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Non-Simply-Connected Surgery and Some Results in
Low Dimensional Topology '

by JuLIUS L. SHANESON
§ 1. Introduction

In [27] we derived a Kiinneth formula for Wall’s surgery obstruction groups
L,(G). In particular, the inclusion induces an isomorphism Lg(e)— Lg(Z), Z the
integers. It follows that non-framed surgery is possible in an orientable six-dimen-
sional situation with fundamental group Z. In § 6 of [27], [29], and [19] we derived
some consequences of this fact for the classification of non-simply-connectred five-
manifolds and related questions.

This paper continues the application of surgery to low dimensional manifolds. For
example, we will prove a result somewhat more general than the following:

THEOREM 1.1. Let M be a closed, connected, orientable, smooth 5-manifold with
M =Z. Suppose M is smoothly fibered over a circle with connected fibre. Let Q be a
simply connected, closed, smooth 5-manifold. Then any closed smooth manifold of the
homotopy type of M # Q is diffeomorphic to M # Q.

For the special case M =N x S!, this generalizes the result of Novikov [22] and
Wall [35] that homotopy equivalent simply-connected closed smooth four manifolds
are h-cobordant. In fact, we use an idea from Novikov’s proof of this fact to help
prove 1.1.

As a consequence of the proof of 1.1, we also have a splitting theorem for fibered
S-manifolds. Analogous theorems have been proven in higher dimensions by Farrell
and W.-C. Hsiang [10], for more general fundamental groups.

THEOREM 1.2. Let M be as 1.1, and let N=M be a fibre. Let h: K—M be a
homotopy equivalence of closed smooth manifolds. Then 3 f homotopic to h, transverse
to N, so that f ~1(N) is diffeomorphic to N and f: (K, f "*N)—(M, N) is a homotopy
equivalence of pairs.

Of course, in this theorem K is actually diffeomorphic to M. The analogous result
is true in the piecewise linear case. (Theorem 1.1 holds in the P.L. case automatically
becausg 5-dimensional P.L. manifolds are always smoothable).

Theorem 1.1 also sheds some light in the fibering problem. Let us say M, a closed
S-manifold with n,M =1, is quasi-fibered over a circle if there is a smooth (simply-
Connected) submanifold N of codimension one, &, so that the sequences

OaniN—bniMi';niSI-»O
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are exact where g: M — S represents any generator of H'(M; Z). The (quasi-) fibering
conjecture for 5-manifolds asserts that any closed five manifold with n, =Z, whose
universal cover has the homotopy type of a finite complex, is quasi-fibred over a
circle. The smoothing conjecture for simply-connected finite Poincaré complexes in
dimension four asserts that if X is a closed Poincaré 4-complex, finite, £ a vector
bundle over X with spherical Thom class and L(£)=index X, L(&)=L, (p, (£ 1)) the
dual Hirzebruch class, then 3 a closed manifold N and a homotopy equivalence A.
N - X so that A*¢ is equivalent to the normal bundle of N.

THEOREM 1.3. The quasi-fibering conjecture for five manifolds (with n,=17Z) is
equivalent to the smoothing conjecture for simply connected Poincaré complexes in
dimension four.

Assuming the fibering conjecture, the smoothing conjecture follows by smoothing
X x S up to homotopy and fibering. We use a stronger version of Theorem 1.1 to
prove the converse, thus reducing the fibering problem to an abstract surgery problem
rather than a problem in codimension one.

As a final application of surgery we will show the following (/=unit interval):

THEOREM 1.4. Let (W,0_W, 0, W) be an orientable h-cobordism with dim W=
5. Say nyW=1Z. Assume 3 a retraction r: W—0_W so that r ] O . W:0,W—0_Wis
a diffeomorphism. Then 3 a diffeomorphism ¢ W_—>a_ W x I with

@|oW =(r|0_-W,0)u(r|d.W,1).

As a corollary, every diffcomorphism of a closed, orientable four-manifold with
fundamental group Z, homotopic to the identity, is psuedo-isotopic to the identity.
This was already known for S x §3 [14].

The simply-connected analogue of 1.4 is due to Barden. His proof has never
appeared. As part of the proof of 1.4, we also prove the simply-connected analogue.
The reader who is primarily interested in 1.4 can skip directly to the final section.

For larger fundamental groups, everything is much harder. For example, Theorem
1.1 is false for S x T2 [27], and whether 1.2 or 1.3 hold for S x T'? seems to be a very
deep question.

§ 2. Browder-Novikov Theory
Let (W, 0W) be a smooth connected manifold with (possibly empty) boundary.

We assume orientability of W, though for this section it is not necessary. By
hS (W, W) we denote the equivalence classes of simple* homotopy equivalences

* In all cases of concern to us here, every homotopy equivalence is simple.
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h:(K, 3K) - (W, 8W)

where K is a smooth manifold and A | 0K : 0K—0W a diffeomorphism; 4 is equivalent
to h':(K', 0K")—(W, dW) if there is a diffeomorphism ¢:(K, dK)—(K’, 0K’) with
k' - homotopic to 4 relative K.

Given h, let g be a homotopy inverse with g | 0W=(h | 0K)™*. Let g:(W, dW)—
(K, 0K) x R™, m large, be an embedding homotopic to (g, 0) with g | 0W=(g,0). Letv
be the normal bundle of g; & ] 0W determines a natural trivialization of v | 0W. By
infinite repetition of the s-cobordism theorem, or by engulfing, there is a diffeo-
morphism

c:E(v)» K xR"

extending gU [(g | 9W) x idy,,]. Here E (v) denotes the total space of v. The composite
(hx 1)ocis a fibre homotopy trivialization of the bundle v which is a linear bundle map
of v | OW. Hence it defines a homotopy class n (k) in [ W/OW ; G/O] of maps of W[oW
into G/0, the classifying space for stable fibre homotopy trivializations of vector
bundles. The invariant »n () is well-defined and depends only upon the class of A4 in
hS (W, d0W). This is Sullivan’s definition of the normal invariant [33].

