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Infinitesimale Erweiterungen komplexer Riiume

von HANS WERNER SCHUSTER

Einleitung

In der Hochschild-Theorie der Ringerweiterungen werden Algebra-Epimorphis-
men betrachtet, deren Kerne nilpotente Ideale sind. Eine analoge Situation tritt in
der Theorie der komplexen Raume (deren Strukturgarben nilpotente Elemente
enthalten diirfen) auf. Eine holomorphe Abbildung i: S—S’ heiBt infinitesimale Er-
weiterung, wenn S ein durch eine lokal-nilpotente Idealgarbe definierter analytischer
Unterraum von S’ und i die kanonische Injektion ist. i ist bestimmt durch einen
Epimorphismus Og.— 0, dessen Kern lokal-nilpotent ist.

In der Hochschild-Theorie interessiert man sich unter anderem dafiir, wann eine
gegebene Ringerweiterung trivial ist. In der Funktionentheorie wird in § 4 von uns
die entsprechende Frage untersucht: i: S— S’ sei eine infinitesimale Erweiterung, ist i
linksinvertierbar? Ein komplexer Raum S heiBt glatt, wenn jede infinitesimale Erwei-
terung von S—S’ linksinvertierbar ist. Es wird gezeigt: Ein Steinscher Raum ist
genau dann glatt, wenn er keine Singularitit besitzt (4.4, 4.7); ein komplexer Raum S
ist genau dann eine Steinsche Mannigfaltigkeit, wenn S x C glatt ist (4.11), ein holo-
morph-konvexer glatter Raum ist eine Steinsche Mannigfaltigkeit (4.10). Diese Sétze
werden gewonnen mit Hilfe der folgenden Tatsache (4.5): Ist der komplexe Raum S
glatt, so ist die Garbe der Pfaffschen Formen ein projektives Objekt in der (abelschen)
Kategorie der kohidrenten Modulgarben auf S.

Der Begriff glatter Raum hat sein Analogon in den ,,Algébres formellement lisses*,
wie sie Grothendieck in EGA (0, 19) definiert und untersucht hat. Grothendieck
behandelt vor allem lokale noethersche Ringe, aber es konnten doch manche Beweis-
ideen von ihm iibernommen werden.

Ist S ein komplexer Raum, f eine holomorphe Funktion auf S, i:S—S’ eine
infinitesimale Erweiterung, so kann man fragen, ob sich f nach S’ fortsetzen 14Bt,
d.h. ob es eine holomorphe Funktion £ auf S’ gibt, sodaB f 'i=f ist. In (8.3) zeigen
wir, daB diese Frage im allgemeinen negativ beantwortet werden muB.

Ist der komplexe Raum S nicht Steinsch, so ist nach Grauert [4] auch S,.4 nicht
Steinsch. Wir bringen in (8.5) das Beispiel eines komplexen Raumes, der nicht holo-
morph-konvex ist, aber dessen Reduktion holomorph-konvex ist. AuBerdem wird ein
komplexer Raum angegeben (8.6), der nicht holomorph-separabel ist, aber dessen
Reduktion holomorph-separabel ist.

Auf einem reduzierten Raum bilden die reguliren Punkte das Complement einer
diinnen analytischen Menge. Diese Aussage ist aber fiir nicht reduzierte Réume falsch.
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Nun hat Grauert in [4] folgende Definition gegeben: Ein Punkt eines komplexen
Raumes heile gewdhnlich (in [4] steht hierfiir ,,reguldr ‘), wenn er eine Umgebung
besitzt, die biholomorph auf das direkte Produkt eines einpunktigen komplexen
Raumes mit einem Polyzylinder abgebildet werden kann. Wir zeigen in (5.9), daB die
gewohnlichen Punkte eines komplexen Raumes das Complement einer analytischen
Menge bilden, die jedoch i.a. nicht diinn ist. Denn man kann komplexe Riume an-
geben (6.4), die keine gewShnlichen Punkte besitzen.

