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Algébres d’Azumaya et modules projectifs

M. A. Knus (Ecole polytechnique fédérale, Zurich)?!)

Introduction

Le produit tensoriel de deux algébres d’Azumaya, c’est-a-dire de deux algébres
centrales séparables sur un anneau R, est de nouveau une algébre d’Azumaya. Si R
est un anneau semi-local ou un anneau de polynémes en une variable sur un corps
de caractéristique zéro, on connait une «loi de cancellation», A® B= A® C entraine
que B=C pour des algébres d’Azumaya A4 et B. ([7] et [9].) Dans le cas général,
nous montrons que la cancellation peut se faire sous des conditions en partie ana-
logues aux hypothéses du théoréme de cancellation pour les modules de Bass-
Schanuel [3, Th. 9.3.]. Notre démonstration utilise d’ailleurs ce théoréme de fagon
essentie'le.

Dans le § 1, nous rappelons quelques propriétés des modules fidélement projectifs
et des algébres d’Azumaya. Puis nous généralisons des résultats de Rosenberg et
Zelinsky ([8]), nécessaires & la démonstration du théoréme de cancellation. Cette
démonstration est donnée au § 3. Plusieurs exemples (et contre-exemples) sont étudiés
ensuite. Le § 5 est consacré a diverses généralisations du théoréme de Skolem-
Noether. Nous répondons en particulier & une question de Rosenberg et Zelinsky
([81), en montrant que tout automorphisme d’une algébre d’Azumaya est intérieur si
et seulement si le groupe Pic (R) n’a pas de torsion. Finalement, nous décrivons
certains rapports entre la cancellation et le théoréme de Skolem-Noether.

Rappelons encore les conventions habituelles. Tous les anneaux possédent un
élément unité, préservé par les homomorphismes. Les modules sont unitaires et, sauf
mention expresse du contraire, des modules 4 droite. On notera rM la somme directe
de r copies du module M et A° I’algébre opposée a ’algébre 4.

Nous voulons remercier ici R. Sridharan, qui nous a suggéré I’étude d’un théoréme
de cancellation pour les algébres d’Azumaya, H. Bass, qui, au cours d’une discussion
a Hull, nous a fait mieux comprendre ce probléme, et A. Roy a qui nous devons en
particulier le théoréme 5.8.

1. Modules fidélement projectifs.

1.1. Pour tout anneau A et tout A-module P, appelons B=End,(P), 'anneau des
endomorphlsmes A-linéaires de P, et P*=Hom, (P, A) le dual de P par rapport & A.

1) Cette étude a été faite en grande partie & I’Institut de Mathématiques de I’Université de
Genéve.
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Pour xe P et pe B, on pose px=¢(x). Le module P est ainsi un B-module a gauche.
En posant (af) (x)=af (x) et (f¢)(x)=f(¢(x)) pour f € P* acA et peB, on
définit une structure de B-module & droite et de A-module a gauche sur P*. Soit

T:P*®pp— A

I’homomorphisme de A4-bimodules défini par 7(f ®x)= f(x) pour fe P* et xeP.
L’image de 7 dans A4 est un idéal bilatére. On note cet idéal I ,(P). C’est la trace de
P dans A.

1.2. Supposons que P soit un 4-module projectif. Les conditions suivantes sont
équivalentes ([12], p. 2):

1.2.1. T ,(P)=A (7 est alors un isomorphisme).

1.2.2. Pour tout A-module & gauche M, P ® , M =0 entraine que M =0.

1.2.3. P est un B-module a gauche projectif de type fini et A=Endz(P)°.

Un A-module projectif de type fini est appelé fidélement projectif s’il satisfait
aux conditions ci-dessus.

1.3. Soit R un anneau commutatif. Les conditions suivantes sont équivalentes
([4], Prop. 6.1., p. 37):

1.3.1. P est un R-module fidélement projectif.

1.3.2. P est un R-module projectif de type fini et fidele.

1.3.3. P est un R-module projectif de type fini et de rang partout positif (P,#0
pour tout peSpec R).

1.3.4. Il existe un R-module Q et un entier n>0 tels que PR QO =nR.

1.4. Soit R un anneau commutatif. Rappelons qu’une algébre d’Azumaya est une
R-algebre satisfaisant aux conditions équivalentes suivantes ([4], Th. 4.1., p. 104):

1.4.1. A est un R-module de type fini et A est centrale séparable.

1.42. A est un R-module fidélement projectif et la représentation naturelle
1:A® g A°->Endg(4) donnée par u(a®b®) (x)=axb®, acA, b°c A° et xe A, est un
isomorphisme.

