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Der Satz von Hahn-Banach und Fixpunktsiitze in limitierten
Vektorraumen

Bier1 HANSPETER

1. Einleitung

In der vorliegenden Arbeit werden einige Sétze aus der Theorie der topologischen
Vektorrdume allgemeiner fiir limitierte Vektorrdume hergeleitet.

Der Satz von Hahn-Banach wird als Fortsetzungssatz linearer Formen und in
seiner geometrischen Form fiir limitierte Vektorrdume formuliert. Fiir den Beweis
verwenden wir in Anlehnung an (1) anstelle des Satzes von Zorn den schwicheren
Ultrafiltersatz. Als Anwendung ergibt sich eine hinreichende Bedingung fiir die
Separiertheit der einer Vektorraumlimitierung t zugeordneten lokalkonvexen Topolo-
gie 7° oder - gleichwertig — fiir die Trennbarkeit der Vektoren durch stetige Linear-
formen.

In (6) ergeben sich der Minimaxsatz von Sion und der Fixpunktsatz von Tychonoff
als Folgerungen eines allgemeinen Satzes von Fan iiber Mengen mit konvexen Schnit-
ten. Wir libertragen diesen Satz in seiner analytischen Form mit den beiden Folge-
rungen auf limitierte Vektorraume. Dabei setzen wir beim Fixpunktsatz von Tychonoff
- wie nachher auch beim Fixpunktsatz von Kakutani — anstelle einer separierten
lokalkonvexen Topologie die Separiertheit von t° voraus.

Den Fixpunktsatz von Kakutani beweisen wir nicht mit Hilfe von Netzen wie
in (8), sondern mit Filtertechnik. Aus ihm erhalten wir als Korollar erneut den Fix-
punktsatz von Tychonoff.

Schliesslich wird unter den gleichen weiteren Voraussetzungen wie in (3) der Fix-
punktsatz von Markoff-Kakutani fiir separierte limitierte Vektorrdume hergeleitet.

Fiir die Grundlagen der Theorie der Limesriume verweisen wir auf (7), fiir die
Theorie der limitierten Vektorrdume und weitere Literaturangaben auf (4).

2. Vorbemerkungen, Kompaktheit

Fiir zwei Filter § und ® auf einer Menge driicken wir ,, ist feiner als ®** durch
E<® aus. Es ist dann etwa Fu®:= {FUG; Fe, Ge®} der feinste Filter, grober
als § und ®, und, falls er existiert, ¥ "®:={FNG; FeF, Ge®} der grobste Filter,
feiner als & und ®. Es ist im folgenden nicht nétig, streng zwischen Filter und Filter-
basis zu unterscheiden; insbesondere verstehen wir unter § = {F;; ieI} den von der
Filterbasis {F,; iel} erzeugten Filter. Hauptfilter, wie {{x}} oder {G}, bezeichnen
wir mit [x], [G], etc., Ultrafilter im allgemeinen mit 1.
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Wir betrachten nur Vektorrdume (VR) iiber dem Korper R der reellen Zahlen,
versehen mit der durch den absoluten Betrag definierten natiirlichen Topologie, V
bezeichnet immer den Nullumgebungsfilter auf R.

Es wird im weitern immer wieder gebraucht, dass bei einem Limesraum (LR) M
die Familie der gegen ein xe M konvergierenden Filter charakterisiert ist durch:

— [x] 1« (genauer: [x] ]}, M, ,,[x] konvergiert gegen x auf M)

'—glx’(ﬁlx :E}U(le
-8l 0<F=> 6,

und dass im Falle eines limitierten Vektorraums (LVR) E zusitzlich gilt:

—8lo,Glo=TF+ 6,
- &lo = V-Flo

—Tlo,AeR=> 1§l
—XEE = V'xlo

"'813: °8""xlo-

Ein LR, auf dem jeder Filter gegen hochstens einen Vektor konvergiert, heisst
separiert.
Eine Abbildung f eines LR M in einen LR N heisst stetig, wenn aus xe M, § |, M,

folgt 1 (¥){s ) N. Es gilt:

SATZ 2.1: Die Menge C(M, E) der stetigen Abbildungen eines LR M in einen
LVRE ist mit den iiblichen Operationen ein VR.

Der Beweis ergibt sich unmittelbar, wenn man beriicksichtigt, dass fiir beliebige
Abbildungen f und g von M in E und fiir jeden Filter & auf M gilt: (f+g) ()<
<f (& +g(@).

Die Limitierung t eines LR M induziert auf jeder Teilmenge 4 von M die Unter-
raumlimitierung 7 4, die grobste Limitierung auf 4, fiir welche die Inklusion i: 4—-M,
i(x):=x, stetig ist. Fiir xe4 und den Filter &, auf A4 gilt:

&al A<, ist Spur eines Filters § |, M.