In § 1 stellen wir Notationen und kleine technische Hilfssdtze zusammen. In § 2
wird der folgende Satz bewiesen: Ist i: S— S’ eine infinitesimale Erweiterung, f:S—X
eine eigentliche Abbildung mit diskreten Fasern, so existiert in der Kategorie der
komplexen Rdume das Fasercoprodukt von i und f und der kanonische Morphismus
ix: X=X | | 5 S'ist eine infinitesimale Erweiterung. § 4 behandelt glatte komplexe
Riume. § 5 beschiftigt sich mit gewOhnlichen Punkten komplexer Riume. In §6
bringen wir Beispiele komplexer Rdume ohne gew6hnliche Punkte. In § 7 wird gezeigt,
daB ein gewOhnlicher Raum i.a. nur dann als Faserbiindel iiber seiner Reduktion
aufgefaBBt werden kann, wenn er Steinsch ist. In § 8 wird die Reichhaltigkeit der
Algebra der globalen Funktionen auf infinitesimalen Erweiterungen untersucht.

Es sei mir gestattet, Herrn Prof. Dr. K. Stein und Herrn Dr. O. Forster fiir zahl-
reiche Anregungen und wertvolle Hinweise zu danken.

§ 1. Notationen und Bereitstellung von Hilfsmitteln

Sei A4 eine Kategorie; beziiglich der Definition einer Garbe mit Werten in 4 wird
auf (EGA, 0; 3.1.2.) verwiesen.

DEFINITION 1.1. Die Kategorie G(4) wird wie folgt definiert:

a) Die Objekte von G(4) sind die Paare (X, 0y), wobei X ein topologischer Raum
und Oy eine Garbe auf X mit Werten in 4 ist.

b) Sind (X, 0), (Y, Oy) Objekte aus G(4), so sind die Morphismen von (X, 0x) in
(Y, 0y) die Paare (u, a), wobei u:X— Y eine stetige Abbildung und a:Oy—u.lx
ein Garbenmorphismus ist.

) Ist (u, ®)eHom ((X, 0x), (Y, Oy)),

(v, p)eHom ((Y, Oy), (Z, 0p)), so ist

(0, B)o(u, @) := (vo u, v4 ()0 f).

Fiir (X, 0y) schreibt man meist kurz X.

Unter einem Ring wird stets ein kommutativer, assoziativer Ring mit 1 verstanden,
der Fall 1=0, also der Nullring, wird zugelassen. Von einem Ringhomomorphismus
wird stets vorausgesetzt, daB er das Einselement in das Einselement iiberfiihrt. Unter
einem Modul wird stets ein unitdrer Modul verstanden.

Ist K ein Ring, so ist eine K-Algebra ein Ring B zusammen mit einem Ringhomo-
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morphismus K—B. Mit A-K wird die Kategorie der K-Algebren bezeichnet. Die
Objekte von G(A4/—K) heiBen K-algebrierte Riume.

DEFINITION 1.2. Seien X->S<-S’ zwei Morphismen aus einer Kategorie 4.
Ein Objekt Z aus 4 zusammen mit Morphismen py:Z—X, ps.: Z—S’, die das Dia-
gramm

Xe«2Z

Vo
S S

kommutativ machen, heiBt Faserprodukt von X und S’ iiber S (genauer: Faser-
produkt von » und v), wenn folgendes gilt: Hat man ein kommutatives Diagramm

X7

ol
S+;-S'

so gibt es genau einen Morphismus Z’'—Z, sodaBl

X_.//Z

1 f
S — S

kommutiert. (Z, py, ps.) ist dann bis auf Isomorphie eindeutig und man schreibt
Z=:XxgS'
Die duale Definition ist auch wichtig:

DEFINITION 1.3. Seien X«<-S-S’ zwei Morphismen aus einer Kategorie A.
Ein Objekt Z aus 4 zusammen mit Morphismen iy: X—>Z, is.:S'—>Z, die das Dia-
gramm

X-Z

T 1
S-S’

kommutativ machen, heiBt Fasercoprodukt von X und S’ unter S (genauer: von u
und v), wenn folgendes gilt: Hat man ein kommutatives Diagramm

X7

vT T
S-;»S'
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so gibt es genau einen Morphismus Z—Z’, sodalB

X//Z
! !

S — 5

kommutiert. (Z, iy, is-) ist dann bis auf Isomorphie eindeutig und man schreibt
Z=:X,,55".

Sind 5o/ <" zwei Morphismen von Garben von K-Algebren auf dem feste
topologischen Raum X, so existiert £ x _, 2/’ und kann durch

XoU=U{(x, »)eZL(U) x L' (U):vy(x) =1y (»)}

definiert werden. Die kanonischen Morphismen £« % x , &/'— 2/’ sind die Restrik-
tionen der kanonischen Projektionen.

