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On Schlicht Mappings to Domains Convex in One Direction

by WALTER HENGARTNER and GLENN SCHOBER 1)

1. Principal Results

Our first result is-a characterization of schlicht mappings from the unit disk
|zi <1 onto domains in the (u, v)-plane which are convex in the v-direction. We con-
sider only domains D which permit the normalization that z= +1 correspond, in
some sense, to the right and left extremes of D. The characterization is in terms of the
condition

Re{(1-z°)f'(2)} >0, |zl <1. M)

Except in the degenerate case Re {(1 —z?)f’(z)}=0, this means geometrically that
each circular arc (and line segment) joining z= — 1 to z=1 in the unit disk corresponds
to an analytic arc in D which may be represented as a function v=uv(u).

Secondly, for Steiner symmetric domains, i.e., domains that are both convex in the
v-direction and symmetric with respect to the u-axis, we show that level sets inherit
the Steiner symmetry.

We next determine coefficient bounds for functions satisfying (1). If f(z)=
n=0 @,2", we show that

la,l <|f'(0) for n=1,2,3,.... 2

Actually more stringent estimates are obtained.

Functions satisfying (1) admit elementary distortion estimates for | f’(z)| and
| f(2)— £ (0)|. The upper estimates are similar to those for the class of convex map-
pings; however, the lower bounds are new and different.

In addition, functions satisfying (1) give rise to an interesting “Viertelsatz” type
theorem: If f satisfies (1), f (0)=0, and | f' (0)| =1, then f (|z| <1) contains all points of
the disk |w| <4 log2. The constant 4 log2 is sharp, and it is interesting that it falls
strictly between the constant 4 for the general class of normalized schlicht mappings
and the constant 4 for the subclass of convex mappings. Moreover, if we assume also
that £ (Jz| <1) is Steiner symmetric, then the constant becomes % just as for convex
mappings.

1) This research was supported in part by NSF grants GP7505 and GP11603.
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2. Characterization

A domain in the (u, v)-plane is convex in the v-direction if it contains together with
each pair of points with the same abscissa, the entire segment joining them. We con-
sider the class X of such domains D which admit a schlicht mapping f of |z| <1 onto
D with the following normalization: There exist points z, converging to z=1 and
z, converging to z= —1 such that
lim Re{f (z,)} = sup Re{f ()}

lz]<1

n—*>ao0

lim Re{/ (z)} = inf Re(/ (2)}.

n—o0
This normalization means that the prime ends £ (1) and f (—1), which lie in the ex-
tended plane, are in some sense the right and left extremes of D. The class X contains
domains such as the right half plane and the strip |v]| <1. In the latter case both f (1)
and f(—1) are prime ends at oo.

If D is convex in the v-direction, it follows from standard results in the theory of
prime ends that existence of a mapping with normalization (3) is equivalent to
assuming that there exists one vertical ray in C— D which meets 0D from above and
another which meets 0D from below. Consequently, additional examples of domains
in X are domains which are Steiner symmetric with respect to the real axis, except for
the plane itself. On the other hand, the upper half plane and the plane slit vertically to
oo are not in X (see also Section 6).

The following theorem shows that schlicht mappings from |z| <1 onto domains of
X' with normalization (3) are completely characterized by the condition (1).

&)

THEOREM 1. Suppose f is analytic and non-constant for |z| <1. Then we have
Re{(1-23)f'(2)}=0, |zI<1 ¢y

if and only if
(a) fis schlicht on |z] <1
®) f(zl<) eZ, and
(¢) fis normalized by (3).

Remark 1. If Re{(1-z%)f ’(z)}>0 and vanishes for some point in |z]|<],
then by the minimum principle for harmonic functions it vanishes identically. In tha:
case

14z
f(z)=ao + iflog

1-2’

which defines a schlicht mapping of |z| <1 onto a vertical strip. In addition, f has the
normalization (3) with z= +1 corresponding to prime ends at o, and f(Jz| <1)€2-

a,eC, BeR, @
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Remark 2. The condition
Re{(1 — zz)f’(z)} >0, |z|l<1, (5

has an elementary geometric interpretation. If we parametrize the line segment and
circular arcs y,, — (n/2) <t<m/2, joining z= —1 to z=1 in the unit disk by

es+it -1
yeiz =2z(s)= IR

then one easily verifies that

R {/(2(5)} = 2 Re {[1 — (5] S (2(5)}- )

Consequently, the condition (5) is equivalent to the property that the circular arcs
y, are mapped onto analytic arcs which may be represented as functions v=v(u). It
follows that f has the normalization (3). Furthermore, since the region bounded by
S @)u f (v f(—Du f(1)is convex in the v-direction for every —(n/2)<t<t<m/[2,
we find that f/ (|z|] <1) is also convex in the v-direction.