Zu jedem LR M mit einer Limitierung t gibt es auf der gleichen Menge eine feinste
Topologie ©°, grober als 7, und zu jedem LVR E mit zuldssiger Limitierung o eine
feinste lokalkonvexe Topologie ¢°, grober als 6. Wir bezeichnen die zugehdrigen
Riume mit M und E°. E und E° haben dieselben stetigen Linearformen.

Jeder Teilmenge A eines LR M lassen sich die Adhirenz 4 und das Innere Int(4)
wie folgt zuordnen:

A:={xeM;Aec§ firein |, M}, und
Int(A):={xeM; Ae§ fiirjedes F|.M}.
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A heisst Umgebung von xe M, falls xeInt(A4). Im Spezialfall der topologischen Rdume
ergeben sich so die iiblichen Definitionen. Fiir das Komplement A€ von 4 in M gilt:

A° = (Int(A)), undmit Bc M weiter:
Int(4) = A < 4,

A< B=Int(4) < Int(B), AcB,
Int(AnB)=1Int(4A)nInt(B), AUB=AUB.

A heisst abgeschlossen, falls 4= A4, bzw. offen, falls 4=1Int(4). Im allgemeinen ist
weder A abgeschlossen, noch Int(4) offen. M und M® haben die gleichen abgeschlosse-
nen und offenen Teilmengen.

Ein Filter & auf einem LVR E heisst Cauchy-Filter, falls (§— &)}, E. Eine Teil-
menge A von E heisst vollstindig, wenn auf ihr — als limitiertem Unterraum (UR) -
jeder Cauchy-Filter konvergiert. In (4), Seite 264, ist bewiesen:

SATZ 2.2: In einem separierten LVR ist jede vollstindige Teilmenge abgeschlossen.

Eine Teilmenge A eines LR M heisst kompakt, wenn auf ihr jeder Ultrafilter kon-
vergiert. A4 ist dann auch in jeder grobern Limitierung kompakt, insbesondere in M.
Daraus folgt, dass wie im topologischen Fall jede offene Uberdeckung von A eine
endliche Teiliiberdeckung enthilt.

SATZ 2.3: In einem LR M ist jede abgeschlossene Teilmenge A einer kompakten
Menge B kompakt.

Beweis: Jeder Ultrafilter U auf A erzeugt einen Ultrafilter auf B, der gegen ein
xeB konvergiert und A enthilt. Das heisst xe 4, und daraus folgt U |, 4.

SATZ 2.4: Jede kompakte Teilmenge A eines separierten LR M ist abgeschlossen.

Beweis: Zu xe A gibt es einen Ultrafilter 2 |, M mit Aell. Die Spur von U auf
A ist ein Ultrafilter und konvergiert also gegen ein yeA. Daraus folgt U |, M, und
wegen der Separiertheit von M x=y.

SATZ 2.5: Jede kompakte Teilmenge A eines LVR E ist vollstdndig (vgl. (7), S. 296).

Beweis: Sei § Filter auf A mit (§— &)l E. Dann gibt es einen Ultrafilter U< §
und ein xed mit U}, 4. Nun gilt: F—x=F—-x+[0]<F—-x+U-x)—U—-x)=
=(F—-U)+QU —x) ], E, und das heisst § |, 4.

SATZ 2.6: M und N seien LR, A eine kompakte Teilmenge von M und f eine
stetige Abbildung von M in N. Dann ist f (A) kompakt.

Beweis: Die Restriktion £, von f auf A ist stetig. Zu jedem Ultrafilter U auf £ (A4)
gibt es einen Ultrafilter B auf 4 mit B () und ein xe 4, fiir welches B |, 4.
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Da U Ultrafilter ist, gilt W=f,(B). Wegen der Stetigkeit von f, folgt somit
Ulyp, ) f(4)

SATZ 2.7: Das Produkt kompakter LR ist kompakt.

Beweis: Siehe (7), S. 291.

Der Arbeit (4), Seite 264, entnehmen wir noch die beiden nachstehenden, in der
Folge wichtigen Sitze:

SATZ 2.8: Jeder separierte LVR endlicher Dimension n ist isomorph zum R".

SATZ 2.9: Eine Linearform f auf einem LVR E ist genau dann stetig, wenn ! (0)
in E abgeschlossen ist.

