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Sur les actions à deux points fixes de groupes finis sur les sphères

Marcos Sebastiani

Quand on essaye de classifier (dupoint de vue différentiable) les actions d'un groupe
fini G sur les sphères homotopiques on trouve comme premier invariant le type de

difféomorphisme de l'ensemble des points fixes: deux actions équivalentes ont des

ensembles de points fixes difféomorphes. Dans ce travail on aborde le problème de la
classification des actions semilibres pour lesquelles l'ensemble des points fixes est

non-vide et de dimension 0. Par un théorème de P. A. Smith on sait que cet ensemble

contient alors exactement deux points. Le résultat central est le théorème de finitude
du § 6 et de l'appendice. On prouve que si G Z2 alors il n'existe qu'un nombre fini
d'actions non-équivalentes en dimension paire ^6. Si G est cyclique fini d'ordre
quelconque on prouve que le même ennoncé est conséquence d'une conjecture
algébrique de C. T. C. Wall.

Les méthodes de ce travail peuvent être appliqués, dans une certaine mesure, au
cas où l'ensemble des points fixes est de dimension ^ 1. Voir aussi [23] où le problème
de la classification est abordé dans une situation beaucoup plus générale.

Dans le § 1 on introduit les notions de a-sphère homotopique (définition 1), a
étant une représentation linéaire a: G-+S0(m) d'un groupe fini G, et de G — /i-cobordis-
me (définition 3). On prouve que les classes de G — /z-cobordisme de a-sphéres
homotopiques forment un groupe, noté 6>m(a), avec l'opération de somme connexe.

Dans le § 2 on étudie la relation entre le G — /*-cobordisme et l'isomorphisme de

a-sphères homotopiques. On prouve, en particulier, qu'il n'y a qu'un nombre fini de

a-sphères homotopiques non-isomorphes et G — A-cobordantes à une a-sphère
homotopique donnée.

Dnas le § 3 on fait une version équivanante de la construction de Pontrjagyn-
Thom et on prouve que Gm (a) contient un sous-groupe d'indice fini Am(a) avec la
propriété que tout élément de Am(a) est la classe d'une a-sphère homotopique M qui est
le bord d'une G-variété FPa-s-parallehsable (définitions 1, 2, 3, 4).

Dans le § 4 on prouve, par une construction appropriée, qu'on peut rendre l'ensemble

des points fixes de W difféomorphe à [0,1]
Dans le § 5 on introduit les modifications sphénques et on prouve que /lm(a)

contient un sous-groupe d'indice fini 4>m(a) qui satisfait: tout élément de #m(a) est la
classe d'une a-sphère homotopique M qui est le bord d'une G-vanété a—s-parallehs-
able (n- l)-connexe W avec HH(W, Z) fini (n m/2).

Dans le § 6 et l'appendice on applique les résultats de C. T. C. Wall [15] pour
obtenir les théorèmes de finitude.
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1. Définition des groupes 6>n(a)

Dans tout cet article G désignera un groupe fini non-trivial et a une représentation

a:(/-»S0(w) telle que pour tout geG, g# 1, a(g) ne possède pas la valeur propre 1.

(Ceci implique que m est pair [14] § 7.3.) Dans ce § 1 on supposera de plus G d'ordre

impair. On considérera toujours Bm comme G-variété au moyen de a.

Sauf mention expresse du contraire le mot «variété» voudra toujours dire «variété

différentiable (C00) compacte et orientée» et toute action de G sur une variété sera

supposée différentiable et conservant l'orientation. Si M est une variété on notera

dM son bord.

DÉFINITION 1. Une a-sphère homotopique est la donnée d'une sphère homoto-

pique (au sens de [7]) M de dimension m et d'une action de G sur M qui satisfait aux

propriétés suivantes:

a) Elle admet deux points fixes distincts xl9 x0 et G opère librement dans

M-{x0, xt}.
b) Les représentations de G qu'elle induit dans les espaces tangents à M aux

points xQ et xx sont équivalentes à a en tant qui représentations linéaires.

Remarque. Si G opère sur une sphère homotopique en laissant deux points fixes
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et librement dans le complémentaire de ces deux points, alors on a une a-sphère
homotopique pour une a convenable ([1] § 3). (Voir aussi § 6.)

DÉFINITION 2. Deux a-sphères homotopiques M et N sont isomorphes s'il
existe un difféomorphisme de M sur N qui soit équivariant et compatible avec les

orientations.

DÉFINITION 3. Deux a-sphères homotopiques M et N sont G — h-cobordantes

s'il existe une variété W sur laquelle G opère et telle que son bord dW est réunion
disjointe de deux variétés Vo et Vl9 stables par G, qui sont des rétractes par déformation

de W, et qui admettent des diflféomorphismes équivariants /0 : V0-*M et/i iV^N
f0 conserve l'orientation et/i change l'orientation.

où II est évident que deux a-sphères homotopiques isomorphes sont G — /j-cobordantes.

LEMME 1. La relation de G — /ï-cobordisme est une relation d'équivalence.
La démonstration suit la même marche que dans le cas classique, compte tenu du

lemme suivant relatif à l'existance d'un collier équivariante.

LEMME 2. Soit W une variété et soit V=dW. Supposons que G opère sur W.

Alors il existe un voisinage U de V dans W et un difféomorphisme f :U-*Vx[0, 1]

telquef(y) (y,O) si yeV, et pour tout xeU et tout geG, f(x) (y, t) implique

Démonstration. Voir [4] theor. 21.2.

LEMME 3. Soir M une a-sphère homotopique et soient x0, xx les points fixes de

M. Soient To et 7\ les espaces tangents à M dans x0 et xY respectivement. Alors il
n'existe aucun isomorphisme linéaire équivariant de To sur 7\ qui soit compatible avec
les orientations. (C'est-à-dire, les représentations induites de G dans To et Tt ne sont

pas équivalentes sous GL+ (m, R), groupe de matrices à déterminant positif.)

Démonstration. Soient Wo, Wx voisinages disjoints de xo,xt stables par G et difféo-
morphes de façon équivariante à la boule Bm (sur laquelle G opère au moyen de a).
Soit V0 ôW0 et Vl dW1. Orientons Vo et Vt comme bords de Wo, W1. On sait que
l'adhérence W de M-(Wq\jWx) est un /z-cobordisme entre Vo et Vt. (Cf. [8] § 9.)

Donc, W est une sphère homologique de dimension m — 1. La suite spectrale des

espaces avec un groupe fini d'opérateurs ([2] exp. 12) appliquée à Vo, Vu W nous
donne des homomorphismes surjectifs

(pa:Hm-l(Va9Z)-+Hm(G,Z) (a 0, 1)

(p:Hm-1(W,Z)-+Hm(G,Z)

et Hm(G, Z) est cyclique d'ordre égal à l'ordre de G.
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Soient ia\ Va-+W\es inclusions (a=0, 1). Comme elles sont équivariantes il resuite
de la fonctorialité de la suite spectrale le diagramme commutatif :

Hm(G, Z)

Hm~l (W, Z) >Hm~l{Va, Z) (a 0, 1)

Mais il est facile de prouver que si fiaeHm~i(Va9 Z) est la classe fondamentale de

Va(a 0, 1) alors:

Donc, (po(fio)= —(Pi(Hi)' Ceci implique qu'il n'existe pas de difféomorphisme équi-
variante de Vo sur V1 qui conserve l'orientation, parce que dans ce cas on aurait aussi

<PoO*o) <PiO*i)> donc 2<po(juo)=0 ce qui contredit le fait que G est d'ordre impair et

# 1. Le lemme s'en suit immédiatement.
Il résulte du lemme 3 qu'on peut distinguer l'un de l'autre entre les deux points

fixes d'une a-sphère homotopique.
On adoptera dorénavant la notation suivante: Si une oc-sphère homotopique est

représentée par une lettre capitale telle que M, les deux points fixes seront désignes par
la minuscule correspondante m affectée des indices 0, l,oùm0 est lepoint où la represen-
tion tangente de G est équivalente à a par un isomorphisme compatible avec les

orientations, en supposant Rm muni de l'orientation canonique.

DÉFINITION 4. Soient M et N deux a-sphères homotopiques. Alors la somme

connexe M#N est une a-sphère homotopique obtenue de la façon suivante:
On choisit deux plongements équivariants et compatibles avec les orientations :

fl:Bm^-M et f2:Bm-+N

(le lemme 3 donne/1(0) m1 et/2(0) «o). On considère la somme disjointe

(M - mO + (N - n0)

et on prend le quotient par l'identification de fi{tu) avec /2((1 — t) u) pour tout
weSm"1ettout f,0<a<l.

On doit prouver que cette opération est bien définie. Ceci résulte du lemme suivant.

LEMME 4. Soit X une variété sans bord laquelle G opère. Supposons que xoeX
est un point fixe et qu'il existe deux plongements équivariants /, g:Bm-+X compatibles

avec les orientations tels quef (0)=g(0) x0. Alors il existe un difféomorphisme équi-

variant h de X sur X qui conserve l'orientation tel que h o/=g.
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La démonstration est analogue à celle du lemme de Palais-Cerf dans [10] et [11].
Il suffit d'utiliser le lemme suivant.

LEMME 5. Soit

H {xeGL(m, R) | xa(g) a (g) x pour tout geG}.

Alors H est un sous-groupe connexe de GL(m, R).

Démonstration. En décomposant Rm en ses composantes irréductibles on peut
écrire Rm=W1®-'@Wk comme ,R[G]-module, où chaque Wt est somme de composantes

irréductibles isomorphes et Wi9 Wj ne contiennent pas de composantes irréductibles

isomorphes pour i^j. Alors HomG(Wh Wj) 0 pour /^j par le lemme de Schur
et donc

EndG (Rm) EndG (W%) © • • • 0 EndG (Wk)

Alors

H U(EndG(W1)) x ••• x U(EndG(Wk))

où U indique le groupe des unités de l'algèbre. Il suffit donc, pour prouver le lemme,
de prouver que U(EndG(W)) est connexe si PF= F® -r~® F où F est un R [G]-module
irréductible tel que G opère librement sur F—{0}.

De nouveau par le lemme de Schur on sait que EndG(F) est un corps gauche K où
K=R, C où H. Alors U(End(W)) GL(r, K). I. suffira donc de prouver que K^R.