We will need the original definition of Browder (see [3]) and Novikov [22] only in
the case of tangential homotopy equivalences of closed manifolds. Let M " be a closed,
oriented manifold, and let v" be a high dimensional (i.e. m>n+1) normal bundle of
M, i.e. the normal bundle of an embedding of M in S"*™. For m>n+1, any two such
embeddings are isotopic via an ambient isotopy that restricts to a bundle map of
normal bundles. Let D(v) (S(v)) be the associated disk (sphere) bundle, and let
T (v)=D(v)/S(v), the Thom space of v. The orientation of M and of S™*" determine
an orientation of v and so a Thom isomorphism y: H;(M)—H,,,.(T(v)). Let [M] be
the orientation class of M, and let A(M)=H ~*(Y [M]), H: fipy 4o (T (V))=H, 1 n(T(¥))
the Hurewicz homomorphism.

An orientation preserving bundle map of v to itself over the identity induces a map
of T (v) with itself which, by naturality of the Thom isomorphism, preserves the
Thom class y [M]. Hence the equivalences of v with itself, Aut(v), acts on A(M). Let
A(M) be the orbit set. By stability, 4(M) is really independent of the high dimension
m of the fibre of v.

Note also that since we are in the stable range, Aut(v)=[M; SO(m)]=[M ; SO].
Given ¢eAut(v), (¢@id:v@v !-»v@v~! is an automorphism of the trivial bundle
and so determines an element of [ M ; SO]; this correspondence is bijective.

Given an embedding of M in S"*™, the quotient map D(v)—T (v) extends to a
map S"*™T (v) which carries S"*™— D(v) to a point; this defines a class 1,,,(M)
(or just 1,,,) in A(M). Suppose h:K— M is a tangential homotopy equivalence that
Preserves orientations, and let b:v"(K)—v be a bundle map of normal bundles of
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fibre dimension m covering h. A map on Thom spaces, T (b), is induced by b, and we
define

6(h) = T(B)ulmsn(K).

It is easy to see that 8(h)e A(M) depends only upon the class in AS (M) of h. (In the
general definition of normal invariants one has to consider bundles over M other
than the normal bundle.) So if thS (M)<hS (M) denotes those classes which are
tangential, then we have 0:thS (M)—A(M).

Let 1., be a representative of 1,,,, in A(M). Then, according to Wall’s refine-
ment [39] of Spivak’s uniqueness result for normal fibrations of Poincaré complexes,
the map &€—T(€)41, ., induces a bijection of isotopy classes of orientation-preserving
fibre homotopy equivalences £ of v with itself (over the identity) and A(M). (Basically
this is just a consequence of the fact that ) ™M, is the Spanier-Whitehead dual of 7(v").)

On the other hand, the isotopy classes of fibre homotopy equivalences of v with
itself are in one-one correspondence with [M ; SG(m)]=[M ; SG], SG(m) the space
of degree one maps of ™! to itself. The correspondence is exactly analogous to the
one that gives Aut(v)=[M ; SO], and so we get a map

¢: A(M)—[M; G/O] = [M; SG/SO]

which is one-one and whose image is the elements that lift to [M ; G].
The following is part of a result that is well-known. It perhaps is buried in [38],
but otherwise it does not seem to have appeared in the literature.

PROPOSITION 2.1. The following diagram commutes:

thS (M) > A(M)
N 14
hS(M) > [M; G/0].

Proof. Let h: K—M be a tangential homotopy equivalence. We will show that
¢ (W) =0 (h). Let c: M x R*— K x R* be a diffeomorphism with ¢ ] M x 0 homotopic
to (g, 0), g a homotopy inverse to A, so that n (k) is represented by (A x 1)oc. We can
also suppose ¢(M x 1D¥)> K x0.

Let m>k+n+1 and let v"=v""*@g*, v~ * the normal bundle of M in S™*"~*
and g* trivial; v™ is the normal bundle of M in $™** Then é=(id)@®(h x 1)c:V"—V"is
a fibre-homotopy equivalence of v™ with itself, and {9 (h) =T ()xlp+m:

Fix an embedding M <S"*™ and let £ :S"*™—T (v") be the natural extension of
the quotient map D(v) to T (v) by the trivial map on S"*™— D(v). Then T (§)o fis
transverse to M = T (vV™), (T (§)o f) M=K, and T ()0 f | K is homotopic to A. It
now follows as in [3, I11.2.13] and from the definition that 6 (k) is represented by

T () f.
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Returning to Sullivan’s definition, let (W, 0W) be a connected, orientable mani-
fold pair with n=dim W >5. Then 3 an action of the Wall surgery group L, (n, W)
on hS (W, 0W) so that n(x)=n(y) iff x and y are in the same orbit. This result is a
simple consequence of the realization Theorem [38, 5.8 and 6.5] (also [27, 1.1]) for
surgery obstructions and the definitions. There is also an exact sequence of pointed
sets hS (W, OW)—[W/[oW ; G/|O]—L,(n, W), but we will not use this here. These
formulations are due basically to Sullivan. See [3], [33] and [38] for more details.

PROPOSITION 2.2 Let f: K—P and g:P— M be (simple) homotopy equivalences
of closed manifolds. Then in [M ; G/0],

n(gof)=n(g)+ (& ") n(f),

g~ ! any homotopy inverse for g.
We omit the proof of this proposition. We use it only when n(g)=0, a case in
which the verification is quite simple.

PROPOSITION 2.3. Let f:K—M be a (simple) homotopy equivalence of closed
manifolds. Let N =M be a submanifold of codimension one, let f be transverse to N,
and suppose h= f | fTIN:f YN is also a (simple) homotopy equivalence. Let
i:Nc M be the inclusion. Then n(h)=i*n(f).

The proof of this proposition is straightforward using the definitions, and so
omitted.

Suppose v" and £™ are vector bundles over pointed spaces X and Y respectively.
Then, by identifying fibres over a point, we have vv ¢ defined over the one-point
union X'v Y. The inclusions of the base points induce inclusion of S™ in T (v) and
T (&), and the following is obvious.

PROPOSITION 2.4. T(vv&)=TW)UsuT (£), the space obtained from the
disjoint union of T (v) and T () by identifying the included copies of S™.

We conclude this section by defining, following Novikov [22], a twisted suspension.
Let £™ be an oriented vector bundle over X. Let 7,(X, &) be the subgroup of classes in
7,(X) which induce from ¢ the trivial bundle over S”. Let x:S™—T (£) be induced by
the inclusion of the basepoint. Note that x(S™) is invariant under the action of
[M; SO(m)].