1.4.3. A est un R-module projectif de type fini et pour tout idéal maximal m de R,
A/mA est une R/m-algébre centrale simple.

1.5. Deux R-algébres d’Azumaya 4, et A, sont semblables si les conditions équi-
valentes suivantes sont satisfaites ([4], Prop. 4.10. p. 109):

1.5.1. A;®grA3=Endg(P) pour un R-module fidélement projectif P.

1.5.2. Endg(P;)®zA; =Endg(P,;)®gA, pour des R-modules fidélement projectifs
P, et P,.

1.5.3. 4, ~End,,(P) pour un 4A,-module fidélement projectif P.
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Rappelons que le groupe de Brauer de R, B(R), est I’ensemble des classes d’équiva-
lence d’alg€bres d’Azumaya, pour la relation définie ci-dessus, muni du produit
induit par le produit tensoriel ([2], p. 381).

1.6. Soit A une R-algébre d’Azumaya et soit Picg(A4) le groupe des classes d’iso-
morphisme des A-bimodules inversibles. L’homomorphisme

Pic(R) — Picg(A)
induit par I->A®gl, (I)ePic(R), est un isomorphisme ([4], Cor. 4.5., p. 108).

2. Une relation d’équivalence

2.1. Soit R un anneau commutatif et soit A une R-algébre d’Azumaya. Pour tout
A-module fidelement projectif P, soit J,(P) ’ensemble des classes d’isomorphisme de
A-modules fidelement projectifs Q tels que End,(Q) est une R-algébre isomorphe 2
End,(P).

2.2. PROPOSITION. (Q)e J,(P) si et seulement si Q = P ® gl comme A-modules,
pour un R-module projectif de rang un 1.

Démonstration. Posons B=End,(P). Soit (Q)eJ,(P) et soit ¢: B—End,(Q) un
isomorphisme de R-algébres. Le module Q est un B-module a gauche par ¢. Puisque
P est fidélement projectif, ’homomorphisme

¢:P®, Homgz(P,Q)—Q

défini par ¢ (x® f)= f (x), xeP et feHomg(P, Q), est un isomorphisme ([2], Prop.
A.6., p. 23). La structure de 4-module & gauche de Homg(P, Q) est donnée par
(af) (x)= f(xa), xe P, ac A et f eHomgz(P, Q). L’application af est un B-homo-
morphisme car (af) (Bx)= f ((Bx) a)= f (B (xa))=0(B) (f (xa))=0(B) (af) (x) pour
BeB. Le groupe Homg(P, Q) est un A-bimodule si ’on pose ( fa) (x)= f (x)a, x€P,
acA et feHomg(P, Q), car (fa) (Bx)=f(Bx)a=(c(B)f (x)a=a(B) (f(x)a)=
=0(B) (fa) (x). L’homomorphisme ¢ est alors un homomorphisme de A-modules a
droite car ¢ ((x® f)a)=0(x® fa)=(fa) (x)= f (xX)a=¢(x® f)a. Montrons main-
tenant que Homp(P, Q) est un 4-bimodule inversible. Puisque P et Q sont fidélement
projectifs, on sait que 4=~ Endg(P)° et A~ Endz(Q)° (1.2.3.). Il suffit donc de montrer
que les homomorphismes

t,: Homg(P, Q) ® , Homp(Q, P)— Homg(P, P)° et
p,: Homg(Q, P) @ , Homg(P, Q) » Homg(Q, Q)°

définis par p;(f ®g)=/8"=gf et u,(g® f)=g% °=fg pour f eHomy(P, Q) ¢
geHomg(Q, P) sont des isomorphismes de A-bimodules. On voit facilement que /4 et
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y, sont des homomorphismes de A-bimodules. Vérifions-le pour p;: a(f®g)=
=af ®g, donc p(a(f®g) (X)=g(af x)=g(f(xa)=a(gf)(x); (f®gla=
— f®ga, donc p, ((f ®g)a) (x)=(ga) (f ¥)=g(f (M)a=(gf)a(x). Pour tout
idéal maximal m de R, y, et u, sont des isomorphismes sur le corps de restes R/m. En
effet, en notant R=R/m, etc. ..., on a:

R ® Homg(P, Q) =~ Homz(P, Q) et
R ®y Homg(Q, P) = Homg(Q, P),

car P et Q sont des B-modules projectifs de type fini (1.2.3.). La R-algébre B est
centrale simple (1.4.3.). Elle ne posséde donc qu’un type de module simple a droite, S.
On a, par conséquent, P ~nS et 0 =mS. Comme Endgz(P)=Endz(0), n=m et les
B-modules P et § sont isomorphes. On voit donc que /i, est un isomorphisme pour
tout idéal maximal m de R. L’algébre End z(P, P)° >4 est un R-module de type fini,

par conséquent, u, est surjectif ([6], Chap. 11, § 3, Prop. 11). Soit K le noyau de y,.
Comme A est un R-module projectif, la suite exacte

0— K - Homg(P, Q) ® ,Homg(Q, P)> A -0

est scindée sur R. Par conséquent, K=0 et K est un R-module de type fini. 1l faut donc
que K=0. On voit de la méme fagon que p, est un isomorphisme. Le bimodule
Homg(P, Q) définit donc un élément de Picg(A). Puisque 4 est une R-algébre
d’Azumaya, Homg(P, Q) est donc isomorphe a un module de la forme A@zZ, ol
(I)ePic(R) (1.6.). Inversément, si Q=PQ®pgl, (I)ePic(R), il est clair que End,(Q)=
End,(P), car Endg(/)=R.

La Proposition 2.2. a été démontrée dans [8], par Rosenberg et Zelinsky, lorsque
A=R.

3. Un théoréme de cancellation

3.1. Soient B et C deux R-algébres. S’il existe une R-algeébre d’Azumaya A4 telle
que AQ g B=A® 3 C, alorsil existe un entier ntel que Endg (nR)® g B=Endz (nR)® C,
d’aprés (1.4.2) et (1.3.4.). Pour résoudre le probléme de cancellation pour les algébres
d’Azumaya, on peut donc supposer que ’algébre A est 'anneau des endomorphismes
d’un R-module libre de rang fini.

3.2. Soit D une R-algébre finie et soit M un D-module. On dit que f~rang, (M) > r
si pour tout idéal maximal m de R, le D -module M, posséde un facteur direct
isomorphe 4 rD,,. On note max(R) le spectre des idéaux maximaux de R. Nous
utiliserons plus loin le théoréme de cancellation de Bass-Schanuel ([3], Th. 9.3., p. 28):

THEOREME. Supposons que M ~E@®N ou E est un D-module projectif tel que
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f-rangp(E)> dim(max(R)). Alors, pour tout D-module projectif de type fini P et toyt
D-module M', M@® P ~M'@® P entraine que M =M.

3.3. Soit B une R-algébre d’Azumaya.

THEOREME. Supposons que B soit isomorphe a End,(P), ot D est une R-
algébre d’Azumaya et P un D-module projectif de type fini, tel que f-rang,P > dim
(max(R)). Supposons que le groupe de Grothendieck des D-modules projectifs de type
fini Ky(D) soit sans torsion. Alors, pour toute R-algébre d’Azumaya A et toute R-
algébre C, AQgr B~ A® R C entraine que B=C.

Démonstration. Le D-module P est fidélement projectif, car f-rang,P >0. Par
conséquent, C est une algébre d’Azumaya ([2], Th. 3.5., p. 376). Les algébres B et D
sont semblables (1.5.3.). Comme B et C sont semblables (3.1.), il existe un D-module
fidélement projectif Q tel que C~End,(Q) (1.5.3.). D’aprés (3.1.), il existe donc un
entier n tel que Endp(nP)=~End,(nQ). Il suit alors de la Proposition 2.2. que
nP=nQ®pzI pour un R-module projectif I de rang un. Puisque K, (D) est sans
torsion, il existe un entier r tel que P@rD=Q@zI®rD. D’aprés le théoréme de
cancellation de Bass-Schanuel (3.2.), on a donc que P = Q® g1, car f-rang, P > dim
(max(R)). Le théoréme résulte alors de la Proposition 2.2.

