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Topological Pontrjagin Classes!)

by JAMES A. SCHAFER

Introduction

We use a variant of the Thom definition of Pontrjagin classes for triangulated
manifolds [10] and the transversality theorem of Kirby and Siebenmann [5] to obtain
a definition of rational Pontrjagin classes for oriented euclidean bundles over a class of
spaces including topological manifolds. These classes possess all the usual properties
of characteristic classes associated to a bundle, namely, naturality and multiplica-
tivity. Moreover, if £ is a vector bundle over a space X, then the classes defined here
agree with the differentiable Hirzebruch classes of the inverse bundle to ¢&. We also
obtain the signature formula, i.e. one defines /(M ?) to be the class associated to any
stable normal bundle for M¢ a topological manifold; then one has that {/(M?),
[M“]> =signature of M*.

This generalization of the Hirzebruch classes to euclidean bundles is then used
to give a proof of the topological invariance of rational Pontrjagin classes, first done
by Novikov [9] and to show that the natural homomorphism from differentiable
cobordism to topological cobordism is a monomorphism. Finally it is shown that
if M? is a finite regular covering of a closed topological manifold M9, then the
signature multiplies, i.e. the signature of M ¢ equals the order of the cover times the
signature of M. This last result is false in its most general form, namely if M ¢ and
M are Poincaré spaces [12]. The use of some form of transverse regularity seems to
be necessary for a positive result to this theorem in an arbitrary subcategory of Poin-
caré spaces.

The paper is divided into two parts. In the first we set up two homotopy functors
Wy and h,, one related to differentiable bordism Q, (X, A), and one to ordinary
singular homology. We define a natural transformation A between them and show
that if (X, 4) has finitely generated rational homology, then A®1: w, —A, is a natural
equivalence. In the second part of the paper we restrict our attention to the Thom
space T¢ of a euclidean bundle ¢ over a suitably nice space and define a homo-
morphism «,: W, (T¢)—Z, where W, is the reduced group associated to w,. This
homomorphism together with Are gives rise in a natural way to cohomology classes
associated to ¢&.

We then proceed to prove the results announced in the beginning of this intro-
duction,

1) Partially supported by NSF grant No. GP 8484.
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Part I

Let Q, denote the oriented bordism theory for topological pairs (X, 4). In a
standard manner Q, (X, 4) is a module over the cobordismring Q, [see [1] for details].
Let Q, act on Z via the signature homomorphism ¢: Q,—Z and define

wi (X, 4) = Qu(X, 4) Qq, Z.
Introduce a Z,-grading into w, (Z, A) as follows,

w;(X, A) = image {}_ Q4+ ;(X, A) > wi (X, 4)}.

Since €2, is a homology theory and the induced maps on spaces are Q,-module maps,
w, is a functor from the category of topological pairs to Z,-graded groups. Also since
the boundary map in cobordism is an Q,-homomorphism, there exists a boundary
map 0: w;(X, A)-»w;_;(4) commuting with maps induced from space homo-
morphisms. In fact, it is clear that {w,, 0} satisfies all the axioms for a Z,-homology
theory with the possible exception of exactness. We will let W, (X) denote the kernel
of wy (X)—w, (pt) which, since Q, (p?) is free as 2,-module, is immediately seen to be
the same as @, (X) ®q, Z as Z,-graded groups.
If (X, A) is a topological pair, let A, (X, A) denote the Z,-graded group,

h(X, A) =] Hom(H*"/(X, A), Z).
k

Define a natural transformation of Z,-graded functors A: w,—h, as follows. Let
[m**J, f] be a singular manifold in Q. ;(X, A) (m***/ may or may not possess
boundary), then

A[m*™*, £1@ i () = (L (M* ) U £ * (M), [m* )

where t*tie H**i(X, 4:Z), L,_ (M**7) is the (s—k)®™ Hirzebruch class of
M**J and [m**7] denotes the fundamental class in Hy,, ;(M**7, Z) if m**/ is
closed or in Hy,, ;(M**J, M**J, Z) if m**J has boundary.

THEOREM 1. a) A is well defined, i.e.

A[m*™, FIINTT @ 1y = A([m*™, F1® o (N

b) A is natural with respect to maps of pairs

¢) A commutes with the boundary homomorphisms, where 5: h;(X, A)—h;-1(A4) is
given by [, Hom (5, 1).

Proof. b) is immediate if A is well defined and a) and c) are similar computations,
and therefore we will only do a).