Let u:S"— X represent an element of w, (X, £), and let A:e™—E™ cover u. Let &™ be
oriented so that fi is orientation preserving. Then the standard orientation of S"
determines xe H,, (T (e™)=Z, by the Thom isomorphism. Let yen,, (T (")) be
any class whose Hurewicz image is x. This exists because T (¢€")=S"*"v S". The class
Ty in Ty (T (€))/Kn (Tp4m(S™) depends only upon the class p in =, (X, &). We
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denote this element by S,([x]); this defines

Sy (X, &) > My (T (€))/Image k.

This map is natural with respect to bundle maps. If £ is trivial, it coincides with the
usual suspension; in particular S, is a homomorphism.

Let M" be an oriented, closed, connected manifold. Let v" be its normal bundle,
m large. Assume 7, M acts trivially on 7, M ; for example, let M be simply-connected.
The orientation determines an isomorphism

H"(M; n,M) = n,(M).

By n,M we denote those elements of n,M which pull back the normal bundle v
trivially and have zero Hurewicz image. Given xen, M, there is a unique homotopy
class of maps g: M— M so that g is the identity outside a given disk D"< M and so
that the cohomology class of the difference co-cycle of fand the identity with respect
to the identity homotopy on the (n— 1)-skeleton is just x. (Recall that M — D" deforms
to the (n—1)-skeleton.)

This defines a map w:n,(M)—-n* (M, M), the last being homotopy classes of
orientation preserving tangential homotopy equivalences of M with itself. There is a
natural map of n* (M, M) into hS (M). Moreover, n* (M, M) acts upon A(M) by
induced maps of covering maps; i.e. if #: M— M represents an element of n* (M, M),
let h:v™—v™ cover h and let [#]- a= T (h),« in A(M), where [k] denotes the class of A.

Let M ™~V be the (n— 1)-skeleton of M. Then inclusion induces a monomorphism
Tem(T O | M), (T (), as T (v) is, up to homotopy, S"*™v T'(v | M~ V).
If aemty 4 (T (v| M""Y))and 1,,,€m,,,(T (v))is an element in the orbit 1, ,& 4 (M),
then 1,,, +0eA(M). We write 1, ,, +a for the orbit of this element in 4(M).

PROPOSITION 2.5. (Novikov [22].) Let aen,,+,,,(T(v|M""”)), and let
yeny(M). Then

(CO(’}’)) (1n+m + d) = 1u+m + o+ Sv(y): mod Image K-
COROLLARY 2.6. Modulo the image of K.,

0(@(¥)) = Lysm + S,(7)-

If g: M— M’ is a tangential homotopy equivalence, and [h]en™ (M, M), let [A]¢
=[ghg~'], g~ ! any homotopy inverse g. The following is obvious:

PROPOSITION 2.7. [w(y)f=w(gs), yEm(M).
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§ 3. Simply-Connected Four-Manifolds

In this section we study the Thom space of a simply-connected four-manifold N.
Let v" be the normal bundle, m large. Since [N; SO(m)]=0 and &, ,(S™) =0, we
have A(N)=A(N) and

Sy:ma(N) = e o (T(v)) .

Since 7, (SO (m))=0, =, (N) is just the homotopy classes of degree zero.
Let g: N— N be a homotopy equivalence. Then g is tangential, by the argument of

[27, Theorem 6.1]. The map T (g)y: T+ 4 (T (v))> 7,4 4 (T (v)), the map induced by a
bundle map covering g, is independent of the choice of covering map.

THEOREM 3.1. Let 0y 4(T (v | N®)) S,y 4(T (v)), N the two-skeleton of
N. Suppose T (g),a=0o. Then there is a class yeny(N) such that S,(y)=o and g, (y)=7.

For g=id, this result is stated in [22] and is not hard to prove. Together with
Corollary 2.6, this case implies, since T (v)=S"**v T (v | N®), the following:

COROLLARY 3.2. Every element £€[ N ; G/O] that lifts to [N ; G] is the normal
invariant of a homotopy equivalence of N with itself.

Since Ls(e)=0, this implies, as observed by Novikov, that any four-manifold of
the homotopy type of N is h-cobordant to N.

Proof of Theorem 3.1. We suppose first that W2(N)=0; i.e. N is almost
parallelizable. Up to homotopy, NP =8P v--vS?, T@|NP)=2"NP=
=S"v ST 2 v..vSp*?, and S, | ni(N) is just the suspension

I"ma(ST v v 8E) o s s (ST v vSETY)

Let pen, (S3v...v Sﬁ) be the class carried by the i*® sphere S? with standard orien-
tation. Let nem,(S?) be the Hopf class and let Znen, (S3) be its suspension. Let, for
ISigk, y,=u,0n.2n; i.e. y; is the composite

s+ g3 g2 N

LEMMA 3.3. ™ carries the subgroup of n,(S? v ---v S3) generated by the y,

isomorphically onto n,, , 4(ST' 2y...vS k +2)-

Proof. Each y; has order two. By homotopy excision [2], in the stable range,
Tmsa(STT2V e vSE* ) =Yt Musa(ST"?). Moreover, the suspension 7,(S?)—
> T4 4 (S™*2)=Z, is an isomorphism, and n,(S?) is generated by (Zn).n. Hence Z™
carries the subgroup in question onto the isomorphic group 7, , . (S™**2 v ... v Sit2),
and so is an isomorphism of these groups.
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Now suppose a€m,4(ST 2 v v Sp*?), with T(g),a=a. Let =Y 1 Ay,
with 4;=0 or 1, be such that Z™f=«. Then 2™(g,f)=a also. We may suppose
g(N® e N and we write g again for its restriction to N®.

In general, (¢+0)on=g-n+0o.n+[0o, g], where [¢, 6] denotes the Whitehead
product of ¢ and g, since # has Hopf invariant one. On the other hand, composition
with the suspension X7 is a homomorphism. So if

Exlly = Z &ijnj, then
J
8xYi = Z fiﬂj = z,; fijéik [ﬂj, W] o Zn, and so
J Js
g+ = Z Ay + .Zk A (L 1] 0 Z).
l’ .”

LJ

Suspension annihilates Whitehead products, so

2" (g+B) = Z A&y S(vi) = 2"(B) = Z 4:S (1)
i, J i
Hence A;=) ;A;¢;; (mod 2). Thus if 6=Y; A;u;, then g, (6) =35 +2¢ some . Hence

gx(don)=0on+2(eon) + [& €] +2[¢ d].

