tubu-
laire stable de F, isomorphe a F,x B™. Soit T,c W, l’espace fibré en sphéres
correspondant, isomorphe & F, x S™ 1. On définit de méme W, et T, pour F,, et on
suppose W, W; =0. Soient

U0=WonM V0=W0('\N U1=W10M V1=W10N
M’ = M — ((int(Ug) U (int(U,)
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W, =(W - (Wou Wl))UTouTl

Il est facile devoir que M —{m,, m} est rétracte par déformation de W—(F,UF,).
Comme la paire (W', M’) est rétracte par déformation de la paire (W —(F,UF,),
M —{mgy, m,}) on a que M’ est rétracte par déformation de W’. Donc, W' = W'|G est
un h-cobordisme relatif entre les variétés 3 bord M’=M’/G et N'=N'/G (relatif veut
dire qu’il est trivial entre les bords de M’ et N'). Soit

1 =1(W’, M')e Wh(G)
la torsion de cet A-cobordisme [9].

DEFINITION 2. Cet élément 1e Wh(G) sera appéllé la torsion du G — h-cobor-
disme et sera noté 75(W, M). En effet, on a le

LEMME 3. L’élément t de Wh(G) ainsi défini ne dépend pas du choix des voisi-
nages tubulaires de F, et F,.

Démonstration du lemme 3. Le lemme 3 se déduit facilement du lemme suivant.

LEMME 4. Soit f:R™ x I R"™ x I un plongement équivariant, compatible avec les
orientations, tel que

f(0,1)=(0,1),0<t <1
et soit €>0. Alors, il existe un isomorphisme g: R™ x I-R"™ x I et un 6 >0 tels que

a) g(x,t)=(x,t) si [x|>¢
b) gof(x,t)=(x,1) si [x|<$.

Démonstration. Observons d’abord que si Ae GL(m, R) ne posséde pas la valeur
propre 1, alors la matrice

X 0
(Y 1)eGL(m + 1, R)

(ot XeGL(m, R), Y est une matrice 1 xm et 0 est une matrice m x 1, commute avec
A 0\ . .

(0 1) si et seulement si Y=0 et X commute avec 4. Alors, tenant compte du lemme

- 5du § 1, le lemme 4 peut se démontrer par des raisonnements tout a fait analogues a

ceux de [10) § 5.

LEMME 5. (W, M)=14(W, M’).
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Démonstration. Voir [9] § 10 et observer que dim W =0 mod2.
LEMME 6. Si 15(W, M)=0 et dim M >6, alors M est isomorphe a N.

Démonstration. Par le théoréme du s-cobordisme, voir [18] et [19], on a un
difféomorphisme F: W’'— M’ x I. Cet difféomorphisme se reléve en un isomorphisme
F:W’'—M'x I qui donne par restriction un isomorphisme

f:M' - N'.
Les isomorphismes W, F, x U, et W, = F, x U; nous induisent desisomorphismes
g:U—>V, i=01.
Par construction il existe un isomorphisme
@: Ty — 0Uy x I

tel que @(x)=(x, 0) si xedU, et ¢(x)=(f""(x), 1) si xedV,; et un isomorphisme
W:Ty— Uy x I

tel que ¥(x)=(x, 0) si xedU, et ¥(x)=(go ' (x), 1) si xedV,. Alors, I'isomorphisme
QoW 10U, x I »0U, x I

nous dit que f ~!og, | 0U, est G-pseudo-isotope a I'identité. Donc, f | oU, est G-pseudo-
isotope a g, |0U,. De méme, f |0U, est G-pseudo-isotope & g, | 0U;. Par le lemme 2 on
peut modifier convenablement f, g,, g, de fagon a ce qu’ils se recollent et donnent un
isomorphisme de M sur N.

LEMME 7. Si t est un élément de Wh(G) et M est une a-sphére homotopique de
dimension > 6, il existe un G — h-cobordisme (W; M, N) tel que t=14(W, M).

Démonstration. Soient U,, U; des voisinages stables de m,, m, respectivement,
isomorphes & B™ et disjoints. Soit M’ 'adhérence de M —(U,u U,). Soit M'=M'/G.
Par le théoréme de Stallings [9] th. 11.1 il existete un A-cobordisme relatif (W’; M’,
N’) tel que ©(W’, M’)=1. Soit W’ le revéiement universel de W’'. On a des plonge-
ments équivariants évidents

g:oUxI-W i=0,1
tels que g; (x, 0)=x pour tout xedU,, i=0, 1. Alors il est facile de voir que
W =W'U,, (0U, x I)u,, (0U; x I)

est le G — A-cobordisme cherché.
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Rappel de notations
a) S™ est considérée comme G-variété au moyen de la représentation

g-—-)(agg) (1)) pour tout geG.

b) Si W est un G —h-cobordisme entre M et M’ on écrira (W; M, M").

LEMME 8. Soit .7 I’ensemble des 7e Wh(G) qui sont la torsion des G — h-cobor-
dismes (W; M, M) tels que M et M’ sont isomorphes a S™ (m>6). Alors 7 est un
sous-groupe de Wh(G) qui contient 2- Wh(G).

Démonstration. Soient (W; M, M')et (W;; N, N’) deux G —h-cobordismes tels que
M=M'=2N=N"=S™

Montrons d’abord que J est un sous-groupe. Soit f: M’'— N un isomorphisme.
Alors 1o(W, M) +16(Wy, N)=1(WuU W, M).

Soit (W,; M, M;) un G — h-cobordisme tel que t5(W,, M)= —15(W, M) (lemme
7). Soit g: M— M l’application identique. Alors 74(— WU, W,, M;)=0 (lemme 5).
Donc, My~ — M'~S™ (lemme 6).

On a prouvé que .7 est un sousgroupe de Wh(G).

Soit teWh(G). Soit (W; M, N) un G-—h-cobordisme tel que M==S™ et
16(W, M)=1 (lemme 7). Soit g: N— N I'application identique. Alors

16(Wu, — W, M) =21.
Donc,  52. Wh(G).

LEMME 9. Soient (W; M, N) et (X; K, L) deux G- h-cobordismes entre des
a-sphéres homotopiques. Alors,

TG(W # X,M # K)= TG(W, M) “I" Tg(X, K)

(La somme connexe W# X se fait le long des composantes des points fixes reliant 7,
avec n, et k, avec /).

Démonstration. On fait pour W et X la construction qui précéde la définition 2.
On obtient des h-cobordismes relatifs (W’; M’, N') et (X'; K’, L) sur lesquels G
opére et qui donnent au quotient des A-cobordismes relatifs. Alors on voit que le s-co-
bordisme relatif correspondant 3 W# X est de la forme

Wuou,X'; Mu,K, Nu,L)

ol festun difféomorphisme équivariant convenable et g, et g, sont des restrictions de f.
Soit (Ty; 8U,, 8V;) comme dans la construction qui précéde la définition 2. On a



Actions de groupes finis sur les sphéres 415

alors la suite exacte:

0 Cy (T, U3 Z)» C(W', M'; Z) ® Co (X', K'; Z)
—C(W U X', M' U, K'; Z) >0

ou C, indique les chaines d’une décomposition cellulaire convenable invariante par G.
Comme (T;/G; 0U,/G, dV,/G) est par construction un kA-corbordisme trivial, le théo-
réeme 3.1 de [9] nous donne

(W v, X)[G, (M’ U, K')[G) = t(W'|G, M'|G) + ©(X'[G, K'[G). c.q.fd.

LEMME 10. Si m=>6, alors, pout toute a-sphére homotopique M, M# S™=>= M et
M#—-M=S".

Démonstration. La premicre assertion est triviale et vaut pour tout m. Soit
f:B"->M

un plongement équivariant compatible avec les orientations. Alors, par définition:
Mt =M= (M= f(B") Uy — (M — £ (5)

ol B"=B"—-S" et g:f (S™ ') f(S™ ') est application identique.
Mais, puisque tout h-cobordisme entre des espaces lenticulaires est trivial [9]
cor. 1213, on voit immédiatement que M —f (B™)=B™. Donc,

M#—M=B"U,B"=S"

ol h:S™ 1 85™1 est ’application identique.

PROPOSITION 1. Soit E=Wh(G)/ (voir lemme 8). Soit M une a-sphére homo-
topique de dimension =6. Pour chaque a-sphére homotopique N G — h-cobordante avec
M soit o(N) I'image dans E de t5(W, M)e Wh(G), ot W est un G — h-cobordisme entre
M et N. Alors,

a) o(N) ne dépend que de N.

b) Si N’ est une autre o-sphére homotopique G — h-cobordante avec M, alors
o(N)=0o(N") si et seulement si N<N'.

c) Si ge& alors il existe une a-sphére homotopiqgue N G — h-cobordante avec M
telle ¢(N)=o0.