First, 4, as a map from Q. ;(X, 4) into Hom(H***/(X, A4), Z) is well defined,
since if [m**),f]~0 then both the Hirzebruch class of m***/ and f*(2);
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1e H***J x (X, A) are restrictions of classes in H*(W:Z) where W “bounds” m***J,
Since the fundamental class of m***J is 9, of the fundamental class of W, the result
follows. To show A([m**/, f]1[N"]@1),=A([m**, f1®c(N"™), we notice that if
n=0 (mod4) both are zero. Suppose n=4p and let te H***J(X, A). Since the tangent
bundle of M x N is the Whitney sum of the pulbacks, via the projections =;, of the
tangent bundles of M and N, we have that L,,(M x N)=Y ;, j=mnt Li(M)un3L;(N)+
elements of order 2. Therefore
A([m** ™, fTIN"] ® 1) (v) = (L4 p—x (M x N)unif*(2), [m** x N])
= ¥ - D R 9 @) L (N, I x N
i+j=s+p—k

= T LM USHE, [ L (N), IND
i+j=s+p—-k
It is immediately seen that the only contribution occurs when i=s—k and j=p.
However, it now follows from the Hirzebruch Signature Formula [4] that this equals
A[m* ™, £1®c (N, (2. )

Since / is natural, we obtain a natural transformation A: W, (X)— h, (X). More-
over, an easy calculation shows that A(pt): wy(pt)=Z—-he(pt)=Z is induced from
the signature homomorphism and therefore an isomorphism since it is onto. Since
both w;(pt) and h;(pr) are zero if j#0, we have that A(pt): wy(pt)— Ay (pt) is an
isomorphism. Hence from the 5 Lemma we see that A is an isomorphism if and only if
A 1is. Since Q is a torsion free abelian group, the same is true if everything is tensored
with the rationals over Z.

COROLLARY. The following diagram commutes,
A(X)

w(X) — hy(X)
x|Sw X |Sh
N Asx)y» ¥
Wi+1(SX)— h;. 1 (SX)

where SX is the (unreduced) suspension of X and S,, S, are the suspension iso-
morphisms.

Proof. This follows immediately from the preceding theorem since both S, * and
S, ! are given by the same composition of maps of pairs and boundary homomorph-
isms and A commutes with each.

THEOREM 2. If H, (X, A:Q) is finitely generated, then A®1:wy (X, )@,
Q-h, (X, A®,Q is an isomorphism.

Proof. From the rational collapsing of the bordism spectral sequence [1], it
follows that We(X, ARQ=2,(X, A)®gq. 0 and h, (X, AQRQ=H,(X, 4:Q) are



318 JAMES A. SCHAFER

isomorphic finite dimensional rational vector spaces. (Here we are identifying
h,(X, AA®Q and H,(X, 4:Q) by means of a natural equivalence.) Since A®1 is
linear, the theorem will follow if we show that A®1 is onto. We first make some
preliminary observations. Since H, (X, A4:Q) is finitely generated, there exists a
natural isomorphism of vector spaces

Hy . ;(X, A: Q) » Hom, (Homy (Hy, 4 (X, A:Q), Q), Q)

From the universal coefficient theorem we obtain a natural isomorphism
p:H¥*(X, A: Q) » Homgy (Hy (X, 4, Q), Q).

The composition Hom(u, 1)-v yields a natural isomorphism
0:Hyet ;(X, A: Q) » Homy(H¥**/ (X, 4: Q) 0).

One calculates that if ce Hy, . ;(X, A: Q) and ée H*** (X, 4; Q), then

(ec) (§) =<& c>eH(X: Q)= Q.

Now, if d=) ¢®1/geHy .+ (X, A)®Q=H,, + ;(X, A; Q) is an arbitrary element, then
by results of Thom [11] and Conner-Floyd [1], there exists an odd multiple of ¢ which
is Steenrod representable, say u [M***/, f]1=(25+1)c. We are now in a position to
see that for any ¢

At wy(X, A)® Q= hy(X, A)® Q> Hom (H**/(X, 4: 0), Q)

is onto. Let peHomy, (H**/(X, 4; Q), Q). Choose deH,,,;(X, 4; Q) such that
e(d)=¢. And let d=c®1/q. Choose s so that (2s+1)c is Steenrod representable, say
by [M4t+j, M4t+j,f].
Claim:
. 1
l M4t+j’ M4t+]’ I .
t([ f]®(28+1)q> 4
For let te H**J(X, A, Q), then
. 1
M4+ Mt 1@ T
a1 187 14)®
1

_ 4t+j * dt+j aqdt+j
= 1)y Lo (M DUT @ IM™, BT

- < M ppa+
(28+1)q<'t f*[ ]>

1
T (2s+1)g
=<1, d) = ¢(7).

(t,(2s + 1)) =<1, c® 1/q)
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Now 4,: w;(X, A)®Q—>Hom9(H""+’:(X, A; Q), Q) is obviously zero if r<0, and if
r>t it follows that A, ([M**J, M**/ f1®1)=0.
We will now show that

