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Der Satz von Hahn-Banach und Fixpunktsâtze in limitierten

Vektorrâumen

Bieri Hanspeter

1. Einleitung

In der vorliegenden Arbeit werden einige Sâtze aus der Théorie der topologischen
Vektorrâume allgemeiner fur limitierte Vektorrâume hergeleitet.

Der Satz von Hahn-Banach wird als Fortsetzungssatz linearer Formen und in
seiner geometrischen Form fur limitierte Vektorrâume formuliert. Fur den Beweis
verwenden wir in Anlehnung an (1) anstelle des Satzes von Zorn den schwâcheren
Ultrafiltersatz. Als Anwendung ergibt sich eine hinreichende Bedingung fur die
Separiertheit der einer Vektorraumlimitierung x zugeordneten lokalkonvexen Topolo-
gie t° oder - gleichwertig - fiir die Trennbarkeit der Vektoren durch stetige Linear-
formen.

In (6) ergeben sich der Minimaxsatz von Sion und der Fixpunktsatz von Tychonoff
als Folgerungen eines allgemeinen Satzes von Fan ùber Mengen mit konvexen Schnit-
ten. Wir ûbertragen diesen Satz in seiner analytischen Form mit den beiden
Folgerungen auf limitierte Vektorrâume. Dabei setzen wir beim Fixpunktsatz von Tychonoff
- wie nachher auch beim Fixpunktsatz von Kakutani - anstelle einer separierten
lokalkonvexen Topologie die Separiertheit von t° voraus.

Den Fixpunktsatz von Kakutani beweisen wir nicht mit Hilfe von Netzen wie
in (8), sondern mit Filtertechnik. Aus ihm erhalten wir als Korollar erneut den
Fixpunktsatz von Tychonoff.

Schliesslich wird unter den gleichen weiteren Voraussetzungen wie in (3) der
Fixpunktsatz von Markoff-Kakutani fur separierte limitierte Vektorrâume hergeleitet.

Fiir die Grundlagen der Théorie der Limesrâume verweisen wir auf (7), fur die
Théorie der limitierten Vektorrâume und weitere Literaturangaben auf (4).

2. Vorbemerkungen, Kompaktheit

Fiir zwei Filter $ und © auf einer Menge driicken wir ,,Ç ist feiner als ©" durch
%<% aus. Es ist dann etwa gu®: {FuG; Fe% Ge®} der feinste Filter, grôber
als § und ©, und, falls er existiert, %n($): {FnG; Feg, Ge©} der grôbste Filter,
feiner als % und ©. Es ist im folgenden nicht nôtig, streng zwischen Filter und Filter-
basis zu unterscheiden ; insbesondere verstehen wir unter 5= {i7^ /e/} den von der
Filterbasis {Ft;iel} erzeugten Filter. Hauptfilter, wie {{x}} oder {G}, bezeichnen
wir mit [je], [G], etc., Ultrafilter im allgemeinen mit It.
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Wir betrachten nur Vektorrâume (VR) iiber dem Kôrper R der reellen Zahlen,
versehen mit der durch den absoluten Betrag definierten natûrlichen Topologie. V
bezeichnet immer den Nullumgebungsfilter auf R.

Es wird im weitern immer wieder gebraucht, dass bei einem Limesraum (LR) M
die Familie der gegen ein xeM konvergierenden Filter charakterisiert ist durch:

— [x] lx (genauer: [x] lx M, ,,[x] konvergiert gegen x auf M")

-8f !„©<$=> ©L>
und dass im Falle eines limitierten Vektorraums (LVR) E zusâtzlich gilt:

V-xj0

Ein LR, auf dem jeder Filter gegen hôchstens einen Vektor konvergiert, heisst

separiert.
Eine Abbildung/eines LRM in einen LRiV heisst stetig, wenn aus xeM, 3ixM,

folgt/(g)j/(x)iV.Esgilt:

SATZ2.1: Die Menge C(M,E) der stetigen Abbildungen eines LRM in einen

LVR JE" ist mit den ublichen Operationen ein VR.
Der Beweis ergibt sich unmittelbar, wenn man berûcksichtigt, dass fur beliebige

Abbildungen/ und g von M in E und fur jeden Filter g auf M gilt: (f+g) (5)<

Die Limitierung t eines LRM induziert auf jeder Teilmenge A von M die Unter-

raumlimitierung rA, die grôbste Limitierung auf A, fur welche die Inklusion i:A-*M,
i(x):=*x9 stetig ist. Fur xeA und den Filter ^A auf A gilt:

Sa ix^ <* i5a ist Spur eines Filters % lx M.