4. Exemples
Le théoréme 3.2. est faux sans conditions. Donnons quelques contre-exemples.

4.1. Soit R=R][x, y, z] avec x2+y?+2z?=1, R est le corps des réels. On sait que
Ko(R)=Z@Z/2Z. Le R-module P=R®RDR/(x, y, z) R est projectif, n’est pas libre
et POR=3R([13], Th. 3, p. 270, voir aussi [10]). On a P@®P=2R®2R (par can-
cellation!), donc

Endgz(2R) ® g Endgz(P) =~ Endz (2R) ® g Endg(2R).

Si Endg (2R)=~Endg(P), on a P ~2R, d’aprés la Proposition 2.2., car Pic(R)=0. En
effet R est factoriel ([13], Th. 5, p. 273, voir aussi [10], Prop. 9, p. 165). La classe de P
dans K,(R) n’a pas de torsion, mais la condition sur le frang n’est pas satisfaite.
L’exemple suivant se trouve essentiellement dans [13], p. 276. Soit A =C®g R et soit
M un A-module libre de rang deux. Soit ¢ ’endomorphisme de M défini par

e(ay, a;) = (3a, (1 — x) + 3a,(y — iz), 4a, (y + iz) + 4a,(1 + x)).

On vérifie que ¢ est idempotent. Soit Q I'image de ¢. On a donc Q@Kero=M. D?
plus, O, considéré comme R-module, est isomorphe 4 Ker ¢~ Im(1 —g). En effet, st
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(¢,), i=1, ..., 4 est la base canonique de M sur R, Q est engendré par

e(er) =3(1 —x)e; + dye; + 3ze,
e(e2) = 3(1 — x) e, — $ze; + dye,
o(e;) =4ye; —3ze; + 3 (1 +x) ey
o(es) =3ze; +3ye; + 3 (1 +x)e,.

Soit f : M— M Pautomorphisme de M défini par f (e;)=e3, f (e;)= —e4, f (€3)=—¢,
et f (e4) =e,. On voit alors facilement que Q est I'image de f ~* (1 —¢) f. La classe de Q
est donc un élément d’ordre deux dans K,(R). Par conséquent, Q@ @ R n’est pas libre,
mais (O R)B(QDR)~3R®D3R. On a donc

Endg (2R) ® k Endg (Q @ R) = Endg (2R) ®x Endg (3R),

sans que Endz(Q@®R) soit isomorphe & Endg(3R). L’hypothése sur le f-rang est
satisfaite, mais la classe de Q dans K,(R) a de la torsion.

4.2. Soit R un anneau d’entiers algébriques de nombre de classes deux, par

exemple ’anneau des entiers de Q(\/ - 5). Soit 7 un R-module projectif de rang un,
dont la classe (/) engendre Pic(R). Le module /@1~ R®I® I est donc libre. Posons
P=R®1I, P est projectif, n’est pas libre, mais P @P est libre. On a donc

Endg (2R) ® g Endg (P) = Endg(2R) ® g Endg (2R).

Unisomorphisme Endgz (2R) >~ Endg (P) entraine que Pest libre, car P 2 J @ g (RO R) =~
~J@®J, (J)ePic(R). Dans cet exemple, la condition sur le rang est satisfaite, mais
Ko (R)=Z@®Pic(R)=ZPZ/|2Z a de la torsion.

4.3. Remarquons que, méme si R est principal, il peut exister des R-algébres
d’Azumaya A4 telles que K,(A4) ait de la torsion. Supposons que R soit un anneau
principal d’entiers algébriques. D’aprés la théorie de Eichler-Swan ([14]), K, (A) est un
Z/27Z-module. On en déduit facilement le résultat suivant.

4.3.1. PROPOSITION. Soit R un anneau principal d’entiers algébriques et soit B
une R-algébre d’Azumaya. Supposons que B soit isomorphe a une algébre de matrices
M, (D) sur une R-algébre finie D. Alors, pour toute R-algébre d’Azumaya A et toute
R-algébre C, AQ g B= A® C entraine que B~ C.

Démonstration. Puisque B=M,(D)~Endg(P®R)®@grD, D est une algebre
d'Azumaya ([2], Th. 3.5., p. 376), qui est semblable a C. Il existe donc un C-module
fidelement projectif P tel que D=~Endc(P). Par conséquent, B~End (P@®P). Le
C-module P @ P est stablement libre, puisque K,(C) est un Z/2Z-module. Il est donc
iibre ([14], Th. 2, p. 56), P@P=nC. Pour des raisons de dimension, n=1, d’ou le
résultat,
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4.3.2. COROLLAIRE. Soient A et A’ deux ordres maximaux séparables dans yne
algébre centrale simple sur un corps de nombres algébriques K, de nombre de classes un.
Alors M,(A)=M,(A’) (bien que A et A’ ne soient pas nécessairement isomorphes).