Démonstration. (cf. [9] § 11). Soient (W; M, N) et (W’'; M, N) deux G — h-cobor-
dismes. Soit f: N— N I’application identique. Alors W;=Wu,— W’ est un G— h-co-
bordisme entre M et M et tg(W;, M)=15(W, M)+16(W', M). Soit Wo=Mx1 le
G — h-cobordisme trivial. Alors

TG(WI # Wo, M # - M) = TG(WI’ M)
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d’apres le lemme 9. Alors t5(W;, M)e 7, puisque M# — M=S™ (lemme 10). Comme
Z est un 2-groupe (lemme 8) on a prouvé (a). Supposons a(N)=a(N’). Soient (W,
M, N) et (W'; M, N') G—h-cobordismes. Soient t=15(W, M) et t'=15(W’, M),
Alors t—1'eZ. Soit (W;; S™, S™) un G —h-cobordisme tel que to(W,, S™)=1—1'.
Soit W, = M x Ile G — h-cobordisme trivial et soit W, = W, # W, - W, est un G — h-cobor-
disme entre M et M et 1(W,, M)=1—1’ (lemmes 9 et 10). Soit finalement (W;; M, P)
un G —h-cobordisme tel que t(W;, M)= —1 (lemme 7). Alors le G—h-cobordisme

- WyuW,u W’
est de torsion nulle. Donc, N’ =~ — P. D’autre part le G— h-cobordisme
- W3 v W

est aussi de torsion nulle et donc N= — P. Finalement, N N'. La partie (c) se déduit
du lemme 7.

COROLLAIRE 1. Si m>=6 les classes d’isomorphismes des a-sphéres homotopiques
forment un groupe avec I’opération de somme connexe. Le noyau de I’homomorphisme
naturel de ce groupe sur ©,,(a) est un sous-groupe central isomorphe a E; il est, donc,
fini et de 2-torsion.

Démonstration. 11 suffit d’appliquer les lemmes 8 et 10, la proposition 1 et le fait
que Wh(G) est de type fini.

COROLLAIRE 2. Il v’y a qu'un nombre fini de a-sphéres homotopiques non-iso-
morphes et G—h-cobordantes a une a-sphére homotopique donnée M. Ce nombre ne
dépend pas de M.

PROPOSITION 2. Supposons que G=Z5 opére sur B™*, m> 6 et soit F I'ensemble
des points fixes. Supposons que I'ensemble FnS™ est constitué par deux points. Alors
Iaction induite de G sur S™ est différentiablement équivalente & une action linéaire.

Démonstration. Par un raisonnement tout a fait analogue a celui de la démonstra-
tion du lemme 7 du § 1 on prouve que F est connexe et de dimension 1. Soit peF,
péS™. 1l existe un voisinage stable U de p, disjoint de S™, difféomorphe & B™*! et sur
lequel I'action de G est différentiablement équivalente & une action linéaire. Soit
- ¥=0U. V est une a-sphére homotopique et S™ aussi, par [1] § 3, et pour le méme .
Alors si on enléve de B™" I'intérieur de U on obtient un G — h-cobordisme entre Vet
S™. Mais, d’aprés [20], on sait que Wh(Z;)=0. Alors, par le lemme 6, S™ est iso-
morphe a V, c.q.f.d.
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3. o-sphéres homotopiques qui sont des bords des G-variétés parallélisables

On conserve les notations des paragraphes précédents. Si (X, Y) est un couple
d’espaces compacts (¥ = X) alors on dénote avec ng(X, Y)=ng(X/Y) le n-iéme groupe
de cohomotopie stable de X/Y (on convient, comme d’habitude, que si Y est vide
alors X/Y est la somme disjointe de X et un point). On sait que 7§ est une cohomo-
logie généralisée avec ng(point)=]]_, (ou []; dénote le j-iéme groupe d’homotopie
stable des sphéres). On dénote 7§ la cohomotopie réduite. [24]

Dans tout ce qui suit G sera un groupe fini d’ordre impair quelconque. On appelera
G-variété une variété différentiable sur laquelle G opére différentiablement. On dira
que deux telles variétés sont isomorphes s’il existe un difféomorphisme équivariant de
I'une sur P’autre. Si X est une G-variété on notera X I’espace X/G. Si G opére librement
sur X on supposera X muni de la structure différentiable quotient. Si G opére librement
dans le complémentaire de I’ensemble des points fixes on dira que X est une G-variété
semilibre.

On va maintenant introduire quelques définitions utiles par la suite. On supposera
toujours que G opére sur R™** et S™**~1 par les extensions triviales de .

DEFINITION 1. Un G-fibré est un fibré vectoriel réel sur lequel G opére par des
automorphismes de fibré vectoriel.

La base et I’espace total d’'un G-fibré sont des G-espaces et la projection est
équivariante.

DEFINITION 2. Deux G-fibrés sont isomorphes s’il existe un isomorphisme
équivariant de 1'un sur P'autre. (On supposera toujours que les deux G-fibrés ont la
méme base et que 'isomorphisme releve 1’identité de la base.)

DEFINITION 3. Un G-fibré de base X est a-trivial s’il est isomorphe au-G-fibré

X xR"™ 5 X (k=0)

oll G opére sur X x R™**par g(x, u)=(gx, a(g) u) pour tout geG, xe X, ue R"**, (On
dénote avec la méme lettre o la représentation de G obtenue par composition

G—S0 (m)—j>S0 (m+k), k=0, ou j est I'inclusion canonique).
Si X est un G-espace on notera n*(X) le G-fibré

X xRt X

oll G opére sur X x R* par g(x, p)=(gx, ) pour tout geG, xeX, ueR*

DEFINITION 4. Une G-variété W est o—s-parallélisable si t(W)®n*(W) est
a-trivial pour k assez grand.
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LEMME 1. Si W est une G-variété semilibre o — s-parallélisable de dimension n
alors I'ensemble des points fixes est de dimension n—m a moins qu’il ne soit vide.

Démonstration. En effet, si xe W est un point fixe alors T,(W)®R* (T, espace
tangent) est isomorphe & R™*! (m +I=n+k) comme G-espace. Donc, I'ensemble des
points fixes de T,.(W)@® R* est de dimension /=n+k —m. Alors, ’ensemble des points
fixes de T, (W) est de dimension n—m.

PROPOSITION 1. Soit M une a-sphére homotopique. Alors M admet un plonge-
ment équivariant dans la sphére S™** si k>m+1.

Démonstration. Dans ce qui suit a=0, 1. Soit U, un voisinage de m, dans M stable
par G et isomorphe 2 la boule ouverte B™. Soit W, le correspondant de la boule fermée
de rayon } dans cet isomorphisme. Supposons Uy, U, =@. Soit V,=0W,. Soit W
I’adhérence de M — (W, U W,). W est stable par G et OW=V,U V.

Soient f,: U,—»S™ des plongements équivariants compatibles avec les orientations
et tels que /o, (Up) nf; (U;) =0 (voir lemme 3 du § 1). Soit X le sous -ensemble ouvert de
S™*k ol G opére librement, formé par les points dont les m premiéres coordonnées
ne sont pas toutes nulles. Les plongements équivariants:

farUs— {ms} > X

passent au quotient et donnent des plongements
fo: Og— {m} > X

(on suppose toujours S™<S™*¥). Soit §,=F,| Va.

LEMME 1. Ul existe une application continue §:W—X telle que g[ V,=g.
Admettons ce lemme. On peut évidemment supposer que g coincide avec f, au
voisinage de V. Alors f, Uf, Ug est une application continue

i — {mg, iy} - X

qui est un plongement au voisinage de W, u W,. Puisque k>m +1, il existe un plon-
gement fi: M — {m,, i, }— X qui coincide avec f, au voisinage de W,. Comme W, — {0}
est un rétracte par déformation de M — {m,, m, }, il existe un relévement s: M — {mg, m}
— X de h tel que & coincide avec f, dans W,—{m,}. Il est facile de voir que / est
un plongement équivariant.