Zu jedem LRM mit einer Limitierung t gibt es auf der gleichen Menge eine feinste

Topologie tw, grôber als t, und zu jedem LVR 2s mit zulâssiger Limitierung a eine

feinste lokalkonvexe Topologie (7°, grôber als a. Wir bezeichnen die zugehôrigen

Râume mit Mm und is0. E und E° haben dieselben stetigen Linearformen.
Jeder Teilmenge A eines LRM lassen sich die Adhârenz Â und das Innere Int(i)

wie folgt zuordnen :

Â:={xeM;Ae% fur ein g|xM}, und

furjedes 54XM}.
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A heisst Umgebung von xeM, falls xe!nt(A). Im Spezialfall der topologischen Râume

ergeben sich so die iiblichen Definitionen. Fur das Komplement Ac von A in M gilt:

7f (Int (A))c, und mit B c M weiter :

Int(^) czAczÂ,
AcB=> lnt(A) a Int(J3), Â œ B9

Int (AnB) Int (,4) n Int (B), ÂÂjB ÂkjB.

A heisst abgeschlossen, falls A Â, bzw. offen, falls A lnt(A). Im allgemeinen ist
weder ^abgeschlossen, noch Int(v4) offen. M und M03 haben die gleichen abgeschlosse-

nen und offenen Teilmengen.
Ein Filter g auf einem LYRE heisst Cauchy-Filter, falls (3f-3f)lo£. Eine Teil-

menge A von E heisst vollstândig, wenn auf ihr - als limitiertem Unterraum (UR) -
jeder Cauchy-Filter konvergiert. In (4), Seite 264, ist bewiesen:

SATZ 2.2 : In einem separierten LVR istjede vollstândige Teilmenge abgeschlossen.

Eine Teilmenge A eines LRM heisst kompakt, wenn auf ihr jeder Ultrafilter
konvergiert. A ist dann auch in jeder grôbern Limitierung kompakt, insbesondere in M°\
Daraus folgt, dass wie im topologischen Fall jede offene tîberdeckung von A eine

endliche Teilûberdeckung enthâlt.

SATZ 2.3: In einem LRM ist jede abgeschlossene Teilmenge A einer kompakten
Menge B kompakt.

Beweis: Jeder Ultrafilter XI auf A erzeugt einen Ultrafilter auf B, der gegen ein
xeB konvergiert und A enthâlt. Das heisst xeÂ, und daraus folgt U|x^.

SATZ 2.4: Jede kompakte Teilmenge A eines separierten LRM ist abgeschlossen.

Beweis: Zu xeÂ gibt es einen Ultrafilter VLIXM mit AeVL. Die Spur von U auf
A ist ein Ultrafilter und konvergiert also gegen ein yeA. Daraus folgt UiyM, und

wegen der Separiertheit von M x=y.

SATZ 2.5 : Jede kompakte Teilmenge A eines LYRE ist vollstândig (vgl. (7), S. 296).
Beweis: Sei g Filter auf A mit (3?-3r) jo£. E>ann êibt es einen Ultrafilter

und ein xeA mit UIXA. Nun gilt: g-x=g-
das heisst %[XA.

SATZ 2.6: M und N seien LR, A eine kompakte Teilmenge von M und f eine

stetige Abbildung von M in N. Dann istf{A) kompakt.
Beweis: Die Restriktion/4 von/ auf A ist stetig. Zu jedem Ultrafilter U auf/(^4)

gibt es einen Ultrafilter 93 auf A mit 93 ^Z^1 (U) und ein xeA, fur welches 93|xv4.
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Da lï Ultrafilter ist, gilt U=/^(93). Wegen der Stetigkeit von fA folgt somit

UlfA(x)f(A).

SATZ 2.7: Das Produkt kompakter LR ist kompakt.
Beweis: Siehe (7), S. 291.

Der Arbeit (4), Seite 264, entnehmen wir noch die beiden nachstehenden, in der

Folge wichtigen Sâtze :

SATZ 2.8: Jeder separierte LVR endlicher Dimension n ist isomorph zum Rn.

SATZ 2.9: Eine Linearformf aufeinem LVRE ist genau dann stetig, wennf'1^)
in E abgeschlossen ist.