Ist f: X— Y eine stetige Abbildung, so gilt:

(131) fu(@X 0 I )=foZ X fuafst.

In der Kategorie G(4/—K) interessiert uns die Existenz von X 1 L_ S’ nur in
dem Fall, daB3 der Morphismus u:S— S’ infinitesimal ist:

DEFINITION 1.4. u:S—S’ heiBt infinitesimal (Abgekiirzt: inf.), wenn die u zu-

grundeliegende stetige Abbildung die Identitdt von S ist.

Seien X&2gW?, g0 Morphismen in G(4/—K), (u, B) sei inf. Man definiere
X1 158 :=(X, OxX,,05)0x(0s)) und ix:X>X | | sS’, is.:S'>X | | ¢S’ durch
ix:=(idg,my), is:=(v, m,), wobei my : Oy | (5= Ox, 75 Ox, |  5—>0, 0. die kanonischen
Morphismen sind. Aus (1.3.1) folgt dann sofort das

LEMMA 1.5. (X | §S’, iy, is-) ist das Fasercoprodukt von X und S’ unter S.

LEMMA 1.6. Seien X<-S-%S’ Morphismen in G(4/— K), useiinf.; ist U=UcX,
so definieren u, v Morphismen
(U, Ox | U)E (071 (U), Os | o™ L (U501 (U), O | v~ (V)

und (U, Oy, s | U) ist das Fasercoprodukt von v’ und »’. Der Beweis ergibt sich
sofort aus der Definition von X L 1¢S’.
LEMMA 1.7. Seien X255 s Morphismen in G(4/—K), (4, B) sei inf., wei-

ter seien B und v, (f) Epimorphismen. Dann hat man eine exakte Sequenz:
Der Beweis ergibt sich sofort aus der Gleichung v, (ker f)=Xker (v, p).
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Sind Z-%.o7/& o/’ Morphismen von Garben von K-Algebren auf einem festen
topologischen Raum X und ist f:%’'— % ein Epimorphismus, so hat man eine exakte
Sequenz:

(1.8.1) O kerf x (0) 6 &' x oy l' 5B x gt >0
wobei f x , &’ so definiert ist: Fiir U=Uc X ist (f x 4, &)y (%, y)=(fp(x), y).

LEMMA 1.8. Seien X' 2 x &2 §“P g Morphismen in G (4I—K), (u, §) sei
inf., X sei eine abgeschlossene Teilmenge von X', j sei die kanonische Injektion, y sei
surjektiv. Dann hat man einen kanonischen Morphismus (j, $): X | | s8'=X" ] | 58’
mit: § ist surjektiv und kerj=Xkery x (0).

Beweis: Der Beweis folgt aus (1.8.1) mit & =(jv), 05, Z=jOx, &' =(jv)uls.,
B =0y, i=jy (), #=(jv)x(B), f=7. Nach (1.3.1) ist j, (O, ,s-) das Faserprodukt
von j,(2)=7 und (jv)«(f)=1, und Oy, , s ist (in dieser Umschreibung) das Faser-
produkt von den Morphismen .@’ﬁd«a—ﬂ'.

LEMMA 1.9. Seien X{Z%25=%P ¢’ Morphismen in G(4/—K), i sei infinite-
simal. Dann definiert die Zuordnung h— hig., eine Bijektion

{heHom (X | | S’, X):hix=idyx}—>{h'eHom(S’, X):f=h'i}.

Der Beweis folgt sofort aus (1.3) und (1.5).

(1.10) Sind #-> o/ & o/’ Morphismen von Garben von K-Algebren auf dem festen
topologischen Raum X, so induziert ein geHom (%, %) mit v=ug einen wichtigen
Isomorphismus fiir # x ,&7’. keru wird durch g ein -Modul und man kann aus #
und keru den #-Modul # x keru bilden. # x keru ist sogar eine #-Algebra, wenn
man die Multiplikation so erklirt: iiber U= Uc X sei

(@, ¢)(@,c).=(ad, gy(a) ¢’ +gy(@) c+c-c).