A@1:wi(X, A)® Q@ hy(X, A)® Q = [] Hom (H**/(X, 4, 0), Q)
k

is onto by induction on k. If k=0, the previous remarks give the result. Suppose that
if e[ Jo<, Homg (H***/(X, 4; Q), Q) there exists aew,(X, 4)®Q such that
A®1(x)=¢ and let Yy =(p, ¢,) €] [s<, Homy (H***i(X, 4; Q), Q). By the previous
result, there exists ((M*?*7, f1®1/q) such that

/lp([M4p+j, M4p+j’ f] ® 1/‘1) =@,

Let us=A,(M*?*J, M*?*J, f1®1/q)eHomy (H** (X, A; Q), Q). By the induction
hypothesis, there exists aew;(X, 4)®Q such that (A®1)a=¢—(uo, 4y, ..., Kp-1)
€[ [i<, Homo(H***i(X, 4; Q), Q). Since A is additive, it follows that (A®1)(x+
([M*P*I, M*P*), £1®1/9))=(p, ¢,)=V. Since H, (X, A:Q) is finitely generated, we
are done.

Part I1

Let &* denote an oriented k-dimensional euclidean bundle (e.b.) (structure group=
Hgy (R"), the orientation preserving homeomorphisms of euclidean k-space fixing the
origin) with compact base space B(¢) (the restriction that B(¢) be compact does not
seem to be necessary but makes the arguments easier) and total space E (¢). By a
bundle map f : £&—x* will be meant a fiber preserving map which is an onto homeo-
morphism when restricted to fibers. The Thom space, T¢, of E (&) will be the one
point compactification of E (£). Since any bundle map f (over a compact base) is a
proper map, there exists an extension of f, Tf, to T¢.

PROPOSITION 1. Let f:E—n be an e.b. map, then there exists a continuous map
Tf :(T&, o0) > (T'n, o) such that Tf |E(&) = f .

PROPOSITION 2. H*(T¢, o)~ H*(EE, Egy), where E€y=E¢ — BE.

Proof. Define a deformation retraction of E£yu oo onto {0} by using a linear map
in each fiber over an open set U where ¢ | U is trivial and piece together using a parti-
tion unity, Now use the cohomology sequence of the triple (T¢, E€uco, ) to ob-
tain H*(E(¢)uoo, EEyuo) ~ H*(TE, o) and then excise the point at infinity.

Since &* is oriented, we obtain from the Leray-Hirsch theorem, the Thom iso-
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morphisms
S Hy(E(9), E(€)0) > Hy—g(B(E))  ¢4(2) = pa(Ugn2)
PLH (BE)SHYY(EW®,E(©))  $E(v) =0 U,

Moreover, if f: {—# is a bundle map, f*U, = U, and the isomorphisms in Proposi-
tion 2 are such that the following diagram commutes

H*(Tn, ) 25 H*(TE, o)

Q Q

H*(E(n), E(n)o)——> H" (E&, E(2),).

That is, (7f)* commutes with the Thom isomorphisms considered as maps H* (B¢)
—H*(TE&, ).

We may enlarge the collection of fibre preserving maps giving rise to maps on the
Thom spaces and commuting with the Thom isomorphisms as follows.

DEFINITION. A bundle morphisms h:E*—y* is a fiber preserving map which when
restricted to fibers is an imbedding.

PROPOSITION 3. Let h:*—n* be a bundle morphism with B(E) compact, then
there exists £, <& and n, =0, such that h | E (&,): &, —n, is a bundle map.

Proof. Since B(£) is compact, there exists a neighborhood V of B() contained in
the image of 4. V contains a microbundle, which in turn contains euclidean bundle 7,
by the Kister-Mazur theorem [6]. Let E(¢)=h"'E(n,). This is a locally trivial
euclidean bundle < E(&) and A, | E(&)), is a homeomorphism onto.

Consider the following commutative diagram of bundle morphisms

By the Kister-Mazur theorem again, 1, and 1, are fiber homotopic to bundle maps,
g:and g, covering the identity, and hence homeomorphisms of E&; onto E¢ and En,
onto En respectively. Define Th=Tg-Th | E¢,-Tg™1. It is immediately seen that Th
determines a well defined homotopy class of maps of (T¢, o) into (T, o) and since
gsh l E¢, and g, are all bundle maps, they all commute with the Thom i somorphisms
and hence (7h)* commutes with the Thom isomorphisms.

We record for later use the following proposition.
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PROPOSITION 4. (T (¢ ®¢'), 0)— (STE, w0) where S denotes the reduced
suspension and -

h|E(E@e): E(E@¢") —»image of EE x (-1, 1)
is a bundle map covering the natural map BE— BE x 0.