—0<s<®0, (6)

Remark 3. An analytic function f is close-to-convex if there exists a convex
mapping ¢ such that Re{f'(z)/¢’(z)}>0 for |z|]<1. Functions satisfying (5) are
special close-to-convex functions associated with ¢(z)=%log[(l +2)/(1—2)]. W.
Kaplan [3] has shown that close-to-convex functions, hence functions satisfying (5),
are schlicht. The geometric interpretation of Remark 2 could also be used to show
that functions satisfying (5) are schlicht.

Proof of Theorem 1. If f satisfies (1), then (a), (b), and (c) follow from Remarks
1-3. The converse will be a consequence of Lemma 2.

LEMMA 1. Suppose
(a) fis schlicht on |z| <1,
(®) f(lzl <DeZ,
(c) fis normalized by (3), and
(d) Re fis bounded.
Then Re{(1—z%) f'(2)} =0 for |z| <]1.

Proof: Since u=Re f is bounded, the radial limits U (0)=lim,_, u(re’®) exist
except for a set N of Lebesgue measure zero and u has the Poisson representation
T

u(2) =§1;T f U(6) Re {:0 ! z} d9. @®)

z

-n
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Since f (Jz] <1)eZ and f satisfies (3), it follows from the prime end correspondence
that U (0,)<U (8,) for all 8, 6, where U (6;) and U (0,) exist and —n<6,<0,<0
or 0<60, <0, <=n. By defining U (0) for 8e N to be the average of the one-sided limits
taken over the complement of N, we may assume in (8) that U is defined at each point
of [—m, n], non-decreasing on [—=, 0], and non-increasing on [0, ]. Now from the
representation (8) Kaplan [3] has shown by differentiating and integrating by parts
that

n

Re((1- )7/ @)=~ |

-7

sin 0 dU (0) -

Ieiﬂ_zll =

€)

We include a second, more geometric proof. Fromintegrating (8) by parts directly
we obtain a Riemann-Stieltjes representation

u(z) = constant — f w(z,0)dU(0) (10)

where w(z, 6) denotes the harmonic measure in the unit disk at the point 1.c. with

e gy Vi —m<t<®b
"’("’9)‘30 if  6<t<n. (1

If z, and z, are two points with Rez, <Rez, and lying on the same circular arc or
line segment joining z= —1 to z=1 in the unit disk, then we have

w(zy, 0)> w(z,,0) if —n<0<0
w(zy,0)<w(z;,0) if O<b<n (12)
(2, 0) = w(z,, 0) if 0=0, +x.

The representation (10), monotonicity of U, and relations (12) imply that u(z,) <u(z,).
It follows from Remark 2, in particular (7), that Re {(1—2z?) f’(2)} >0.
We now remove hypothesis (d) from Lemma 1 by a process of exhaustion.

LEMMA 2. Suppose
(a) fis schlicht on |z| <1,
(b) f(z]<DeZ, and

(c) f is normalized by (3).
Then :
Re{(1-23)f'(2)} =0, |z|<]1. (13)

Proof. Assume at first that D= f(|z| <1) is unbounded in both the positive and
negative u-directions. Let w,e D be a sequence of points with Rew, tending to + o
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and w), tending to the prime end f (1) as n— oo. Similarly, let w,e D be a sequence of
points with Rew, tending to — oo and w}, tending to the prime end f (—1) as n—oo0.
Then D,={weD: Rew, <Rew<Rew,} is in X.

Let F, and F be schlicht mappings of the unit disk onto D, and D, respectively,

with normalization F,(0)=F (0)= f(0), F,(0)>0, F'(0)>0. Let (.=F,'(w)),

"=F,'(wp), {'=F~'(f(1)), and {"=F ~*(f(~1)). Since D, converges monotonic-
ally to D, F, converges locally uniformly to F by the Caratheodory kernel theorem
(cf. [1, p. 46]). Hence ¢,=F ~' F, converges locally uniformly to the identity. In fact,
4,=¢,(|z|<1) is a Jordan domain, and the specific convergence of D, to D implies
that 04, converges to |z|=1 in the sense of Fréchet. By the convergence theorem of
Radé (cf. [1, p. 50]) ¢, converges to the identity uniformly on |z|<1. In particular,
lim, ., ¢,({")={ and lim,_, , ¢,({")={". Since the sequences {w,} and {w,} converge
to the prime ends /(1) and f (—1), respectively, we also have lim,_, , ¢,({,)={" and
lim,_, , ¢,({7)={". Consequently, lim,_, ,{,=("and lim,_, ,{,={".