Comme G est d'ordre impair on sait qu'il est métacyclique; c'est-à-dire qu'il
contient un sous-groupe cyclique normal Go tel que GjG0 est cyclique. Soit g0 un
générateur de Go et gx un générateur de G modulo Go. Soit Gx le sous-groupe de
G engendré par gt.

Soit V= Vo® - • • 0 Vs la décomposition de V en facteurs irréductibles sur R [Go], en

regroupant les composantes isomorphes. Gt opère de façon transitive sur {Fo,..., Fs}
et on peut supposer gl1(F0)=^-. L'endomorphisme/: F-» F défini p&rf\Vi=g\ g0 gïl
est un G-endomorphisme et donc EndG(F)^jR parce qu'il contient/qui n'est pas la
multiplication par un scalaire.

LEMME 6. Si M, M', N, Nf, sont des oc-sphères homotopiques, M G — A-cobordante
avec M'et N G — h-cobordante avec Nr, alors M#Nest G — h-cobordanteavec M'#N'.

La démonstration est analogue à celle de [7] compte tenu du lemme suivant.

LEMME 7. Soit W un G — h-cobordisme entre deux a-sphères homotopiques M et
N. Alors l'ensemble F despoints fixes de G dans W est la réunion disjointe de deux sous-
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variétés Fo et Ft difféormorphes à [0, 1] telles que ÔFO {m0, n0} et dFt {ml9 nt} et G

opère librement dans le complémentaire de F.

Démonstration. Evidemment F est une sous-variété fermée de W et dFc d W. Soit

geG d'ordre premier/? # 1. Alors, comme W est une sphère cohomologique de dimension

m, H°(Fg, Zp) ZpouH°(Fg9 Zp) Zp®Zp (Fg {xeW\gx x}). ([16] chap. III
§4.)

Dans le premier cas Fg serait connexe ce qui est impossible parce que {w0, m1, n0,

/îJczFg. Donc, Fg possède deux composantes connexes Fo etF1,etdim(F0) dim(F1)
1. G opère sur la variété topologique W obtenue de Wen identifiant M à un point

a et N à un point b. Il est facile à voir, puisque W—(MvN) s'applique homéomorphi-
quement sur W' — {a, b}, que W est une sphère cohomologique sur Zp de dimension

m +1. Donc l'ensemble de points fixes pour g dans W\ qui est l'image de Fg, est aussi

une sphère cohomologique sur Zp. Supposons dF0 {m0, m^. Alors dFl {n0, nx) et

l'image de F dans W serait la réunion disjointe de deux cercles, ce qui ne peut pas

être une sphère cohomologique sur Zp. Donc, par [16] chap. III § 4, on a dFo

Posons dF0 {u, v}. Alors, comme l'action d'un groupe fini au voisinage d'un

point fixe est équivalente à une action linéaire, les représentations induites du sous-

groupe engendré par g dans les espaces tangents à M dans u et à N dans v sont
équivalentes par un isomorphisme qui conserve l'orientation. Donc, on peut supposer par
exemple ôF0 {m0, n0} et dFt {mi9 nt).

F est une sous-variété fermée de Fg qui contient des voisinages de m0, ml9 n0, nv
Donc, F=Fg. Il reste à prouver que G opère librement dans W—F. Soit geG, g¥" 1 et

supposons gx=x pour un xe W. Soit k l'ordre de g et soit/? un diviseur premier de k.

Alors g'=gk/p est d'ordre premier et, d'après ce qui précède, Fg=F. Mais g'x
gk/px=x, ce qui implique xeF.

PROPOSITION 1. L'opération de somme connexe de a-sphères homotopiques passe

au quotient par la relation de G — h-cobordisme et définit un groupe qui sera noté 0m(oc).

Lélément neutre est la classe de la sphère S"1 sur laquelle G opère au moyen de la

représentation fi:G-*S0(m +1) où

«•>-('?>

pour tout geG. L'inverse de M est —M. (Ceci se prouve comme dans [7]). On a un

homomorphisme évident

où 0m est le groupe défine dans [7].
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2. Le G — /z-cobordisme en dimension ^ 6.

On conserve les notations et conventions du § 1. On supposera toujours dans ce

paragraphe que G est un groupe cyclique. On appellera G-variété une variété sur
laquelle G opère. On appellera isomorphisme entre deux G-variétés à un difféomor-
phisme équivariant de l'une sur l'autre. Si M est une G-variété, on considérera
Mx I (1 [0, 1]) comme G-variété au moyen de

g(x91) (gx91) pour geG,xeM et 0<*<l.
j?m, Bm et S"""1 seront considérées comme G-variétés au moyen de la représentation a.

La démonstration du lemme 1 ci-dessous est analogue à celle du lemme 6.1 de [17],
Le lemme 2 est un corollaire du lemme 1.

LEMME 1. Soit M une G-variété compacte. Soit W un voisinage ouvert stable de

Mx {0} dans Mxl et soit f: W-+Mxl un plongement équivariant qui est Videntité
sur Mx {0}. Alors, il existe un plongement équivariant g: W-*MxI qui est Videntité
dans un voisinage de Mx {0} et qui coïncide avecfdans un voisinage du complémentaire
de W.

DÉFINITION 1. Soient F, V deux G-variétés et soient/, g\V-+V deux iso-
morphismes. On dira que / et g sont G-pseudo-isotopes s'il existe un isomorphisme
h\VxI-+VrxI tel que h(x, 0) (/(x), 0) et h(x, l) (g(x), l) pour tout xe V.

LEMME 2. Soient X, Y deux G-variétés. Supposons que X=XokjX1 où Xo et Xt
sont des sous-variétés stables de X, de la même dimension qui X, d'intérieurs disjoints,
et telles que XonXlr\(ôX)==0. Supposons donnée une décomposition analogue de

7:F=y0u71. Soient V=XonX1 et Vf=YonYx. Soientf:X0-+Y0,g:Xl-^Y1 deux
isomorphismes tels que f\ V et g\ V: V-> V soient G-pseudo-isotopes. Alors on peut
modifierfet g au voisinage de V de façon à ce qu'ils se recollent et donnent un isomorphisme

de X sur Y.

On se propose maintenant de définir la torsion d'un G — /z-cobordisme.
Soit W un G —/z-cobordisme entre les a-sphères homotopiques M et N, avec

dim(JF) m-hl^7. D'après le lemme 7 du § 1, l'ensemble des points fixes de West
la réunion disjointe de deux sous-variétés Fo, Fx de dimension 1 et dF0 {m0, n0},
dF1 {m1, nt}; et G opère librement dans W-(F0\jFx). Soit Wo un voisinage tubu-
laire stable de Fo isomorphe à Fo x Bm. Soit To c Wo l'espace fibre en sphères

correspondant, isomorphe à Fo x Sm~x. On définit de même Wl et Tx pour Fu et on
suppose WonWl=9. Soient

Uo WonM Vo WonN U1 W1nM Vi W1nN
M' M-(()
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N' N ~((int(V0))v(int(Vt))
Wf (W - (WouW^uTouT,
II est facile devoir que M— {m0, m^} est rétracte par déformation de W—{F0\jF1).

Comme la paire {W\ M') est rétracte par déformation de la paire {W— (FquF^,
M— {m0, mx}) on a que M' est rétracte par déformation de W. Donc, ï^' W'/G est

un /i-cobordisme relatifentre les variétés à bord M' M')G et JV' TV '/G1 (relatif veut
dire qu'il est trivial entre les bords de Mf et JV'). Soit

la torsion de cet A-cobordisme [9].

DÉFINITION 2. Cet élément reWh(G) sera appelle la torsion du G-A-cobor-
disme et sera noté tg(PF, M). En effet, on a le

LEMME 3. L'élément % de Wh(G) ainsi défini ne dépend pas du choix des

voisinages tubulaires de Fo et Ft.

Démonstration du lemme 3. Le lemme 3 se déduit facilement du lemme suivant.

LEMME 4. Soit f:RmxI->Rmxi un plongement équivariant, compatible avec les

orientations, tel que

et soit e>0. Alors, il existe un isomorphisme g:RmxI-+RmxI et un ô>0 tels que

a) g(x,0 (*,0 si ||x||>£
b) <7o/(*,0 (*,') si ||x||<$.

Démonstration. Observons d'abord que si AeGL(m, R) ne possède pas la valeur

propre 1, alors la matrice

(où XeGL(m, R), Y est une matrice 1 x m et 0 est une matrice m x 1, commute avec

f j si et seulement si 7=0 et Xcommute avec A. Alors, tenant compte du lemme

5 du § 1, le lemme 4 peut se démontrer par des raisonnements tout à fait analogues à

ceux de [10] § 5.

LEMME 5. xG(W, M)= xG(W, M').
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Démonstration. Voir [9] § 10 et observer que dim W=0 mod2.

LEMME 6. Si rG(W, M) 0 et dimM>6, alors M est isomorphe à N.

Démonstration. Par le théorème du s-cobordisme, voir [18] et [19], on a un
difféomorphisme F.W'-+M' xi. Cet difféomorphisme se relève en un isomorphisme
F:W-*Mf xi qui donne par restriction un isomorphisme

/:M'->N'
Les îsomorphismes W0^F0 x Uo et W1 =Ft x Ut nous induisent desisomorphismes

gl:Ul-+Vl 1 0,1

Par construction il existe un isomorphisme

(p'T0-+dU0 xi
tel que (p(x) (x, 0)s\xedU0 et <p(x) (f~1(x), l) si xeôVo, et un isomorphisme

WT0-^dU0 xi
tel que W(x) (x, 0) si xed[/0 et *F(x) (gô 1(x), l) si xeôF0 Alors, l'isomorphisme

cpoW'^.dUo xI-+dU0 xi
nous dit que/"1 og01 dU0 est G-pseudo-isotope à l'identité. Donc,/| ôU0 est G-pseudo-
îsotope à g013L/0. De même,/15^ est G-pseudo-isotope à gx | ôL^. Par le lemme 2 on
peut modifier convenablement/ g0, gx de façon à ce qu'ils se recollent et donnent un
isomorphisme de M sur N.