Démonstration. Soit R ’anneau des entiers de K. Par hypothése, AQ R K~ 4'® K.
L’homomorphisme du groupe de Brauer de R dans le groupe de Brauer de K est
injectif ([2], Th. 7.2., p. 388). Par conséquent, les algébres A4 et A’ sont semblables. La
conclusion suit alors de la Proposition 4.3.1.

4.4. Si R est’anneau des entiers rationnels Z, le groupe de Brauer B(R) est trivial.
Toute Z-algébre d’Azumaya est donc semblable a une algébre de matrices sur Z. La
cancellation est toujours possible.

4.5. Anneaux semi-locaux.
Soit R un anneau semi-local et soit 4 une R-algébre d’Azumaya.

4.5.1. PROPOSITION. Le groupe K,(A) est le groupe abélien libre engendré par
les classes de A-modules projectifs de type fini indécomposables. Si R est connexe,
Ky, (A)=1Z.

Démonstration. L’algébre A satisfait aux conditions du théoréme de Krull-
Schmidt ([15], Th. 2.1., p. 76):

1) Tout A-module projectif de type fini P est somme directe de 4-modules projectifs

indécomposables.

2) La décomposition est unique (aux isomorphismes habituels pres).

En effet, si R est connexe, 4 ne posséde qu’un type de 4-modules projectifs de type fini
indécomposables ([7], Th. 1. p. 39). Si R n’est pas connexe, R est un produit d’anneaux
semi-locaux connexes, R R, x---x R,.Onaalors A~A4, X - x A, et P=P,@ - DP,
ol 4; est une R-algébre d’Azumaya et P; un A,-module projectif de type fini. Cette
décomposition est unique, d’olt la proposition.

4.5.2. COROLLAIRE. ([7] et [9]). Soient A, B des algébres d’Azumaya et C une
algébre sur un anneau semi-local R. Si AQgB=A®xC, alors'B=C.

Démonstration. Comme la dimension de max(R) est zéro, c’est une conséquence
immédiate du Théoréme 3.3. et de la Proposition 4.5.2.

4.6. Anneaux de polyndmes.
Soit R=k[x,,..., x,] un anneau de polynomes en n variables sur un corps de
-caractéristique zéro k et soit 4 une R-alg¢bre d’Azumaya.

4.6.1. PROPOSITION. K,(4)=Z. .
Démonstration. L’application canonique k—k[x,, ..., x,] induit un isomorphisme
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des groupes de Brauer correspondants ([2], Prop. 7.7., p. 391). Par conséquent,
I'algebre A est semblable a une R-algébre D [xy, ..., x,]=2D®.k[x,, ..., x,], ou D est
une algébre de division de dimension finie sur k. Il existe donc un Dlx,,..., x,]-
module fidélement projectif P tel que A~Endp,, .. ,,;(P). Cet isomorphisme induit
une équivalence de Morita des catégories Mod-4 et Mod-D [x,, ... x,]. Par consé-
quent

Ko(A) = Ko(D[xy, ..., x,]) 2 Ko (D)= Z.

4.6.2 THEOREME. Soit R=k [xy,..., X,] un anneau de polynémes en n variables
sur un corps k de caractéristique zéro. Toute R-algébre d’Azumaya B peut s’écrire de
fagon unique sous le forme B=Endy,, . ..1(P) ot D est une algébre de division de
dimension finie sur k et P un D [x,, ..., x,}-module fidélement projectif. Supposons que le
rang de P (sur D [x,, ..., x,]) soit plus grand que n. Alors pour toute R-algébre d’ Azumaya
A et toute R-algébre C, AQgB= A®y C entraine que B=C.

Démonstration. L’existence a ¢été démontrée dans 4.6.1. Supposons que
Endp,,,..x0(P)=Endp ., . ..j(P’). Le corps k est une R-algébre par la projec-
tion R=k[xy,..., x,]=k. On a donc End, (P ®@rk)=End, (P'®rk), d’ou D=D’'. Le
module P’ devient ainsi un D [x,, ..., x,]-module isomorphe a P par la Prop. 2.2., car
Pic(R)=0. La seconde partie suit du Théoréme 3.3.