Now let u, be the Mobius transformation with yu,(1)=¢,, p,(—1)={,, and
1, ())=F ~1( f (i)). Then p, converges uniformly in |z| <1 to a Mbius transformation
p which takes 1, —1, i onto {, {", F~'(f(i)), respectively. Note that Fou= f by
uniqueness. Define f,=F, o pu,. Since f, maps |z| <1 onto D,, f (1)=w,, and f (—1)=w),,
Lemma 1 implies that Re {(1—2z?)f,(z)}=0. Finally, (13) follows from the locally
uniform convergence of f, to f.

If D is unbounded only in the positive u-direction, define D,={weD:Rew<Re
w,} where w, is as before and define w) to be the prime end f (—1). Then the result
follows by the above argument. A similar procedure works when D is unbounded
only in the negative u-direction, and the lemma reduces to Lemma 1 if D is bounded

in both directions.
3. Steiner Symmetric Domains

One can give examples of domains in X whose level domains are not in 2. How-
ever, as an application of Theorem 1 we shall show that level domains of Steiner
symmetric domains are Steiner symmetric.

DEFINITION. A set S is Steiner symmetric with respect to the real axis if weS
implies tw +(1—t)wesS for all t €[0, 1].

LEMMA 3. Suppose

(@) fis schlicht on |z| <1,

() £ (Iz| <) is Steiner symmetric with respect to the real axis,
(€) £(0) is real, f'(0)>0, and

(d) Refis bounded.
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Then Re{(1—z%) f'(rz)} >0 for |z]<1 and O< r <1.

Proof. Since Re fis bounded, we have the Poisson representation (see (8))

T

Re(f (2)} =, j U(o) Re{jij} a8 (14)

z

where U is non-decreasing on [ —x, 0] and non-increasing on [0, ]. Since f (|z] <1) is
symmetric, f (2)= jT(_z-S, U(—6)=U(0), and |~ , dU(6)=0. It follows that

T n

f’(z)=217rj (e)—(e +§)d(9=2~;—z u), <ew+ )de
. *x 15)

T

-1 et + z
= — dU (0
2nz | €% —z ()

T

and

T

+rz 14z _ i (r — €7) dU(0)
f'(rz)= Y J\ [eio . Z] dU(0) = — (e;o rz) (1 — Z). (16)

- -n

Therefore

¢ (sin 6) dU ()
e — rz)? ]

" (17)
I:(r — 1) Im {z} J’ dUu (19)l ]
le® — rz

Using the symmetry we see that both terms in brackets are non-negative. Since
£'(0)>0, Re{(1—2z%) f'(rz)} is strictly positive by the minimum principle for har-
monic functions.

Re((1— (2 = 20

THEOREM 2. Suppose D is a domain which is Steiner symmetric with respect to
the real axis. Let f be a schlicht mapping of |z| <1 onto D such that f(0) is real and
f'(0)>0. Then the level sets f(|z|<r), 0<r<]1, are also Steiner symmetric with
respect to the real axis.

Proof. Denote by f, (n=1, 2, 3, ...) the schlicht mapping of |z| < 1 onto the domain
{weD: —n<Rew— f(0)<n} such that £,(0)= f(0) and f,(0)>0. It follows from
Lemma 3 that Re{(1 —z?) f,(rz)}>0. By the Caratheodory kernel theorem (cf. [1, P
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46]) the functions f, converge locally uniformly to f. Therefore Re{(1 —z%) f'(rz)}>0.
By applying Theorem 1 to g(z)= f (rz) we find that g(|z| <1)= f(|z] < r) is convex in
the v-direction. The symmetry with respect to the real axis is obvious because f (Z)=

f@.

Remarks. M. S. Robertson [5] studied a class of mappings onto domains convex
in the v-direction. He did not require our normalization (3), but rather assumed
either regularity at the boundary or that level sets inherited the convexity property. In
view of Theorem 2 mappings onto Steiner symmetric domains fall into his class. In
general, however, the normalization we require gives us results of a different nature
without any regularity assumptions.

R. S. Gupta [2] gave an erroneous proof of Theorem 2 (see Mathematical Reviews
37 (1969), # 6452). It would also appear that the lower bound he asserts for | f'(z)]
for a Steiner symmetric mapping f is incorrect since it does not approach zero as
|z|]—1 as it must for any domain with a reentrant corner.