Les applications 4 et f; restreintes 3 W, —{m,} sont équivariantes et induisent la
" méme application par passage au quotient. Alors on a que A=tf; sur W; — {m,} ot
t est un élément du centre de G. Donc, puisque 4 coincide avec f; sur Wo— —{mo} et
avec tf; aur W, —{m,}, h s’étend a un plongement équivariant de M dans Smk,

I1 reste 3 prouver le lemme 1. Soit S,=£,(W,), S,cS™<S™** et soit W' I'adhé-
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rence de S™—(S, U S,). Alors W est un h-cobordisme entre ¥, et ¥, et W’ est un
h-cobordisme enter 85, et 85,. Soit a: ¥,— V/, induite par une rétraction par défor-

mation de W sur ¥, et analoguement f:05,-0S5,. On a le diagramme homotopique-
ment commutatif':

~
~ 80 ~

V()""’So

ou les fleches de droite sont les inclusions. Le triangle de droite est homotopiquement
commutatif parce que W’ <= X. Le carré est homotopiquement commutatif parce que
gioa et Bog, sont toutes les deux de degré — 1 (avec des orientations convenablement
choisies — puisque les f, conservent I’orientation) et compatibles avec les identifications
des groupes fondamentaux (cette derniére affirmation se prouve directement pour
m=2 et utilisant le fait que V, et 05, sont simplement connexes pour m>2). Alors on
applique [21] § 5.

De ce diagramme on déduit que g,:¥7,—X est homotopique a § oa:V,—X.
Evidemment I'application dW— X donnée par g, -asur ¥, et par g, sur V,, s’étend a
W. Comme elle est homotopique a I'application g, Ug, :0W— X, celle-ci s’étend aussi
a Wet le lemme est prouvé.

PROPOSITION 2. Soit M une a-sphére homotopique plongée de fagon équivariante
dans S™** k>m+1. Alors le G-fibré normal @ M est isomorphe & n*(M).

Démonstration. Comme I’action de G au voisinage d’un point fixe est équivalente
a une action linéaire, il est facile de voir qu’au voisinage de m, et m, il existe un champs
invariant (par I’action de G) de k-repéres normaux a M. Soient W,, W, des voisinages
stables disjoints de m,, m, dans M, isomorphes & B™, et sur lesquels il existe un
champ invariant de k-repéres normaux a M. Soient V,=0W,, V;=0W,. Soit W
Padhérence de M —(W,UW,). Soit E le fibré principal sur W associé au fibré
normal & M. G opére de fagon naturelle sur E. Soit Eg=FE | V,. Alors E est un fibré
principal sur W et £|V,=E,. Puisque ¥, est rétracte par déformation de W, tout
section de £, s’étend a une section de E. Donc, toute section invariante de E, s’étend
a une section invariante de E. On en déduit I’existence sur Wy, u W d’un champ in-

variant s de k-repéres orthonormaux normaux a M. Il en existe aussi un champ ¢ sur
W,. Soit

s(x)=t(x) f(x) pourtout xeV; ou
f:Vy - S0(k).
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Alors f satisfait f (gx)=f (x) pour tout xeV, et geG et définit une application

Pour prouver la proposition il suffit de prouver que f s’étend a h: W,—S0(k).
Parce qu’alors si /4 est la composition Wl——>W1—ﬁ>SO(k), s s’étend & M en prenant

s(x)=t(x) h(x) pour xe W,. Les obstructions a I’extension de f se trouvent dans
les groupes

H*Y(W,, 7, ; 1,(S0(K)) = H (¥, m,(50(k)))

pour 1 <i<m—1. (W, est contractil parce que W, est isomorphe & B™). Pour 1<i<
m—1 on a n;(S0(k))=r,;(S0) i-éme groupe d’homotopie stable du groupe orthogonal
qui est calculé dans [22].

Si1<i<m-—1, alors

H'(V,, n,(S0)) = H(G, n;(S0)).

Si i>1 est pair, n;(S0)=0, Z, et H (G, n;(50))=0 puisque G est d’ordre impair
([3] chap. XII § 2 cor 2.7).

Soit i>1 impair. Soit H un sous-groupe de Sylow de G. Comme G est d’ordre
impair et opére librement sur S™ !, H est cyclique d’ordre impair. ([2] exp. 13 §9.)
Donc, H'(H, n;(S0))=0, puisque =;(S0)=0, Z, Z, ([3] chap. XII § 7). Comme cela
vaut pour tout sous-groupe de Sylow de G on a H*(G, n;(S0))=0 ([3] chap. XII § 10).

Il reste seulement a calculer I’obstruction

fEHm(Wu 15 nm_l(SO)).

On sait que le fibré normal 4 M dans S™** est trivial ([7] th. 3.1 et lemme 3.3).
Donc, puisque W,u W est contractile, le champ s s’étend & un champ de reperes
orthonormaux normaux a M, défini sur tout M. Ceci implique f's’étend a une applica-
tion W, —S0(k). Alors 'image de & dans H™(W,, V;; n,,—,(S0)) est nulle. Mais on a
un diagramme commutatif

H" (Wi, V15 1 (S0)) > H™ 1 (P, 71 (SO))

! . !
H™(Wy, Vy; M- 1(S0)) > H™ 1 (Vy, 7,—1(S0))

et la fliécche de droite est injective parce que 7,,_,(S0)=0, Z, Z, et V,— ¥, est de degré
impair. Donc ¢=0, c.q.f.d.

© Soit M une a-sphére homotopique, soit /: M—S™** un plongement équivariant

et soit ¢ un champ invariant (sous ’action de G) de k-repéres normaux a f et cohérents

avec P'orientation de M. L’existence de f et ¢ est assurée par les propositions 1 et 2.

La démonstration de la proposition 1 nous dit aussi qu’on peut supposer f (Up) =S "
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et f(U;)=S™ pour des voisinages stables convenables U, et U, de m, et m,. La con-
struction de Pontrjagyn-Thom ([7] § 4) nous permet, dans ces conditions, de définir
un élément w(M, f, ¢)edts '(L,,—;) ot L,,_; =S™"'/G. En effet, elle donne une appli-
cation équivariante S™**— S* (o0 G opére trivialement sur S*) qui induit une applica-
tion S™**/G—S*. Mais S"*¥/G=2**1(S""!/G)=2***(L,,_,) ol X denote la suspen-
sion non-réduite. L’application X**!(L,,_,)—S* représente u(M, f, ¢).

Soit (M', f', ¢’) une triple analogue a (M, f, ¢). Choisissons des voisinages V, et
W, de m, et my dans S™** intersections de S™** avec des boules de I’espace ambiant
R™***1 Si on forme S™**#S™** A I'aide de V, et W, on obtient

Sm+k # Sm+k — Sm+k-

Mais si V; et W, sont assez petits, f et f’ induisent un plongement équivariant de
M#M' dans S™**# S™**k=85m** Ce plongement sera noté f # f’. D’autre part, on
voit facilement qu’on peut déformer ¢ et ¢’ au voisinage de V; et W, de fagon a ce
qu’ils se recollent et donnent un champ invariant @ # ¢’ de k-repéres normaux a
f#f'. On obtient donc un nouveau triple (M#M' f #f', o#¢') et

uM#M,f#f 0#¢)=puM, f,0)+uM,f, o).

Si — ¢ est le champ qu’on obtient en changeant le signe de la derniére composante
dep ona

H(—M’fa —¢)=_”(M>fa¢)'

Finalement la construction de Pontrjagyn-Thom implique que si (M, f, ¢)=0 alors
M=0W ou W est une sous-variété de B™***! stable par G, donc une G-variété,
semilibre, qui est o—s-parallélisable puisque son G-fibré normal est isomorphe a
n*~Y(W). En effet, si u(M, f, ¢) =0lapplication S™**/G— S* qui represente u(M, f, @)
s’étend au cone de S™**/G qui est homéomorphe & B"***1/G.

Soit J, le sous-ensemble de 75 '(L,,_) formé par les u(M, f, ¢) tels que M repré-
sente I’élément nul de ©,,(x). D’aprés ce qu'on vient de voir J, est un sous groupe
de &5 ' (L,—y).

PROPOSITION 3. La classe u(M) de u(M, f, ¢) modulo J, ne dépend que de la
classe de M dans ©,,(x) et

1:0,,(x) - fig ! (Lon— 1)1z

est un homomorphisme dont le noyau A () satisfait:

a) Toute a-sphére homotopique qui représente un élément de A, («) est bord d’une
G-variété semilibre o.— s-parallélisable.

b) Le groupe @, () A () est abélien fini.
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Démonstration. Si (M’ f', ¢') est une autre triple et M’ est G — h-cobordante
avec M alors

Il(M,f, (p)_ﬂ(M"f,a ¢’)=#(M#—M',f #f',(l? #"'QD’)EJa

puisque M # — M’ est G—h-cobordante avec S™.