Die so definierte #-Algebra wird mit & +keru bezeichnet.
Es ist ¢: % +kerunBx 4, (a, ) (a, gy(@)+c) iber U=Uc X ein Isomor-
phismus von Garben von K-Algebren. (1.10.1)
Die inverse Abbildung y:% x , &% +keru wird durch (b, a")— (b, a'—gy (b))
liber U= Uc X gegeben.
(1.10.2) Durch ¢ wird insbesondere # x , &/’ ein #-Modul. Die kanonischen
Morphismen #«%# x , o'’ sind F-linear, wobei &’ durch g ein #-Modul ist.
(1.11) Sei (o7,) ein projektives System von Garben von K-Algebren auf dem
topologischen Raum X, Die Zuordnung X> U= U limo/, (U) ist eine Prigarbe auf
«—

X. Nach (EGA, 0, 3.2.6) ist diese Prigarbe bereits eine Garbe und ist auch der pro-

jektive Limes des Systems (/;), und daher wird sie mit lim &/, bezeichnet.
(——
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lim

Ist f: X— Y eine stetige Abbildung, so ist f*ii-f o, =+f,,. Daraus folgt sofort,

lim

daB (X, «./;) der induktive Limes des induktiven Systems ((X, #,)) ist, d.h.

lim lim

=X, &)=(X, —;) (1.1L.1)
§ 2. Infinitesimale Erweiterungen

DEFINITION 2.1. Ein Morphismus (u, «) aus G(4/— K) heiBt
a) abgeschlossene Einbettung, wenn gilt:

i) u ist eine injektive abgeschlossene Abbildung,

ii) a ist surjektiv und kera ist eine kohdrente Idealgarbe;

b) infinitesimale Erweiterung, wenn gilt:

i) (u, @) ist eine abgeschlossene Einbettung,

ii) (u, «) ist infinitesimal.

Ist auBerdem fiir ein neN(kera)"*' =0, so heiBt (v, @) eine inf. Erweiterung vom
Grad n.

Bemerkung: Ein Morphismus (u, «): X—Y ist genau dann eine abgeschlossene
Einbettung, wenn (%, o) ein Isomorphismus von X auf einen durch ein kohirentes
Oy-1deal definierten Unterraum von Y ist.

Von nun an wihlen wir K:=C. Mit P,, neN, meinen wir folgendes Objekt aus
G(Al—C): Der unterliegende topologische Raum ist

{(x15.-., x,)EC": |x; | <1, 1<i<n},

die Strukturgarbe ist die Garbe der Holomorphie auf diesem Raum.
Ein Objekt (X, 0y) aus G (41— C) heiBt komplexer Raum, wenn gilt:
i) X ist hausdorffsch,
ii) zu jedem xe X gibt es eine offene Umgebung U von x, ein neN und eine ab-
geschlossene Einbettung (U, Ox | U)-P,.
Mit AN (genauer AN,) bezeichnen wir die Kategorie der komplexen Riume, d.h.
die durch die Klasse der komplexen Rdume definierte volle Unterkategorie von

G(41-K).

DEFINITION 2.2. Sei f=(f, @): X- Y ein Morphismus aus AN; f heiBt endlich,
wenn
a) fabgeschlossen ist,
b) alle Fasern von f endliche Mengen sind.
(2.3) Fiir endliche Morphismen f: X— Y ist folgendes bekannt:
a) Ist # ein kohirenter Modul auf X, so ist f,,(#) ein kohérenter Modul auf Y
b) ist 0»F'>F -F "0 eine exakte Sequenz von kohdrenten Moduln auf X, sO
ist die Sequenz 0— £ (F ') [, (F)— fo(F")—0 auch exakt.



Infinitesimale Erweiterungen komplexer Riume 271

Ein Beweis hierfiir findet sich etwa in ([9], 1I, Cor. von Theor. 2).

(2.4) Istf: X— Y ein endlicher Morphismus und .# ein lokal-nilpotentes kohirentes
Ideal auf X, so ist auch f, (#) lokal-nilpotent.

In der Tat: ist U eine offene relativkompakte Umgebung von yeY, so ist f1(U)
relativkompakt. Nach ([4], § 1, Satz 4) gibt es ein neN mit (£ | f(U))'=0, also
() (U)y'=0.

(2.5.1) Sei 4 ein Ring, B eine A-Algebra, (x,);. ; eine Familie von Elementen aus B.
Dann heifit (x;);.; ein Erzeugendensystem von B, wenn der Morphismus

A[X ]~ B

ein Epimorphismus ist.
(2.5.2) B heiBt eine nilpotent erzeugte 4-Algebra, wenn es ein Erzeugendensystem
(x));< 1 gibt, derart daB fiir alle ie! x; nilpotent ist.