Since, [e, ¢] is even, i.e. divisible by two, we can write

gx(dom)=6on+2¢
Since composition with Zn is a homomorphism and since Z#n has order two,
gx(0onoZn)=3d0n.2n.
Also
Z™(0onoZn) =(Z"0)o Z™ (0o 2Zn) = (Zi ME")o Z™ (10 2n)
=2 A" (piono Zn) =3, 42" (v) = Z"f =7,

since composition with a suspension is a homomorphism. So if y=08.702Z#, then

g+x(y)=7v and I"(y)=a.
Now suppose W?(N)#0. The second Stiefel-Whitney class can be viewed as a

homomorphism W?2(N):H,(N,Z)—Z,. H,(M ; Z) has a basis over Z so that W?(N)
vanishes except on the last basis element. So we may write, up to homotopy,

N®=8%v..vStv S,

with v | S? trivial for 1 <i<k and non-trivial for i=k +1. It is easy to see that ug to
homotopy, T(v | Sz+,)isjust X=S"0,D"*2 ¢:S™* - S™non-trivial. ForT(v | Sk+1)
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has two cells, and if ¢ were trivial v | Sz, ; would be fibre-homotopy tirvial by Spivak
[31], and so trivial because n, (0) =7, (G). Hence by 2.4,

T(v|N®)=87"?v..vSi*?v X.

LEMMA 34. 7,.4(X)=0. Hence the inclusion induces an isomorphism of
7fm+4(T(V I N(z))) with 71,,,+4(S'1"+2 Ve VSZ'”)-

Proof. By homotopy excision the stable range, the characteristic map
(D™*2, §™*1)—(X, S™) induces an isomorphism of (m+4)th homotopy groups. So
we have an exact sequence

0= ”m+4(sm) = Myt s (X) = “m+4(Dm+2> Sm+1) —a’ Tm+3(S™).

The domain of 0 is Z,, and the image of a generator is represented by the composite
§m*+3,8m*+2_,§m* 1, 8™ of the non-trivial maps. This is just the suspension of the
Blakers-Massey element in 75 (S>) and so is non-trivial, by [26]. Hence 7, , ,(X)=0.

The second statement follows from the first by homotopy excision.

As before, let p;em, (N®) be the class carried by the i sphere, 1 <i<k+1. Let
Y= W0 o Z1. The restriction of Sv to 7, (S2 v --- v §2), a direct summand of n, (N?),
is the suspension homomorphism Z™, hence by 3.2 it carries the subgroup generated
by the y,, 1 <i<k, isomorphically onto 7, (T (v | N®)).

Again let g,(p)=Z&; u;. Since W?(N)og,=W?(N), and since H,(N)=
=H,(N®)=n,(N®)=n,(N), we have ¢, ,,,=0 (mod?2), for 1<i<k.

Suppose a€m,, 44 (T (v| N®)), with T (g)sax=ao. Let B=Y5_; 4;;, A;=0or 1, be
such that 2™ B=u. Again S,(g«f)=0.

Let ;=) 5_; &;;u;. Then

ExYi = (°'i°'1 + (fi,k+1ﬂk+ Dol + [Gi’ fi,k+ 1M+ 1])°Z'I-

The third term in parenthesesis &; ;11 [64, py+1]; since &; ;.4 is even, this vanishes under

composition with Z7. Similarly, (& x4+ 1#e+1)on =& +1(Mk+1oM)+T[MUir1, Hes4] also
vanishes under composition with Zn. So

8xYi =0;,NoZn and
gxB = (01 +-+ 0i)onoZn.

Now everything lives over S2 v -+ v §2, where v is trivial, and so the argument for
the case W2(N)=0 and the fact that &, ,,, =0 (mod 2) imply that g, (8)=0+2e,
0=2A,uy + -+ + A, Then it follows again that g,(on.Zn)=06.n.Zn. By the same
argument as for the case W?(N)=0, we also have S,(§.n.Zn)=a. So again,
Y=00m.Xn astisfies the conclusions of 3.1.
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§ 4. Split Five-Manifolds With n, =Z

Let W be a simply-connected 5-manifold with W the disjoint union of closed,
simply-connected four manifolds, N and N’ say. Let k:N—-N’' be a homotopy
equivalence with vanishing normal invariant (for example, a diffeomorphism) so that
if i:NcW and i": N <« W are inclusions, i’ck=~i. (“~’ means *“is homotopic to.”)
Let f: N> N’ be a diffeomorphism, and let M be obtained from W by identifying
x with f (x). We assume f preserves appropriate orientations, so that M is orientable.
Let n:W— M be the quotient projection. Then we also require that (zi)*: H*(M; Z,)
- H?(N; Z,) be monic, or equivalently, that H*(W, 0W; Z,)=0. It is easy to see
that n, M =Z. We say a manifold M obtained in this way is a split five-manifold (with
simply-connected fibre). For example, if M =N x I, k=identity, and f is any orienta-
tion preserving diffeomorphism, we get the case of a manifold fibered over a circle.

The requirement that k have no normal invariant is somewhat unpleasant. This
requirement will always be satisfied, however, if 3 a retraction r : W— N with r ] N'a
homotopy inverse to k and with r*(7N) stably equivalent to TW, the tangent bundle
of W. So, for example, if W is an h-cobordism and k: N— N’ is a homotopy equival-
ence with i’ ok =i, we will always have n(k)=0.

Given any orientable 5-manifold M with n, M=Z, one can always find a simply-
connected four manifold N = M with H,(N ; Z)-H,(M ; Z) a surjection. Cutting M
along N gives a simply-connected manifold W from which M can be recorvered by
glueing up the two boundary components. However, it does not seem clear, in general,
how to produce the homotopy equivalence k.

THEOREM 4.1. Let M be a split 5-manifold with simply-connected fibre. Then any
closed smooth manifold of the homotopy type of M is diffeomorphic to M.

Assuming 4.1, let us derive 1.1. According to [27], n:AS(M)—[M ; G/O] is monic
with image consisting of those elements that lift to [M; G]. This is valid for any
orientable five-manifold M with fundamental group Z; it follows essentially from an
analysis of the Wall groups Lg(Z) and Ls(Z).

Suppose P is a simply-connected closed 5-manifold. Let A: L— M # P be a homo-
topy equivalence, and let £=#(h). (M # P denotes the connected sum of M and P.)
Then £ lifts to A: M#P—G. Since n,(G)=0, the restrictions of A to M-(disk) and
P-(disk) extend to A;: M—G and i,: M —G, respectively. Let &, and &, be the images
of A, and A,, respectively, in [M; G/O] and [P; G/O]. Then let h,:K—M and
h,:Q—P be homotopy equivalences with n(h,)=¢, and n(h,)=¢&,. Then it is easy to
verify that if F=h, #h,: K# Q— M # P, thenn (F)=&=n(h). Moreover, by [1] or [22],
Q is diffeomorphic to P. So this proves the following “splitting theorem”.