3. Der Satz von Hahn-Banach

SATZ 3.1 (Hahn-Banach): Es seien E ein LVR, Lo ein algebraischer UR und A

eine konvexe Teilmenge von E, so dass LQnlnt(A) nicht leer ist.f0 sei eine Linearform

auf Lo mit fo(LonA)^0. Dann gibt es eine lineare Fortsetzung f von f0 auf E mit

f(A)>0.
Beweis: 1) Fur xeisdefinieren wir: Dx: {f Fortsetzung von/0 auf einen URL,

der Lo und x enthâlt, so dass/(Ln^)^0}.
Wir zeigen, dass die Familie {DX9 xeE} die endliche Schnitteigenschaft hat:

Sei/eine Fortsetzung von/0 auf den URL=>L0 mitf(LnA)^09 und sei teEnLf.
Dann lâsst sich/auf die lineare Huile V von L und / fortsetzen, wobei fur die

Fortsetzung/' gi\t:f'(L'nA)^0, denn:
Sei jt'eL'. dann ist x' x+Àt, wo xeL und AeR. Wir definieren:

y^* wox^L,y

r^> wox2eL, x2 + X2teA,

OV,

0>.
J

Nun folgt M^0 und M2#0, denn: V-f|0; fur <5>0 gilt [(0, <5)-r]n [(-e, £

fur beliebiges e>0. Es existiert also ein Ultrafilter 33<Vf mit [(0, <5)-/]e23. Nach

Voraussetzung ist Lonlnt(A)^0. Es gibt daher ein x^Lq mit 0eIntC4)—*iî
A-x%sXL fur aile Ultrafilter U|o, folglich ist (A-x^n^O, <5)-f] Elément von 33,

also insbesondere ^0. Das heisst, es gibt ein ôl>0 mit ^i^eyi — xl9 oder Xi -\-oiteA.

/i! : - (/(^i)/^i) ist Elément von Ml5 also Mi #0. Analog gilt M2 #0. Weiter folgt

i, Ai>0, und x2+À2teA, A2<0. Wegen der Konvexitât von A ist damit
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auch — A2/A1—A2 (*i +Xlt)+Xi/Xl—X2 (x2-\-X2t)eA und - wie aus der Umformung
zu 1/Ajl — A2 (~-X2xl+Xlx2) ersichthch - auch eL, also Elément des Durchschmtts
AnL. Das bedeutet, dass /(1/Ai — A2( — X2xx +A1x2))>0, und daraus ergibt sich

-A2f(xl)+Xïf(x2)=f(-X2xl +A1x2)^0 Somit erhalten wir:

f(x2) f(xt)
Hz ;— > :— Mi

A2 Âi

Wirhaben damit die Existenz eines SeR nachgewiesen mit fii<:9^fi2 fur aile

2. Wir defimeren nun eine Linearform/':Z/-»R dmchf'(xf)=f'(x+Xt):
=f(x)+Xf'(t):=f(x)+A9 /' ist Fortsetzung von / auf L'. Sei x'eL'nA, also

x' x+Afe>4, wo xeL. Dann ist/'(jO=/(x)+A3^/(jc)-A(/(jc)/A)==0 fur A/0
Fur A=0 gilt/'(x')>0 nach Voraussetzung /' ist somit Fortsetzung von/von der

gesuchten Art.
Die endhche Schmtteigenschaft der Famihe {Dx, xeE} ergibt sich nun durch

Induktionsschluss.

2) Auf (JxeE Dx existiert ein Ultrafilter U<{£x, xeE}. Fur xeE ist
Ux : { U n Dx9 Ue U} Ultrafilter auf Dx. Die Abbildung gx : Dx -^ R sei definiert durch

Sx(f):=: f (x)- 8x(Dx) c [mfSx, supSJ cR,wo^ /* (x) fur eine zulassige Forset-

zung fvonf0 auf die hneare Huile L(L0, x) von Lo und jc Wir haben oben bewiesen,
dass [inf9x, sup9x] beschrankt, also kompakt ist. Da R sepanert ist, konvergiert
gx(VLx) gegen genau em axeR. Die Abbilding/ E-+R, definiert durch f(x): (xx, ist
nun die gesuchte Fortsetzung von/0 auf E, denn:

- / ist hnear: Seien x9 yeE und D: DxnDynDx+y, dann folgt mit UD:

{UnD9UeU}gx+,{Ux+,)=gx+,(UD)<gM
also gilt gx+y(Ux+y)i<Xx+0ly, und das heisst ax+y (xx+(xr Wir erhalten somit
f(x+y) f(x) + f(y) und ~ auf analoge Weise - f(Xx) Xf(x) fur AeR.

- /ist Fortsetzung von/0 Fur xeL0 und jedes UeVL erhalten wir gx(UnDx)
{fo(x)}9 also gx(VLx)= [/oO)]i/O(*) Das heisst /(x)=/0(a:) fur xeL0.