LEMME 7 Si x est un élément de Wh(G) et M est une a-sphère homotopique de

dimension ^6, il existe un G — h-cobordisme (W, M, N) tel que t tg(W, M).

Démonstration Soient Uo, Ut des voisinages stables de m0, mx respectivement,
isomorphes à Bm et disjoints Soit M'l'adhérence de M-(Uokj Ut). Soit Mf M'/G.
Par le théorème de Stallmgs [9] th. 11.1 il existete un /î-cobordisme relatif (Wf; iVÏ',

N') tel que t(W', M') t. Soit W le revêtement universel de ffî'. On a des plonge-
ments équivanants évidents

g.idU, xI->W ï 0, 1

tels que gt (x, 0) x pour tout xeôUl9 i 0, 1 Alors il est facile de voir que

est le G-A-cobordisme cherché.
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Rappel de notations
a) *Sm est considérée comme G-variété au moyen de la représentation

g->(
q

A pour tout geG.

b) Si W est un G—A-cobordisme entre M et M' on écrira (W; M, M').

LEMME 8. Soit ,T l'ensemble des TeWh(G) qui sont la torsion des G—h-cobor-
dismes (W; M, M') tels que M et M1 sont isomorphes à Sm (m^6). Alors F est un

sous-groupe de Wh(G) qui contient 2-Wh(G).

Démonstration. Soient (FF; M, M') et (Wî ; N, N') deux G—A-cobordismes tels que
MîêM'^N^N'^S1".

Montrons d'abord que ZT est un sous-groupe. Soit/:M'-+N un isomorphisme.
Alors rG(W, M)+xG(Wu N) rG(WufWu M).

Soit (W2; M, Mx) un G-A-cobordisme tel que tg(W2, M)=-tg(W, M) (lemme

7). Soit g:M-+M l'application identique. Alors tg(— WugW2i M1) 0 (lemme 5).

Donc, AfjS -M'^Sm (lemme 6).
On a prouvé que J' est un sousgroupe de Wh(G).
Soit reWh(G). Soit (W; M, N) un G-A-cobordisme tel que M^Sm et

xG(W9 M) t (lemme 7). Soit g:N-+N l'application identique. Alors

Donc, «Tz>2. Wh(G).

LEMME 9. Soient (W; M, N) et (X;K,L) deux G-h-cobordismes entre des

cc-sphères homotopiques. Alors,

xG{W #XyM#K)~ rG(W, M) + xG(X, K)

(La somme connexe W#X se fait le long des composantes des points fixes reliant mx

avec nx et k0 avec /0).

Démonstration. On fait pour W et X la construction qui précède la définition 2.

On obtient des A-cobordismes relatifs (W';M'9Nr) et (X';K\ L') sur lesquels G

opère et qui donnent au quotient des /i-cobordismes relatifs. Alors on voit que le h-co-

bordisme relatif correspondant à W#X est de la forme

où/est un difféomorphisme équivariant convenable et gx Qtg2 sont des restrictions de/.

Soit (Tx;dUl9 dVt) comme dans la construction qui précède la définition 2. On a
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alors la suite exacte:

0-*Cm(Ti9 dUl;Z)^a(W\ M'; Z)®C*(X', K'; Z)

->C(WfufX',M'vglK';Z)-^O
où C* indique les chaînes d'une décomposition cellulaire convenable invariante par G.

Comme (TJG; dUlIG9 dVJG) est par construction un /i-corbordisme trivial, le théorème

3.1 de [9] nous donne

fX')IG, (M' ufl K')IG) r(W'/G, M'/G) + t(X'/G, K'/G). c.q.f.d.

LEMME 10. Si m ^6, alors, pout toute a-sphère homotopique M, M#Sm^M et

Démonstration. La première assertion est triviale et vaut pour tout m. Soit

un plongement équivariant compatible avec les orientations. Alors, par définition:

M#-M (M -f(Èm))ug - (M - f(Èm))

oùÈm Bm-Sm~l et g:f(Sm~1)-^f(Sm~1) est l'application identique.
Mais, puisque tout /i-cobordisme entre des espaces lenticulaires est trivial [9]

cor. 12-13, on voit immédiatement que M-f(Èm) Bm. Donc,

où h:Sm~1-+Sm~i est l'application identique.

PROPOSITION 1. Soit E Wh(G)/^ (voir lemme 8). Soit M une a-sphère
homotopique de dimension ^6. Pour chaque a-sphère homotopique N G — h-cobordante avec
M soit g(N) l'image dans E de tG(W, M)eWh(G), où West un G — h-cobordisme entre
M et N. Alors,

a) a(N) ne dépend que de N.
b) Si N' est une autre a-sphère homotopique G — h-cobordante avec M, alors

(t(N) g(N') si et seulement si N^N'.
c) Si a e S alors il existe une a-sphère homotopique N G—h-cobordante avec M

telle a{N) a.
Démonstration, (cf. [9] § 11). Soient (IV; M, N) et(W; M, N) deux G-A-cobor-

dismes. Soit f;N->N l'application identique. Alors Wl Wuf— W est un G — h-co-
bordisme entre M et M et tg(Wu M) tg(W, M)+tg(W, M). Soit W0 MxI le
G—A-cobordisme trivial. Alors

i # W09 M # - M) zG(Wu M)
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d'après le lemme 9. Alors tG(Wu M)e^", puisque M# -M^Sm (lemme 10). Comme
S est un 2-groupe (lemme 8) on a prouvé (a). Supposons (t(N) <t(N'). Soient (W;
M,N) et (W;M,N') G-/z-cobordismes. Soient t xg(W, M) et %' xG{W\ M).
Alors T-t'e^T. Soit {Wx\ Sm, Sm) un G-A-cobordisme tel que rG(Wl9 Sm) T-Tr.
Soit Wo M x /le G- /s-cobordisme trivial et soit W2 W0#Wl- W2 est un G- /*-cobor-
disme entre M et M et t(W2, Af t-t' (lemmes 9 et 10). Soit finalement (W3 ; M, P)
un G — /z-cobordisme tel que z(W3, M)= — t (lemme 7). Alors le G —A-cobordisme

est de torsion nulle. Donc, N'^—P. D'autre part le G—A-cobordisme

est aussi de torsion nulle et donc N^ —P. Finalement, N^N'. La partie (c) se déduit
du lemme 7.

COROLLAIRE 1. Si m ^6 les classes cTisomorphismes des oc-sphères homotopiques

forment un groupe avec l'opération de somme connexe. Le noyau de Vhomomorphisme
naturel de ce groupe sur Om(a) est un sous-groupe central isomorphe à S', il est, donc,

fini et de 2-torsion.

Démonstration. Il suffit d'appliquer les lemmes 8 et 10, la proposition 1 et le fait

que Wh(G) est de type fini.

COROLLAIRE 2. // n'y a qu'un nombre fini de cn-sphères homotopiques
non-isomorphes et G — h-cobordantes à une oc-sphère homotopique donnée M. Ce nombre ne

dépend pas de M.

PROPOSITION 2. Supposons que G^Z3 opère sur Bm+I,m^6et soit F l'ensemble

des points fixes. Supposons que l'ensemble FnSm est constitué par deux points. Alors

l'action induite de G sur Sm est différentiablement équivalente à une action linéaire.

Démonstration. Par un raisonnement tout à fait analogue à celui de la démonstration

du lemme 7 du § 1 on prouve que F est connexe et de dimension 1. Soit peF,

p$Sm. Il existe un voisinage stable U de/?, disjoint de Sm, difféomorphe à Bm+1 et sur

lequel l'action de G est différentiablement équivalente à une action linéaire. Soit

V=dU. V est une a-sphère homotopique et Sm aussi, par [1] § 3, et pour le même a.

Alors si on enlève de Bm+1 l'intérieur de U on obtient un G-/*-cobordisme entre F et

Sm. Mais, d'après [20], on sait que Wh(Z3) 0. Alors, par le lemme 6, Sm est

isomorphe à V, c.q.f.d.



Actions de groupes finis sur les sphères 417

3. a-sphères homotopiques qui sont des bords des G-variétés parallélisables

On conserve les notations des paragraphes précédents. Si (X, Y) est un couple
d'espaces compacts (YaX) alors on dénote avec ns(X, Y) nns(XjY) le «-ième groupe
de cohomotopie stable de XjY (on convient, comme d'habitude, que si Y est vide
alors XIY est la somme disjointe de X et un point). On sait que n% est une cohomo-
logie généralisée avec 7rJ(point) PJ_w (où Y[j dénote le/-ième groupe d'homotopie
stable des sphères). On dénote n* la cohomotopie réduite. [24]

Dans tout ce qui suit G sera un groupe fini d'ordre impair quelconque. On appelera
G-variété une variété différentiable sur laquelle G opère différentiablement. On dira
que deux telles variétés sont isomorphes s'il existe un difféomorphisme équivariant de

l'une sur l'autre. Si Jfest une G-variété on notera X l'espace X/G. Si G opère librement
sur X on supposera X muni de la structure différentiable quotient. Si G opère librement
dans le complémentaire de l'ensemble des points fixes on dira que X est une G-variété
semilibre.

On va maintenant introduire quelques définitions utiles par la suite. On supposera
toujours que G opère sur jRm+* et sm+k~1 par les extensions triviales de a.

DÉFINITION 1. Un G-fibré est un fibre vectoriel réel sur lequel G opère par des

automorphismes de fibre vectoriel.
La base et l'espace total d'un G-fibré sont des G-espaces et la projection est

équivariante.

DÉFINITION 2. Deux G-fibrés sont isomorphes s'il existe un isomorphisme
équivariant de l'un sur l'autre. (On supposera toujours que les deux G-fibrés ont la
même base et que l'isomorphisme relève l'identité de la base.)

DÉFINITION 3. Un G-fibré de base X est oc-trivial s'il est isomorphe au-G-fibré

XxRm+k->X (fc>0)
où G opère sur Xx iT+fcpar g(x, ii) (gx, a(g) ju) pour tout geG, xeX, fieRm+k. (On
dénote avec la même lettre a la représentation de G obtenue par composition
G-^>S0(m}i»S0(m+k), k^O, où y est l'inclusion canonique).