Supposons u(M, f, ¢)eJ,. Alors u(M, f, ¢)=u(N, g, ¥) ou N est G— h-cobordante
avec S™. Alors,

p(M#—N,f #g,0#—y)=0

et, d’aprés ce qu’'on a dit plus haut, M# — N est bord d’une G-variété semilibre
o—s-parallélisable. Du fait que N est G—h-cobordant & S™ on déduit M# — N est
G —h-cobordante avec M; donc P’assertion (a). L’assertion (b) résulte du fait que
s ' (L,,—;) est abélien fini.

PROPOSITION 4. Supposons que G opére sur S™ de fagon semilibre avec exacte-
ment deux points fixes. Supposons que I'ordre de G est premier avec I'ordre de | [; pour
1 <j<m. Alors il existe une variété parallélisable W avec 0W=S"™ et telle que I’action
de G sur S™ se prolonge a action semilibre de G sur W.

Démonstration. D’abord, ’action de G sur S™ définit une a-sphére homotopique
M pour o convenablement choisi ([1] § 3). On notera M, la a-sphére homotopique
S™—munie de I'action de G donnée par a et fo:My—S™* (k>m+1) linclusion
canonique. Soit f : M—S™** un plongement équivariant et soit ¢ un champ invariant
(sous I’action de G) de k-reperes normaux a f. Si on oublie ’action de G on peut
associer au triple (M, f, ¢), par la construction de Pontrjagyn-Thom classique, un
élément p’ (M, f, p)€[ [ .. Alors p’ (M, f, ¢) est I'image de p=pu(M, f, ¢) par I'appli-
cation naturelle

p 18 (Lp-y) = s 1 (S"1) = I

induite par p:S™ 1L, _,, la projection canonique. On sait ([7] § 4), puisque M est
difféomorphe 4 S™, que u’ (M, f, ¢)=u’ (Mo, fo, Po) Ol @, est un champ de k-reperes
normaux 3 M,. Mais par le lemme 2 ci-dessous, on peut choisir ¢, invariant sous
Paction de G. Donc, po=u(M,, fo, @,) est défini et p* (i) =p* (u,). Par le lemme 3 ci-
dessous on en déduit u=p,. Donc, M# — My~ M est bord d’une G-variété semilibre
o —s-parallélisable, c.q.f.d.

LEMME 2. Toute application f:S™—S0(k) (k>m+1) est homotopique & une
application équivariante. (G opére trivialement sur S0(k).)

Démonstration. Soit M le «mapping cylinder» de la projection canonique S
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S™/G. Alors S™ < M et il suffira de voir que f's’étend a F: M—S0(k). Les obstructions
a l’extension appartiennent a

H*Y (M, S™; =;(SO0(k))) j=>1.

On va prouver que ces groupes sont nuls pour tout j>1. Observons d’abord que,
puisque S™—S8™/G est une application de degré impair, la restriction

H™(M, =n;(S0)) » H™(S™, m;(S0))

est injective pour j=m— 1 (puisque =,,_, (S0)=0, Z,, Z) et bijective pour j=m (puis-
que 7,,(S0)=0, Z, étant donné que m est pair). Alors, par la suite exacte de cohomo-
logie de la paire (M, S™) on obtient

H/*Y(M, S™; n;(SO(k))) = H'* ' (M, n;(SO(k))) si j#m—1
et
H™(M, S™ n,,_,(S0(k))) =0.
Mais
H/*Y (M, n;(SO0(k)) = H'"(S™G, n;(S0(k))) = H(L,— 1, 7;(SO(K)))

(puisque S™/G=2(L,,-,)) pour tout j>1.
Sij>m—1,

H/(L,,—, n;(SO(k)) =0.
Sij<m-—1,
HY(L,, -4, n;(SO(K))) = H' (G, ;(50)).

Mais on a vu au cours de la démonstration de la proposition 2 que H’(G, x;(50))=0
pour tout j, c.q.f.d.

LEMME 3. Si G est d’ordre premier avec I'ordre de [ ];, 1 <j<m, alors

p*in5  (Lp—y) > 75 ' (8" ) =T11n

est injective.

Démonstration. 11 faut prouver que si f:S™**—S* est équivariante, ol G opére
trivialement sur S*, et si f admet une extension & B™***! alors f admet une extension
équivariante 3 B"***!, On rappelle que pour tout G-espace X on note X=X/G
Pespace quotient.

Soit

f:§m+k“" Sk
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application induite par f. 11 suffit de prouver que fs’étend a B™****, Soit X = Bm+k+1
et Y=S™%k Y est un souspolyédre de X et X est contractile. Les obstructions a I’ex-
tension de f appartiennent a

HHI(X, Y; ni(S")) = Hi(Y, ”i(Sk))

pour i>1.

Si Z est un espace topologique compact sur lequel G opere et 2(Z) est la suspen-
sion (non-réduite) de Z, alors G opere sur Z(Z) et 2(Z)/G est canoniquement homéo-
morphe & 2(Z/G). Or, S™**=2**1(§™~!) comme G-espaces. Donc, Y=Z**1(§"-1),
Alors

Hi(Y, ﬂi(Sk)) — Hi—k—l(S’m—l, ﬁi(Sk))
pour i>k+1 et
H'(Y, n,(8%)=0

pour O0<i<k+1.
Soit k+1<i<m+k. Alors

ni(Sk) = n(i—k)+k(Sk) = Hi—k
puisque k>m+1> (i—k)+1. Mais comme i—k—1<m—1,
Hi_k_l(sm_la Hi-k) = Hi"k_l(Gs Hi—k)'

Par I’hypothése sur 'ordre de G on a H'"*"1(G, [];-,)=0.
Pour i>m+k, H ¥ 1(§™1, n,(S%))=0.
Il reste ’obstruction

éEHm+k+1(X, Y, Hm)'
Puisque, par hypothése, f s’étend & B™+**1 ¢ va 4 zéro par I'application
p:H"'H‘H(X Y I‘I )_)Hm+k+1(Bm+k+l Sm+k H )

Mais on a le diagramme commutatif’

Hm+k+1(X, Y, Hm) _: Hm+k(Y, Hm) _:; Hm—l(gm— 1’ Hm)
Ip . ! . !
Hm+k+l(Bm+k+ 1’ Sm+k, Hm)_')Hm+k(Sm+k9 Hm) ___)Hm—-l(sm—l’ Hm)

La derniére fléche est injective parce que S™ 1—8™~1 est de degré égal a V'ordre
de G, qui est premier avec l'ordre de [],,. Donc, p(£)=0 implique ¢=0.
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4. Réduction de ’ensemble des points fixes
On conserve les notations introduites au § 3. G sera supposé seulement fini.

DEFINITION 1. On dit qu'une G-variété «— s-parallélisable W est repérée si
elle est munie d’un isomrphisme différentiable de (W) @ n*(W) avec le G-fibré
a-trivial type de dimension égale & dim W +k, pour k assez grand. Si W est orienté on
suppose le repérage compatible avec I’orientation.

LEMME 1. L’ensemble des points fixes d’une G-variété a— s-parallélisable repérée
semilibre W est une variété repérée et son fibré normal dans W est o-trivial.

Démonstration. Soit F I’ensemble des points fixes de W (on sait, par le lemme 4 du

§ 3, que dim F=dim W —m) et soit xe F. Alors le repérage de W donne un isomorphis-
me de G-espaces vectoriels

R"®R'=R"™ ST, (W)@ R = N, (F)® T, (F) ® R*

(dim W+k=m+1) (T, espace tangent; N, espace normal). Comme I’action de G sur
R™—{0} et sur N (F)— {0} est libre, et triviale sur R' et T,,(F)@® R, cet isomorphisme
se décompose en deux isomorphismes:

RST,(F)®R* et R™ N, (F).
Le premier donne le repérage de F et le second donne la a-trivialisation du G-fibré

normal v(F).

DEFINITION 2. Dnas les conditions du lemme 1, on notera r(W)€ [gim w-m
la classe de cobordisme repéré de la réunion des composantes connexes sans bord de
I'ensemble des points fixes de W.

LEMME 2. Si r(W)=0 alors il existe W’ o—s-parallélisable semilibre telle que
OW=0W' et I'ensemble des points fixes de W' ne contient aucune composante connexe
sans bord.