DEFINITION 2.5. Sei S ein komplexer Raum. Eine kohéirente, nilpotent er-
zeugte Algebra auf S ist eine Garbe &/ von Og-Algebren mit:

i) als Og-Modul ist & kohérent,

ii) fiir alle se S ist &7 als 05 -Algebra nilpotent erzeugt.

SATZ 2.6. Sei S ein komplexer Raum, sf eine kohdirente nilpotent erzeugte Algebra
auf S, es sei Supp()=S. Dann ist (S, &) ein komplexer Raum.

Beweis: Sei seS. Dann gibt es eine offene Umgebung U von s und ¢,,..., t,eI'(U,
&) mit ¢3=0 1<i< r fiir ein neN, derart daBl &/ | U als Oy | U-Modulvon 1, ¢,,..., t,
erzeugt wird. Also ist der durch T;—~¢,, 1<i<r, definierte Morphismus Oy[ T3, ...,
T,]-sf | U surjektiv, wobei O := O | U ist. Da ¢7=0 ist, erhdlt man einen Epimor-
phismus

s
Oy[Ty, - T, - T7) = : B> o/ | U.

Nun ist f 0y-linear und & ist ein kohirenter Oy-Modul, also ist ker f ein Oy-Modul
von endlichem Typ, daher ist ker f'ein #-Ideal von endlichem Typ. (U, %) ist isomorph
zu (U, 0y) x P, wobei P der durch das Ideal (z7, ..., z}) definierte einpunktige Unterraum
des C" ist. & ist also ein kohdrenter #-Modul, und da ker f von endlichem Typ ist,
ist ker f ein koh#renter #-Modul. Also ist der durch f definierte Morphismus (U,
x4 | U)—(U, %) eine abgeschlossene Einbettung, und da die Komposition von ab-
geschlossenen Einbettungen eine abgeschlossene Einbettung ist, folgt daraus, daB
U, o I U) ein komplexer Raum ist. Da s€.S beliebig war, ist alles bewiesen.

Sind xLs5s Morphismen in AN und ist i eine inf. Erweiterung, so existiert
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nach (1.5) in der Kategorie G(4/—C) das Fasercoprodukt X | | ¢S’ von X und S’
unter S und man hat kanonische Morphismen XE;X 11sS ’ei—s—,S', die insbesondere
so beschaffen sind, daB iy f=is, i ist. Eine wichtige Frage ist es dann natiirlich, ob
X | | 8’ ein komplexer Raum ist. Diese Frage wird im folgenden Satz teilweise
beantwortet.

SATZ 2.7. X2 S8’ seien Morphismen in AN, i sei dabei eine inf. Erweiterung
und f sei eine endliche Abbildung. Dann ist X | | ¢S’ ein komplexer Raum und iy ist
eine inf. Erweiterung.

Beweis: 1. Der Satz wird fiir den Fall bewiesen, daB X ein Steinscher Raum mit
endlicher Einbettungsdimension ist. Es gibt dann ein #neN und eine abgeschlossene
Einbettung j: X— C". Da X Steinsch und f endlich ist, ist auch S steinsch, also ist auch
S’ Steinsch. Aus Theorem B folgt dann, daB ein ge Hom (S, C") existiert mit jf'=gi.
Da i infinitesimal ist, ist auch g endlich.

Sei nun j=(j, y), f=(f, @), i=(, B), g=(g, 6). Nach (2.3.b) ist (jf )4 (B) surjektiv,
nach (1.10.1) ist also Ocn, | (5~ Ocn +ker (jf )x(B) = Ocn +g4 (ker B). Da g endlich und
ker 8 kohirent ist, ist auch (2.3.a) g.(kerf) ein kohédrenter Modul auf dem C".
Daraus und aus (2.4) folgt, daB Oc.+g4(kerf) eine kohirente nilpotent erzeugte
Algebra auf dem C" ist. Nach (2.6) ist also C" | | ¢S’ ein komplexer Raum.