Si X est un G-espace on notera r\k{X) le G-fibré

X xRk->X

où G opère sur Xx Rk par g(x, fi)=(gx, fi) pour tout geG, xeX, fieRk

DÉFINITION 4. Une G-variété W est oc-s-parallélisable si %(W)®r\k{W) est

tf-trivial pour k assez grand.
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LEMME 1. Si W est une G-variété semilibre a—s-parallélisable de dimension n
alors Vensemble des points fixes est de dimension n — m à moins qu'il ne soit vide.

Démonstration, En effet, si xeW est un point fixe alors Tx{W)®Rk (T, espace

tangent) est isomorphe à Rm+l (m+/=w-ffc) comme G-espace. Donc, l'ensemble des

points fixes de Tx(W)®Rk est de dimension l=n+k—m. Alors, l'ensemble des points
fixes de TX(W) est de dimension w—m.

PROPOSITION 1. Soit M une a-sphère homotopique. Alors M admet un plonge-
ment équivariant dans la sphère SmJtk si k>m + l.

Démonstration. Dans ce qui suit a 0, 1. Soit Ua un voisinage de ma dans M stable

par G et isomorphe à la boule ouverte Bm. Soit Wa le correspondant de la boule fermée

de rayon \ dans cet isomorphisme. Supposons UonC/1=0. Soit Va dWa. Soit W

l'adhérence de M-(W0 u Wx). W est stable par G et dW= Vo u Vt.

Soientfa:Ua-+Sm des plongements équivariants compatibles avec les orientations
et tels que/o(C/o)n/1(ï71) 0 (voir lemme 3 du§ 1). Soit Xle sous -ensemble ouvert de

Sm+k où G opère librement, formé par les points dont les m premières coordonnées

ne sont pas toutes nulles. Les plongements équivariants :

fa:Ua-{ma}->X

passent au quotient et donnent des plongements

(on suppose toujours Sm<=:Sm+k). Soit gfl=/fl| Va.

LEMME 1. // existe une application continue g: ffî-+X telle que g\ Va — ga.

Admettons ce lemme. On peut évidemment supposer que g coincide avec ja au

voisinage de Va. Alors /0 u/t ug est une application continue

M — {m0, mj} -* X

qui est un plongement au voisinage de ffî0 u ffîx. Puisque k>m 4-1, il existe un plon-

gement fi : Si — {m0, mj ->.? qui coincide avec/fl au voisinage de ffîa. Comme Wo — {^o}
est un rétracte par déformation de M- {m0, mt}, il existe un relèvement h :M- {m0, rn x}

-*Xde fi tel que h coincide avec/0 dans W0~-{m0}. Il est facile de voir que h est

un plongement équivariant.
Les applications h et/i restreintes à W1-{mî] sont équivariantes et induisent la

même application par passage au quotient. Alors on a que h tfx sur Wt — {^1} °ù

t est un élément du centre de G. Donc, puisque h coincide avec/0 sur Wo — {^o} et

avec tfx aur Wt — {m^, h s'étend à un plongement équivariant de M dans Sm -

II reste à prouver le lemme 1. Soit Sa=fa(Wa\ SacSmciSm+k et soit W l'adhé-
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rence de Sm — (SouSl). Alors tô^est un A-cobordisme entre Vo et Vl et ffî' est un
/i-cobordisme enter d§0 et dS1. Soit a: Vo-+V1 induite par une rétraction par
déformation de Wsm Vx et analoguement P:ôS0^ôS1. On a le diagramme homotopique-
ment commutatif :

où les flèches de droite sont les inclusions. Le triangle de droite est homotopiquement
commutatif parce que ffî' c X. Le carré est homotopiquement commutatif parce que
gt ooc et f$og0 sont toutes les deux de degré -1 (avec des orientations convenablement
choisies - puisque \tsfa conservent l'orientation) et compatibles avec les identifications
des groupes fondamentaux (cette dernière affirmation se prouve directement pour
m 2 et utilisant le fait que Va et dSa sont simplement connexes pour m > 2). Alors on
applique [21] § 5.

De ce diagramme on déduit que go:Vo-+X est homotopique à gioQL:V0-+X.
Evidemment l'application dffî-+X donnée par gx ooc sur Vo et par gx sur F1? s'étend à
W. Comme elle est homotopique à l'application g0 vgi'.dW-tX,celle-ci s'étend aussi
à ffî et le lemme est prouvé.

PROPOSITION 2. Soit M une a-sphère homotopique plongée de façon équivariante
dans 5m+k, k>m + \. Alors le G-fibré normal à M est isomorphe à rjk(M).

Démonstration. Comme l'action de G au voisinage d'un point fixe est équivalente
à une action linéaire, il est facile de voir qu'au voisinage de m0 et ml il existe un champs
invariant (par l'action de G) de /c-repères normaux à M. Soient Wo, Wt des voisinages
stables disjoints de m0, mx dans M, isomorphes à Bm, et sur lesquels il existe un
champ invariant de Ar-repères normaux à M. Soient V0 dW0,Vl=dWl. Soit W
l'adhérence de M—(WouWl). Soit E le fibre principal sur W associé au fibre
normal à M. G opère de façon naturelle sur E. Soit E0 E\V0. Alors E est un fibre
principal sur W et Ë\ V0 Ë0. Puisque Vo est rétracte par déformation de W, tout
section de ^0 s'étend à une section de E. Donc, toute section invariante de Eo s'étend
à une section invariante de E. On en déduit l'existence sur Wo u W d'un champ
invariant s de fc-repères orthonormaux normaux à M. Il en existe aussi un champ t sur
Wx. Soit

s (x) t (x) f (x) pour tout x e Vt

/:Fi-*S0(fc).
où
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Alors/satisfait f(gx)=f(x) pour tout xeV1 et geG et définit une application

Pour prouver la proposition il suffit de prouver que / s'étend a h Wi

Parce qu'alors si h est la composition W1-^Wi^S0(k), s s'étend à M en prenant
s(x)= t(x) h(x) pour xe W\ Les obstructions à l'extension de / se trouvent dans

les groupes

Hl+1(Wl9 Vl9nt(S0(k))) H1 (Vl9 7Tl(S0(k)))

pour l^i^m—l (Wi est contractil parce que Wt est isomorphe à Bm) Pour 1 ^z^
m — 1 on a nl(S0(k)) nl(S0) î-ème groupe d'homotopie stable du groupe orthogonal

qui est calculé dans [22]
Si l^ï<m-l, alors

Si i^ 1 est pair, nt(S0) 0, Z2 et H1 (G, nt(S0)) 0 puisque G est d'ordre impair
([3]chap XII §2 cor 2 7)

Soit * ^ 1 impair. Soit H un sous-groupe de Sylow de G Comme G est d'ordre

impair et opère librement sur S"""1, H est cyclique d'ordre impair ([2] exp 13 § 9

Donc, H1 (H, 7rI(5'0)) 0, puisque 71,(50) 0, Z, Z2 ([3] chap XII § 7) Comme cela

vaut pour tout sous-groupe de Sylow de G on a Hl(G, nl(S0)) 0 ([3] chap XII § 10)

II reste seulement à calculer l'obstruction

On sait que le fibre normal a M dans Sm+k est trivial ([7] th 3 1 et lemme 3 3)

Donc, puisque WouW est contractile, le champ s s'étend à un champ de repères

orthonormaux normaux à M, défini sur tout M Ceci implique/s'étend à une application

Wl-^S0(k) Alors l'image de f dans Hm(Wu V\, ^-^(SO)) est nulle Mais on a

un diagramme commutatif

i 1

et la flèche de droite est mjective parce que nm _ t (50)=0, Z, Z2 et Vx -» Fj est de degré

impair. Donc £=0, c q.f d

Soit M une a-sphère homotopique, soit/ M-+Sm+k un plongement équivanant

et soit q> un champ invariant (sous l'action de G) de fc-repères normaux à/ et cohérents

avec l'orientation de M. L'existence de/et cp est assurée par les propositions 1 et 2

La démonstration de la proposition 1 nous dit aussi qu'on peut supposer/ (UQ)c:Sm
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et/(t/i)<=Sm pour des voisinages stables convenables Uo et Ul de m0 et ml. La
construction de Pontrjagyn-Thom ([7] §4) nous permet, dans ces conditions, de définir
un élément fi(M,f, cp)ens1{Lm_1) où Lm_1 Sm~1IG. En effet, elle donne une
application équivariante Sm+k^>Sk (où G opère trivialement sur Sk) qui induit une application

Sm+k/G->Sk. Mais Sm+k/G Ik+1(Sm-1IG) Zk + i(Lm_i) oui dénote la suspension

non-réduite. L'application Zk+1(Lm__l)->Sk représente fi(M,f, cp).

Soit (Af',/', cp') une triple analogue à (M,/, cp). Choisissons des voisinages Vl et
WQ de ml et m'Q dans Sm+k, intersections de Sm+k avec des boules de l'espace ambiant

i fr m 4- Ir m -4- h-
Çlffl T" K jt O"» * *£ Çirfî T* K

Mais si Fx et Wo sont assez petits,/et/' induisent un plongement équivariant de

M#M' dans sm+k#Sm+k Sm+k. Ce plongement sera noté/#//. D'autre part, on
voit facilement qu'on peut déformer cp et cp' au voisinage de Vx et PF0 de façon à ce

qu'ils se recollent et donnent un champ invariant cp#cp' de A>repères normaux à

/#/'. On obtient donc un nouveau triple (M#M'f #/', cp#cp') et

ju(M # M', / #/', (p # (p;) ju(M, /, (p) + ju(M', /', cp').

Si — <p est le champ qu'on obtient en changeant le signe de la dernière composante
de cp on a

Finalement la construction de Pontrjagyn-Thom implique que si (M,/ 9) 0 alors
M=ôW où PF est une sous-variété de |?m+fc+1 stable par G, donc une G-variété,
semilibre, qui est a — s-parallélisable puisque son G-fibré normal est isomorphe à

r\k~l (W). En effet, si fi(M,f9 <p) 0 l'application Sm+kIG^Sk qui représente fi(M,f, q>)

s'étend au cône de Sm+k/G qui est homéomorphe à Bm+k+1jG.