3. Der Satz von Hahn-Banach

SATZ 3.1 (Hahn-Banach): Es seien E ein LVR, L, ein algebraischer UR und A
eine konvexe Teilmenge von E, so dass L, Int(A) nicht leer ist. f,, sei eine Linearform
auf Ly mit fo(Lon A)=0. Dann gibt es eine lineare Fortsetzung f von f, auf E mit
f)=0.

Beweis: 1) Fiir xe E definieren wir: D,:= { f, Fortsetzung von f, auf einen URL,
der L, und x enthilt, so dass (L~ 4)>0}.

Wir zeigen, dass die Familie {D,, xe E} die endliche Schnitteigenschaft hat:

Sei f'eine Fortsetzung von f; auf den URL> L, mit f (LN 4)>0, und sei te En L.
Dann ldsst sich f auf die lineare Hiille L' von L und ¢ fortsetzen, wobei fiir die Fort-
setzung [’ gilt: f'(L'n 4) =0, denn:

Sei x'eL’, dann ist x'=x+A¢, wo xeL und AeR. Wir definieren:

M1:={u1:=—f%—xl), wo x;€L, x,+ AteA, Al>0},
1

M2:={y2:=—f(x2), wox,eL, x,+ AteA, ,12<0}.

Nun folgt M;#0 und M, %0, denn: V-t},; fiir >0 gilt [(0, 6)-t] N [(—¢, &) t]#9
fiir beliebiges £>0. Es existiert also ein Ultrafilter BV ¢ mit [(0, 5)-¢]eB. Nach
Voraussetzung ist L, Int(4)#0. Es gibt daher ein x,eL, mit O€lnt(4)—X;;
A—x, €Wl fiir alle Ultrafilter U |,, folglich ist (4 —x,)n[(0, 5)-¢] Element von B,
-also insbesondere #0. Das heisst, es gibt ein 5, >0 mit 6,¢€ 4 —x,, oder x, +0;€A.
py:=—(f (x,)/8,) ist Element von M, also M, #0. Analog gilt M, #0. Weiter folgt
fir peM,, p,eM, py<py: Fir pyi=—(f(x)/A) und p,:= —(f (x2)/%2) gi?t
xy+Asted, A,>0, und x,+4ited, 1,<0. Wegen der Konvexitit von A ist damit
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auch —A,/4; — A, (xy +A,8)+24,/2; — 4, (x, +4,¢)eA und - wie aus der Umformung

zu 1/A; =24, (= A,x, +2,x,) ersichtlich — auch €L, also Element des Durchschnitts

AnL. Das bedeutet, dass f(1/A; —A,(—2,x; +4,x,))>0, und daraus ergibt sich

— Ao f (%) + A, f (x3)=1f (—A,x1 +2;%,)=0. Somit erhalten wir:
__f(x2)>_f(x1)=

=

Wir haben damit die Existenz eines 3€R nachgewiesen mit pu, <3< u, fiir alle u, eM,,

i, EM,. Wir definieren nun eine Linearform f':L'—R durch f'(x)=f"(x+4t):=

=f(xX)+A(t):=f(x)+43. f' ist Fortsetzung von f auf L'. Sei x'e L' A4, also

x'=x+Ate A, wo xeL. Dann ist f'(x)=f(x)+13=f(x)—A(f(x)/A)=0 fiir 1#0.

Fiir A=0 gilt f'(x")>0 nach Voraussetzung. /" ist somit Fortsetzung von f von der

gesuchten Art.

Die endliche Schnitteigenschaft der Familie {D,, xe E} ergibt sich nun durch
Induktionsschluss.

2) Auf U,z D, existiert ein Ultrafilter U< {D,, xeE}. Fiir xeE ist
U,:={Un D,, UeU} Ultrafilter auf D,. Die Abbildung g, : D, — R sei definiert durch
g:(f):= f(x). g.(D,) = [inf3,, supI,] = R, wo 3,:= f (x) fiir eine zulassige Forset-
zung f von f;, auf die lineare Hiille L(L,, x) von L, und x. Wir haben oben bewiesen,
dass [inf3,, supd,] beschriankt, also kompakt ist. Da R separiert ist, konvergiert
g, (U,) gegen genau ein a.€R. Die Abbilding f: E— R, definiert durch f (x):=ua,, ist
nun die gesuchte Fortsetzung von f;, auf E, denn:

— f ist linear: Seien x, yeE und D:=D,nD,nD,,, dann folgt mit W,:=
{UnD,Uet} g, y(Uss,)=8ry(Up)<g:(Up) +8, (Up)=[g: (U) +8, (W) s 4o
also gilt g,y (Ussy)lap+a,, und das heisst o, ,=a,+a, Wir erhalten somit
f(x+y)=f(x)+ f(») und - auf analoge Weise — f (Ax)=A4f (x) fiir AcR.