LEMME 3. Soient W, W' deux G-variétés semilibres o — s-parallélisables repérées
telles que M=0W et M'=0W' soient des a-sphéres homotopiques. Soient:
f:B" W et g:BT oW
des plongements orientés équivariants, ou

B = (xeB"*! | x = (X1, Xn) @vEC X, >0},
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Soit
But = {xe BT x| < 1}
et soit .
W W =W-—f(BY") Vg1 (W —g(BT)
Alors 0(W# W)= M# M’ et on peut modifier les repérages de W et W' au voisinage de

F (BT et g(B%G*') de fagon & qu'ils se recollent et donnent un repérage de W# W',
En particulier, W# W' est a—s-parallélisable repérée et

r(W # W) =r(W) +r(W).

LEMME 4. Soit M une a-sphére homotopique qui est le bord d’une G-variété
o—s-parallélisable semilibre. Alors M est le bord d’une G-variété semilibre o — s-paral-
lélisable repérée W telle que r(W)=0.

Si W est une variété a—s-parallélisable semilibre dont le bord est une a-sphére
homotopique alors ’ensemble des points fixes de W est de dimension 1 (lemme 1 du
§ 3) et composé d’un arc qui relie les deux points fixes du bord et de plusieurs compo-
santes connexes difféomorphes 4 S'. Alors les lemmes 2 et 4 impliquent immédiate-
ment la:

PROPOSITION 1. Supposons G d’ordre impair. Alors tout élément de A ()
(voir prop. 3 du § 3) est la classe d’une a-sphére homotopique qui est le bord d'une
G-variété o—s-parallélisable semilibre dont I’ensemble des points est difféomorphe &
[0, 1}.

Démonstration du lemme 2. On va introduire une construction générale sur une
G-variété o — s-parallélisable W.

Soit V<= W une sous G-variété de la méme dimension telle que VoW =0. V est
alors une G-variété o — s-parallélisable repérée (par restriction) et son repérage induit
un repérage de dV. Soit V' une G-variété o— s-parallélisable repérée (de la méme
dimension que V et W) et soit f:0V -0V’ un isomorphisme compatible avec les
repérages. Alors la G-variété

W' = (W — (interieur de V))u, V"
est o — s-parallélisable et W =0W".

Maintenant, soit F la réunion des composantes connexes sans bord de ’ensemble
des points fixes de W. Par le lemme 1 F admet un voisinage tubulaire stable ¥ iso-
morphe & B™x F. Sur V on a le repérage induit par celui de W et aussi le repérage
produit de.celui de F avec celui (canonique) de B™. Ces deux repérages coincident sur
F. Comme V se rétracte par déformation équivariante sur F on peut modifier le repﬁ'-
rage de W au voisinage de V de telle fagon qu’il induise sur V le repérage produit.
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Ceci fait on prend une variété repérée N dont le bord soit F (comme variété repérée) ce
qui est possible par I’hypothese r(W)=0. Alors ¥'=S™"!x N est une G-variété (G
opére trivialement sur N) a—s-parallélisable avec le repérage produit de celui de
S™~1 (induite par S™~!=0B™) et celui de N. On applique maintenant la construction
introduite plus haut et on obtient W' a—s-parallélisable telle que W' =0JW. Mais
comme G opere librement sur V'’ on a éliminé F de I’ensemble des points fixes, c.q.f.d.

Démonstration du lemme 3. Ce lemme suit immédiatement du fait que S7 ={xe
B3| ||x|| =1} = B™ est contractile de fagon équivariante et du lemme 5 du § 1.

Démonstration du lemme 4. Soit T=B™x S* qui est une G-variété (G opére trivia-
lement sur S') a — s-parallélisable sur laquelle on prend le repérage produit de celui de
B™ avec celui de S donné par I'isomorphisme évident 7(S')>#'(S?). (Avec ce repé-
rage S’ représente le générateur de [ ;).

Soient T;, T, deux exemplaires de T et soit L=T, u T, obtenu en identifiant les
bords (c.-a-d., L est le «double» de T). 11 est facile & voir que L est o« —s-parallélisable
et admet un repérage qui induit sur T; =T le repérage donné.

Soit C le demi-cercle formé par les points z de S* de la forme z=¢" avec 0<0< 7.
Alors si on enléve dans L I’'intérieur de I’ensemble des points de T, de la forme (x, y),
xeB™, yeC et on lisse les coins de ce qui reste on obtient L telle que:

a) L est une G-variété semilibre « — s-parallélisable repérée,

b) L’ est isomorphe a S™

¢) r(L)e[], est le générateur.

Maintenant, pour prouver le lemme 4, supposons M =0W ol W est une G-variété
semilibre o — s-parallélisable repérée. Si r(W)=0 c’est trivial. Supposons r(W)#0.
Alors on forme W =W #L d’apréslelemme 3 etona: W' ~oW#IL = M#S™"=M
et r(W')=r(W)+r(L)=0 puisque [],=Z,, ce qui compléte la démonstration.

5. Modifications sphériques

On introduit maintenant les modifications sphériques (voir [7] § 5 et § 6). Soit M

une G-variété semilibre de dimension n=r+s+ 1. Soit F ’ensemble des points fixes
de M. Soit

0:S" xB*'SM-—F

un plongement tel que g(@(S"xB**))No(S"xB**!)=0 pour tout geG, g#1.
Faisons opérer G sur G x B+ x S° par

g(h, x, y) =(gh, x, y).
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DEFINITION 1. La modification sphérique correspondante a ¢ est la G-variété
M'=y(M, ¢) obtenue de la somme disjointe

(M = U,e680(S"x0))+G xB™"' xS

en identifiant go (v, tv) avec (g, tu, v) pour tout geG, ueS", veS*et 0<r<1.
Soit ¢:S"—>S0(s+1) une application différentiable. Alors on peut obtenir un
noveau plongement

®,:S" xB*' > M—F
défini par ¢,(u, v)= ¢ (u, ¢(u)v).

LEMME 1. Supposons M a— s-parallélisable. Alors on peut choisir ¢ de telle facon
que M' =y (M, @,) soit aussi a— s-parallélisable.

Démonstration. Soit W la G-variété obtenue de la somme disjointe
M x[0,1]+G x B! x B**!

en identifiant (g, u, v) avec (g ¢,(u, v), 1) pour tout ue S*,ve B**! et ge G. (On suppose
M sans bord; dans le cas général on raisonne sur M —0M. On peut alors lisser les
coins de W pour obtenir une G-variété différentiable.) Le bord de W est la somme
disjointe de M et M.

Soit W, le quotient de la somme disjointe

M x[0,1]+ B™*! x B**!

en identifiant (u, v) avec (¢,(u, v), 1) pour tout ueS", veB**!. (W, n’est pas une
G-variété). On a un plongement évident Wo—W et W=y, gW,.

Par hypothése t(M)@®n*(M) est a-trivial pour k assez grand. Donc, il existe n +k
sections linéairement indépendantes s, ..., 5,4, de ce fibré telles que

(D dg(sl(x)’ ooy sn+k(x)) = (51 (gx), ..., Sn+k(gx)) Ot(g) (geG)

pour tout xeM, ou dg est la différenticlle de g: M— M étendue trivialement a
t(M)®n*(M). Comme t(W)|M=1(M)®n"' (M), s,..., Sy4, sont des sections de
t(W)®n* ' (W)| M qui vérifient (1). On les étend trivialement & M x [0, 1] et elles
continuent a satisfaire (1). D’aprés [7] § 6 on peut choisir ¢ de telle fagon qui sy, .-
S,+x S'€tendent a des sections linéairement indépendantes de t(W)G—)n"”l(W)l Wo.
Alors on définit des sections uy, ..., 4, de T(W)®n* (W) par

(ul (x)’ i un+k(x)) = dg (sl (g— lx)’ T Sn+k(g_ 1'x)) Ot(g-— 1)
pour tout xe W ; geG étant choisi tel que g~ 'xe W,. On voit immédiatement que ces
sections sont bien définies, étendent les s,, ..., 5,,+, et donnent un isomorphisme de
o(W)®n* 1 (W) avec le G-fibré a-trivial.
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PROPOSITION 1. Supposons G d’ordre impair. Alors tout élément de A ,,(a) est le
bord d’une G-variété semilibre o — s-parallélisable W dont I'ensemble des points fixes est
difféomorphe a [0, 1] et telle que ny(W)=n,(W)=---=n,_,(W)=0 oit n=m|2.