Soit Ja le sous-ensemble de fis 1(Lm-.1) formé par les ft(M,f, cp) tels que Mrepré-
sente l'élément nul de Om((x). D'après ce qu'on vient de voir Ja est un sous groupe

PROPOSITION 3. La classe fi(M) de \i{MJ, cp) modulo Ja ne dépend que de la
classe de M dans 6>m(a) et

est un homomorphisme dont le noyau Am(a) satisfait:
a) Toute oc-sphère homotopique qui représente un élément de Am(a) est bord d'une

G-variété semilibre oL—s-parallélisable.

b) Le groupe Om(a)j Am(a) est abélienfinl
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Démonstration, Si (M'f',<p') est une autre triple et M' est G-/*-cobordante
avec M alors

Ai (M, /, q>) - fi(M\ /', (p') fi(M # - M', /#/>#- <p')eJa

puisque M# — M' est G—A-cobordante avec 5"".

Supposons /x(M,/, <p)eJa. Alors /*(M,/, cp) n(N, g, ^)oùiVest G-A-cobordante
avec S1". Alors,

et, d'après ce qu'on a dit plus haut, M#—N est bord d'une G-variété semilibre

a-s-parallélisable. Du fait que N est G-A-cobordant à Sm on déduit M# -N est

G —A-cobordante avec M; donc l'assertion (a). L'assertion (b) résulte du fait que

% i(Lm^.i) est abélien fini.

PROPOSITION 4. Supposons que G opère sur Sm de façon semilibre avec exactement

deux points fixes. Supposons que l'ordre de G est premier avec l'ordre de YljPour
1 <j<m. Alors il existe une variété parallélisable W avec dW=Sm et telle que Vaction

de G sur Sm se prolonge à action semilibre de G sur W.

Démonstration. D'abord, l'action de G sur Sm définit une a-sphère homotopique
M pour a convenablement choisi ([1] § 3). On notera Mo la a-sphère homotopique
Sm — munie de l'action de G donnée par a et fo;Mo-+Sm+k (k>m + \) l'inclusion

canonique. Soit/ : M-+Sm+k un plongement équivariant et soit <p un champ invariant

(sous l'action de G) de fc-repères normaux à /. Si on oublie l'action de G on peut
associer au triple (M,/, <p), par la construction de Pontrjagyn-Thom classique, un

élément yî (M,f9 <p)ef]m. Alors \jl (M,/, <p) est l'image de fi=fi(M,f, (p) par l'application

naturelle

induite par p:Sm~1-+Lm-1, la projection canonique. On sait ([7] § 4), puisque M est

difféomorphe à Sm, que jn' (M9f, cp) fi' (Mo,/O, <p0) où cp0 est un champ de fc-repères

normaux à Mo. Mais par le lemme 2 ci-dessous, on peut choisir cp0 invariant sous

l'action de G. Donc, ^0 /i(M0,/0, (p0) est défini etp*(fi)=p*(n0). Par le lemme 3 ci-

dessous on en déduit ti=fi0. Donc, M# -M0^M est bord d'une G-variété semilibre

a—s-parallélisable, c.q.f.d.

LEMME 2. Toute application f :Sm-+S0(k) (k>m + l) est homotopique à une

application équivariante. (G opère trivialement sur SQ(k).)

Démonstration. Soit M le «mapping cylinder» de la projection canonique Sm~+
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Sm/G. Alors SmczM et il suffira de voir que/s'étend à F:M->S0(k). Les obstructions
à l'extension appartiennent à

HJ+1(M9Sm;nj(S0(k))) j>l.
On va prouver que ces groupes sont nuls pour tout y> 1. Observons d'abord que,
puisque Sm-+SmIG est une application de degré impair, la restriction

Hm(M, nj(SO)) -* Hm(Sm, nj(SO))

est injective pour j m — 1 (puisque nm_i(S0) 0, Z2, Z) et bijective pour j=m (puisque

nm(S0) 0, Z2 étant donné que m est pair). Alors, par la suite exacte de cohomo-
logie de la paire (M, Sm) on obtient

Hj+i(M9Sm;nj(S0(k)))==Hj+1(M,nj(S0(k))) si j * m - I
et

Hm(M,Sm,nm.l(S0(k))) 0.

Mais

Hj+l(M9 nj(S0(k)) Hj+1(SmjG, nj(S0(k))) H>(Lm.l9 nj(S0(k)))

(puisque 5m/G 2'(Lm_1)) pour tout./> 1.

HJ(G9 nj(

Mais on a vu au cours de la démonstration de la proposition 2 que Hj(G, tc/SO)) 0

pour tout 7, c.q.f.d.

LEMME 3. Si G est d'ordre premier avec l'ordre de fjy, 1 <y<w, a/ors

p*:7rs-1(Lm_1)->^1(Sm-1) nm

wr injective.

Démonstration. Il faut prouver que si f:Sm+k-+Sk est équivariante, où G opère

trivialement sur Sk, et si/admet une extension à Bm+k+1 alors/admet une extension

équivariante à Bm+k+1. On rappelle que pour tout G-espace X on note X X/G
l'espace quotient.

Soit
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l'application induite par/. Il suffit de prouver que/s'étend à Jgm+k+*. Soit X=Bm+k+l
et F=i§rm+fc. Y est un souspolyèdre de X et X est contractile. Les obstructions à

l'extension de / appartiennent à

pour i^l.
Si Z est un espace topologique compact sur lequel G opère et I{Z) est la suspension

(non-réduite) de Z, alors G opère sur r(Z) et I(Z)jG est canoniquement homéo-

morphe à I{ZjG). Or, Sm+* I*+1(S'm-1) comme G-espaces. Donc, Y^I^^S^1).
Alors

H1 (Y, 7rf(5fc)) H1"*"1

pour i>A: + l et

pour
Soit fc + l<f<m+fc. Alors

puisque fc>m + l>(/—fc) + l. Mais comme /—k— l</w —1,

Par l'hypothèse sur l'ordre de G on a Hl~k~l(G, ï\i-k)=0.
Pour i>m+k, Hi~k~\Sm-\ 7rf(Sfc))=O.

Il reste l'obstruction

Puisque, par hypothèse,/s'étend à Bm+k+1, ^ va à zéro par l'application

„. Ijm + k+l / v V TT ^ v zjm + k+l/nm + k+1 ç<m + k T~T \p.H (A, r, [[m) -+ H (B ,S ,11m).

Mais on a le diagramme commutatif :

ï ï

La dernière flèche est injective parce que S"1'1^^'1 est de degré égal à l'ordre

de G, qui est premier avec l'ordre de f|OT. Donc, p(0=® implique £=0.
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4. Réduction de l'ensemble des points fixes

On conserve les notations introduites au § 3. G sera supposé seulement fini.

DÉFINITION 1. On dit qu'une G-variété oc-.s-parallélisable W est repérée si

elle est munie d'un isomrphisme différentiable de %{W) ® r\k(W) avec le G-fibré
oc-trivial type de dimension égale à dim W+k9 pour k assez grand. Si West orienté on
suppose le repérage compatible avec l'orientation.

LEMME 1. Uensemble des points fixes d'une G-variété a — s-parallélisable repérée
semilibre W est une variété repérée et son fibre normal dans W est oc-trivial.

Démonstration. Soit F l'ensemble des points fixes de W(on sait, par le lemme 4 du
§ 3, que dimF=dim W—m) et soit xeF. Alors le repérage de Adonne un isomorphis-
me de G-espaces vectoriels

Rm®Rl Rm+l^ TX(W) ®Rk= NX(F) ® TX(F) ® Rk

(àimW+k m+l) (T, espace tangent; N, espace normal). Comme l'action de G sur
-Rm-{0} et sur Nx(F)-{0} est libre, et triviale sur Rl et Tx(F)®Rk, cet isomorphisme
se décompose en deux isomorphismes :

Rl^Tx(F)®Rk et Rm^Nx(F).

Le premier donne le repérage de F et le second donne la a-trivialisation du G-fibré
normal v(F).

DÉFINITION 2. Dnas les conditions du lemme 1, on notera r(W)eY[dim w-m
la classe de cobordisme repéré de la réunion des composantes connexes sans bord de

l'ensemble des points fixes de W.

LEMME 2. Si r(W) 0 alors il existe W a—s-parallélisable semilibre telle que
dW=dW et l'ensemble des points fixes de W ne contient aucune composante connexe
sans bord.

LEMME 3. Soient W, W deux G-variétés semilibres a — s-parallélisables repérées
telles que M=dWet M' dW soient des oc-sphères homotopiques. Soient:

/:#£+!_>_ pf et g:BTl~+W

des plongements orientés équivariants, où

l\x (xu...,xm) avec xm>0}.
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Soit
nm +1 fv_ nm +11 u n ^ \\B+ {X€B+ I ||X|| < 1)

et soit

)=M#Mf et on peut modifier les repérages de W et W au voisinage de

et g(Bi+1) de façon à qu'ils se recollent et donnent un repérage de W# W.
En particulier, W# W est a —s-parallélisable repérée et

LEMME 4. Soit M une a-sphère homotopique qui est le bord d'une G-variété

a—s-parallélisable semilibre. Alors M est le bord d'une G-variété sentilibre a—s-paral-
lélisable repérée W telle que r(W)=Q.

Si W est une variété a — s-parallélisable semilibre dont le bord est une a-sphère

homotopique alors l'ensemble des points fixes de W est de dimension 1 (lemme 1 du

§ 3) et composé d'un arc qui relie les deux points fixes du bord et de plusieurs composantes

connexes difféomorphes à S1. Alors les lemmes 2 et 4 impliquent immédiatement

la:

PROPOSITION 1. Supposons G d'ordre impair. Alors tout élément de Am(a)

(voir prop. 3 du § 3) est la classe d'une a-sphère homotopique qui est le bord d'une

G-variété a—s-parallélisable semilibre dont l'ensemble des points est difféomorphe à

[0, 1].

Démonstration du lemme 2. On va introduire une construction générale sur une

G-variété a—.y-parallélisable W.

Soit Vc W une sous G-variété de la même dimension telle que VndW=9. V est

alors une (/-variété a—.s-parallélisable repérée (par restriction) et son repérage induit

un repérage de dV. Soit V une G-variété a-s-parallélisable repérée (de la même

dimension que V et W) et soit f:dV-+dV un isomorphisme compatible avec les

repérages. Alors la G-variété

W' (W - (intérieur de V)) u, V
est a-.y-parallélisable et dW=dW.