PROPOSITION 4.2. Let M be a closed connected orientable 5-manifold with
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nyM=Z. Let h:L—>M#P be a homotopy equivalence, L a closed 5-manifold. Then 3 a
closed 5-manifold K, homotopy equivalences h,:K—M and h,:P—P, and a diffeo-
morphism @ :K#P—L so that hogp~h, #h,.

Clearly 1.1 follows from 4.2 and 4.1. In fact, if M7 is any split manifold and PS5 is
simply-connected, any manifold of the homotopy type of M # P is diffeomorphic to it.

We turn now to the proof of 4.1. Let M be a split S-manifold with simply-con-
nected fibre. Let W, N, =, i, i’, k, and f be as in the definition of split manifolds. Let
V" be the normal bundle of N. For any space X, let CJ(X) be the image of [ X ; G] in
[X; G/O].

LEMMA 4.4. (ni)*:CJ(M)—CJ(N) is a monomorphism.

Proof. By [27], the map y,:CJ(M)—>H?*(M;Z,) defined by 7y,(&)==E&*,
1€ H*(G/0; Z,) the non-zero class, is monic. Let yy: CJ(B)—H?*(M; Z,) be defined
similarly. Then the following diagram commutes:

CJ(M)25 H*(M; Z,)
l@ie Ly
CJ(N) =5 H?(N; Z,)

Since (ni)* on the right is monic, so is (ni)* on the left.

Remark: This is the only place we use the requirement for a split manifold that
(ri)*: H*(M ; Z,)—H?*(N ; Z,) be monic. It would suffice instead to require only that
Lamma 4.4 hold.

Now let ge CJ(M); write ¢: M—G/O for a representative also. We are going to
show that g is the normal invariant of a homotopy equivalence of M with itself. Let
¢=gniand &’ =pmni’. Then Ek~¢and &' f =¢&.Soifg= f “'k:N—N,thenég=Ek ~¢;
Le. g*¢=¢. Hence (g~ )* ¢(=¢in [N; G/O].

By 2.2, n(g)= f*n(k)=0. By 3.2, ({=n(h) for some homotopy equivalence
h:N-N. So (g~ Y)* E=n(g.h)—n(g)=n(go-h), by 2.2 again. Thus n(g.h)=n(h). So
by 2.1, 0 (goh)=0 (k). Thus if {1 (£)=1,,4 4+, We have

T(g)a(In+a+a)=lpss+a.
Since 7(g)=0, T(8)s lm+s4=1ln+s. Hence
T(g)ea=uc.
Let yeni(N) be such that S,(y)=« and g,y=7; 7y exists by Theorem 3.1. By 2.6,
0(w()=1+a,
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and so n(w(y))=¢. By 2.7, [0()F=w(y). Also, w(k.y)=[w(y)]*; hence w(kyy)=
=[om]’.

Let h: N— N represent w(y)en™t (N, N), with 4 the identity outside a disk, and let
K =fhf ~1. Since iykyy =iy, UK extends to I: W— W which is the identity outside a
disk D° < W that meets 0W in two subdisks, one in N and one in N’. We can easily
also arrange things so that ["'(0W)=0W and so that for a given collar
c:0Wx [0, 1]-W, I(c(x, t))=c(I(x), t).

Let H:M— M be the map induced by /. Then H is transverse to (ni) (N) and
H ™! (ni(N))=mni(N). Moreover, Hri=mnih. It is not hard to see that H is a homotopy
equivalence. By 2.3, (ni)* n(H)=n(h)=E=(ni)* 0. Hence by 4.4, n(H)=¢.

Thus every e CJ(M) is the normal invariant of a homotopy equivalence of M
with itself. By [27, Theorem 6.6], CJ(M) is the image of one-to-one map #:hS (M)—
[M; G/O]. Thus given any homotopy equivalence G:K—M of closed manifolds,
dH :M— M and a diffeomorphism ¢:K— M with He~G. This proves Theorem 4.1.

This proof also proves Theorem 1.2. For if M is fibered, or even just split, with
fibre N, then given G: K— M, H¢ as in the preceding paragraph satisfies the require-

ments of 1.2.
For the special case M =N x S', one can take H=h x 1 in the proof of 4.1.

COROLLARY 4.5. Every homotopy equivalence of a closed manifold K with
N x S is homotopic to one of the form (hx 1)o@, where ¢:K—NxS! is a diffeo-
morphism and h: N— N is a homotopy equivalence that is the identity outside a disk.

We will use this corollary in the next section. Another corollary is the following

(compare [36]).

COROLLARY 4.6. Let N be a simply connected closed four-manifold. Then
every automorphism of the bilinear form Q on H,(N ; Z) given by intersection numbers
is induced by a diffeomorphism of S* x N with itself.

Proof. Let H:N— N be a homotopy equivalence of N with itself inducing a given
automorphism of the form Q. Then (H x 1)~(h x 1)o¢ as in Corollary 4.5. Clearly ¢

is the required diffeomorphism.
Barden’s theorem, the simply-connected version of 1.4, can also be derived from

our arguments in this section. However, we will give a much simpler proof in § 6.

§ 5. Fibering Five-Manifolds And Smoothing 4-Complexes

Let M be a closed, connected orientable five-manifold with fundamental group Z
We say M is quasi-fibered over S* (with connected fibre) if 3 a closed submanifolc.
N <M of codimension one so that the following sequence is exact for f : M—S"* any
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map representing a generator of H' (M, Z):
0- m;(N) - n;(M) % m(8')-»0: i>0.

Clearly N has the homotopy type of M, the universal cover of M. Fibered manifolds
are quasi-fibered and quasi-fibered manifolds are split. Quasi-fibered manifolds will
be fibered if the A-cobordism theorem is true in dimension five.

Let M> be a given closed orientable manifold with n, M =Z. Suppose M has the
homotopy type of a finite complex; equivalently, by [40], suppose the homotopy
groups of M are finitely generated. For manifolds of higher dimension with funda-
mental group Z, this requirement on the universal covering space is sufficient to in-
sure that the manifold fibres over a circle [7]. In particular, the universal cover has the
homotopy type of a closed manifold of one less dimension.