- f(A)^0: Fur xe^l giltgx (Dx) ^ 0, und das bedeutet, dass aus gx (Ux)lax folgt : olx ^ 0.

q.e.d.
Eine Hyperebene m einem LVR ist entweder dicht oder abgeschlossen. Dies folgt

unmittelbar aus

SATZ 3.2: Mit einem (algebraischen) URF eines LVR£ ist auch F UR von E.

Beweis: Fur x, yeFund A, jieR erhalten wir: Xx+iiyeXF+nFczXE+iiFczF.
Ein ganz analoger Beweis zeigt, dass mit einer konvexen Teilmenge A eines LVR£

auch Â konvex ist. Die Konvexitàt von Int(v4) ergibt sich aus

SATZ 3.3: Es seien A eine konvexe Teilmenge eines LYRE, x'elnt(A), xeA und
}> A;c'+(l-A) x, wobei 0<A^l. Dann ist yelnt(A).
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Beweis: Die Abbildung fx :E^>E9 definiert durch /A(z): Az+(l—A) x, ist ein

Homôomorphismus. Weiter gilt/A(^)cz^ und fx(x')=y. Fur g|y gilt/^1 (g)j^.
Es ist Aefï1 (5), also/y(^4)e5 und weiter ^eg. Das heisst aber, dass yelnt(A).

SATZ 3.4: Es seien E ein LVR, A eine Teilmenge von E mit Int(y4)=^0, undf^O
eine Linearform aufE mitf(A) ^ 0. Dann ist die Hyperebene H: =f~1 (0) abgeschlossen

undf(Int(A))>0. _Beweis: Sei x'elnt(^), also xt^Ac (lnt(A))c. K:^f~x{-ao, 0) ist eine nicht-
leere Teilmenge von Ac. x'$R, K ist daher nicht dicht in E, Fur yeK gilt/(j+//)

also folgt y+HczK und weiter y + HczR^E. Daraus folgt die

Abgeschlossenheit von H,
Seien weiter xeH und ze£, so dass/(z)>0. Es gilt V-z+xJ,*. Fur ^>0 gibt es

schliessen wir AnB=Q. Damit ist A$VL, also x£Int(/l), und das heisst, dass lnt(A)n
nH=0. Nach Voraussetzung folgt /(Int(^))>0.

Wir haben nun die Sâtze, auf die sich der Beweis der geometrischen Form des

Satzes von Hahn-Banach stiitzt, zusammengestellt und gehen zur Formulierung dieser

wichtigen Variante iiber:

SATZ 3.5 (Hahn-Banach, geometrische Form): E sei ein LVR, A eine konvexe

Teilmenge von E mit Int04)^0. N sei eine lineare Mannigfaltigkeit von E, so dass

Nn Int(v4)=0. Dann existiert eine abgeschlossene Hyperebene H, NcHaE, die zu

Int(v4) disjunkt ist.
Beweis: Fur zeN ist N': N—z ein UR von E. Sei A': A — z. Es existiert ein

x'elntO*'). FuryeL: L(N\ x')gilty n+Xxf,woneN' und AgR. Durch/(iV'): 0,

/(*')= 1 ist eine Linearform /^O auf L definiert. Es gilt/(Ln^')^0, denn andern-

falls:
Sei/(>^)<0 fur ein yeLnA'. Wegen/(x')=l gibt es in der konvexen Huile

K(x',y) von x' und y ein u mit/(w) 0. Das heisst ueN'. Wegen x'elnt(^t') und

yeA' gilt nach Satz 3.3, dass welnt(A'). Dies ist aber nicht môglich, da N' n Int(^') 0.

Nach Satz 3.1 existiert nun eine Fortsetzung / von/auf E mit f(A')^0. Die

Hyperebene H': f~1(0) ist nach Satz 3.4 abgeschlossen und disjunkt zu Int(^')-
Mit H: H'+z ergibt sich Hn Int(A) ® und Nez H. q.e.d.

Nach Satz 2.9 ist /stetig. Fur den Fall, dass N UR von E ist, haben wir somit die

Existenz einer stetigen Linearform / nachgewiesen, fur welche gilt: f(N)=0,
f(lnt(A))>0.