Maintenant, soit F la réunion des composantes connexes sans bord de l'ensemble

des points fixes de W. Par le lemme 1 F admet un voisinage tubulaire stable V

isomorphe à BmxF. Sur F on a le repérage induit par celui de W et aussi le repérage

produit de. celui de F avec celui (canonique) de Bm. Ces deux repérages coincident sur

F. Comme V se rétracte par déformation équivariante sur F on peut modifier le repérage

de W au voisinage de V de telle façon qu'il induise sur V le repérage produit.
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Ceci fait on prend une variété repérée N dont le bord soit F (comme variété repérée) ce

qui est possible par l'hypothèse r(W) 0. Alors Vf Sm~1 xN est une G-variété (G
opère trivialement sur N) a—^-parallélisable avec le repérage produit de celui de
S™'1 (induite par Sm~i dBm) et celui de N. On applique maintenant la construction
introduite plus haut et on obtient W a-^-parallélisable telle que dW dW. Mais
comme G opère librement sur V on a éliminé F de l'ensemble des points fixes, c.q.f.d.

Démonstration du lemme 3. Ce lemme suit immédiatement du fait que S™ {xe
i?++11 ||;c|| l}^Bm est contractile de façon équivariante et du lemme 5 du § 1.

Démonstration du lemme 4. Soit T=Bm x S1 qui est une G-variété (G opère
trivialement sur S1) ol—.y-parallélisable sur laquelle on prend le repérage produit de celui de

Bm avec celui de S1 donné par l'isomorphisme évident x(S1)->fi1(S1). (Avec ce repérage

S1 représente le générateur de Yii)-

Soient Tl9 T2 deux exemplaires de T et soit L T1\jT2 obtenu en identifiant les

bords (c.-à-d., L est le «double» de T). Il est facile à voir que L est oc—.s-parallélisable
et admet un repérage qui induit sur Tl Tle repérage donné.

Soit C le demi-cercle formé par les points z de S1 de la forme z ew avec 0 < 9 < n.
Alors si on enlève dans L l'intérieur de l'ensemble des points de T2 de la forme (x, y),
xeBm, je C et on lisse les coins de ce qui reste on obtient L'telle que:

a) L est une G-variété semilibre a — s-parallélisable repérée,

b) dL' est isomorphe à Sm

c) r(L')e I"Ii est le générateur.
Maintenant, pour prouver le lemme 4, supposons M=dWo\x West une G-variété

semilibre a-s-parallélisable repérée. Si r(W)=0 c'est trivial. Supposons r(W)^0.
Alors on forme W W* L d'après le lemme 3 et on a : d W s d W# dL £M# Sm s M
et r(W') r(W)+r(L) 0 puisque \\l Z2> ce qui complète la démonstration.

5. Modifications sphériques

On introduit maintenant les modifications sphériques (voir [7] § 5 et § 6). Soit M
une G-variété semilibre de dimension n r+s+l. Soit F l'ensemble des points fixes
de M. Soit

q>:Sr xBs+i->M-F
un plongement tel que g((p(SrxBs+1))n(p(SrxBs+i)=® pour tout geG,g^l.
Faisons opérer G sur G x Br+1 x Ss par
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DÉFINITION 1. La modification sphérique correspondante à (p est la G-variété
Mf x(M, cp) obtenue de la somme disjointe

(M - ugeGgcp(Sr x 0)) + G x Br+l x Ss

en identifiant g(p(u, tv) avec (g, tu, v) pour tout geG9 ueSr9 veSs et 0<t^ 1.

Soit Q:Sr->S0(s + l) une application différentiable. Alors on peut obtenir un
noveau plongement

cpQ:Sr xBs+1-+M -F
défini par cpe(u9 v) ç(u9 q(u)v).

LEMME 1. Supposons M a — s-parallélisable. Alors on peut choisir q de telle façon

que M'= #(M, çe) soit aussi a —s-parallélisable.

Démonstration. Soit W la G-variété obtenue de la somme disjointe

M x [0,1] + G xBr+1 xBs+1

en identifiant (g, u9 t;)avec(g cpQ(u, v), l) pour tout ueS\veBs+1 ctgeG. (On suppose
M sans bord; dans le cas général on raisonne sur M—dM. On peut alors lisser les

coins de W pour obtenir une G-variété différentiable.) Le bord de W est la somme

disjointe de M et M'.
Soit Wo le quotient de la somme disjointe

M x[0, l] + £r+1 x5s+1

en identifiant (w, v) avec (<pe(u, v), 1) pour tout ueS\ veBs+1. (Wo n'est pas une

G-variété). On a un plongement évident Wo-+Wet W=KjgeGgW0.
Par hypothèse x(M)®rjk(M) est a-trivial pour k assez grand. Donc, il existe n +k

sections linéairement indépendantes sx..., sn+k de ce fibre telles que

(1) dg(Sl(x),...9 sn+k(x)) (s^gx),..., sn+k(gx)) a (g) (geG)

pour tout xeM, où dg est la différentielle de g:M-+M étendue trivialement à

t{M)®nk(M). Comme x(W)\M=t{M)®y\1{M\ sl9...9sn+k sont des sections de

x{W)®nk~l{W)\M qui vérifient (1). On les étend trivialement à Mx [0, 1] et elles

continuent à satisfaire (1). D'après [7] § 6 on peut choisir q de telle façon qui sl,.--,
sn+k s'étendent à des sections linéairement indépendantes de x{W)®r\k~1{W)\ Wo-

Alors on définit des sections ul9...9 un+k de x(W)®t]k~1(W) par

(ul(x)9...,un+k(x)) dg(sl(g~1x),...9sn+k(g~1x))cc(g~i)

pour tout xeW; geG étant choisi tel que g" 1xe WQ. On voit immédiatement que ces

sections sont bien définies, étendent les si9...9sn+k et donnent un isomorphisme de

xtW)®rjk~1(W) avec le G-fibré a-trivial.
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PROPOSITION 1. Supposons G d'ordre impair. Alors tout élément de a m(a) est le

bord d'une G-variété semilibre a — s-parallélisable W dont l'ensemble des points fixes est

difféomorphe à [0, 1] et telle que no(W) nl(W)=~- nn-.l(W) 0 où n m/2.

Démonstration. On suppose m ^4 puisque pour m 2 tout est trivialement déduit
de [6].

Observons tout d'abord que quand on fait une modification sphérique du type
décrit dans la définition 1 on obtient une variété qui resuite de t modifications sphéri-

ques usuelles si t est l'ordre de G.

Par la proposition 1 du § 4 tout élément de Am(a) est la classe d'une a-sphère

homotopique qui est le bord d'une G-variété Wcn — s-parallélisable, semilibre, et dont
l'ensemble F des points fixes est difféomorphe à [0, 1]. Soit r^n. Tout élément

xenr(W) peut être représenté par une application f\Sr-*W—{FvjdW) puisque
r +1 < 2n +1 dim W. La composition

Sr -> W - (F u dW) -? (W - (F u dW))/G

est homotopique à un plongement Sr-> W— (Fud W))/G parce que 2r +1 ^ 2n +1
dim W. En relevant ce plongement on obtient un plongement ft: Sr-+W— (F
qui représente x et tel que

gfi(Sr)nfl(Sr) <b pour tout

Alors, d'après le lemme 1 et le lemme 5.2 de [7], on peut tuer les groupes d'homotopie
de dimension ^ n — 1 de W par des modifications sphériques successives sans modifier
le bord et en conservant la a—^-parallélisabilité de W, ce qui démontre la proposition.

LEMME 2. Soit

cp:Sn xBn+1 ->W -F -dW

un plongement qui vérifie la condition pour pouvoir définir W' x(W, cp). Soit Wo

l'adhérence de W—ugeGg(p(SnxBn+i). Alors on a un diagramme commutatif de

Z[G]-modules et Z[G]homomorphismes:

Hn+1(W\Z)

'

\>'\Hn(W',Z)
ï
0
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tel que les lignes horizontales et verticales sont exactes et où: X dénote la classe d'homo-
logie qui correspond à q>\Snx0 et aussi Vhomomorphisme x^x.X de Z[G] dans

Hn(W9 Z); .X dénote Vhomomorphisme

fi-+Xg.Q(l*.gX)g deHn+1(W,Z)dansZ[G-]

{(fi.gX) indice d*intersection de fi avec gX); et de manière analogue pour X' et .X'. En

conséquence H"(W9 Z)/Z[G].A^H"(JF', Z)/Z[G].X'.
La démonstration est analogue à celle du lemme 5.6 de [7].
Dans ce qui suit on notera avec la même lettre un élément de Hn(W, Z) et son

image dans Hn(W, Q).
Pour tout xe£2[G] on notera Je le correspondant de x par l'application g-linéaire

Ô[G]-*Ô[GQ qui envoie g dans g"1 pour tout geG. Si / est un sous-ensemble de

(?[G], / dénotera son image par cette application.

LEMME 3. Avec les hypothèses du lemme 2, soitlVannulateur (àgauche) de X dans

Q[G] et /' celui de X'. Alors 1 e/+/\

Démonstration. D'abord observons qu'on peut, en appliquant le foncteur
obtenir un analogue du lemme 2 à coefficients rationnels.

L'application naturelle x-*xX de Q [G] sur Q [G] XaHn{W, Q) admet une inverse

à droite j: Q [G] X-*Q [G] puisque Q [G] est sime-simple. Par la même raison./ s'étend

à un homomorphisme de g[G]-modules à gauche, qu'on dénote encore j, de

Hn(W,Q)âamQ[G].
$oitp:Q[Gl[->Q l'application g-linéaire donnée par

où les ng appartiennent à g et 1 est l'unité de G. Alors, comme le bord de W est une

sphère homologique, la dualité de Poincaré nous dit qu'il existe neHn+1(W, Q) tel

que la forme linéaire/?ojsurHn(W, Q) satisfait (poj) (£)=(/i.<^)pour tout ^eHn(W, Q).