In our situation, let v be the normal bundle of M and p:M— M the universal
covering map. Then £ =p*v is reducible; equivalently the Thom class of £ is spherical
[31]. Furthermore, M is a Poincaré complex of formal dimension four and L, (¢ ™) =
=1p, (¢ 1) [M] a generator of H,(M, Z). All this follows, for example, by fibering
M x S* and M x CP? over a circle and applying Poincaré duality and the Hirzebruch
formula [20] to the fibres. In the analogous situation in dimensions 4k, k>1, we
could conclude that M had the homotopy type of a smooth manifold [5]. In dimen-
sion four, however, it is not known whether this is the case.

THEOREM 5.1. Let M be a closed, connected, orientable five-manifold with
n,M=Z. Let M be the universal covering space of M. Suppose M has the homotopy
type of a smooth closed four-manifold. Then M is quasi-fibered over a circle.

Proof. The basic idea of the proof of 5.1 is illustrated by the following special
case: suppose 7, M acts trivially on n;M for all i. Then it is not hard to see that M has
the homotopy type of M x S*. Hence M also has the homotopy type of Nx S!, N a
simply-connected four-manifold. By Theorem 1.1, M is diffeomorphic to N x S, and
in particular, M is quasi-fibered, indeed fibered, over S.

In the general case, let £: M—M be a generator of the group of covering trans-
formations of M. Let T (¢t) be the mapping torus of t; i.e. T () is obtained from
M x I by identifying (x, 0) with (¢x, 1). The composite of the natural projection of
M x Ito M and the covering projection induces a map of T'(¢) to M. Using the fact
that 7'(¢) is a fibre space over S* with fibre M, it is not hard to see that this map in-
duces isomorphisms of homotopy groups. Hence 7 (¢) and M have the same homo-
topy type.

Let A: M—N be a homotopy equivalence, where N is a simply-connected closed
four-manifold. Let h: N—N be a homotopy equivalence, simplicial with respect to a
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fixed smooth triangulation of N, so that A4 is homotopic to Az. Then
AU(hAt™1): M x dI - N x oI

extends to a map of M x I to N x I which agrees with identifications and so induces
H: T (t)-T (h). The universal cover of T (h), for example, consists of infinitely many
copies of N x I laid end to end and glued together by 4. Using this description, it is not
hard to verify that H induces isomorphisms of homology groups of universal covering
spaces, as well as an isomorphism of fundamental groups. Hence H induces iso-
morphisms of homotopy groups, and so is a homotopy equivalence.

Thus M has the homotopy type of the mapping torus T (k). Suppose 4 had no
normal invariant; i.e. n(h)=0 in [N ; G/O]. Then if g is a homotopy inverse to #,
n(g)=0 also, by Proposition 2.2. Hence g is normally cobordant [3] to the indentity;
and since Ls(e)=0, it follows that 3 an A-cobordism W with 0W=N and a map
@:W-NxI with ¢(x)=(gx, 0) for xed_W and ¢ |8, W:0,W-Nx1 a diffeo-
morphism. The map (hx 1) (g x 1)¢:8, W— N x 1 is homotopic to ¢ | 8, W. Hence by
the homotopy extension property, we may find ¥ : W— N x I with y(x)=(gx, 0) for
xed_W and Y (x)=(hg x 1) ¢(x) for xed , W.

Let K be obtained from W by identifying xed_ W= N with ¢~ (x, 1)ed,. W. Then
¥ agrees with the identifications and so induces a map G:K—T (h). Again, G is a
homotopy equivalence because it induces isomorphisms of fundamental groups and
homology groups of universal covering spaces. Thus K and M have the same homo-
topy type. But K is quasi-fibered. Hence, by Theorem 4.1, K and M are diffeomorphic,
and so M is also quasi-fibered.

Thus we would like to show that n(h)=0. This unfortunately seems in general
not to be the case. However, let g: M x S'—>T (h) x S' =T (h x idg:) be a homotopy
equivalence. The inclusion N=N x 1 €N x I induces an inclusion of N in the Poincaré
complex T (h). By the splitting theorem of [10], we may suppose ¢ ! (Nx S1)=Qisa
submanifold and

0:(M x ', Q) (T (h) x S*, N x §%)
is a homotopy equivalence of pairs. The splitting theorem applies because
Wh(Z®Z)=0.

. By the s-cobordism theorem [15], M x S! is diffeomorphic to the mapping torus of
a diffeomorphism f of Q with itself. The map g splits to a map

0:0xI-NxS"xI with
e(fx, 1) =((h x 1) me(x), 1),

n:Nx S xI-Nx S! the natural projection. Thus the restriction of g to Q x 0 gives 2
homotopy equivalence f:Q—N x S* with (kx 1) § homotopic to B f. (Here 1=ids:.)
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By Corollary 4.5, p~(jx1) o, where j: N-»N is a homotopy equivalence and
o:0—N x S!is a diffeomorphism. Let k be a homotopy inverse to j ; we assume k and j
are both simplicial with respect to the triangulation of N. Let g=khj. Then (g x 1)~ pu=
=0 fo ™!, a diffeomorphism. Hence (g x 1)=0. The map [N ; G/O]-[N x §*;G/0]
induced by the natural projection is monic and carries (g) to n(g x 1). Hence n(g)=0.

There is a map of Nx S!x I to itself that sends (x, 0) to (x, 0) and (x, 1) to
((gx1) p~'(x), 1), xe Nx S'. This map induces a map T (p)—»T (gx 1)=T(g)x S*
which is again easily seen to induce isomorphisms of fundamental groups and homo-
logy groups of universal covering spaces. Also, (k x 1) is homotopicto(hx 1) (kx 1) u~1,
and the homotopy induces a map T (u)—T (k) x S* which is also a homotopy equiv-
alence. Thus as T'(h) has the homotopy type of M, we get a homotopy equivalence
F:T(g)xS'-MxS".

Let o generate m, (7T (g)), let & generate n, M, and let y generate mn,;S'. Then
1 (T (g)x SY)=n, (T (g)) x 7, (S"), for example, and it follows from the construction
that F, (0, y)=(0, +7). After composition with (id) x (—1) if necessary, we may
assume F, (0, y)=(0, y). We must have F, (a, 0)=(+%0, my), meZ, since F, is an
isomorphism.