SATZ 3.6: A und £#0 seien konvexe Teilmengen eines INRE, wobei Int(i4)#0
und AnB=*Q. Dann gibt es eine stetige Linearform f auf E und ein oceR, so dass

/(I(4) df(B)
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Beweis: lnt{A-B)=>lnt{A-b) lnt{A)-b fur beB, also ist Int(A-B)ïQ. Da
N: {0} und Int(A — B) disjunkt sind, folgt aus Satz 3.5 die Existenz einer stetigen

Linearform/#0 mit/(Int04-£))<0. Wegen/04-£)<0 ist <x: sup/G4) endlich,
und es gilt/(2?)^a. Andererseits ergibt sich aus Satz 3.4 f(lnt (A)) < ce.

Als Anwendung des Satzes von Hahn-Banach geben wir eine hinreichende Be-

dingung an fur die Separiertheit des zu einem LVREgehôrigen lokalkonvexen Raumes
E°. Dabei soll eine Menge AcE beschrânkt heissen, falls \'A[0E.

SATZ 3.7: Wenn in einem separierten LVR£" eine beschrânkte konvexe Teilmenge
A existiert mit Int(A)^Q, ist E° separiert.

Beweis: Sei zelnt(^4)und^/: y4 —z. Dann ist Oelnt(v4'). Afe^ fur 3f|0, ebenso

{ — A') und W: A' n(-A'). W ist konvex und symmetrisch, also equilibriert, sowie
beschrânkt. Oelnt(W). Sei xeE, x^O. Dann gibt es ein Intervall [ — 8, e], e>0, so
dass x$[ — e, e] • W9 denn sonst wurde gelten M^V-^FJ,0, in Widerspruch zur
Separiertheit von E. Also gilt x/e$[-1, l~]-W=W. Nach Satz 3.6 gibt es eine stetige

Linearform/mit/(A'/e)/0, oder mit/(x)/O. Daraus folgt die Separiertheit von E°.

4. Der Minimaxsatz von Sion und der Fixpunktsatz von Tychonoff

Eine Abbildung / eines LRM in R heisst unterhalbstetig (oberhalbstetig), wenn
fiir jedes oteRf~1(a, oo) (/~1(—oo, a)) eine offene Teilmenge von M ist. Offenbar

ist/genau dann unterhalbstetig, wenn —/oberhalbstetig ist. Die Eigenschaften ober-
halbstetiger Abbildungen ergeben sich daher ohne weiteres aus denjenigen unter-
halbstetiger Abbildungen.

SATZ 4.1: Eine Abbildung f eines LRM in R ist genau dann unterhalbstetig,
wenn zu jedem xeM und fiir jedes e>0 eine Umgebung U von x existiert, so dass

f(U)>f(x)-s.
Beweis: => U:=f 1(f(x) — s9 oo) ist offen und enthâlt x, ist also x-Umgebung.
<= Sei fur aeR/"1^, 00)7*0. Zu jedem xe/'^a, 00) gibt es ein e>0, so dass

f(x) — exx. Nach Voraussetzung gibt es eine Umgebung U von x mitf(U)>f(x) — e,

das heisst/(U)c(a, 00). Daraus Mgtf~1(a, oo)zdU und somit xelnt(f~i(ct, 00)).
Also ist/"1 (a, 00) offen.

Jede stetige Abbildung ist unterhalbstetig. Jede unterhalbstetige Abbildung von
M in R ist unterhalbstetig von Mw in R. Aus der Théorie der topologischen Râume
kann somit entnommen werden :

- Mit einer Familie unterhalbstetiger Abbildungen ist, falls es existiert, auch ihr
Supremum unterhalbstetig.

~ Jede unterhalbstetige Abbildung/eines kompakten LRAf in R nimmt auf M ihr
Infimum an.
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Eine Abbildung/von einer konvexen Teilmenge X eines VRE in R heisst quasi-
konkav (quasikonvex), wenn fur jedes aeR/"1(a, oo) (/""1(— oo, a)) konvex ist./ist
genau dann quasikonkav, wenn —/quasikonvex ist.

Mit obigen Definitionen lâsst sich nun der folgende Satz von Ky Fan formuheren:

SATZ 4.2 (Fan): E und F seien separierte LVR, X und Y seien nichtleere, kom-

pakte, konvexe Teilmengen von E bzw. von F. fund g seien Abbildungen von Xx Y in R,
wobei gelte: Fur aile xeX, ye Y undfeste a, /?eR seien die Restriktionen fx: 7-+R,
fxiy)m'—f{x*y)» undgy:X->R, gy(x):=g(x,y), unterhalbstetig. fy und gx seien
quasikonkav mitfy1 {a, oo)^0 undg~x{^ 00) #0.