~ fist Fortsetzung von f,: Fiir xe L, und jedes Uell erhalten wir g . (UnD,)=
={/fo(x)}, also g, (U,)=[fo(x)]!s,x)- Das heisst Fx)=fo(x) fiir xeL,.

- f(A)>0: Fiir xe 4 giltg, (D,)>0, und das bedeutet, dass aus g, (U,) |, folgt: a,>0.

q.e.d.

Eine Hyperebene in einem LVR ist entweder dicht oder abgeschlossen. Dies folgt

unmittelbar aus

SATZ 3.2: Mit einem (algebraischen) URF eines LVRE ist auch F UR von E.

Beweis: Fiir x, ye F und A, ueR erhalten wir: Ax+uyeAF+uFc AF+uFcF.
Ein ganz analoger Beweis zeigt, dass mit einer konvexen Teilmenge A eines LVRE
auch 4 konvex ist. Die Konvexitit von Int(4) ergibt sich aus

SATZ 3.3: Es seien A eine konvexe Teilmenge eines LVRE, x'eInt(A4), xe A und
Yy=2Ax"+(1-=2) x, wobei 0<A<1. Dann ist yelnt(A).
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Beweis: Die Abbildung f;:E—E, definiert durch f;(z):=Az+(1—21) x, ist ein
Homdomorphismus. Weiter gilt f,(4)=4 und f; (x")=y. Fiir §|, gilt 7' (¥)|,".
Esist Ae f; ' (&), also f,(4)e & und weiter A€ F. Das heisst aber, dass yeInt(A4).

SATZ 3.4: Es seien E ein LVR, A eine Teilmenge von E mit Int(A)#0, und f #0
eine Linearform auf E mit f (4)=0. Dann ist die Hyperebene H: = f ~*(0) abgeschlossen
und f (Int(A4))>0.

Beweis: Sei x'eInt(A), also x'¢A°= (Int(A4))°. K:=f"1(—00,0) ist eine nicht-
leere Teilmenge von A°. x'¢ K, K ist daher nicht dicht in E. Fir yeK gilt f (y + H)=
=f()+f(H)<0, also folgt y+ H<K und weiter )_:}——?Ic KR#E. Daraus folgt die
Abgeschlossenheit von H.

Seien weiter xe H und z€E, so dass f(z)>0. Es gilt V-z+x],. Fiir >0 gibt es
einen Ultrafilter U<V -z +x,s0 dass B:=[(—0, 0)- z+x]ell. Wegenf (B) <0, f (4) >0
schliessen wir 4 n B=0. Damit ist A¢, also x¢Int(4), und das heisst, dass Int(4) N
N H=0. Nach Voraussetzung folgt f (Int(4))>0.

Wir haben nun die Sétze, auf die sich der Beweis der geometrischen Form des

Satzes von Hahn-Banach stiitzt, zusammengestellt und gehen zur Formulierung dieser
wichtigen Variante iiber:

SATZ 3.5 (Hahn-Banach, geometrische Form): E sei ein LVR, A eine konvexe
Teilmenge von E mit Int(A)#0. N sei eine lineare Mannigfaltigkeit von E, so dass
NnInt(A)=0. Dann existiert eine abgeschlossene Hyperebene H, Nc Hc E, die zu
Int(A) disjunkt ist.

Beweis: Fiir zeN ist N':=N—z ein UR von E. Sei A":=A4—z. Es existiert ein
x'eInt(A4"). FiryeL:=L(N’, x") gilty=n+Ax',wone N’ und AeR. Durch f (N'):=0,
f(x')=1 ist eine Linearform f#0 auf L definiert. Es gilt f (L n 4’)>0, denn andern-
falls:

Sei f(y)<O fiir ein yeLnA’. Wegen f(x')=1 gibt es in der konvexen Hiille
K(x',y) von x’ und y ein u mit f (¥)=0. Das heisst ue N’. Wegen x’eInt(4") und
ye A’ gilt nach Satz 3.3, dass ueInt(4’). Dies ist aber nicht moglich, da N’ nInt(4")=0.

Nach Satz 3.1 existiert nun eine Fortsetzung f von f auf E mit f(4')>0. Die
Hyperebene H':= f~1(0) ist nach Satz 3.4 abgeschlossen und disjunkt zu Int(4').
Mit H:=H’+z ergibt sich HnInt(4)=0 und Nc H. q.e.d.

Nach Satz 2.9 ist f stetig. Fiir den Fall, dass N UR von E ist, haben wir somit die
Existenz einer stetigen Linearform f nachgewiesen, fiir welche gilt: f(N)=0,

f(Int(4))>0.