Proof. Let y be any continuous homeomorphism of the real line R onto (-1, 1)
which fixes 0. Define h: T (@ e’)—»>ST¢E by h(a, t)=(a, y(r)), £(c0) =00

Suppose M* is a topological manifold and £* is a euclidean bundle, and let
fiMA>TEE,

DEFINITION. fis transversal to E(&)< T(E%) with normal bundle y ( fis t.r. to £)
if there exists an open set U< M* such that
i) U is the total space of a euclidean bundle n* < M*.
i) B(n)=f"1(B(®)) is a topological submanifold of M°.
iit) f I U:E (n)— E (&) is a bundle morphism.

THEOREM. (Kirby-Siebenmann [5]) Suppose U is an open neighborhood of a
closed set CS M*. Let f: M*—>TE* be such that f | U:U—TE" is t.r. to & with normal
bundle n, then if dim M —dim&2=5 and B (€) is a local euclidean retract, f is homotopic
to a map g: M*— TE* such that

1) gis t.r. to & with normal bundle ij.
1) g= f in some neighborhood of C.
iii) 7j | V=0 where V is some neighborhood C< V<U.

Remarks. 1) Since E (n*) is an open subset in M ¢ and E (1) is locally a product,
it follows that B(n) is a manifold of dimension d— k. Moreover, if M ¢ has a boundary,
then B(n) has boundary B(y)nM°.

2) If M ? and &* are oriented, then B(#) is oriented.

3) Ifg1 ~g, i M9 TE M?is closed and g; and g, are both t.r. to &, then g ' (BE)
and g, ! (B¢) are cobordant in M*.

4) Suppose h:E (¢)—E (n) is a bundle map (onto homeomorphism of fibers) and
[iM*SE &) ist.r. to &, then Th- fis t.r. to 4.

Proof. 1) and 2) are immediate, while 3) follows from the relative version of the
transversality theorem. 4) is true since if E (1)< M ¢ with B(t)=f ~'(B(¢)) a manifold
and f | E (7) a bundle morphism, then B(t)=(Th-f) '(B(n)) and Th-f l E(r)is a
bundle morphism.

Let &* be a k-dimensional onented Euclidean bundle over a compact local Eucli-
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dean neighborhood retract. Choose j=4 (mod4) and define a homomorphism

as follows: Recall w;(TE)~ (24 (TE)®q, Z); and so w;(TEY) is generated by ele-
ments [M**J, f1®1, where M**/ is a closed manifold whose cobordism class in Q,
is zero. Let [M**/J, f]®1 represent a generator of w;(T¢¥). Choose [M**/, f1®1
such that 4s+j—k =5. This is always possible since

[M¥", f1®@1=[M*" x CP¥, fn,]®1 in Ww;(T&).

By the transverse regularity theorem, we may assume fis t.r. to &. Let a,([M**/,
f1®1)=0(f 1 (BE)). Note that since j=k (mod4), dimension f ~*(BE)=4s +j—k=4p
and since £¥ and M***J are oriented, so is £ "1 (B¢).

PROPOSITION 3. «, is well defined.

Proof. If g~ f'is also t.r. to E (¢) then by Remark 3, g~ (B¢) and f~1(B¢) are
cobordant and therefore have the same signature. We are therefore left with showing
that «, respects the relations in w;(7T¢¥), i.e.

a([M%, f1INT®1) = o ([M’, f1® ¢ [N']).

This follows for if fis t.r. to £ with normal bundle#, fon, ist.r. to £ with normal bundle
n x €°, where £° is the 0-dimensional bundle over N°, so that

a,([M*, f1[NT®1) = ¢(B(n) x N') = o(Bn)-o(N')
=o([M’, f]1® a(NY).
PROPOSITION 6. If h:*—n* is a bundle morphism then a,(Th),=a,. That is
the following diagram is commutative
Ww;(T¢") W, (Tn")
N2
Z.

(Th)»

Note: (Th)y:W;(TE)—»w;(Tn) is well defined since W; is a homotopy functor and
if h is a bundle morphism T# is a well determined homotopy class.

Proof. Since Th is the composition of three bundle maps, it is sufficient to prove
the proposition if 4 is a bundle map. However, this is an immediate consequence of
Remark 4.

The homomorphism «, and the natural equivalence Ay allow one to defin
rational cohomology classes associated to any oriented Euclidian bundle &* whose base
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space B({) is a compact, local Euclidian neighborhood retract such that H, (B(¢): Q)
is finitely generated. We proceed as follows:
Consider the homomorphism

2®1:%,(TY®Q - Q
Composing with the natural equivalence
Az ®1:h;(TEY® Q- Ww,(TE)®Q
we obtain a homomorphism
0 h;(TO)®Q - Q.