4.6.3. PROPOSITION. Soit R un anneau de polynémes en une variable sur un
corps parfait ou un anneau de polynomes en deux variables sur un corps algébriquement
clos de caractéristique zéro. Soient A et B des R-algébres d’Azumaya et C une R-algébre.
Alors, AQ gB= AQ®xC entraine que B~C.

Démonstration. Si k est parfait, ’homomorphisme naturel k—k [x] induit un
isomorphisme des groupes de Brauer correspondants ([2], Th. 7.5., p. 389). Tout
module projectif de type fini sur D [x] est libre car D [x] est principal. Par conséquent,
il n’est plus nécessaire d’utiliser le théoréme de Bass-Schanuel (3.2.) dans la démon-
stration de (3.3.). Dans l'autre cas, le méme raisonnement s’applique grace au
théoréme de Seshadri ([11]).

4.7. Soit A une algébre d’Azumaya. En général, il est difficile de trouver la
meilleure représentation 4 ~End,(P) qui permette d’appliquer le Théoréme 3.3. Soit
R un anneau intégre et soit K son corps de fractions. L’algébre A® K est une algébre
de matrices M, (4) sur une algébre de division 4 de dimension finie sur K. Il est alors
naturel de chercher ’algébre d’Azumaya D dans 4, telle que D@ g K= A.

4.7.1. THEOREME. Soit R un domaine régulier de dimension <2 et soit A une
R-algébre d’Azumaya. Soit K le corps des fractions de R. L’algébre A® K est isomorphe
4 une algébre de matrices M,(4), ot A est une algébre de division de dimension finie sur
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K. Il existe alors une R-algébre d’Azumaya Dc A, telle que D® xK= A, et un D-module
fidélement projectif P tel que A=~End,(P). De plus, f-rang, P =n.

Démonstration. Soit D un ordre maximal de 4 sur R. D est un R-module projectif
car dim(R) <2 ([2], p. 389). Soit p un idéal premier minimal de R. L’algébre D® R,=
=D, est un ordre maximal de 4 sur R,. L’anneau R, est un anneau de valuation
discréte, par conséquent, Mn(D,) est un ordre maximal dans M,(4) ([1], Th. 3.8,
p. 12). L’algebre A4, est également un ordre maximal de M, (4), car 4, gK=M,(4).
Il suit alors de [1],) Prop. 3.5, p. 11, que M, (D)= A4,. Cest vrai pour tout idéal
premier minimal, donc M, (D) est une algébre d’Azumaya ([2], Prop. 4.6., p. 397).
L’algébre D est donc également une algébre d’Azumaya ([2], Th. 3.5., p. 376). De
plus A4 est semblable & D, car ’homomorphisme B(R)— B(K) des groupes de Brauer
est injectif ([2], Th. 7.2., p. 388).

5. Le théoréme de Skolem-Noether

5.1. Pour toute R-algebre d’Azumaya A4, notons 0(A4) le groupe des automorphis-
mes de A, modulo les automorphismes intérieurs. Pour tout automorphisme o de A4,
le R-module J,={aeA | o(x)a=ax, Vxe A} est inversible et définit un élément de
Pic(R). On vérifie que la correspondance o— J, induit un homomorphisme de groupes
(18D

a:0(4) - Pic(R).

Soit P un A-module fidélement projectif. L’ensemble J,(P) défini au § 2 possede
une structure de groupe, la multiplication étant induite par (P®gl, PQgJ)~
= PQRrI®rJ, (I) et (J) dans Pic(R). L’application

B:Pic(R) - J,(P)
définie par I-P ®zl, (I)ePic(R), est alors un homorphisme de groupes.

5.2. PROPOSITION. La suite
0 - 0(B)5 Pic(R) 5 J,(P)-0

ot B=End ,(P), est exacte pour toute algébre d’Azumaya A et tout A-module fidélement
projectif P.

Ce résultat a été démontré dans [8] pour 4= R (Th. 11) et pour P=A4 (Th. 7). La
démonstration du théoréme 11 de [8] peut étre reprise pour démontrer (5.2.), si I'on
utilise la Proposition 2.2.