4. Coefficient Estimates
The following lemma is well known (e.g., [1, p. 167]).
LEMMA 4. If g(2)=1+Y s>, c,2" is analytic for |z| <1 and has positive real part,

then |c,| <2 for all n.
We now show that functions satisfying (1) have stringent coefficient bounds.

THEOREM 3. If f(z)=ao+(a+if) z+) nes a,2" is analytic for |z|<1 and
satisfies Re{(1—z%) f'(2)} =0, then

la,| <« for n=2,4,6,... (18)
and
1 1
la,| <|{1—~-)a+-|a+if] for n=1,3,5,.... (19)
n n
Consequently,
la,l <1/ (0)] for n=1,2,3,4,.... (20)

Remark. Equality in (18), (19), and (20) is achieved by f (z)=(1 —2z)~ L. Moreover,
(18) is sharp among bounds which depend on both a=Re{ /' (0)} and f=Im { f'(0)}
for the functions

o ] 14z

f(2) = iB

il
1—z 2 %®1—2

(a>0). (1)
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In addition, (19) is sharp in the same sense for n=1 (obviously) and for n=3 for the
functions

f(2) = 3a(1 — )7 [(1 - €°) Log(1 + 2) — (1 + ¢*)? log(1 — 2)

. ) 1
+4e"10g(1 - ¢"2)] + 4iBlog 1,  O=}arg @-+ib),
- Z

(22)

for all >0 and B.

Proof of Theorem 3. If Re{(1—2z%)f'(z)} vanishes at some point, then from
Remark 1 we have

1+2 B aks1
= a +iflog —— = T . 23
f(2) ao+lﬂ081_z a0+22k+lz (23)
k=0
Clearly (18) and (19) are satisfied.
If Re{(1—2z?) f'(z)} does not vanish, then the function

REMEL VG RL

1

14 ) [0 Do == D] @8
n=1

satisfies the hypothesis of Lemma 4. Therefore for n=1, 2, 3, ...

1
;l(”+1)an+1"‘("“1)an—1!<2 (25)

and by the triangle inequality

(n+ 1) a4l <(n —1) |ap_y| + 20, (26)
This implies

nla,| <0]ao| + na for n=2,4,6,..., and @7

nla,| <1llayl +(n—-1a for n=1,3,5,...,

from which (18) and (19) follow.
5. Distortion Theorems
We turn to the distortion theory of functions satisfying (1).

LEMMA 5. Suppose g is analytic for |z| <1 and has nonnegative real part. Then &
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has the representation
_2(0)+2(0)G(2)
g(z) =
1-G(2)
where |G (2)| < |z].

(28)

Proof. If g(0)=0, then g=0 and we may choose G=0. Otherwise, the function
_2(2) — £(0)
g(z) + g(0)

is analytic for |z| <1, vanishes at the origin, and satisfies |G'(z)|<1. Therefore by
Schwarz’s lemma |G(z)|<|z|, and the representation follows.

(29)

THEOREM 4. If f is analytic for |z| <1 and satisfies Re{(1—2z%) f'(z)} >0, then
for |z|<r<l1

(L =n)If'(0) I/ (0)]

A+r)(L+r?) LA )I\(1_ r)? (30)

and for |z|=r<1
1+7r)? 0

117 O tog - <17 () - r @ <, G

Remark. The upper bounds in (30) and (31) are sharp for

f@)== (32)
and the lower bounds in (30) and (31) are sharp for

fz) =" lo (1 iz (33)

S(1=7)

Itis interestmg to note that both upper bounds are the same as for the class of convex
functions, while the lower bounds are of a new form.

Proof of Theorem 4. By Lemma 5 we may write

(1 _ Zz)f'(z) =f,(0)1+—f(’;((oz))G(z) (34)

where |G (2)| <|z|. If £/ (0)=0, then (30) follows immediately. If f’(0) #0, then direct
estimates of

If" ()= (0)I 1

SO

+ 70 L= 6@ 11 =21 (9)
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for |z| < r yield the upper bound | f'(0)|(1+r)(1—r)"* (1—r?)"1=|f'0)(1—-r)"2
and the lower bound | £'(0)| (1 —r)(1 +7)~'(1+r2)~. Now the upper bound in (31)
follows directly from (30) since for |z|<r

i (36)

If (2) - f(O)I_Uf()d j(lf(o)l __rlf’(0)|

Finally, to verify the lower bound in (31), let { be a point where | f (z) — f (0)| assumes
its minimum on |z|=r. Then the straight line segment o from f (0) to /' ({) lies in
f(Jz] <1). Therefore, using the lower bound in (30), we have for |z|=r

(@) =F OI1f (O — 1 (0) = J dwl = f ()] 1dz)

S 1(a)

(1 -o)lf’ (O)I

(L+7)
(1+Q)(1+ 2) 2

The following theorem is an immediate consequence of the lower bound in (31).