As we have previously noted, there is a natural identification of A J(TE®Q with
[I: Homg (H4*4(T¢, Q), Q).

We will make this identification and consider g, as a map from
H Homa(ﬁ4’+j(T§, Q)9 Q) -0,
t

1e.

0:€Hom, [U Hom, (A**/(T¢, Q), Q), 0]

which is naturally isomorphic to
[TA**(TE, 9),
t

since H*(T¢&*, Q) is finitely generated.

Under these natural identifications @, corresponds to an element s(¢)e[],
H4t+j X (Tfk, Q)

Suppose f: E (£¥)—E (n*) is a bundle morphism. Since Arx is natural and since
a=a, (Tf), we have that

0 = (2 ®1) (A7; ® 1) = 0,°(Tf)s

where (Tf)*!ﬁj(Tfk)®Q—*5j(T'1k)®~Q, i.e. Hom (T'fy, 1)(2.)=0¢.
Since the identification of Hom(h;(T¢%), Q)-]], A**/(T¢&*, Q) is natural we
obtain

Tf*(s(n)) = s(&), Tf*: n A4+i(Ty*, Q) - n B**(TE Q).

Let ¢*:H*(B(¢), Q)— A***(T¢&*, Q) be the Thom isomorphism (in the ordinary
Integral Thom isomorphism tensored with the identity of Q).

DEFINITION. 1(&)=(¢*)"1s(&) H**(B(): Q).
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THEOREM 3. If f:é-n is a bundle morphism then f*(1())=1(&) where
f:B(&)— B(n) is the map induced by f.

Proof. Since Tf*(s(n))=s(&) it is sufficient to show the diagram

a*(1&) <L a*(Tn)

T¢€ T¢ﬂ
H*(BE) «— Hx(By)

commutes. However, this is just the naturality of the Thom iso. with respect to
bundle morphisms.

COROLLARY. If ¢" is a trivial bundle over Y then ,(¢")=0 for ¢ >0.

THEOREM 4. Let £* be an oriented Euclidian bundle over Y and " a trivial bundle
over Y, then 1(*@e™) =1(E%) (the l-classes are invariants of the stable class of the
bundle).

Proof. By induction it is clearly sufficient to do the case n=1.
Now as we have seen T (@¢’) is homeomorphic to ST (¢) by a map A~ whichisa
bundle map when restricted to E ((@¢g’).

LEMMA 1.

B (TEYS W, (STE)S W,4 1 (STE)S W, TE D)
AN /
\ //
AN /
ag\ /ag D .

N4
N\

is a commutative diagram where S, is the suspension homomorphism, ., is the natural
map SX—SX. (Suspension to reduced suspension) and h is the homeo described above.

Proof. Let [MY, flew;(T&¥), where d—k=5 and f is t.r. to E (&), say with
normal bundle E ()= M* a,([M? f]1®@1)=0(f "' B()).
The suspension map S is given by

S([M%, f1@ 1) =[(I x B**"), F]
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where

M*=B*""' and F|Ix M®=p,(1d x f)
F|-1xB'=NP.
f]1xB*=S.P.

Therefore hyu, S ([M%F]1®1)=[(Ix B**")°, hu,F] where

hoF | I x M = hp(1d x f)
hu,F | —1 x B = o0
hu,F |1 x BY =,

Claim hu,Fis t.r. to E (E@¢') in T (E@¢’). For let U=(—1, DxE(msIx M’ Uis
open and is the total space of an m.b. SIxM - (hu,F) 'B(¢(@e)=F ‘u; 'h™?
B(®@¢). But A~ ! maps B(E®¢’) to 0 x B(¢) in ST¢, and since p, is a relative homeo-
morphism, u; (0 x B(¢))=0x B(¢) and

F71(0 x B(&)=0x f"'B(&)=0 x B(n)

is a topological submanifold of Ix M Now hu,F|(—1,1)xE(7) is a bundle
morphism since f'is and since u, is a relative homeo and 4 is a bundle map.
Therefore ayg, (hetizS ([M7, F1®1)=0(hu,F "' (BE))=0a,([M"4, f]®1).
Since each of the maps in Lemma 1 commute with A4 (the first from a previous
proposition and the last two because they are space maps we have

H2*

FATE)® 0B hn (STE)® Q5 hy 1 (STEY @D h ., (T(E D €))
AN /
\ //
N\ /
p§ \\ // p{@e’

N /
N/
Q

Because s (¢) is the class corresponding to g, in [[, H**/(T¢&, Q) it follows that the
composite

B> r*2 .
Hﬁ4t+‘i+l(T(¢ @8,), Q) s Hﬁ4t+j+1(ST€k’ Q)—*l:[ H4t+"+1(ST§k, Q)

s_':'n ﬁ4t+j(T2’:k’ 0)

maps s ((De’) to s (&).
Now let o: H,(X, *) = H,.,(CX, X)Z,H,.,(SX, ») be the reduced suspension
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isomorphism. Thenitisclear thatif S, denotes the ordinary suspension homomorphism
that o=y, S), where pu,: SX—SX is the collapsing map. Therefore to show that
1(&)=1(¢®¢") in H*(Y, Q) we need the following lemma.