Démonstration. On suppose m >4 puisque pour m=2 tout est trivialement déduit
de [6].

Observons tout d’abord que quand on fait une modification sphérique du type
décrit dans la définition 1 on obtient une variété qui resulte de # modifications sphéri-
ques usuelles si ¢ est 'ordre de G.

Par la proposition 1 du § 4 tout élément de A ,() est la classe d’une a-sphére
homotopique qui est le bord d’une G-variété Wa—s-parallélisable, semilibre, et dont
I’ensemble F des points fixes est difféomorphe a [0, 1]. Soit r<n. Tout élément
xem, (W) peut étre représenté par une application f:S">W—(FUdW) puisque
r+1<2n+1=dim W. La composition

"> W —(Fudw)— (W — (FudWw))/G

est homotopique a un plongement S"— (W — (FuUdW))/G parce que 2r+1<2n+1=
dim W. En relevant ce plongement on obtient un plongement f;:S"— W— (Fu dW))
qui représente x et tel que

gf1(S)Nnfi(S)=0 pourtout geG,g#1.

Alors, d’apres le lemme 1 et le lemme 5.2 de [7], on peut tuer les groupes d’homotopie
de dimension <n—1 de W par des modifications sphériques successives sans modifier
le bord et en conservant la « — s-parallélisabilité de W, ce qui démontre la proposition.

LEMME 2. Soit
0:S"xB"" 'S5 W —F — oW

un plongement qui vérifie la condition pour pouvoir définir W'=y(W, ¢). Soit W,
ladhérence de W— U, g@(S"x B"™'). Alors on a un diagramme commutatif de
Z[G)-modules et Z[Glhomomorphismes:
H,.,(W,Z)
L
4 [G] A
A € la' \
H,,,(W,Z)> Z[G] - H,(W,, Z) > H,(W, Z) -0
N !
YNeH, (W', Z)

|
0
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tel que les lignes horizontales et verticales sont exactes et ou: A dénote la classe d’homo-
logie qui correspond a ¢ | S"x 0 et aussi I'homomorphisme x—x.A de Z[G) dans
H,(W, Z); .4 dénote I'homomorphisme

p—>Zyec(n.gd)g deH,, (W, Z)dans Z[G]

((u.gA)=indice d’intersection de p avec gl); et de maniére analogue pour 2’ et .A'. En
conséquence H'(W, Z)|Z[Gl.A=H (W', Z)|Z|G].'.

La démonstration est analogue a celle du lemme 5.6 de [7].

Dans ce qui suit on notera avec la méme lettre un élément de H,(W, Z) et son
image dans H,(W, Q).

Pour tout xe Q[G] on notera * le correspondant de x par ’application Q-linéaire
Q[G]-Q[G] qui envoie g dans g~* pour tout geG. Si I est un sous-ensemble de
Q[G], I dénotera son image par cette application.

LEMME 3. Avec les hypothéses du lemme 2, soit II’annulateur (agauche) de A dans
Q[G] et I’ celui de A'. Alors 1eI+1I'.

Démonstration. D’abord observons qu’on peut, en appliquant le foncteur ®,0Q,
obtenir un analogue du lemme 2 a coefficients rationnels.

L’application naturelle x —» x4 de Q[G] sur Q[G] A= H, (W, Q) admet une inverse
a droite j: Q[ G]A— Q[ G] puisque Q[G] est sime-simple. Par la méme raison j s’étend
a un homomorphisme de Q[G]-modules & gauche, qu’'on dénote encore j, de
H,(W, Q) dans Q[G].

Soit p: Q[ G]—Q I'application Q-linéaire donnée par

p(zgeGng'g) = nl

ol les n, appartiennent & Q et 1 est 'unité de G. Alors, comme le bord de W est une

sphére homologique, la dualité de Poincaré nous dit qu’il existe ue H, ., (W, Q) tel

que la forme linéaire po j sur H, (W, Q) satisfait (poj) (&)= (u.£) pour tout EeH, (W, Q).
Considérons ’lhomomorphisme de Q[G]}-modules & gauche

(p:H,,(W, Q)_’Q[G]

donné par ¢(&)=Z,.(p-g&)g ™! pur tot e H,(W, Q). Alors po(j—¢)=0, ce qui im-
plique j=¢. On a donc

() = j(A) = Zyec(n.g4) g™ ' elm(.).

D’aprés le lemme 2 Im (A)<I'. Donc, j(A)el’. Mais, par la définition de j, 1 —j(A)€l,
c.q.f.d.
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LEMME 4. Soit W une G-variété a— s-parallélisable semi-libre dont le bord est
une a-sphére homotopique. Alors,

a) s'il existe £eH, (W, Q) dont I'annulateur dans Q[ G| est nul alors il existe une G-
variété W' qui vérifie les mémes conditions que W et telle que OW' =W et H,(W', Q)=
H,(W, Q)/Q[G].¢ comme Q[ G]-modules.

b) il existe toujours une G-variété W' o—s-parallélisable semi-libre telle que
OW' " =0W et

H,(W", Q)= H,(W,Q0)® Q[G]

comme Q[ G]-modules.
W' et W’ ont le méme ensemble de points fixes que W.

Démonstration. (a) est une conséquence facile des lemmes 2 et 3. Pour prouver
(b) choisissons un point xe W—0W qui ne soit pas fixe et un voisinage U de x difféo-
morphe 3 R™*! et tel que UngU=0 pour tout geG, g#1. Faisons la modification
sphérique correspondante a la sphére plongée dans U qui correspond a la sphere

"x” =1 xn+2="'=xm+1=0

de R"*1, Dans le diagramme du lemme 2 correspondant a cette modification I’homo-
morphisme vertical ¢': Z[G]— H,(W,, Z) est nul. Donc, .4’ est surjectif. Ceci impli-
que ’annulateur de A’ est nul. parce que alors les éléments g4, ge G sont indépendants
sur Z. Comme Q[G] est semi-simple, Q[G].A'=Q[G] est facteur direct de
H, (W', Q). Donc, par le lemme 2,

H,(W', Q)= H,(W, Q) ® Q[G]
puisque A=0.

LEMME 5. Supposons G cyclique. Alors I=1I pour tout idéal I de Q[G].

Démonstration. Prouvons d’abord que si I, I' sont deux idéaux isomorphes de
Q[G] (isomorphes comme Q[G]-modules) alors I=1'. En effet, Q[G]=1®J, J étant
un idéal. Il est clair que, I’'annulateur Ann(J) de I est J. Donc, Ann(I")=J. D’apres ce
qu’on vient de voir pour I appliqué & I’ on a I' nJ=0. Mais si 1 =a, +a, avec a,el
et ayeJ alors I'=I'a;+1I'a, ou I'aycInl’ et I'aycJnl, on aura I'=1'a;cl.
Par le méme raisonnement I<=1'.

Pour prouver le lemme il suffit d’observer que I est un ideal isomorphe a I. Cette
derniére assertion se déduit du fait qu’une matrice réelle d’ordre fini a la méme trace
que son inverse. Donc, I et I ont le méme caractere et sont alors isomorphes ([5] cor.
30. 14), c.q.f.d.

Considérons maintenant le groupe K, Q[G] des classes projectives de Q[G] (dé-
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fini dans [9] app. 2). On peut le définir en prenant le quotient de I’ensemble des
Q[ G]-modules de type fini par la relation d’équivalence: M est équivalent & M’ si et
seulement si il existe deux modules libres de type fini L, L tels que M@® L soit isomorphe
a M'@®L. L’opération de somme directe passe au quotient et définit une loi de groupe
(abélien) puisque Q[G] est semi-simple. Pour chaque Q[G]-module de type fini M
on notera [M] sa classe dans K,Q[G].

Si W est une G-variété dont le bord est une a-sphére homotopique et qui satisfait
les conditions de la proposition 1, on notera

[W]1=[H,(W,Q)]eK, Q[G] (n=m)2).

Soit S,,(«)= K, Q[G] le sous-groupe engendré par tous les éléments de la forme [ W]
avec 0W G —h-cobordant & S™. D’aprés le lemme 3 du § 4, et compte tenu du fait que
H,(W#W' Q)=H, (W, Q)®H,(W’, Q), on voit que tout élément de S,,(«) est de la
forme [W,|— [W,] ou 0W,, 0W, sont G — h-cobordants & S™.