Dann gibt es ein (x,y)eXx Y mitf(x, y)> a und g(x9 y)>p.
Beweis: (Vgl. (5), S. 3O5f, sowie (6).)
1) Fur (x,y)eXxY definieren wir:
A(x,y):={(x\y')eXxY9 J (*,/)<« vg(x', y)<0}. (A(x, y))cnXxY=

^gy1 (A °°)x Jx * (a> °°) ist offen in Jx F, A(x, y) daher abgeschlossen und nach

Satz 2.3 kompakt. Zu (x' y')eXx 7 existiert ein (x, y), so dass (xf, y') nicht Elément

von A(x, y) ist, nâmlich irgendein x aus der nichtleeren Menge/^ 1(a, 00) zusammen

mit einem y aus g~>
* (p, 00). Das heisst p\x x Y A (x, y)=0, und wegen der Kompaktheit

von Xx Fexistieren gewisse (xuyt)9..., (xn,yn) aus Xx Ymit f\%xA{xv jt) 0.

2) Es gibt gewisse (xl,y1)9.t.9 (xm,ym)eXx 7, fur deren konvexe Huile gilt:
K((xi>yi)> *"=1,..., ^)ct:Ur=i^(^>;*)» denn andernfalls:

Sei ^((jc,,^,), ieI)c\JieIA(xl9yj) fur jedes endliche /. Sei /={1,...,«}, dann

definieren wir v1: (l9 0,..., 0) bis vn: (0,..., 0, 1)6jR", sowie eine lineare Abbildung
h:Rn->Xx 7durch h(vt): (xl9 yt). Die Limitierung von Xx 7induziert nach Satz 2.8

auf h(Rn) die naturliche Topologie. h ist stetig (siehe (3), p. 19) und damit auch seine

Restriktion hK aufK(vl9 iel). h^1 (A (xî9 yt)) ist abgeschlossen. Nach Voraussetzung gilt

K((xJ9yj)JeJ)c:\JJ€jA(xJ9yj) fur jedes Jal. Also folgt K(vJ9jeJ)
hlx (K(xJ9 y,)9 jeJ)ah-K l ({Jjej A (xJ9 >>,))= [JJej Kl {A (xJ9 y,)) fur jedes J<zl

Damit sind die Voraussetzungen des aus dem Spernerschen Lemmas folgenden Satzes

von Knaster-Kuratowski-Mazurkiewicz (siehe (2), p. 180) erfûllt, und wir erhalten

f)ieiA(xhyl)¥:Q. Dies steht aber in Widerspruch zum Ergebnis von Beweisteil 1)

3) Es gibt somit gewisse nichtnegative a1?..., am mit £r=iai=l> so dass

lr=ia,(^^)^Ur=i^(^, J>i). Das heisst/^,^!^)^ und g&T^x^y^P
furj=l,..., m, oder XjEf^yi((x, 00) und j7egIa^(j8, 00), j l,..., m. Da/IflW u^d

g%aiXi quasikonkav sind, gilt ZT=iajxj6/^i(a' °°) und E^i^6^*^' °°^ s0

dass wir erhalten: f^Mxl9y))>a9 g^M^y^)>^ Also haben x:

YJL iOLtXi und y :=YjL tOiji die verlangten Eigenschaften. Qed

Eine Folgerung aus dem Satz von Fan ist der Minimaxsatz von Sion:

SATZ 4.3 (Sion): E und F seien separierte LVR, X und Y nichtleere, kompakte
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konvexe Teilmengen von E bzw. F.fsei eine Abbildung von XxY in R, wobeifur aile
xeX, ye Y die Restriktionen fx unterhalbstetig und quasikonvex,fy oberhalbstetig und

quasikonkav seien. Dann existieren minyey m&xxeXf(x, y) und maxX6X minyey/(x, y)
und sind einander gleich.

Beweis: 1) Sei yeY. Wegen der Kompaktheit von X existiert ein xyeX, so dass

fy(xy) sup(fy(X)). Das heisst f{xy, y) maxxf(x,y). Die Abbildung supxfx
maxx/x ist somit auf Y definiert und unterhalbstetig. Es existiert ein yeY, fur

welches maxx fx(y)=f(xy, y) inf(ma,xxfx(Y)) ist. Das heisst, es existiert ein (xy9 y)e
eXx Y mit f(xy, y) minY maxx/(x, y). Ebenso existiert ein (x,yx)eXxY mit
f(x, j^) maxx miny/(x, y).