LEMMA 2. The following diagram commutes up to (—1)°.

A (T(E D Sr))’i Hk+1+s(ST€)::Hk+s(T€)

/
/

o\ ,,
*:®. \\ / %

H*(Y)

Proof. We will orient ¢@¢’ by choosing Uyg, to be the image of A*~'o* ™! of U,
Now if y is the generator (suspension of 1€ H°(S°, pt)) in H!(S!, pt) then it is
shown in (3, Prop. 1.C) that for any (X, *)

HY(X, ») S H* (ST x X, « x XUS! x #)

\o“ / natural iso.

H**1(8X, +)

commutes.
It follows that for ue H*(X, A), ve H*(X) o* (uuv) =(—1)*#* yug*p. In particular
o*@; (u)=(—1)*3* p*uuc*U. Since h | E ({®¢’) is a bundle map, we have that

h*a*¢3 (u) = (— 1)*** h*p*u U h*e*U
— (___ 1)degu p/*u U UCQ..,’
= (= )**"¢fo, (1)

where p’ is the projection E (E®De')— Y.
The proof of the theorem now follows since

¢ (1(8) = 5(8), pfo (I @) =s(D¥)

and the l-classes are even dimensional classes.

The following sequence of more or less obvious remarks constitutes a proof for
the multiplicity of the J-classes. Since most have been done in detail for the case 7 i
trivial, we only indicate the main steps.

1) If ¢ and 5 are e.b. over compact bases then T (¢ x n)~ T¢x T, (smash product)
by a homeomorphism 4 which is a bundle map when restricted to E (£ x n)=E¢ x En.

2) If K denotes the Kiinneth map in cohomology then the following diagram
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commutes
H*(BE x By)——" A*(T (¢ x 1))
=~ Th*
= | K H*(T¢ % Tn)
* zTK
H' (BY) ® H* (Bn) o A*(TE) @ A(Tr)

3) Consider the Kiinneth map in bordism 2, (X)x Q,(Y)—Q,(X x Y) given by
[M", f1x[N", g]l->[M"xN", fxg]. This map gives rise to a homomorphism
2:(X)®q, 2. (Y)EQ,(XxY). Consider

W (X) @, wi (¥) = (2 (X) @0, Z) ®. (24 (Y) ®0. Z) = 24 (X) ®. 24(Y) ®p. Z
where the identification is
[M", f1-[PP1®[N", g]@n=[M", f1@a(P")[N",g] ®n
=[M" f1®[N", g] ® o (P)n.
From the Kiinneth map x we therefore obtain a map
W (X) ® Wi (V) 5wy (X x Y)

It is not difficult to see that the following diagram commutes

ATz ®ATy

Wi (TE) ® Wy (Tr) ——— hy (TE) ® hy (Tn)
lx@ 1 A lK
Wa(TE x Tn)———">hy (TE x Th).
4) The following diagram commutes

G{@“"

W (TE) @ W (T)
lx@l

We(TE x Th)
lcollapsing map ¢

#x(TE % Tr)
e !

Wa(T(E x 1)) T 7

Z®Z

multiplication

since he( fx g): M™x N*— T (£ xn)ist.r.to B(¢ xn)=B¢ x Bpand 6 (f ~1BE x g~ 1By)
=0(f~'B)-a (g™ " By).

Putting these four fact together and the facts that ¢ 1(£) is the class corresponding
to the homomorphism («,®1) (A, ® 1) we see that I(¢ x n) =1(£)@I(n)e H** (BE x Br).
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Since the Whitney sum of ¢ and # is 4*(¢ xn) where 4: BE— B¢ x B¢ is the diagonal
map, we obtain.

THEOREM 5. If & and n are e.b. over X, then 1(E®n)=1(¢)-1(n).

Suppose M? is a closed oriented topological manifold. In [8] it is shown that A ¢
has a stable normal microbundle, that is, there exists an embedding of M ¢ into S¢*¥
such that M ¢ has a normal bundle, v,,, in S?*". By the Kister-Mazur theorem, there
exists a Euclidian bundle, also called v,,, contained in the microbundle and unique up
to a Euclidian bundle equivalence.