5.3. La Proposition 5.2. peut étre considérée comme une généralisation du
théoréme de Skolem-Noether: si Pic(R)=0, tout automorphisme d’une R-algebre
d’Azumaya est intérieur ([2] et [8]). Le probléme inverse a été posé par Rosenberg et
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Zelinsky dans [8]. Si, pour toute R-algébre d’Azumaya, tout automorphisme est
intérieur, Pic(R) est-il nécessairement zéro? La réponse est négative.

5.4. THEOREME. Soit A une R-algébre d’Azumaya. Tout automorphisme de A
est intérieur si et seulement si le groupe Pic(R) n’a pas de torsion.

Démonstration. La démonstration est semblable & celle de la proposition (7.3.),
p. 46 de [4]. Les notations sont celles de (5.1.). Montrons tout d’abord que I'image de
0(A) par « est contenue dans le sous-groupe de torsion de Pic(R). D’aprés la suite
exacte (5.2.), Ima={(J)ePic(R) | A®rJ =~ A comme A-modules & droite}. Le
R-module 4 est fidélement projectif (1.4.2.), par conséquent il existe un entier z tel que
nJ =nR (1.3.4.). On voit alors que 'image de J dans Pic(R) est un €lément de torsion
en prenant la n-iéme puissance extérieure. Inversément, montrons que pour tout
élément de torsion (J) de Pic(R), il existe une R-algebre d’Azumaya A4 telle que
A®grJ = A comme A-modules a droite. Soit » I’ordre de (J) et soit P le R-module
ROIBDIRQrJ D ®®,_,J. Il est clair que P estfidélement projectifetque P @ g J = P.
Soit @ le dual de P, Q=Homg(P, R). L’application canonique P ®z Q—Endg(P)
donnée par p®q— pq est un isomorphisme de Endg (P)-modules a droite. Par consé-
quent Endg (P)®@zJ= Endg(P) et Endgz(P) est I’algebre d’Azumaya A cherchée.

5.5. Sur un corps, il est bien connu que deux sous-algébres simples d’une algebre
centrale simple sont conjuguées si elles sont isomorphes. Nous dirons que ’anneau R
est un anneau de Skolem-Noether si, pour toute R-algebre d’Azumaya et pour toute
paire de sous-algébres d’Azumaya B et C de A, tout isomorphisme de R-algébres
¢: B—C est induit par un automorphisme intérieur de 4. En particulier, tout auto-
morphisme de A4 est intérieur.

5.6. PROPOSITION. Soit R un anneau de Skolem-Noether et soient A, B des
R-algébres d’ Azumaya, C une R-algébre. Tout isomorphisme de R-algébres AQ pB=
= AQRC entraine que B>~ C. Réciproquement, si le théoréme de cancellation est vrai
sans restrictions et si l'ordre des éléments de torsion de Pic(R) est borné, alors R est un
anneau de Skolem-Noether.

Démonstration. Soient h;: A—>AQg B, h,: A—> AR C les plongements canoniques
et soit ¢p:AQrB—+>A®zC un isomorphisme donné. Les sous-algebres ¢h,(4) et
h,(A4) de A®  C sont isomorphes. Puisque R est un anneau de Skolem-Noether et que
A®RC est une algébre d’Azumaya, il existe un automorphisme {y de A®zC qui
rende le diagramme

AQRrBL A®CHA4®,C
ha Tha
A A

commutatif, Puisque B est une algébre d’Azumaya, B est isomorphe au commutant de 4
dans A® g B([2],Th.3.3.,p.376).C’estégalement vraipour C,d’oul’isomorphisme B~ C.
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Pour démontrer la seconde affirmation, nous supposerons tout d’abord que
Pic(R) est sans torsion. Soient B et C deux sous-algébres d’Azumaya d’une algebre
d’Azumaya et soit ¢ : B— C un isomorphisme. Soit A® le commutant de Bdans 4. On a
A= A®gAPet A= CQRgAC([2], Th. 3.3.,p. 376). Par conséquent, CQ  A° = BRQ , A
>~ CQ®r A5 Les algébres 4% et A° sont des algébres d’Azumaya, elles sont donc
isomorphes, puisque le théoréme de cancellation s’applique sans restrictions. L’iso-
morphisme peut s’étendre alors & un automorphisme de A, qui doit étre intérieur,
puisque Pic(R) est sans torsion (5.4.). Montrons maintenant que la torsion de Pic(R)
est zéro. Soit J un R-module projectif de rang un, dont I'image dans Pic(R) est
d’ordre maximal fini n>1. En vertu de la régle de cancellation, il est clair que
Endg ((n—1) R@®J)=Endg (nR). 1l existe donc un R-module projectif de rang un L,
tel que ((n—1) ROJ)@gL=nR (Prop.2.2.). On a par conséquent (n—1) R@J =nK,
pour un R-module projectif de rang un K. On obtient J = ®@~nK en prenant la n-iéme
puissance extérieure. Il est clair que K définit un élément de torsion de Pic(R) d’ordre
supérieur a n, d’ou la contradiction.