PROPOSITION 2. Supposons G cyclique d’ordre impair. Soit M une o-sphére
homotopique qui représente un élément de A ,(x). Posons M=0W ou W vérifie les
conditions de la proposition 1. Soit v(M) la classe de [W] modulo S,,(x). Alors

Vi A (@) > Ko Q[G/S,()

est un homomorphisme dont le noyau ®,,(x) vérifie:

a) Tout élément de ®,,(x) est la classe d’une a-sphére homotopique qui est le bord
d’'un G-variété W qui vérifie les conditions de la proposition 1 et, en plus, telle que
H,(W, Z) est fini.

b) A, (@)D, () est abélien fini.

Démonstration. Montrons d’abord que v est bien défini. Si W, W’ sont deux
G-variétés qui vérifient les conditions de la proposition 1 et telles que oW soit G—h-
cobordant avec JW’, alors

W#—W]=[W]+[W]eSa(®)

puisque O(W# —W')=0W# — W’ est G— h-cobordant & S™. Le méme raisonnement
prouve que 2[ W]eS,,(«). Donc, [W']— [W]eS,,(¢). Donc v est bien défini et son
image est un groupe de 2-torsion. Comme K, Q[G] est abélien de type fini on a
prouvé (b). Il reste a prouver la partie (a).

Soit M une a-sphére homotopique qui représente un élément de &,,(x). Alors M
" est le bord d’une G-variété W qui vérifie les conditions de la proposition 1 et

[Wl=1vl-1[v]

oll Vet V' vérifient les mémes conditions que W et 0V et 0V’ sont G—h-cobordantes
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avec S™. En prenant W# V' au lieu de W on peut supposer [ W]=[V]. Alors
H(W,Q)@ L=H,(V,Q)®L

ou L et L' sont des Q[ G]-modules libres de type fini. Par le lemme 4b on voit alors
que, en changeant convenablement W et ¥, on peut supposer

H,(W,Q)= H,(V, Q).

Soit H,(W, Q)=M,®---@®M, ol chaque M; est engendré par un seul élément
m;#0, m;e H,(W, Z). Faisons les modifications sphériques correspondantes & m,, ...,
m,. On obtiendra W' telle que

HW,Q)=M,®--® M,
ol M; est engendré par m; tel que
Ann(m;) + Ann(m}) = Q[G]

(Ann=annulateur) (lemmes 3 et 5).
Soit Wi=W'#Vet Vi=W# —W’'. Alors 0W, est G—h-cobordant avec M, dV,
est G— h-cobordant avec S™ et H,(W;, Q)= H,(V;, Q). D’autre part,

H,(W;,0) =M, ®M; @ @M, ®M, .

Je dis que M,;® M est engendré m;+m;. En effet, soit am;+bm; un élément de
M;®M;. Soit a—b=x+y xeAnn(m,) ye Ann(m;). Alors

am; + bm] = (a — x) m; + (b + y) m; = (a — x) (m; + m}).

On a, en plus, Ann(m; +m})=Ann(m;) » Ann(m;). Donc, ou bien m;=0 ou bien
Ann(m; +m;)# Ann(m,). Soit m; =m; +m;etM; =M;® M;. Alors,ou bienH,(W’, Q) =0
ou bien

H,(W, Q)= M{ @& M,

ol M| est engedré par m! tel que Ann(m;)<= Ann(m;) pour touti et Ann(m;)s Ann(m,)
pour au moins un i. En répétant le procédé avec W,, V,, etc, on arrivera a une G-va-
riété W, telle que oW, est G —h-cobordante avec M et H,(W;, Q)=0, c.q.f.d.

6. Le théoréme de finitude
Dans ce qui suit on suppose toujours m>4. Pour m=2 tout est trivial (voir [6]).
LEMME 1. Soit W une G-variété semilibre dont le bord est une o-sphére homotopique

et qui verifie les conditions suivantes:
a) W est a—s-parallélisable.
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b) L’ensemble F des points fixes de W est difféomorphe a [0, 1].
c) ng(W)=n,(W)=---=mn,_;(W)=0 et H,(W, Z) fini, n=m/2.

Alors H,(W, Z) est, comme Z [G}-module, le quotient d’un module libre de type fini
par sous-module libre de type fini.

LEMME 2. Soit
0-C,»Ciy—=--—>Cy—0

une suite exacte de modules a gauche sur un anneau avec unité A.

a) Si C; est libre de type fini pour 0<j<q—1, il existe un A-module libre de type
fini L tel que C @ L est libre de type fini.

b) Si C, est projectif et C; est libre de type fini pour 1<j<gq, alors il existe un
A-module libre de type fini L tel que Co,@ L est libre de type fini.

Le lemme 2 se démontre directement par récurrence.

Démonstration du lemme 1. Soit T un voisinage tubulaire équivariant de F dans W.
Alors T=1x B™. Soit d TI'image de I x S™~! par cet isomorphisme. Soit ¥ I’'adhérence
de W—T. On a par la suite exacte d’homologie, excision et homotopie:

H;(V,0T;Z)=H;(W,Z) pour j>0
et

Hy(V,0T;Z)=0.

Donc, d’aprés les hypothéses sur W et la dualité de Poincaré,
H;(V,0T;Z)=0 pour j#n et H,(V,0T;Z)=H,(W,Z).

Comme G opére librement sur V, la paire (¥, T) admet une triangulation invariante
par G. Soit C,=C, (V, 8T; Z) le complexe de chaines simpliciales de cette triangula-
tion. Chaque C; est un Z[G]-module libre de type fini. On a les suites exactes de
Z[G]-modules:

0-5Cpy1=Cpo—>Cory = B,(Cy) >0

0 B,(Cy) = Z,(Cy) > H,(W,Z) >0

0-2,(C)»C,»C,_y—>>Cy—0.

Par le lemme 2 a cette derniére suite exacte nous dit qu’il existe un Z [G]-module
libre de type fini L tel que Z,(C,)®L est libre de type fini.

D’autre part, la premiére suite exacte montre que H;(G, B,(C,))=0 si j >m+1.

Mais comme G opére librement sur S™ ! sa cohomologie est périodique ([3]). Donc,
H,(G, B,(C,))=0 pour tout j>1 et analoguement pour tout sous-groupe de G. Com-
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me B,(C,) est un Z-module libre de type fini on en déduit, d’aprés [12], que B,(C,)
est Z [G]-projectif. Alors le lemme 2b nous dit qu’il existe un Z [G]-module libre de
type fini L tel que B,(C,)®L est libre de type fini. Alors,

Hn(VV’ Z) = Zn(c*)/Bn(C*) = Zn(c*) @ L @ L,/Bn(c*) @ L @ L’

ce qui démontre le lemme 1.

Il s’agira maintenant de montrer que le groupe &,(«) est fini.

Reprenons la G-varié€té a coins V définie plus haut. En lissant les coins de ¥ on
obtient une G-variété a bord dont le bord est du type d’homotopie équivariant de

S™~1x S! (G opérant trivialement sur S*). On voit facilement que ¥ est simplement
connexe et que

H(V,Z)=H(W,Z) si i#m-—1
et

Hm-—l (V’ Z) =2
méme si m=4. (On rappelle que H;(W, Z)=0 si i#0, n, Hy(W,Z)=Zet H,(W, Z)
est fini.) En particulier, par le lemme 1, il existe une suite exacte

(* O0-L->L5H(V,Z)->0

de Z [G]-modules ou L et L sont libres de type fini. Soit e, ..., e, une base de L et soit
x;=p(e;), 1 <j<s. Soient

fi:S§">V -0V 1<j<s

des applications continues qui représentent les éléments x;, 1<j<s, de =, (V)=
H,(V, Z). Attachons a V st exemplaires de B"*!(t=ordre G) au moyen des applica-
tions g f;, 1<j<s, geG. On obtient ainsi un G-espace simplement connexe X, qui
contient Vettelque, paridentification de lasuite exacte d’homologie de (X, V) avec(x):

H/(Xo, Z)=H,(V,Z) si i#nn+1
H,(Xy,Z)=0 et H,,,(Xo,Z)=H,. (V,Z)®L

(naturellement, H,,,(V, Z)=0 si m>4). Soit y,, ..., y, une base de L et soient
h:S"* ' 5 X, -0V 1<i<r

des représentants des y;en, . ,(Xo)=H,+1(Xo, Z). En attachant a X, rt exemplaires de
B"*2 au moyen des applcations gh;, 1 <i<r, geG, on obtient un G-espace simplement
connexe X qui contient V et tel que

Hj(X,Z)=0 si j#:O,m-—1;HO(X,Z)=H,,,_1(X0,Z)=Z.
Soit Y=0V. Alors, comme (¥, V) est une paire de Poincaré orientée ([15] § 2) on
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voit facilement que (X, Y) est une paire de Poincaré orientée de dimension m+1.
Soit X'=X/G et Y'=Y/G. Comme G opere librement et en conservant I’orientation
sur X, (X', Y’) est aussi une paire de Poincaré orientée de dimension m+1 ([15] § 2).