DEFINITION. The I-class of M4, I(M?), is the I-class of any stable normal bundle
for M*,

Remark: By the last theorem, this is well defined since any two stable normal
bundles are stably equivalent.

In [7], Milnor characterizes the combinatorial Pontrjagin-Hirzebruch classes [10],
I'(K™), where K" is a simplical, rational homology manifold as follows.

If n28i+2, then [{(K") is the unique 4i-dimensional rational cohomology class
satisfying

KO f* (W, [KD> =a(f 71 ()
where f is any simplical map K"—S""* and p is the standard generator of
Hn-4i (S"_4i, Z).

We will show the classes (M%), M*¢ a closed topological manifold agrees with the
Combinatorial Pontrjagin-Hirzebruch class, if M ¢ is a PL manifold by showing /(M)
satisfies the characterization of Milnor. Before we obtain this result we need some
preliminary facts.

Fact 1
Suppose j: N"—>M™ is an embedding of closed topological manifolds and that

N" has a normal bundle v in M. Let k denote the map of M™ to the Thom space of v,
obtained by collapsing the complement of E (v) to a point. If ¢,. is the Thom iso-
morphism then the map k*¢,.: H'(N")—»H'*™~"(M™) is the Gysin homomorphism
Ji- That is k*- ¢,* is the map making the following diagram commutative

Ht(Nn)_‘E)Hm—n“i't(Mm)
IN"1n] [M™]n | =
H,,_,(N")?H,,_,(M"‘)

This follows from a careful analysis of the Thom isomorphism as pointed out to me
by F. Raymond.
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Fact 2
If f: M- TE is transversal to E¢ with normal bundle v, then the following
diagram is homotopy-commutative

ML e
\k /IT(flE(V))

Proof. We first note that f is homotopic to a map f': M “— T¢ such that f| E (v)=f
and f maps the complement of E (v) to the base point of T¢. We define a homotopy as
follows. Let H denote the strong deformation retraction of T¢— B¢ onto the base
point. Then F: M % x I- T¢ is defined by

FIEG) xI=f|E()
F(x,t) = H(f (x), t) for xecomplement of E (v).

This map will be continuous if f (E_’_(—v)—E (v))=base point. However, this follows

since if xelTv)— E (v) and f (x)# base point, then f (x)eE (£). Let U be a compact
neighborhood of f(x) not containing the base point. Since f ] E(v) is proper
(f | E (v))"1(U) iscompact. Therefore any sequence in E (v) converging to x, must be
in (f | E(v))"*(U) and converge to some point of £ (v) which is impossible since
x¢ E (v).

Now if f | E (v) is a bundle map, then T (f | E (v)) is just the extension of f | E ()
to the one point compactification of E (v). Since f | Ev)=f | E(), T(f | E()=
=T(f | E(v)) and clearly T (f | E (v))ok= f. Therefore T (f | E (v))ok= f ~ f.

Iff ] E (v) is only a bundle morphism, then T ( f ] E (v)) is obtained by choosing
subbundles v, = v, and ¢, =& and letting T (f ] EW)=TMhE)-T(f | E(v)o(Thvy) !
where h¢, and hv, are bundle maps fiber homotopic to the respective inclusion maps.

Now if k, : M ?— Tv, is the collapsing map for E (v,) then Th, ok, ~k. This follows
for if h, is the fiber preserving homotopy of i:E (v;)—E (v) to A, , then we may for
each ¢ define a continuous fiber preserving map from 4,(E (v,)) onto E (v) by h,, ok, 1
Let H:M?xI—Tv be defined by H, | complement of A,(E (v;))=base point.

H, l h; (E (v;))=h,,oh™ 1. Then H is a homotopy from Th, .k, to k.

Consider the map Th;,' o f: M %~ T¢, this is t.r. to E (¢;) with normal bundle v,
and Th;'cf| E(v;) is a bundle map, hence from the preceding Thy'of~
T(f | E(v;))ok,. That is

f =~ ThyoT(f | E(v,)) k;
= Thy,oT(f |E(vy)) Thy,'oTh, ok,
~ Thy,oT(f |E(vy)) Th, ok
=T(f | E(v)) k.
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THEOREM 6. Suppose f: M*— TE* is transversal to E (§) with normal bundle v,
where M® is a closed differentiable manifold. Then if d=k (mod4), o(B(v))=
(FEL(MY U, (v), [Bv]) where j: B(v)»M? is the inclusion map and L(M?) is
the differentiable Hirzebruch class of M°.

Proof. From the definition of the I-classes we have that
a(B(v)) = o(f "'B(£)) = <KLM) LU f*¢*1(2), [M]>
which by the previous two facts equals

LMYV kS f*1(8), [MD>.