Man betrachte nun die kanonischen Morphismen 7, : O¢n; | ;5= Ocn, T2 Ocny ) 350~
—(jf)x0s:; sie sind nach (1.10.2) O¢n-linear. .# : =kery; nach (1.8) ist.# x (0) ein Ideal
von Ocny | 5. Esist S x (0) =71 (F) Nkerm,. £ x (0) ist also ein kohirenter Oc.-Modul,
also ein Oc, | s~-Ideal von endlichem Typ, also ein kohérenter Modul auf C” | | 5S".
Daraus folgt nach (1.8), daB X' | | 35’ ein komplexer Raum ist.

Es bleibt zu zeigen, daB (idy, n): =iy eine inf. Erweiterung ist: Da f endlich ist,
ist £ (B) surjektiv, also ist nach (1.7) = surjektiv. Da X' | | ¢S’ ein komplexer Raum
ist, ist kerm kohirent; da i eine inf. Erweiterung ist, folgt mit (2.4), daB kern lokal-
nilpotent ist.

2. X ist ein beliebiger komplexer Raum: Sei xeX. Es gibt eine Steinsche offene
Umgebung U von x mit endlicher Einbettungsdimension. Nach Teil 1 und wegen
(1.6) ist (U, Oy, ) s ] U) ein komplexer Raum. Daraus folgt sofort die Behauptung.

§ 3. Die universelle Eigenschaft der Garbe der Keime von Pfaffschen Formen
auf komplexen Riumen

(3.0) Ist S ein komplexer Raum, so bezeichnen wir mit M,(S) die Kategorie der
kohédrenten Og-Moduln. Man weiB, daB M, (S) eine abelsche Kategorie ist. )

(3.1) Sei S ein komplexer Raum, % ein Objekt aus M,(S). Fiir jedes U=UcS
kann man in (05 x %) (U) folgende Verkniipfung einfithren: (a,f) (@',f ');=°(aa’,
af ' +d'f). Damit hat 0g x # die Struktur einer Garbe von Ringen. Fiir jedes U=Uc<S
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ist die Abbildung
0s(U) - (05 x #) (U)
ar(a, 0)

ein Ringhomomorphismus, daher kann man Ogx % die Struktur einer Og-Algebra
aufprigen. Mit Og+ % bezeichnen wir die so definierte 05-Algebra.

Offenbar ist Og+% eine kohidrente, nilpotent erzeugte Og-Algebra, daher (2.6)
ist Is(F):=(S, Os+F) ein komplexer Raum. Die Og-Algebra-Struktur von Og+F
definiert einen Morphismus pgs: Ig(#)—S. Die Projektion von Og+.% auf den ersten
Faktor definiert einen Morphismus iz : S— I3 (&), der eine inf. Erweiterung vom Grad
1 ist.

Ein Homomorphismus f: % —-%" induziert einen Morphismus Og+% — Og+F’
und definiert so einen Morphismus I( f): Ii(F")— Ig(#). Man hat also einen Funktor
Is: M,(S)°— AN definiert.

DEFINITION 3.2. Sei S ein komplexer Raum, # ein kohédrenter Modul auf S.
Unter Der (0, &) versteht man die abelsche Gruppe aller C-Modul-Garben Homo-
morphismen f von Oy in &, die iiber jedem U= Uc S die Identitit fy;(xy)=xfy(¥) +
+fu(x) y Vx, ye O5(U) erfiillen.

Ist DeDer(0g, #) und ueHom(F, #'), so ist uo DeDer (05, F'), also definiert
F-Der (0, ) einen Funktor von M,.(S) in die Kategorie der abelschen Gruppen.

(3.3.1) Ist DeDer(0g, F), so definiert die Zuordnung Os5(U)axH(x, Dy(x))e
e(0s+F) (U) fiir jedes U= Uc S einen Morphismus 0s— 0s+F und damit einen
Morphismus I(#)—S.

LEMMA 3.3. Diein (3.3.1) angegebene Zuordnung definiert eine natiirliche Bijek-
tion von Der (0, #) auf die Menge der Linksinversen von ig.

Sei S ein komplexer Raum. Die Diagonalabbildung d:S—Sx S ist eine abge-
schlossene Einbettung, 146t sich also faktorisieren.

S —2 L 85xS

N

d(s)

Hierbei ist j die kanonische Injektion. Mit # bezeichnen wir die Idealgarbe von d(S).