SATZ 3.6: A und B+#( seien konvexe Teilmengen eines LVR E, wobei Int(4)#0
und AnB=0. Dann gibt es eine stetige Linearform f auf E und ein a€R, so dass
S (Int(4d)) <o und f (B)>«,
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Beweis: Int(A— B)>Int(4—b)=Int(4)—b fiir beB, also ist Int(4—B)#0. Da
N:={0} und Int(4 — B) disjunkt sind, folgt aus Satz 3.5 die Existenz einer stetigen
Linearform f#0 mit f (Int(4 — B))<0. Wegen f (4 — B)<0 ist a:=sup f (4) endlich,
und es gilt f (B)>a. Andererseits ergibt sich aus Satz 3.4 f (Int(4))<a.

Als Anwendung des Satzes von Hahn-Banach geben wir eine hinreichende Be-
dingung an fiir die Separiertheit des zu einem LVR E gehorigen lokalkonvexen Raumes
E°. Dabei soll eine Menge 4 E beschrinkt heissen, falls V-4 |, E.

SATZ 3.7: Wenn in einem separierten LVR E eine beschréinkte konvexe Teilmenge
A existiert mit Int(A)#0, ist E° separiert.

Beweis: Sei zeInt(4)und A':=A—z. Dann ist Oelnt(4). 4'eF fiir F |,, ebenso
(=4")und W:=A4"n(—A’). W ist konvex und symmetrisch, also equilibriert, sowie
beschrankt. OeInt (W). Sei xeE, x#0. Dann gibt es ein Intervall [ —e¢, ¢], e>0, so
dass x¢[—e, €]+ W, denn sonst wiirde gelten [x]<V-W|,, in Widerspruch zur
Separiertheit von E. Also gilt x/e¢[ —1, 1]- W= W. Nach Satz 3.6 gibt es eine stetige
Linearform f mit f (x/¢) #0, oder mit f (x)#0. Daraus folgt die Separiertheit von E°.

4. Der Minimaxsatz von Sion und der Fixpunktsatz von Tychonoff

Eine Abbildung f eines LR M in R heisst unterhalbstetig (oberhalbstetig), wenn
fir jedes aeR f ™1 (a, 0) (f~'(— o0, «)) eine offene Teilmenge von M ist. Offenbar
ist f genau dann unterhalbstetig, wenn — f oberhalbstetig ist. Die Eigenschaften ober-
halbstetiger Abbildungen ergeben sich daher ohne weiteres aus denjenigen unter-
halbstetiger Abbildungen.

SATZ 4.1: Eine Abbildung f eines LR M in R ist genau dann unterhalbstetig,
wenn zu jedem xeM und fiir jedes ¢>0 eine Umgebung U von x existiert, so dass
F(U)> f(x)—-s.

Beweis: = U:=f"1(f(x)—¢, o0) ist offen und enthilt x, ist also x-Umgebung.

< Sei fiir aeR f~1(a, 0)#0. Zu jedem xef !(x, 00) gibt es ein £>0, so dass
f(x)—e>a. Nach Voraussetzung gibt es eine Umgebung U von x mit f (U) > f (x)—¢,
das heisst £ (U)<(a, o). Daraus folgt f ~*(a, 00)> U und somit xelnt(f~!(x, o0)).
Also ist f~* (a, 00) offen.

Jede stetige Abbildung ist unterhalbstetig. Jede unterhalbstetige Abbildung von
M in R ist unterhalbstetig von M® in R. Aus der Theorie der topologischen Raume
kann somit entnommen werden:

- Mit einer Familie unterhalbstetiger Abbildungen ist, falls es existiert, auch ihr
Supremum unterhalbstetig.

~ Jede unterhalbstetige Abbildung f eines kompakten LR M in R nimmt auf M ihr
Infimum an,
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Eine Abbildung f von einer konvexen Teilmenge X eines VR E in R heisst quasi-
konkav (quasikonvex), wenn fiir jedes aeR £~ (a, 00) (f~!(— o0, a)) konvex ist. fist
genau dann quasikonkav, wenn — f quasikonvex ist.

Mit obigen Definitionen 14sst sich nun der folgende Satz von Ky Fan formulieren:

SATZ 4.2 (Fan): E und F seien separierte LVR, X und Y seien nichtleere, kom-
pakte, konvexe Teilmengen von E bzw. von F. f und g seien Abbildungen von X x Y in R,
wobei gelte: Fiir alle xeX, yeY und feste o, BeR seien die Restriktionen f,.Y-R,
F):=f(x,y), und g,: X—R, g,(x):=g(x, y), unterhalbstetig. f, und g, seien quasi-
konkav mit ;' («, 00)#0 und g; ' (B, 0) #9.