2) Mit der Définition g: —/ist gy unterhalbstetig und gx quasikonkav. Zu jedem
£>0 gibt es wegen/(xy, y)>f(xy9 y)>f(xy, y)-e und g(x, yx)>g(x9 yx)>g(x, yx)-s
nach Satz 4.2 ein (x£, ye)eXx Y mitf(xB, yB)>f(xy, y)-e, g(xe, ye)>g(x, yx)-e.

Das heisstf(xy9 y)-e<f(xe, yE)<f(x, yx)+s, und es folgt: mi% maxx/(x, y)^
<maxx miny/(x, y).

3) Umgekehrtgilt:

/ (x, yx) max(minr fy(X)) ^ max(/,(X)) / (x-y9 y).
q.e.d.

Als weitere Folgerung aus dem Satz von Fan erhâlt man den Fixpunktsatz von
Tychonoff:

SATZ 4.4 (Tychonoff) : S sei eine nichtleere, kompakte und konvexe Teilmenge
eines LVRJ51 mit separiertem E°, und h sei eine stetige Abbildung von S in sich. Dann
gibt es ein xeS mit h(x)=x.

Beweis: 1) Zu jedem xeE, x^O, gibt es eine stetige Linearform u auf E mit
w(x)#0. Fur aile solchen u und aile e>0 definieren wir: A(u, e): {xeS, u(x-h(x))e
e[ —e, e]}. Wegen der Stetigkeit von {ids — h) ist jedes A(u9 e) abgeschlossen. Es ist
zu zeigen, dass der Durchschnitt aller dieser A (w, e) nicht leer ist, oder - wegen der

Kompaktheit von S - dass p|?=i ^(wp ei)^0 fur je endlich viele (u^s^,..., (un,en).

2) Wir definieren zwei Abbildungen/, g:Sx S->R, durch

/(*, J): Z?=i \ut(y-h(y))\-ZUi \ut(x-h(y))\9 und g(x, j):= -E?=1 \ut(x-y)\.
Dann sind fx und gy stetig, also insbesondere unterhalbstetig, und fy und gx
quasikonkav. Wegen \u(y)-u{h{y))\ - \u(x)-u(h(x))\ < \u(x)-u(y)\ ist/(x, y) +g(x, j)<0
fur aile (x,y)eSxS. Wir setzen e: min(e1,..., en). Zu jedem xeS existiert ein yeS,
so dass g(x, y)> — e, nâmlich y x. Es gibt daher nicht zu jedem yeS ein xeS mit
/(*, y)>s, denn sonst wûrde nach Satz 4.2 ein (Y, y')eS x S existieren mitf(x'9 y') +
+g(x',/)>0. Es gibt somit ein yeS mit f(x,y)^e fur aile xeS9 insbesondere fur
h(y). Also gilt £?=i Iw^-AOOÎKe, und es folgt: yefy!=1 A(uh e).

q.e.d.
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5. Der Fixpunktsatz von Kakutani

Einen andern Zugang zum Satz von Tychonoff liefert der allgemeinere Fixpunktsatz

von Kakutani :

SATZ 5.1 (Kakutani): S sei eine nichtleere, kompakte, konvexe Teilmenge in
einem LVRJE mit separiertem E°.fsei eine Abbildung von S in die Potenzmenge P(S),
wobeif (x)fur jedes xeS konvex und nicht leer, und der Graph G(f): {(x, y); xeS,
yef(x)} von fin Sx S abgeschlossen ist.

Dann gibt es ein xeS mit xef{x),
Beweis: (Vgl. (8), p. 171.)

1) In E° gibt es eine Nullumgebungsbasis 93 aus konvexen, symmetrischen und

abgeschlossenen Mengen. Da S in E° kompakt ist, gibt es zu jedem Fe93 eine end-

liche Teilmenge {xh...,xn} von S, so dass Sa{Jï=x (xt + V). Wir definieren eine

Abbildung fv von S in die Potenzmenge von K: K(xu..., xn) durch fv(x):
(f(x)+V)nK. fv(x) ist konvex und nicht leer, denn: fur xeS ist /(x)^0,

also f(x)n{JÏ=i (xf+F)^0. Es existiert somit ein je {1,..., n}, fur welches

f(x)n(xj+V)^9. Das heisst, dass x,e/(x)+F, oder Xj€fv(x). Der Graph

G(fv): {(x,y); xeK, ye (f(x)+V)nK} der Restriction von fv auf K lâsst sich

darstellen als (KxK)n {(x,y); xeS, ye (/(*)+ V)} (Kx K)n [G(/) + ({0} x V)].
Es folgt, dass G(fv) in K x K abgeschlossenen ist. Nach Satz 2.8 induziert die Limi-

tierung von E auf K die natûrliche Topologie. Fur K sind daher die Bedingungen des