Die Garbe Q, genauer Qg, der Keime von Pfaffschen Formen auf S, wird definiert
als die analytische Urbildgarbe d*# von .# unter d, vgl. dazu ([7], VII). Man kann
zeigen, daB diese Definition mit der in ([5]) gegebenen Definition dquivalent ist. Es
ist bekannt, daB die Funktoren Hom (Qs, —):M,(S)—AB, Der (05, —):M.(S)—AB
isomorph sind. Da aber in der Literatur hierfiir ein expliziter Beweis nicht zu existieren
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scheint, will ich dies hier, wenn auch nicht in aller Ausfiihrlichkeit, beweisen. Die
Beweisidee ist (EGA, 0, 20.4) entnommen, wo der Differentialmodul linear-topolo-
gisierter Algebren behandelt wird.

d(S) :=(d(S), Ogx 5,2 I d(S)). Man hat eine kanonische Injektion i:d(S)—d(S)';
mit i’ =(a, &) bezeichnen wir die Komposition i.a; seij’ :d(S) =S x S die kanonische
Injektion, mit p,=(a"", n;), i=1, 2, bezeichnen wir die Komposition pr;.;’.

LEMMA 3.4. Es gibt einen Isomorphismus w: I;(2)—d(S)’ mit po=p; ..

Beweis: Es ist Q=~(p,)y (ker3), wo & durch i=(id;s,, 9) definiert ist (vgl. [7],
VII). Man muB also einen Isomorphismus I((p;)«(ker3))—d(S)’ mit der entspre-
chenden Eigenschaft angeben. Man definiert

(a, ¢): Is((p1)« (ker 3)) — d(S) so:
@: Oysy = ay (Os + (p1)s (ker 9)) = a, 05 + ker 9
z| > (ey(2), 2 — (au(71) o €)y(2))
fiir offene Mengen Ucd(S).
(a™, ¥):d(S) = Is((py)« (ker 8)) wird so definiert:
V:0s + (pr)e (ker 9) = (a™ ')y sy
(b, x) |——(n1)u (b) + x

fiir offene Mengen Ucd(S).
Man rechnet leicht nach, daB (a, ¢) und (a™?, ¥) zueinander invers sind und daB

gilt: P(p1)e (kers) =P1 o(a, ).

SATZ 3.5. Die Funktoren Hom (L2, —):M_(S)—AB
Der(0s, —):M.(S)—AB
sind zueinander isomorph.

Zum Beweis geben wir fiir ein Objekt F aus M,(S) eine Bijektion Hom (%2, #)-
—Der (05, #) an; daB diese Bijektion mit der Gruppenstruktur vertraglich und daB
sie funktoriell in & ist, zeigen wir nicht.

Nach (3.3) ist Der(0s, ) isomorph zu

G:= {ueHom (I5(#), S):uoiy = ids};
nach (3.4) ist Hom (€2, #) isomorph zu
G':= {veHom(I;(#), d(S)):vois =i, py = p1v}.

Weil p,i’ =id ist, definiert v+—p,v eine Abbildung ¢:G'—G.
1:G—=G’ wird wie folgt definiert: Sei ueG. Aus der Definition des direkten Pro-
duktes folgt, daB es genau einen Morphismus ze Hom (Is(#), S x S) gibt, sodaf das
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Diagramm

SXS——;——')S

pr2
l \\I ’#  kommutiert (3.5.1).

Also ist uig =pr, (zig), pgoig =Dy (zig). Weil ue G ist, folgt ids=pr, (zig)=pr, (zig).
Also ist d=zigz. Daraus folgt, daB der durch z gegebene Morphismus Og, s— 240y (5
auf #2? verschwindet, also induziert z ein v: Ig(#)-d(S) mit: z=j'v. Es ist veG".
In der Tat: j'(vig)=zigz=d=j'i’, also (j' ist ein Monomorphismus) vig=i'; p;v=
=(pry)j'v=pr,z=pg (wegen 3.5.1). Man setzt nun t(x):=v und hat so eine Abbil-
dung 1:G—G’ konstruiert. Aus der Definition von 7 ergibt sich unmittelbar, daB} ¢
und 7 zueinander invers sind.

§ 4. Glatte komplexe Riiume
In diesem Kapitel werden mit S, S, T, T', X, X’ stets komplexe Rdume bezeichnet.

DEFINITION 4.1. Ein komplexer Raum S heiBt glatz, wenn jede infinitesimale
Erweiterung i: S— S’ ein Linksinverses besitzt.