THEOREM 5. If f is analytic for |z| <1 and satisfies Re{(1—z%) f'(2)} >0, then
f(|z| <1) contains all points of the disk |w—f (0)| <%}| f'(0)| log2.

Remarks. The constant 4 log2 is best possible. It is sharp for the function (33),
which leaves the origin fixed, has | f'(0)| =1, and maps the unit disk onto the vertical
strip |Re w] <7/2 with a vertical slit from 1ilog2 to co.

According to the Koebe-Bieberbach ‘“Viertelsatz” for schlicht functions norma-
lized by £ (0)=0, | f'(0)| =1, the domain f (|z] <1) contains a disk about the origin of
radius }. For the subclass of convex mappings the constant can be improved to 4. The
corresponding constant 4 log2 of Theorem 35 is particularly interesting because it falls
strictly between  and 1.

If £ (|z| <1) is Steiner symmetric, we shall show that the constant % log2 can be
improved to 1.

THEOREM 6. Suppose
(a) fis schlicht on |z| <1,
(b) f(Jz| <) is Steiner symmetric with respect to the real axis,
() £(0) is real and ' (0)>0.
Then f (|z| <1) contains all points of the disk \w— f (0)| <% f'(0).
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Remark. The theorem is sharp for the functions

2z(|p + iq| — pz )
(Ip al p)’ ptig 20, (38)

Fr.q(2) = 1—2z

which map |z| <1 onto (i) the plane with vertical slits from p+ig to oo if g#0, or (ii)
the half-plane defined by p~! Re w< 1 if ¢=0. In all cases the distance from F 2,¢(0)=0
to the boundary of F, ,(|z| <1) is |p +ig|, which one verifies is 3F, ,(0).

Proof of Theorem 6. Without loss of generality we may assume that /' (0)=0. Let ¢
be the distance from f (0)=0 to the boundary of D= f(|z| <1). Then there exists at
least one point p +iqedD with |p +ig|=g. Since D is Steiner symmetric and p +igé¢ D,
we have DcF, ,(|z| <1) where the function F, , is defined in (38). Now applying
Schwarz’s lemma to F ;o f, we find f'(0)<F,, ,(0). Therefore

e =I|p + iq| = 1F, ,(0) > 1" (0). (39)
6. Concluding Remarks

We supplement our discussion by considering the classes of domains

2, ={D:(u,v)eD=(u, v+ t)eD Vt > 0} (40)
and
Z_={D:(u,v)eD=(u,v+t)eD Vi< 0}. (41)

These classes contain all domains which are convex in the v-direction but not in X
(compare Section 2). Some domains of X are also included, e.g., vertical strips. By
convention we remove the entire plane from ~, and X_. Then for DeX X _ there
exist schlicht mappings f of |z| <1 onto D normalized so that there exist points z,, z,
converging to z=1 such that

lim Re{f (z,)} = inf Re{f(z)

n—:»eo |zl <1 42
lim Re{ (=)} = sup Re{/(2)}. #2)

By analogy to Theorem 1 we note the following: Suppose f is analytic and non-constant
for |z| <1. Then we have

Im{(1 -2 f'(2)} =0, Izl <1, (43)

if and only if
(@) fis schlicht on |z| <1,
() f(zIl<DeZx,, and
(©) fis normalized by (42).
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A similar characterization holds if (43) is replaced by
Im{(1-z)f'(2)} <0, |zl <1, (43"
and (b) by

(B)f (12l < 1)ex_.

Verification of (a)~(c) from (43) or (43') follows the same pattern as Remarks 1-3.
The conditions (43) and (43’) mean geometrically that circles tangent to z=1in |z| < 1
correspond to analytic arcs which may be represented as functions v=v(u). In addi-
tion, functions satisfying (43) and (43’) are close-to-convex, hence schlicht, with
convex comparison functions ¢(z)= +i(1—z)"!. The verification of (43) or (43
from (a)—(c) follows the form of Lemma 1 (see also Kaplan [3, p. 181]) and an ex-
haustion argument as in Lemma 2.

Since the Koebe functions f (z)= +iz(1 —z) 2 satisfy (43) and (43'), respectively,
coefficient bounds for functions satisfying (43) or (43’) can be no better than |a,| <nla,|,
which holds for the entire class of close-to-convex functions [4]. For the same reason
the elementary distortion theory corresponding to Theorems 4 and 5 for functions
satisfying (43) or (43’) is the same as for the general class of schlicht functions.
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