Let [: M x S'—S! be such that [, (5, 0)= —my and [,(0, y)=y. Let [:Mx S'—
—>M xS be I(x, y)=(x, [(x, )). Then (loF)y(a, 0)=I(£0, my)=(£4, 0). Hence
I F is a homotopy equivalence that lifts to a homotopy equivalence of the infinite
cyclic cover T (g) xR of T (g) x S* with the cover M xR of M x S'. Thus M has the
homotopy type of T'(g), g: N—N a homotopy equivalence with vanishing normal
invariant. Now the above argument that we wanted to apply for 4 goes through for g
and proves Theorem 5.1.

Theorem 5.1 shows that the smoothing conjecture implies the (quasi-)fibering
conjecture. To prove the remainder of Theorem 1.3, let us assume the (quasi-) fibering
conjecture to be valid. Let X be a Poincaré complex, finite, simply-connected, of
formal dimension four. Let £*, k large, be a vector bundle over X with spherical Thom
class and with L, (p, (¢ 1))=34p, (¢ !)=Index X. Then let f:S***>T (&) be a map
representing the Thom class in Hy (7T (£); Z), transverse regular to the zero-section
XcT(€). Let N=f"'X and let g= f ] N:N-X. Then g has degree one with
respect to suitable orientations, and g is covered by a bundle map of the normal bundle
V(N) to &; equivalently, there is a stable framing F of t(N)® g*£. The surgery ob-
struction for (N, g, F) is just

$(N, g, F) = }(Index X — IndexM) = 0.

Unfortunately, this does not allow us to perform surgery to get a homotopy equiv-
alence,

The periodicity theorem [33] for simply-connected surgery obstructions asserts
that s((», g, F)x CP?)=0, Indeed, this is clear from the facts that the index of a
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product is the product of the indices and complex projective space CP? has index 1.
Hence s((M, g. F)xS*x CP?*)=0, and so by the general periodicity theorem for
(non-simply-connected) surgery obstructions of [38], (N, g, F)x S! is cobordant to
(K, h, G) with h: K- X x S' a homotopy equivalence. The fibering conjecture asserts
that there is a simply-connected closed four-manifold N =« K with n,N=n=,K for i>2.
The composite

NecKSxxstSx,

7 the natural projection, is a homotopy equivalence which clearly pulls back £*@e! to
the (k +1)-dimensional normal bundle of N.

§ 6. H-cobordisms of Four-manifolds with 7, =7

In this section we prove Theorem 1.4. To make the basic idea clearer, we first prove
Barden’s theorem, the simply-connected analogue of 1.4. No proof of Barden’s
theorem has ever appeared.

THEOREM 6.1. Let (W, V, V,) be a simply-connected h-cobordism with dim W=5.
Let r: W—V be a retraction such that r ] Vi:Vi—> Vis a diffeomorphism. Then there is a
diffeomorphism @:V x I-> W so that ¢(x, 0)=x and o(x, 1)=(r | V) !x for xeV.

Proof. We may as well assume W is connected. Let u:(W, V, V;)—(1,0, 1) be a
Morse function [21]. Then (r, u): W—V x1I is a homotopy equivalence that is a
diffeomorphism of boundaries. Hence (r, u) represents an element of .S (V' x I, V' x o).
Clearly, it suffices to prove this element is trivial.

We have a map n:hS (VxI, VxoI)-[ZV,; G/O] and an action of Lg(e) on
hS (V x I, V x 0I) so that the inverse images via 5 of points are empty or orbtis of this
action. Here {e} is the trivial group and Z V, = V' x I/V x 0l is the reduced suspension
of the union of V with a disjoint point.

There is a map ¢: S x §3- 8¢ of degree one and a stable framing F of M=S>x §°
so that the surgery obstruction s(M, ¢, F)eZ,=L¢(e) is non-trivial. See [22], for
example. Given h:(K, 0K)—(V x I, V x dI), let & be a bundle so that A*¢ is equivalent
to the normal bundle of K, and choose a framing G of t(K)@h*{. Then take the
connected sum in the interior, (Kx I, hxI, GxI) # (M, ¢, F). The surgery ob-
struction of the result is still non-trivial, by additivity of surgery obstructions [3}.
This shows that the non-zero element of L4(e) acts trivially.

On the other hand XV, has a cell-decomposition with one one-cell, some three-
cells, and a five-cell. But n, (G/O)=mn3(G/0)=ns(G/0)=0. Indeed, PL/O is 6-con-
nected as I';=0 for i <6 (see [8], [21], and [18]) and the odd homotopy groups of
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G/PL are all trivial by [33]. Hence [ZV,; G/O]=0. So hS (V'x I, V x dI) has one
element. This proves the theorem.

Now suppose (W, V, V;) is an h-cobordism, dim W=35, but n, W=Z. Assume
that W is orientable and connected. Let r: WV be a retraction with r | V;: ¥, >V a
diffeomorphism. Let u be a Morse function on W. Then (r,u): W—V xI again
represents an element of As(V x I, V' x dI), and it would suffice to show this element
to be trivial to prove Theorem 1.4.

Since Lg(e)— L¢(Z) induced by inclusion is an isomorphism, by [27, Theorem 5.1]
and the periodicity Lg=L,,, the same proof as in the simply-connected case shows
that Lg(Z) acts trivially upon AS (V' x I, V x oI). Hence

n:hS(V x I,V x ) - [XV,; G|O]

is a monomorphism. Unfortunately, [ZV,, G/O] is not trivial.

Let h:(M, OM)—(V x1, Vx0I) be a homotopy equivalence that restricts to a
difftomorphism of boundaries. Let K be obtained from M by identifying A~ (x, 0)
with A71(x, 1) for xe V. Then & induces a homotopy equivalence f:K—¥V x S*. It
follows easily from the definitions that n(f) is the image in [V'x S*; G/O] of n(h)
under the natural quatient projection of ¥'xS! on XV, =V x S|V xpt.

Let :e H*(G/O; Z,) be the non-zero class. Let =7 (k). By the results of [27, § 6],
¢=0if and only if £*1=0. In fact, ¢ comes from [V x S*; G] and the evaluation on 1 is
a monomorphism on such elements.

The map [ZV,; G/O]-[V'xS*; G/O] is a monomorphism. For its kernel is
isomorphic to the cokernel of the map [Z (V' x §); G/O]—[Z V; G/O] induced by the
inclusion V=V xpt< ¥V x S'. This map is clearly onto; the suspension of the natural
projection of ¥'x S* on V induces a right inverse.