5.7. PROPOSITION. Soit R un anneau de Skolem-Noether. Si dim(max(R))< o,
alors pour toute R-algébre d’Azumaya D, le groupe K,(D) est sans torsion.

Démonstration. Soit [P]—[F] un élément d’ordre fini n>1 de K,(D). F est un
D-module libre de type fini. On peut supposer que f-rang,(P)>0, sinon on ajoute un
D-module libre de type fini & P. Il est clair que [#P]=[nF]. Remplagant n par un
multiple suffisamment grand r, on obtient en vertu du théoréme de cancellation de
Bass-Schanuel (Th. 3.2.) que rP=~rF. On a donc Endg(rR)®zEnd,(P)=
=~ Endg (rR)® g Endp(F). Il suit de la proposition 5.6 que End,(P)=~End,(F). Par
conséquent, il existe un R-module projectif de rang un I'tel que P = F @ z I (Prop. 2.2.).
On obtient ainsi I'isomorphisme rF®zI = rF. D’aprés (1.3.), il existe alors un entier
m tel que mI =mR. En effet, F est un R-module fidélement projectif, car D est fidéle-
ment projectif. En prenant la m-iéme puissance extérieure de ml, on voit que la
classe de 7 dans Pic(R) est un élément de torsion. C’est impossible d’aprés le théoréme
5.4,

5.8. THEOREME. Soit R un anneau de Skolem-Noether tel que dim (max (R))< .
Soient D une R-algébre d’Azumaya et P un D-module projectif de type fim tel que
f-rang,(P)>0. Alors pour tout D-module P’ et tout D-module projectif de type fini O,
P®QOx=P'@®Q entraine que P~ P’.
Démonstration. 11 suit de f-rang,(P)>0 que P est un D-module fideélement
.projectif. Le module P’ est donc également fidélement projectif. Puisque P@®Q=
~P'@Q, les classes [P] et [P’] de P et de P’ dans K,(D) sont égales. Si r est un
entier suffisamment grand, les deux modules rP et rP’ sont donc isomorphes, en vertu
du théoréme de cancellation de Bass-Schanuel (Th. 3.2.). On en déduit, comme dans
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J]a démonstration de la proposition 5.7., qu’il existe un R-module projectif de rang un
[ tel que P’ P®gl. Par conséquent, on a rP®zI=rP. On conclut alors comme
dans (5.7) que la classe de 7 dans Pic(R) est un élément de torsion. D’aprés le théoréme
5.4., I est donc isomorphe a R. D’ou la conclusion.

5.9. Remarque. Soit D une R-algeébre d’Azumaya. D’aprés les propositions 5.6. et
5.7., le groupe Ky(D) n’a pas de torsion si le théoréme de cancellation s’applique
sans restrictions et si la torsion du groupe Pic(R) est bornée. Ce résultat est en quelque
sorte une réciproque au théoréme de cancellation. Il serait intéressant de savoir si
I’hypothése sur Pic(R) est vraiment nécessaire.

5.10. Remarque. Si R est un anneau de Skolem-Noether, le groupe Pic(R) n’a pas
de torsion (Th. 5.4.). La réciproque est fausse d’aprés la proposition 5.6. et I’exemple
4.1. Nous avons donc un exemple simple d’une algébre d’Azumaya dont tout auto-
morphisme est intérieur et qui contient deux sous-algébres d’Azumaya isomorphes
non conjuguées.

5.11. Remarque (ajoutée pendant les corrections). Ojanguren et Sridharan ont
montré que la loi de cancellation est fausse pour un anneau de polyndmes sur le
corps des réels. Ils ont construit un H[ X, Y ]-module projectif de type fini qui n’est
pas libre, H étant le corps des quaternions.
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