Dann gibt es ein (X, )e X x Y mit f (X, y)>a und g(x, y)> p.

Beweis: (Vgl. (5), S. 305f, sowie (6).)

1) Fiir (x, y)e X x Y definieren wir:

A(x, y):={(x, »)eXx Y, f(x,y)<avg(x,»)<B}. (A(x, ) nXxY=
=g, (B, 0)x f;'(a, o) ist offen in X x ¥, A(x, y) daher abgeschlossen und nach
Satz 2.3 kompakt. Zu (x’ y')e X x Y existiert ein (x, y), so dass (x’, y") nicht Element
von A(x, y) ist, nimlich irgendein x aus der nichtleeren Menge f, ! (&, 00) Zusammen
mit einem y aus g, ' (B, o). Das heisst (yxyA4(x, ¥)=0, und wegen der Kompaktheit
von X x Y existieren gewisse (xy, ¥,),--., (X, ¥,) aus X x ¥ mit (\j={ 4 (x;, y;)=0.

2) Es gibt gewisse (x1,¥;),.-., (Xm Ym)EX x Y, fiir deren konvexe Hiille gilt:
K((x;, y), i=1,..., m)&\Uj~ A (x;, y;), denn andernfalls:

Sei K((x;, y;), iel)=\U;e14 (x;, y;) fiir jedes endliche I. Sei I={1,..., n}, dann
definieren wir v,:=(1, 0,..., 0) bis v,:=(0, ..., 0, 1)e R", sowie eine lineare Abbildung
h:R"—> X x Y durch h(v;): =(x;, ;). Die Limitierung von X x Y induziert nach Satz 2.8
auf 7 (R") die natiirliche Topologie. h ist stetig (siehe (3), p. 19) und damit auch seine
Restriktion iy auf K (v;, ieI). hg ' (A (x;, y;)) ist abgeschlossen. Nach Voraussetzung gilt

K((x;, y;), je)=Ujes A(x;, v;) fiir jedes JoI. Also folgt K(v;, jeJ)=
= hx ' (K(x;, y;), jeD)chg (Ujer A% ¥))=Ujes bz (A (x;, ;) fiir jedes J<L.
Damit sind die Voraussetzungen des aus dem Spernerschen Lemmas folgenden Satzes
von Knaster-Kuratowski-Mazurkiewicz (siehe (2), p. 180) erfiillt, und wir erhalten
MNier A(x;, y)#9. Dies steht aber in Widerspruch zum Ergebnis von Beweisteil 1).

3) Es gibt somit gewisse nichtnegative a,...,®, mit Yj.a;=1, so dass
D= 1%; (x5, ¥) U= 14 (x5, y;). Das heisst f (x;, ) /- jo,y;) >0 und g (i i, y)>P
fiir j=1,..., m, oder x;€ fg, (®, 0) und y;egs, L (B, ©), j=1,..., m. Da fray, und
85aux, quasikonkav sind, gilt Y™ ax,€ fr,), (@, 00) und Y7oy €85, (B, 0); SO
dass wir erhalten: f (371w o;(x; yi)>a, g(Xreqa;(x;, y;))>pB. Also haben X:=
=Y 7 0x; und j: =YL ;a,; die verlangten Eigenschaften. q.e.d.

Eine Folgerung aus dem Satz von Fan ist der Minimaxsatz von Sion:

SATZ 4.3 (Sion): E und F seien separierte LVR, X und Y nichtleere, kompakte,



Der Satz von Hahn-Banach und Fixpunktsitze 401

konvexe Teilmengen von E bzw. F. f sei eine Abbildung von X x Y in R, wobei fiir alle
xeX, yeY die Restriktionen f, unterhalbstetig und quasikonvex, f, oberhalbstetig und
quasikonkav seien. Dann existieren min, .y max,.x f (x, y) und max, .y min,_y f (x, y)
und sind einander gleich.

Beweis: 1) Sei yeY. Wegen der Kompaktheit von X existiert ein x,eX, so dass
f,(x,)=sup(f,(X)). Das heisst f(x,, y)=maxyf(x,y). Die Abbildung supyf,=
=maXy f, ist somit auf Y definiert und unterhalbstetig. Es existiert ein yeY, fiir
welches maxy f,(7) = f (x;, 7) =inf (maxy £, (Y)) ist. Das heisst, es existiert ein (x;, y)e
eXxY mit f(x; y)=miny maxy f(x,y). Ebenso existiert ein (X, y;)eXx Y mit
[ (%, yg)=maxy miny f (x, y).