The evaluation on 1 is natural with respect to induced maps. Hence it defines a map

v:[ZV,:GIO] > H*(ZV,;Z,)=Z,

with the property that for h:(M, dM)—(V x I, V x 6I) a homotopy equivalence that
is a diffeomorphism of boundaries, y (1 (#))=0 if and only if 5 (h)=0.

Thus to prove Theorem 1.4 it suffices to find a homotopy equivalence h: Vx I-V x I,
with 4 | ¥'x 01 the identity, and n(h)#0 in [ZV,; G/O].

LEMMA 6.2. A generator of H;(V)=L1Z is spherical.
Assuming this lemma, let us complete the proof of Theorem 1.4. Let D’ <= V' x (4, %)
be a disk. Let agens(V x I) be represented by the composite

p

SS—>S3_”)V><(‘1{,%),

the first map being the non-trivial map and the second representing a generator of
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Hy (V). Then let h: V x I-V x I be the identity outside D and so that the obstruction
to homotopy of / to the identity relative (V' x I— D) is age H*(V x I, (V x I- D); n5V)
=7nsV.

Glueing V' x0to ¥ x 1 by theidentity, we getamap f: ¥ x S'— V' x S!induced by .
If n(h) were equal to zero, h would represent the trivial element of AS(V x I, V x dI),
i.e. the class of the identity. Certainly in this case f would be homotopic to a diffeo-
morphism. So it suffices to show that fis not homotopic to a diffeomorphism.

Let v* be the normal bundle of ¥ x S. Then by 2.6, 0 ( f)=15,,+S,(a,), and we
could proceed by showing that 15, ,+S,(0o)# 154+, in A(V x S'). Instead we give a
direct argument suggested by J. Morgan.

Let Qc¥VxS! be a closed submanifold, dim Q=2, representing a class in
H,(VxS*'; Z,) dual to the mod 2 reduction of a generator of H;(V)cH;(V x SY).
Q exists by Steenrod representability [34] and the Whitney embedding theorem.
(Actually, one can use a spectral sequence argument to represent the dual class by a
sphere.) We may assume QnD=0.

We may assume f:S3— V' x S is transverse regular to Q. Then $~'Q will be an
odd number of points, q,, ..., g, say, s odd. We can assume p:S>—S> has gy, ..., ¢, as
regular values. Then p~!(g,)=U; is a submanifold of S, and if F; is the framing of
U, induced via p, the Kervaire invariant c¢(U,, F;) is not zero. This is because the
Kervaire invariant and the Thom construction give an isomorphism of 75(S3) with
Z, [24]. For example, we could arrange to have U;=S'x S! with F, the “wrong
framing.”

Thus we have a representative «:S>— ¥ x S* of a,, transverse to Q, with ™1 (Q)=
=U, u---u U,. Without changing this, we may alter a so that on a small disk Do S”
so that « | Dy:Dy— D is a diffeomorphism. Let us identify D with the complementary
disk S°—Int D,. Then we may choose f so that (f | D)u(a|Dg)=a. So f will be
transverse to Q, and f "1(Q)=QuUU, u---VU,=W. Let p=f | W: W—Q, a map of
degree one on Q and degree zero on each U,. Let £ be the stable normal bundle of 0;
E=v(Q, V' x SY)@v | Q, where the first summand is the normal bundle of Q in ¥'x §".
Then from transversality we have a stable bundle map from the normal bundle of W
to ¢ covering ¢, and so a stable framing of tW@@*¢. Clearly the Kervaire (surgery)
obstruction ¢(W, ¢, F)=) c(V,, F;) does not vanish.

Suppose A were homotopic to a diffeomorphism. Then, making the homotopy
transverse to Q, we get a cobordism of (W, ¢, F) to (P, ¥, G), ¥: P—Q a homotopy
equivalence, indeed a diffeomorphism. But the Kervaire obstruction is a cobordism
invariant (see [3], [6]), so this is impossible. Hence & is not homotopic to a diffeo-
morphism. This proves Theorem 1.4, assuming Lemma 6.2.

Proof of 6.2. Recall V is a closed orientable manifold with n, ¥ =Z. There is ©
space X of the homotopy type of ¥ and a Serre fibration p: X—S! with simply-
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connected fiber F. (See, e.g. [30].) F has the (weak) homotopy type of the universal
covering space of V. Let (E,) be the cohomology- spectral sequence of the Serre
fibration p. Then E3' 4= H?(S'; $?(F)), cohomology with local coefficients. We also
have a filtration H3(X)=F%3 2F"22F*12F%°20. As E?'=E>°=0, F>'=0
and F'2=E!-2=E}2,

Suppose yeF%? Let xeH'(X)=E}°=EL°=F"“°, Then xuyeF*2? But
E¥*=E>»'=E}°=0; hence F>?=0. So xuy=0. By Poincaré duality, this implies
y=0. Thus E%?=0, and the map

H*(X)->F** > E3® cEy® < H*(F),

which is just the map induced by inclusion, is monic. The image consists of those
elements fixed under the action of n,S?.

Now H,(F)=H,(V), V the universal cover of V. Let A=Z[n, V], the integral
group ring of 7, V=Z. Let C, be the chains of ¥ with respect to a cell-decomposition
induced from one of V by the covering map. C, is a A-module. By Poincaré duality
(see [39]), Hy(V; A)=H,(V)=H,(Cy; A)=H*(Hom(Cy; A))=H*(V; A). So by
universal coefficients over A (see [30]),

H,(F) = Hom , (H, (V); A) ® Ext, (H, (V); 4).
But H, (¥)=0, and, as Z-modules,
Hom 4 (H,(V); A) = Hom(H,(V); Z).

Hence H, (F) is free. By universal coefficients, this means H>(F)=Hom (H,(F); Z).

The subgroup of elements of H3(F) fixed under the action of the fundamental
group is a direct summand because it is the kernel of a homomorphism of the free
module H?3(F) onto a submodule and hence onto a free module. Hence 3we H;(F)
with {i*x, w) =0, where i: F— X is inclusion, xe H*(X) is a generator, and {,) denotes
Kronecker product. Hence i,w is a generator of H;(X)=H,(V). Since F is simply-
connected, w is spherical, by the Hurewicz theorem. Hence i,w is spherical. This
proves the lemma.
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