Considérons l'homomorphisme de g[G]-modules à gauche

donné par ç>({)=^«gO*-^)^"1 Pur tot £eHB(FF, Q). Alors/?o(/-<p) 0, ce qui
implique j=cp. On a donc

D'après le lemme 2 Im(.A)c:/'. Donc, j(X)eI\ Mais, par la définition dey, 1 -y
c.q.f.d.
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LEMME 4. Soit W une G-variété oc—s-parallélisable semi-libre dont le bord est

une a-sphère homotopique. Alors,
a) s'il existe ÇeHn{W, Q) dont Vannulateur dans Q[G] est nul alors il existe une G-

variété W qui vérifie les mêmes conditions que W et telle que dW'^dW et Hn(W',Q)^
Hn(W, Q)IQlG].t comme Q\G\modules.

b) il existe toujours une G-variété W a — s-parallélisable semi-libre telle que

comme Q[Gf]-modules.
W et W ont le même ensemble de points fixes que W.

Démonstration, (a) est une conséquence facile des lemmes 2 et 3. Pour prouver
(b) choisissons un point xe W— d W qui ne soit pas fixe et un voisinage U de x difféo-
morphe à .Rm+1 et tel que UngU=9 pour tout geG,g^l. Faisons la modification
sphérique correspondante à la sphère plongée dans U qui correspond à la sphère

11*11 1 *» + 2=--=*m+l =0
de Rm+1. Dans le diagramme du lemme 2 correspondant à cette modification l'homo-
morphisme vertical €/:Z[G]->ifn(FP0, Z) est nul. Donc, .X est surjectif. Ceci implique

Fannulateur de A' est nul. parce que alors les éléments gX, geG sont indépendants
sur Z. Comme Q[G] est semi-simple, Q[G\X Q[G] est facteur direct de

HniW', Q)- Donc, par le lemme 2,

puisque A=0.

LEMME 5. Supposons G cyclique. Alors 1=1 pour tout idéal Ide Q[(j].

Démonstration. Prouvons d'abord que si /, J' sont deux idéaux isomorphes de

Ô[G] (isomorphes comme Q[G]-modules) alors /=/'. En effet, Q[G]=I®J, Jetant
un idéal. Il est clair que, l'annulateur Ann (/) de / est /. Donc, Ann (/')=/. D'après ce

qu'on vient de voir pour / appliqué à /' on a /'nJ=0. Mais si 1 =at +a2 avec aïel
et a2eJ alors r=I'a1+ra2 où Ifa1czlnr et I'a2<=:JnI, on aura I'=IfaicL
Par le même raisonnement /c/'.

Pour prouver le lemme il suffit d'observer que 7 est un idéal isomorphe à /. Cette
dernière assertion se déduit du fait qu'une matrice réelle d'ordre fini a la même trace

que son inverse. Donc, Jet /ont le même caractère et sont alors isomorphes ([5] cor.
30. 14), c.q.f.d.

Considérons maintenant le groupe Ko Q[Cf] des classes projectives de g [G] (dé-
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fini dans [9] app. 2). On peut le définir en prenant le quotient de l'ensemble des

Q[GQ-modules de type fini par la relation d'équivalence: M est équivalent à M' si et
seulement si il existe deux modules libres de type fini L, L tels que M®L soit isomorphe
à M'®L. L'opération de somme directe passe au quotient et définit une loi de groupe
(abélien) puisque Q [G] est semi-simple. Pour chaque Q [G]-module de type fini M
on notera [M] sa classe dans R0Q\G~\.

Si W est une G-variété dont le bord est une a-sphère homotopique et qui satisfait
les conditions de la proposition 1, on notera

[W] [Hn(W, Q)] 6i?0 Q [G] (n m/2).

Soit Sm(a)<=R0 Q[G~\ le sous-groupe engendré par tous les éléments de la forme \_W]

avec ôWG — A-cobordant à Sm. D'après le lemme 3 du § 4, et compte tenu du fait que
Hn(W# W1 Q) Hn(W, Q)@Hn{W\ Q\ on voit que tout élément de Sm(a) est de la

forme [Wi]- \_W2\ où dWl9 dW2 sont G-/t-cobordants à Sm.

PROPOSITION 2. Supposons G cyclique d'ordre impair. Soit M une a-sphère

homotopique qui représente un élément de Am(a). Posons M=dW où W vérifie les

conditions de la proposition 1. Soit v(M) la classe de [W] modulo Sm{a). Alors

est un homomorphisme dont le noyau ^m(a) vérifie:
a) Tout élément de <Pm(a) est la classe d'une a-sphère homotopique qui est le bord

d'un G-variété W qui vérifie les conditions de la proposition 1 et, en plus, telle que

Hn(W, Z) est fini.
b) a m (a)/<Pm (a) est abélien fini.

Démonstration. Montrons d'abord que v est bien défini. Si W, W sont deux

(7-variétés qui vérifient les conditions de la proposition 1 et telles que d W soit G—h-

cobordant avec dW, alors

puisque d W# -W') d W# -dWest G-A-cobordant à Sm. Le même raisonnement

prouve que 2[W~\eSm(a), Donc, \W'~\- [W]eSm(a). Donc v est bien défini et son

image est un groupe de 2-torsion. Comme Ko Q [G] est abélien de type fini on a

prouvé (b). Il reste à prouver la partie (a).
Soit M une a-sphère homotopique qui représente un élément de #m(oc). Alors M

est le bord d'une G-variété W qui vérifie les conditions de la proposition 1 et

1X1

où F et V vérifient les mêmes conditions que W et d V et ôV sont G-^-cobordantes



Actions de groupes finis sur les sphères 433

avec Sm. En prenant W# V au lieu de W on peut supposer [W] [F]. Alors

Hn(W,Q)®L^Hn(V,Q)®L
où L et L' sont des Q [G]-modules libres de type fini. Par le lemme 4b on voit alors

que, en changeant convenablement W et V, on peut supposer

Hn(W,Q)^Hn(V,Q).

Soit Hn(W, Q)=Mi®~-®Mk où chaqueMt est engendré par un seul élément

m^O, miEHn(W, Z). Faisons les modifications sphériques correspondantes à ml9...9
mk. On obtiendra W telle que

Hn{W\Q) M\®:.®M'k
où M\ est engendré par m'i tel que

Ann(raf) 4- Ann(mO 6 [G]

(Ann annulateur) (lemmes 3 et 5).

Soit Wi W'# V et Vl W# - W. Alors dWl est G-/z-cobordant avec M, dVt
est G-A-cobordant avec Sm et Hn(Wl9Q)^Hn(Vl9 Q). D'autre part,

Je dis que Mt®Mri est engendré mf+wj. En effet, soit am^bm'i un élément de

'i. Soit a — b x+y ;ceAnn(wf) ^Gy4nn(m-). Alors

amt + b^f (a — x) m,- 4- (fe 4- y) mf (a — x) (mf + mj).

On a, en plus, Ann^+m'^Ann^^nAnn^J). Donc, ou bien mJ 0 ou bien

Ann(mf 4-m;)^Ann(mj. Soit m[ mt +m[etMfl =Mi@M[. Alors,
ou bien

où M'I est engedré par ni[ tel que Ann (m") c Ann (mf) pour tout / et Ann {m") # Ann (mt)

pour au moins un /. En répétant le procédé avec Wi9 Vl9 etc, on arrivera à une G-variété

Wk telle que dWk est G-/z-cobordante avec M et Hn(Wk, 0 0, c.q.f.d.

6. Le théorème de finitude

Dans ce qui suit on suppose toujours m ^4. Pour m —2 tout est trivial (voir [6]).

LEMME 1. Soit W une G-variété semilibre dont le bord est une a-sphère homotopique
et qui vérifie les conditions suivantes:

a) W est a—s-parallélisable.
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b) Uensemble F des points fixes de W est difféomorphe à [0, 1].

c) no(W) n1(W)^-^nn.t(W) 0 et Hn(W9 Z) uni, n

Alors Hn(W, Z) est, comme Z[G]-module, le quotient d'un module libre de type fini
par sous-module libre de type fini,

LEMME 2. Soit

une suite exacte de modules à gauche sur un anneau avec unité A.
a) Si Cj est libre de type fini pour O^j^q—l, il existe un A-module libre de type

fini L tel que Cq@L est libre de type fini.
b) Si Co est projectif et Cj est libre de type fini pour 1 <j<g, alors il existe un

A-module libre de type fini L tel que C0®L est libre de type fini.
Le lemme 2 se démontre directement par récurrence.

Démonstration du lemme 1. Soit Tun voisinage tubulaire équivariant de F dans W.

Alors TêéIx Bm. Soit d T l'image de Ix Sm~1 par cet isomorphisme. Soit F l'adhérence
de W— T. On a par la suite exacte d'homologie, excision et homotopie:

Hj(V,dT;Z) Hj(W,Z) pour ; > 0

et

Ho(V9dT;Z) 0.

Donc, d'après les hypothèses sur W et la dualité de Poincaré,

Hj(V9dT;Z) 0 pour j*n et Hn(V9 ÔT;Z) Hn(W,Z).

Comme G opère librement sur F, la paire (V,dT) admet une triangulation invariante

par G. Soit C* C*(V9 dT; Z) le complexe de chaînes simpliciales de cette triangulation.

Chaque Cj est un Z[G]-module libre de type fini. On a les suites exactes de

Z[(/]-modules:

0->Cm+1^Cm^...^Cn+1^Bw(Q)-^0
0-BU(C.)->Zn{C*)->Hn(W9 Z)- 0

0->Zu(C*)-+Cm-+Cn-1-+--+Co-+0.

Par le lemme 2 a cette dernière suite exacte nous dit qu'il existe un Z [G]-module
libre de type fini L tel que Zn(C+)@L est libre de type fini.

D'autre part, la première suite exacte montre que Hj(G9 5ll(CJ|l))=0 siy>w + l.

Mais comme G opère librement sur S"1"1 sa cohomologie est périodique ([3]). Donc,

Hj(G9 Bn(C#))—0 pour touty^ 1 et analoguement pour tout sous-groupe de G. Corn-
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me BH(C+) est un Z-module libre de type fini on en déduit, d'après [12], que Bn{C*)
est Z [G]-projectif. Alors le lemme 2b nous dit qu'il existe un Z [G]-module libre de

type fini L' tel que Bn(C#)®L est libre de type fini. Alors,

Hn(W, Z) Zn{C*)IBn{C*) Zn(C*)©L0LIBH(CJ®L®L
ce qui démontre le lemme 1.