Soit V'=V/G. Alors 'inclusion V< X induit au quotient une application de degré |

VvV - X'

telle que |0V ":0V'> Y’ est une équivalence d’homotopie (et méme un homéomor-
phisme). En plus,

m(y)=0 si 0<i<n et
Ty 1 (W) =n,(V')=n,(V)=H,(V,Z)=H,(W, Z)

est fini. On est donc en mesure d’appliquer les résultats de [15] § 5; en particulier le
théoreme 5.6. Dans la page 258 de [15] il est défini un certain «groupe de Grothen-
dieck» qui est associé a chaque groupe G et chaque entier positif k. On va le noter ici
W, (G). L’obstruction a I’annulation de =,,;(¥) par des modifications sphériques
successives est un élément de W, ., (G) qui ne dépend pas du choix de T et de la con-
struction de X (voir lemme 4 du § 2) et qu’on notera I'( W) ([15] § 5; en particulier,
théoréme 5.6 et lemme 5.7).

Soit #,,(«) le sous-ensemble de W, (G) formé par les éléments de la forme I' (W)
avec W vérifiant les conditions (a), (b), (c) du lemme 1 et, en plus, 0 W G — h-cobordante
avec S™. On voit que %,,() est un sous-groupe (voir proposition 2 du § 5). Alors on a:

PROPOSITION 1. Supposons G cyclique d’ordre impair. Soit M une a-sphére
homotopique qui est le bord d’une G-variété W qui vérifie les conditions (a), (b), (c) du
lemme 1. Soit y(M) la classe de I'(W) modulo %,,(«). Alors M— y(M) définit un ho-
momorphisme

Y- qjm (a) - Wn+ 1 (G)/%m (OC)

(voir proposition 2 du § 5) et cet homorphisme est injectif.

Démonstration. Le fait que y est un homomorphisme bien défini est évident.

Supposons y(M)=0. Alors M=0W ou W est une G-variété qui vérifie les condi-
tions (a), (b), (c) du lemme 1 et pour laquelle il existe une autre G-variété W’ vérifiant
les mémes conditions et telle que W’ est G—h-cobordant avec S™, qui satisfait
I'(W)=I'(W). En prenant W# — W’ au lieu de W on peut supposer I'(W)=0.
Ceci implique ([15] § 5) qu’on peut annuler 7, ; (/) par des modifications sphériques
successives, sans toucher d¥, Mais faire une modification sphérique usuelle sur ¥
équivaut 2 faire une modification sphérique du type décrit dans le § 5 sur ¥. Donc, on
peut tuer H,(W, Z)=m,, () par des modifications sphériques équivariantes. Alors,
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M est bord d’une G-variété semilibre contractile, ce qui implique immédiatement que
M est G —h-cobordant avec S™, c.f.q.d.
Conjecture algébrique (C.T.C. Wall). Si G est fini alors W,(G) est fini pour tout k.
Cette conjecture est de nature tout a fait algébrique parce que W, (G) est défini de
facon purement algébrique.

PROPOSITION 2. Supposons G cyclique d’ordre impair. Si W, (G) est fini alors
0,,(2) est fini (n=m/2).

Démonstration. Ceci résulte de la proposition 1, de la proposition 2 du § 5, de la
proposition 1 du § 4 et de la proposition 3 du § 3.

THEOREME. Soit M une sphére homotopique de dimension m> 6 et soit G un groupe
fini cyclique d’ordre impair. Considérons toutes les actions semi-libres avec exactement
deux points fixes de G sur M et disons que deux telles actions sont équivalentes si elles
sont conjuguées par un difféomorphisme de M. Soit Dg(M ) I'ensemble des classes d’equi-
valence. Alors si W, ,(G) est fini (n=m|2), Ds(M) est aussi fini.

Démonstration. Ceci résulte du théoréme d’Atiyah-Bott [1], de la proposition 2,
du corollaire 2 & la proposition 1 du § 2 et du fait qu’il n’existe qu’un nombre fini de
représentations non-équivalentes de G dans GL(m, R).

Note: On remarque ce qu’on a noté W,(G) est le groupe d’obstructions aux modi-
fications sphériques en dimension 2k —1.

Appendice

Dans cet appendice on va indiquer comment il faut modifier les résultats et dé-
monstrations des paragraphes prédédents quand G est d’ordre pair, tout en supposant
G cyclique.

Dans le § 1 il fait distinguer deux cas:G=Z2Z, et G#Z,.

Supposons G # Z,. Alors tous les résultats du § 1 sont valables avec essentiellement
les mémes démonstrations.

Si G=Z, il faut modifier la notion de a-sphere homotopique. Dans ce cas, il faut
supposer choisi un ordre dans ’ensemble des points fixes. Si M est une a-sphére
homotopique on dénote m, le «premier» point fixe et m;, le «deuxiéme». Un iso-
morphisme entre deux a-sphéres homotopiques doit conserver I'ordre des points
fixes. Pour définir le G — h-cobordisme on ajoute a la définition 3 du § 1 la condition
que f ' (m,) et f1 ' (n,) appartiennent & la méme composante connexe de I’ensemble
des points fixes de W (voir lemme 7 du § 1). Dans la définition 4 du § 1 il faut supposer
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f1(0)=m, et f,(0)=n,. Dans ces conditions la proposition 1 du § 1 est valable avec
les modifications évidentes.

Tous les résultats du § 2 sont valables pour G d’ordre pair, avec les mémes démon-
strations. En particulier, la proposition 2 du § 2 est valable si G=Z,.

La proposition 1 du § 3 est valable pour G d’ordre pair avec la méme démonstra-
tion. Par contre, je ne sais pas si la proposition 2 est valable pour G d’ordre pair.
Alors, on proceéde de la fagon suivante. On considére le sous-groupe 0,,(x) de 0,,(x)
formé par les a-sphéres homotopiques M qui admettent un plongement équivariant
dans S™** avec G-fibré normal isomorphe a n*(M). Si M est une a-sphére homotopi-
que quelconque plongée dans S™** et si on essaye de construire un isomorphisme du
G-fibré normal avec n*(M) on trouve une obstruction qui appartient 3 [S™ /G,
S0(k)] (voir § 3), Cette obstruction est contenue dans le noyau de P’application

[S"!/G, SO(k)] - [S™ %, SO(k)]

induite par la projection naturelle S™~1—-S$™"1/G, puisque le G-fibré normal est
toujours trivial en tant que fibré [7]. (On suppose k>m+1.) Mais il est facile de voir
(cf. § 3) que ce noyau est fini. De 13 on déduit que @,,(2) est un sous-groupe d’indice
fini de O,,(«). Maintenant si on fait la construction précédant la proposition 3 du § 3
pour les éléments de ©,,(x) on voit que cette proposition est valable si on substitue
©,,(x) 2 0,,(x). On appellera A, () le noyau de 'homomorphisme p.

Dans le § 4 I'hypotheése sur I’ordre de G n’intervient pas. Donc la proposition 1 du
§ 4 est valable pour G d’ordre pair si on substitue A, (¢) 3 A,,(x).

Les résultats des §§ 5 et 6 sont valables avec les mémes démonstrations si G est
d’ordre pair. En particulier, la proposition 2 du § 5 est valable pour G d’ordre pair si
on substitue A,,(x) 2 A, (). Si on appelle &,,(«) le noyau de v dans cette proposi-
tion, alors la proposition 1 du § 6 est valable en substituant @,,(x) & &,,(«). En défini-
tive, la proposition 2 et le Théoréme du § 6 sont valables pour G cyclique d’ordre
pair. Comme pour G=Z, la conjecture algébrique a été prouvée par Wall [15] on a le:

THEOREME. Soit M une sphére homotopique de dimension pair m> 6. Considé-
rons I'ensemble de toutes les involutions différentiables de M qui laissent exactement
deux points fixes et disons que deux telles involutions sont équivalentes si elles sont
conjuguées par un difféomorphisme de M. Alors I'ensemble des classes d’équivalence
est fini.

Pour Iétude des questions de ce travail dans le cas oll 'ensemble des points fixes
est de dimension > 1 voir [23].
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