By the naturality of I-classes with respect to bundle morphisms this equals
LMY UkEPrI(v), [M]). But k*¢} is the Gysin homomorphism j, and so this
equals

(j* L(MHUI(v), [Bv]).

COROLLARY. If P*? is a closed topological manifold, then o (P*?P)=<1I,(P*?),

[P*7D>.
Proof. Embed P*? in S¢ with normal bundle v, and let k:S“—Tv, be the col-
lapsing map. k is obviously transversal to E (v,) with normal bundle v,. By Theorem 5

o(P*) = (j*L(S)Ul(v,), [P*]>.

But L(S%)=1 so this is just <I,(v,), [P*"]).

COl:IPATIBILITY THEOREM. If M? is a closed PL-manifold, then I(M*)
=11‘(’Zoj)': From Milnor’s characterization of the classes I’(M%) we only need to
show that if g: M ?—S§%~ % is a simplicial map, then

(g7 () = LM )ug*(w), [MD>.

Now N*'=g~1(y) has a neighborhood in M ¢ homeomorphic to N*'xR?™#, i.e.
has a trivial normal bundle in M¥, [8]. Moreover N*! is a PL-submanifold of M*.
Embed M “is a large sphere S* with normal bundle v,. Since N*' has a normal bundle
in M? and M*“ has a normal bundle in S* it follows that N4’ has a normal bundle vy

in S*. Moreover we have
. M
WDty xixvy, vy DTy

and therefore vy is stably equivalent to i*v, @vY. But v is trivial and so vy is stably
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equivalent to i*v,,, and therefore I(vy) =i*I(vy). From the Corollary to Theorem 5 we
have

O_(N4i) — <l; (N4i), [N4i]>
= <i*li(vM)9 [N4i]>
= <li(va), 1 [N¥D>.
But using the fact that the Gysin homomorphism
iy H*(N*) - H* (M)
is k*¢y it is easy to see that i, [N*]eH,;(M? is the Poincaré dual of
g*(WeH*™*(M*). Therefore

o(N*) = <Li(vy) v g* (w), [M]>.
Once we are in possession of the compatibility theorem (that is the differentiably

defined classes agree with the topological classes) we can easily obtain the following
results.

COROLLARY 1. (Topological invariance of rational Pontrjagin classes, [9]).
Suppose M{ and M3 are closed differentiable manifolds and 4: M{— M3 is a homeo-
morphism, then

h* (ixL(M2)) = i, L(M?)

where i: Z—Q is the coefficient homomorphism.

Proof. From the compatibility theorem we only need to show A* (I(M3))=I(M}).
But 4 being a topological homeomorphism induces an e.b. map of the topological
tangent bundle of M{ to that of MZ. Since the stable normal bundles are (stable)
inverses to the topological tangent bundles, the result follows.

COROLLARY 2. The natural map from differentiable cobordism, Q2FF, to

topological cobordism, 2%, is a monomorphism.

Proof. Since the differentiable cobordism classes are completely determined by the
Pontrjagin and Whitney numbers and since we have a definition of Pontrjagin clases
in the topological category, the standard proof will show that if M ¢ bounds topologi-
cally, all Pontrjagin and Whitney numbers are zero and hence if M ¢ is differentiable
it represents the zero class in Q2'FF.

Let X be a sufficiently nice space (so that if ¢ is an e.b. over X the classes 1(£) are
defined.

DEFINITION. If £ is an e.b. over X, let I(&)=1(¢7Y).
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THEOREM 1. If & is a vector bundle over X, a C.W. complex, the I1(&)=i,L(&)
where L(&) is the differentiable Hirzebruch class of &.

Proof. Embed X in a high dimensional space and take a regular nbd U of X. Let &
be the vector bundle over U corresponding to £. The tangent bundle of the total space
of & decomposes as the Whitney sum n*t,®n*E, where = is the projection of E (&)
onto U. Hence if s denotes the inclusion of the zero section into E () we have that

stably
[€] = s*[ear] — [7o]-

The compatibility theorem says that the topological and differentiable classes agree
for tangent bundles (after applying the coefficient homomorphism) and so the same

is true for &, since the /-classes are multiplicative.
We finish this paper with a proof of a theorem which started the whole investiga-

tion.

THEOREM 8. If M s a closed topological manifold and M ¢ is a finite regular
covering of M ¢, then o(M“)=(order of covering)-a (M ?).

Proof. The projection n: M%—-M*? is a local homeomorphism and so induces a
bundle map of the topological tangent bundles, that is n*/(M%)=1I(M?). Since
ne[M*]=n-[M?*], where n is the order of the covering, the result follows from the

corollary to Theorem 6.
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