2) Mit der Definition g:= — fist g, unterhalbstetig und g, quasikonkav. Zu jedem
e>0 gibt es wegen f(x,, y) = f (x5, 7)> f (x5, ) —eund g (x, y,) 2 g (%, y) > g (%, y) —¢
nach Satz 4.2 ein (x,, y,)e X x Y mit f (x,, ¥,)>f (x5, 7)—¢&, g(x,, ¥,)>8 (%, yz)—e.

Das heisst f (x5, 7) —e<f (x,, ¥.) <f (X, ys) +¢, und es folgt: miny maxy f (x, )<
<maxy miny f (x, ).

3) Umgekehrt gilt:

f (%, y¢) = max (miny £, (X)) < max(f;(X)) = f (x5, ¥).
qg.e.d.

Als weitere Folgerung aus dem Satz von Fan erhdlt man den Fixpunktsatz von
Tychonoff:

SATZ 4.4 (Tychonoff): S sei eine nichtleere, kompakte und konvexe Teilmenge
eines LVR E mit separiertem E°, und h sei eine stetige Abbildung von S in sich. Dann
gibt es ein X€ S mit h(X)=x.

Beweis: 1) Zu jedem xeE, x#0, gibt es eine stetige Linearform u auf E mit
u(x)#0. Fiir alle solchen u und alle ¢>0 definieren wir: 4(u, &):={xeS, u(x—h(x))e
e[ —e, €]}. Wegen der Stetigkeit von (idg—h) ist jedes A(u, &) abgeschlossen. Es ist
zu zeigen, dass der Durchschnitt aller dieser 4 (u, €) nicht leer ist, oder — wegen der
Kompaktheit von S — dass (=, 4 (u;, &) #9 fiir je endlich viele (uy, &), ..., (4, &,).

2) Wir definieren zwei Abbildungen f, g: S x S—R, durch
FO =30 lu(y—h) = Yi- 1 lui(x—h())l, und g(x,y):= =1y [u;(x—y)l.
Dann sind f, und g, stetig, also insbesondere unterhalbstetig, und f, und g, quasi-
konkav. Wegen [u(y) —u(h(»))| = lu(x) —u(h(x)| < lu(x) —u(y)| istf (x, y) +&(x, ) <O
fir alle (x, y)eS x S. Wir setzen ¢:=min (g, ..., &,). Zu jedem x€S§ existiert ein yeS,
so dass g(x, y)> —e, nimlich y=x. Es gibt daher nicht zu jedem yeS ein xeS mit
S (x, y)>e, denn sonst wiirde nach Satz 4.2 ein (x', y")€S x S existieren mit f (x', y') +
+g(x’, ")>0. Es gibt somit ein yeS mit f (x, y)<e fiir alle xeS, insbesondere fiir
h(p). Also gilt Y7_ ; [u;(F—h(P)) <&, und es folgt: je(\i=1 4 (u;, €).

q.e.d.
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5. Der Fixpunktsatz von Kakutani

Einen andern Zugang zum Satz von Tychonoff liefert der allgemeinere Fixpunkt-
satz von Kakutani:

SATZ 5.1 (Kakutani): S sei eine nichtleere, kompakte, konvexe Teilmenge in
einem LVR E mit separiertem E°. f sei eine Abbildung von S in die Potenzmenge P(S),
wobei f (x) fiir jedes xe S konvex und nicht leer, und der Graph G(f):={(x, y); xeS,
yef(x)} von fin S xS abgeschlossen ist.

Dann gibt es ein X€S mit xe f (X).

Beweis: (Vgl. (8), p. 171.)

1) In E° gibt es eine Nullumgebungsbasis B aus konvexen, symmetrischen und
abgeschlossenen Mengen. Da S in E° kompakt ist, gibt es zu jedem Ve eine end-
liche Teilmenge {x,,..., x,} von S, so dass Sc|Jj-; (x;+ V). Wir definieren eine
Abbildung f, von S in die Potenzmenge von K:=K (xi,..., x,) durch f,(x):=
=(f(x)+V)nK. f,(x) ist konvex und nicht leer, denn: fiir xeS ist f (x)#0,
also f(x)nUi=1 (x;+V)#0. Es existiert somit ein je {1,...,n}, fiir welches
f(x)n(x;+V)#0. Das heisst, dass x;ef(x)+V, oder x;e€f,(x). Der Graph
G(f,):={(x,y); xeK, ye (f(x)+V)nK} der Restriction von f, auf K lasst sich
darstellen als (K x K)n {(x, y); xeS, ye (f (x)+ V)}=(Kx K)n[G(f)+ ({0} x V)].
Es folgt, dass G( f,) in K x K abgeschlossenen ist. Nach Satz 2.8 induziert die Limi-
tierung von E auf K die natiirliche Topologie. Fiir K sind daher die Bedingungen des
Fixpunktsatzes von Kakutani fiir euklidische Riume endlicher Dimension erfiillt
(siche (2), p. 183), und es folgt die Existenz eines x,e K mit x,€ f, (x,).