Il s'agira maintenant de montrer que le groupe 4>w(a) est fini.
Reprenons la G-variété à coins V définie plus haut. En lissant les coins de V on

obtient une G-variété à bord dont le bord est du type d'homotopie équivariant de
S"1"1 xSl (G opérant trivialement sur S1). On voit facilement que V est simplement
connexe et que

Hi(V,Z) Hi(W,Z) si ï#w-1
et

même si m 4. (On rappelle que Ht(W, Z)=0 si *V=0, w, H0(W,Z) Zet Hn(W, Z)
est fini.) En particulier, par le lemme 1, il existe une suite exacte

o -> L' -> L i HH(V, Z) -> 0

de Z [G]-modules où L et L sont libres de type fini. Soit el9...9es une base de L et soit

j. Soient

fj\Sn-+V-dV l^j^s
des applications continues qui représentent les éléments xj9 l^j^s, de nn(V)
Hn(V, Z). Attachons à Vst exemplaires de iT+1(7 ordre G) au moyen des applications

gfj, l^j^s,geG. On obtient ainsi un G-espace simplement connexe Xo qui
contient Fettelque,paridentificationdelasuiteexacted'homologiede(X0, V)avec(*):

ifi(X0,Z) Hl(F,Z) si i^n, n + l
HM(Xo,Z) 0 et Hn+i(Xo,Z) Hn+l(

(naturellement, Hn+l(V, Z)=0 si m>4). Soit yi9...9yr une base de L et soient

des représentants des yienn+l(X0) Hn+i(X0, Z). En attachant àXo rt exemplaires de
Bn+2 au moyen des applcations ghi9 l^i^r9geG,on obtient un G-espace simplement
connexe X qui contient V et tel que

Hj(X9Z) 0 si j^O,m-l;H0(X,Z) ffw_1(X0,Z) Z.

Soit Y=dV. Alors, comme (F, 3F) est une paire de Poincaré orientée ([15] § 2) on
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voit facilement que (X, Y) est une paire de Poincaré orientée de dimension m +1.
Soit X' XjG et Y'= Y/G. Comme G opère librement et en conservant l'orientation
sur X9 (X\ Y') est aussi une paire de Poincaré orientée de dimension m +1 ([15] § 2).

Soit V'=V/G. Alors l'inclusion VczX induit au quotient une application de degré 1

telle que \l/\dVf:dVf-+Y' est une équivalence d'homotopie (et même un homéomor-

phisme). En plus,

7r.(^) 0 si O^i^n et

*.+ i W0 *»{V) nu(V) HH(V, Z) HU(W, Z)

est fini. On est donc en mesure d'appliquer les résultats de [15] § 5; en particulier le

théorème 5.6. Dans la page 258 de [15] il est défini un certain «groupe de Grothen-
dieck» qui est associé à chaque groupe G et chaque entier positif k. On va le noter ici

Wk(G). L'obstruction à l'annulation de nn+1(\l/) par des modifications sphériques
successives est un élément de Wn + l (G) qui ne dépend pas du choix de T et de la
construction de X (voir lemme 4 du § 2) et qu'on notera F(W) ([15] § 5; en particulier,
théorème 5.6 et lemme 5.7).

Soit ^m(a) le sous-ensemble de Wn+l(G) formé par les éléments de la forme F(W)
avec Ffvérifiant les conditions (a), (b), (c) du lemme 1 et, en plus, dWG — /z-cobordante

avec Sm. On voit que ^OT(a) est un sous-groupe (voir proposition 2 du § 5). Alors on a:

PROPOSITION 1. Supposons G cyclique d'ordre impair. Soit M une a-sphère

homotopique qui est le bord d'une G-variété W qui vérifie les conditions (a), (b), (c) du

lemme 1. Soit y{M) la classe de F{W) modulo ^m(a). Alors M-* y(M) définit un ho-

momorphisme

(voir proposition 2 du § 5) et cet homorphisme est injectif.

Démonstration. Le fait que y est un homomorphisme bien défini est évident.

Supposons y(M)=0. Alors M=ôW où West une G-variété qui vérifie les conditions

(a), (b), (c) du lemme 1 et pour laquelle il existe une autre G-variété W vérifiant

les mêmes conditions et telle que dW est G-/*-cobordant avec Sm9 qui satisfait

r(W')=r(W). En prenant W#-W au lieu de W on peut supposer F(W)=0.
Ceci implique ([15] § 5) qu'on peut annuler nn+1(ij/) par des modifications sphériques

successives, sans toucher dV, Mais faire une modification sphérique usuelle sur V

équivaut à faire une modification sphérique du type décrit dans le § 5 sur W. Donc, on

peut tuer Hn(W9 Z)~nn+i(\l/) par des modifications sphériques équivariantes. Alors,
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M est bord d'une G-variété semilibre contractile, ce qui implique immédiatement que
M est G — /z-cobordant avec Sm, c.f.q.d.

Conjecture algébrique (C.T.C. Wall). Si G est fini alors Wk(G) est fini pour tout k.
Cette conjecture est de nature tout à fait algébrique parce que Wk(G) est défini de

façon purement algébrique.

PROPOSITION 2. Supposons G cyclique d'ordre impair. Si Wn+l(G) est fini alors
<9m(a) est fini (/i /w/2).

Démonstration. Ceci résulte de la proposition 1, de la proposition 2 du § 5, de la
proposition 1 du § 4 et de la proposition 3 du § 3.

THEOREME. Soit M une sphère homotopique de dimension m^6 et soit G un groupe
fini cyclique d'ordre impair. Considérons toutes les actions semi-libres avec exactement
deux points fixes de G sur M et disons que deux telles actions sont équivalentes si elles

sont conjuguées par un difféomorphisme de M. Soit DG{M) l'ensemble des classes
d'équivalence. Alors si Wn + 1(G) est fini {n mjl), DG(M) est aussi fini.

Démonstration. Ceci résulte du théorème d'Atiyah-Bott [1], de la proposition 2,

du corollaire 2 à la proposition 1 du § 2 et du fait qu'il n'existe qu'un nombre fini de

représentations non-équivalentes de G dans GL(m, R).
Note: On remarque ce qu'on a noté Wk(G) est le groupe d'obstructions aux

modifications sphériques en dimension 2k— 1.

Appendice

Dans cet appendice on va indiquer comment il faut modifier les résultats et
démonstrations des paragraphes prédédents quand G est d'ordre pair, tout en supposant
G cyclique.

Dans le § 1 il fait distinguer deux cas:G Z2 et G^Z2.
Supposons G^Z2. Alors tous les résultats du § 1 sont valables avec essentiellement

les mêmes démonstrations.
Si G Z2 il faut modifier la notion de a-sphère homotopique. Dans ce cas, il faut

supposer choisi un ordre dans l'ensemble des points fixes. Si M est une a-sphère

homotopique on dénote m0 le «premier» point fixe et ml9 le «deuxième». Un iso-

morphisme entre deux a-sphères homotopiques doit conserver l'ordre des points
fixes. Pour définir le G — A-cobordisme on ajoute à la définition 3 du § 1 la condition

que/ô^mo) Qtfîl(no) appartiennent à la même composante connexe de l'ensemble
des points fixes de W(voiv lemme 7 du § 1). Dans la définition 4 du § 1 il faut supposer
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/1(0)=m1 et/2(0)=wo. Dans ces conditions la proposition 1 du § 1 est valable avec
les modifications évidentes.

Tous les résultats du § 2 sont valables pour G d'ordre pair, avec les mêmes
démonstrations. En particulier, la proposition 2 du § 2 est valable si G Z2.

La proposition 1 du § 3 est valable pour G d'ordre pair avec la même démonstration.

Par contre, je ne sais pas si la proposition 2 est valable pour G d'ordre pair.
Alors, on procède de la façon suivante. On considère le sous-groupe O'm(<x) de <9w(a)

formé par les a-sphères homotopiques M qui admettent un plongement équivariant
dans Sm+k avec (j-fibré normal isomorphe à rjk(M). Si M est une a-sphère homotopi-
que quelconque plongée dans Sm+k et si on essaye de construire un isomorphisme du

G-fibré normal avec tjk(M) on trouve une obstruction qui appartient à [S"""1/^
SO(fc)] (voir § 3), Cette obstruction est contenue dans le noyau de l'application

[S1""1/^, SO(/c)] -> [S1""1, SO(kJ]

induite par la projection naturelle Sm~1-+Sm~1IG, puisque le G-fibré normal est

toujours trivial en tant que fibre [7]. (On suppose k>m +1.) Mais il est facile de voir

(cf. § 3) que ce noyau est fini. De là on déduit que 0'm(<x) est un sous-groupe d'indice

fini de &m(<x). Maintenant si on fait la construction précédant la proposition 3 du § 3

pour les éléments de O'm(o) on voit que cette proposition est valable si on substitue

&'m(<x) à 6>OT(a). On appellera A^(a) le noyau de l'homomorphisme \i.
Dans le § 4 l'hypothèse sur l'ordre de G n'intervient pas. Donc la proposition 1 du

§ 4 est valable pour G d'ordre pair si on substitue A^(a) à Am(a).
Les résultats des §§ 5 et 6 sont valables avec les mêmes démonstrations si G est

d'ordre pair. En particulier, la proposition 2 du § 5 est valable pour G d'ordre pair si

on substitue A^(a) à Am(a). Si on appelle $'m(oî) le noyau de v dans cette proposition,

alors la proposition 1 du § 6 est valable en substituant 4^ (a) à #m(a). En définitive,

la proposition 2 et le Théorème du § 6 sont valables pour G cyclique d'ordre

pair. Comme pour G=Z2 la conjecture algébrique a été prouvée par Wall [15] on a le :

THEOREME. Soit M une sphère homotopique de dimension pair m^6. Considérons

l'ensemble de toutes les involutions différentiables de M qui laissent exactement

deux points fixes et disons que deux telles involutions sont équivalentes si elles sont

conjuguées par un difféomorphisme de M. Alors Vensemble des classes d'équivalence

est fini.
Pour l'étude des questions de ce travail dans le cas où l'ensemble des points fixes

est de dimension ^ 1 voir [23].
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