Fixpunktsatzes von Kakutani fur euklidische Râume endlicher Dimension erfullt

(siehe (2), p. 183), und es folgt die Existenz eines xveK mit xvefv(xv).
2) Die Mengen {xeS, xef(x) + V}9 wo Fe33, erzeugen einen Filter g auf s-

Es existiert ein xeS, und ein Filter ©<93+x mit ®^g. Das bedeutet, dass der

Filter %: (93 +x)n g existiert und gegen x in E° konvergiert. Somit konvergiert der

Filter S :=31 x (93 +x) gegen (Je, x) im Produktraum E° x E°. Der Filter » n [G(/)]
existiert, denn:

Sei Fe93, dann gilt ($V+x)n {x, xef(x)+\V}e%. Es existiert also ein x'=y' +

+z'e%V+x, wo y'ef(xf) und z'e\V. Wegen x'-z'ef(x') gilt {x\x'-z')eG{f)
und wegen x'-z'eV+x weiter (x\ xf-z')e[{V+x)n{x, xef{x) + V}~\ x(V+x).
Und daraus folgt, dass G(f)nB^0 ist fur aile Beïï. G(f) ist kompakt in S0 x S0,

wo S0 topologischer UR von E° ist, und daher abgeschlossen.

Aus G(/)e$n[G(/)]j(jE>J0 folgt nun (x, x)e~G(J) G(f), und das heisst

xef{x).
'

q.cd.

Als Korollar von Satz 5.1 ergibt sich der Fixpunktsatz von Tychonoff, da - wie

der nâchste Satz zeigt - aus der Kompaktheit von S und der Stetigkeit von / die

Abgeschlossenheit von G(f) folgt.
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SATZ 5.2: M und N seien LR, / eine Abbildung von M in N, und G(f):
{(*>/ (*))> xeM} der Graph von f. Dann gilt: f ist genau dann stetig, wenn

h:M->G(f), definiert durch h(x): (x,f(x)), ein Homôomorphismus ist.
Beweis: 1) h sei ein Homôomorphismus. Dann ist f=prNoh stetig.
2) h-x=prM ist stetig. Fur $|XM gilt A(g) Sx/(g)l(,,/(j0), das heisst, h ist

stetig.

6. Der Fixpunktsatz von Markoff-Kakutani

SATZ 6.1 (Markoff-Kakutani): S sei eine nichtleere, konvexe, kompakte Teil-

menge eines separierten LVR£. F sei eine Familie linearer, paarweise vertauschbarer

Abbildungen von E in sich, die S stetig in sich uberfiihren. Dann gibt es ein xeS mit
u(x) xfur jedes ueF.

Beweis: (Vgl. (3), p. 121.)

1) Fur aile ueF, neN definieren wir eine Abbildung un:E-+E durch un(x):
:=n~1(x-hu(x) + u(u(x))-\ \-un~1(x)). Ft sei die Familie der Produkte einer end-
lichen Anzahl von Abbildungen der Form un. Dann sind aile veFt linear, paarweise
vertauschbar mit v(S)aS und mit stetigen Restriktionen auf S (Satz 2.1).

2) <S8: {v(S), veFi} ist Filterbasis auf S: S ist nicht leer, da idEeFi. Seien v,

weF1 und u: vw wv, dann gilt ueFî9 u(S) v(w(S))c:v(S) und ebenso u(S)<=z

aw(S). Das heisst u(S)cv(S)nw(S).
Nach Satz 2.6 sind aile Be%5 kompakt und daher abgeschlossen. Daher folgt, dass

der Durchschnitt A aller Be%5 nicht leer ist. Fur jedes xeA und aile ueF gilt nun:
u(x) x: Sei n>0, xeA. Dann ist xeun(S), also gilt

x n~1(y + u(y)+"-+un~1(y)) fur ein yeS.

z:=u(x) - x n"1 (u(y) + u2{y) +••• + un{y))-

- n-'iy +•••+ un~l(y)) fTVOO " y^n'^S - S).

T: S—S ist kompakt, konvex und symmetrisch. Wir nehmen an, dass z^O. Es folgt
nzeT fur aile neN, also auch XzeT fur aile AeR. Der eindimensionaleURF: {Âz,

AeR} liegt in T, und nach Satz 2.8 ist die auf ihm induzierte Limitierung die natûrliche
Topologie. F ist somit vollstândig und nach Satz 2.2 abgeschlossen, also kompakt.
Da dies nicht môglich ist, ergibt sich z 0.

q.e.d.
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