2) Die Mengen {xeS, xe f(x)+V}, wo Ve, erzeugen einen Filter § auf S.
Es existiert ein €S, und ein Filter ®<B+x mit G <F. Das bedeutet, dass der
Filter A:=(B +%) N F existiert und gegen % in E° konvergiert. Somit konvergiert der
Filter B:=UA x (B +%) gegen (%, %) im Produktraum E° x E°. Der Filter B [G(f)]
existiert, denn:

Sei VeB, dann gilt 3V +%)n {x, xe f (x) +1V }eU. Es existiert also ein x'=)"+
+2'€3V+%, wo y'ef(x) und z’€e3V. Wegen x' —z'e f(x') gilt (x', x' —z)eG(f)
und wegen x'—z'eV+x weiter (x, x'—2)e[(V+%)n {x, xe f(x)+V}]x(V+5.
Und daraus folgt, dass G(f)n B#9 ist fiir alle Be B. G(f) ist kompakt in §°x8°,
wo S° topologischer UR von E° ist, und daher abgeschlossen.

Aus G(f)eBN[G(f)]l 5 folgt nun (X, %)eG(f)=G(f), und das heisst

zef (%). q.e.d.

Als Korollar von Satz 5.1 ergibt sich der Fixpunktsatz von Tychonoff, da - wie

" der nichste Satz zeigt — aus der Kompaktheit von S und der Stetigkeit von f die
Abgeschlossenheit von G(f) folgt.
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SATZ 5.2: M und N seien LR, f eine Abbildung von M in N, und G(f):=
={(x, f (x)), xeM} der Graph von f. Dann gilt: f ist genau dann stetig, wenn
h: M- G(f), definiert durch h(x):=(x, f (x)), ein Homdéomorphismus ist.

Beweis: 1) h sei ein Homdomorphismus. Dann ist ' =pryoh stetig.

2) h™'=pry ist stetig. Fir §| M gilt A(F)=F x [ (F) | x.r @y das heisst, A ist
stetig.

6. Der Fixpunktsatz von Markoff-Kakutani

SATZ 6.1 (Markoff-Kakutani): S sei eine nichtleere, konvexe, kompakte Teil-
menge eines separierten LVR E. I' sei eine Familie linearer, paarweise vertauschbarer
Abbildungen von E in sich, die S stetig in sich iiberfiihren. Dann gibt es ein x€S mit
u(x)=x fiir jedes uerl.

Beweis: (Vgl. (3), p. 121.)

1) Fir alle uel', neN definieren wir eine Abbildung u,: E—E durch u,(x):=
r=n" Y (x+u(x)+u(u(x))+--- +u""1(x)). I'; sei die Familie der Produkte einer end-
lichen Anzahl von Abbildungen der Form u,. Dann sind alle veI'; linear, paarweise
vertauschbar mit v(S)< S und mit stetigen Restriktionen auf S (Satz 2.1).

2) B:={v(S), verl} ist Filterbasis auf S: B ist nicht leer, da idzel',. Seien v,
wel'y und u:=vw=wv, dann gilt uel';, u(S)=v(w(S))<v(S) und ebenso u(S)<
cw(S). Das heisst u(S)=v(S)nw(S).

Nach Satz 2.6 sind alle Be®B kompakt und daher abgeschlossen. Daher folgt, dass
der Durchschnitt A aller Be®B nicht leer ist. Fiir jedes xe 4 und alle uel gilt nun:
u(x)=x: Sei n>0, xe A. Dann ist xeu,(S), also gilt

x=n"'(y+u(y)+--+u""'(y) firein yeS.
zi=u(x)—x=n""(u(y) + v*(y) +-+ u"(y))—
- n“l(y o 520 u""l(y)) = n_l(u"(y) — y)Enml(S o S).

T:=S-S ist kompakt, konvex und symmetrisch. Wir nehmen an, dass z#0. Es folgt
nzeT fiir alle neN, also auch A-zeT fiir alle AeR. Der eindimensionale UR F: = {/z,
AeR} liegt in T, und nach Satz 2.8 ist die auf ihm induzierte Limitierung die natiirliche
Topologie. F ist somit vollstindig und nach Satz 2.2 abgeschlossen, also kompakt.
Da dies nicht moglich ist, ergibt sich z=0.

q.e.d.
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