SATZ 4.2. Fiir jeden komplexen Raum S sind die folgenden Aussagen dquivalent:

1. S ist glatt;

2. Istf:T— S endlichundi:T—T' eine inf. Erweiterung, so gibt es einge Hom (7", S)

mit [ =gi.

Beweis:

1. impliziert 2.: Ist.S glatt,so besitzt nach (2.7) is:S—S_| | 7T’ ein Linksinverses.
Aus (1.9) folgt dann die Existenz eines ge Hom(7”, S) mit f=gi.

2. impliziert 1.: Man wihle speziell T=S, f=idj.

SATZ 4.3. Ein komplexer Raum S ist bereits dann glatt, wenn jede inf. Erweiterung
vom Grad eins i:S—S' ein Linksinverses besitzt.

Beweis: Sei i:S—S’ eine beliebige inf. Erweiterung; i definiert also ein lokal-
nilpotentes Ideal # auf S’ und man kann annehmen, daB i die kanonische Injektion
(S, Os./5)~ (S, Os.) ist. S,:=(S, Us./yn+1) fiir neN. Fiir n>m>0 definiert der kano-
nische Epimorphismus Os1gn+1—> U5/ ym+1 eine inf, Erweiterung i;': S, —S,. Da jedes
€S eine offene Umgebung U besitzt, derart daB fiir ein n,eN (S | U)"™ =0 ist, ist
der kanonische Morphismus (Ds,-»ii-'f@s, /sn+1 €in Isomorphismus. Nach (1.11.) ist also

, ki ) -1 .. .
S 2-3S,,. Fiir alle neN ist offenbar i%~! eine inf. Erweiterung vom Grad 1.
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Wir definieren nun induktiv fiir jedesneN, n#0, ein p,e Hom (S,, S,) mit p,iJ = ids.
Da i vom Grad 1 ist, gibt es ein p, mit p,i?=id,. Sei fiir alle v<n schon D,
definiert. Man kann dann das Fasercoprodukt der Morphismen
Sn

Se—8,-1—
Pn-1 inn—1

bilden. Der kanonische Morphismus ig von S in das Fasercoprodukt ist eine inf,
Erweiterung vom Grad 1, besitzt also ein Linksinverses Nach (1. 9) gibt es daher ein
PuiS,—S mit p,_;=p,it L. Bsist idg=p,_,is_, =p,in~'i>_, =p,i2. Damit p, fiir alle
n=1 definiert.

Aus p,_,= p,, in~1 folgt durch Induktion, daB p,,=p,i™ fiir alle m<n ist. Es 140t
sich also p: ~—->p,, bilden und es ist pi=id.

SATZ 4.4. Steinsche Mannigfaltigkeiten sind glatt.
Beweis: Sei i: S— S’ eine inf. Erweiterung, S eine Steinsche Mannigfaltigkeit; 0.E.d.A.
ist S zusammenhéngend, es gibt also eine abgeschlossene Einbettung j: S— C" fiir ein
neN. Nach ([8], S. 257) ist j (S) ein Umgebungsretrakt, d.h. es gibt eine offene Um-
gebung U vonj (S) und ein Linksinverses p der durch j definierten Abbildungj’: S— U.
Da S’ Steinsch ist, gibt es nach Theorem B ein g:S'—»C" mit j=gi. Da i inf. ist,
definiert g einen Morphismus g’: S'— U mitj’'=g’i. Also ist pg’ ein Linksinverses von i.

Im folgenden wird der Begriff ,,projektiv' benutzt. Ein Objekt P einer Kategorie
A heiBt projektiv, wenn fiir jeden Epimorphismus # von 4 die Abbildung Hom (P, u)
surjektiv ist. Ein Objekt P einer abelschen Kategorie ist genau dann projektiv, wenn
jeder Epimorphismus auf P ein Rechtsinverses hat.

Ist S ein komplexer Raum und M., (S) die (abelsche) Kategorie der kohdrenten
Moduln auf S, so ist Og genau dann ein projektives Objekt von M,(S), wenn §
Steinsch ist.

Es gilt nun folgendes

THEOREM 4.5. Ist S ein glatter komplexer Raum, so ist Qg ein projektives Objekt
von M,(S).

Beweis: Sei f: F —Q, Q:=1q, ein Epimorphismus. Zu zeigen ist, daB f'ein Rechts-
inverses besitzt.

Der universellen Derivation d: 05— Q entspricht nach (3.2) eindeutig ein Morphis-
mus §: I5(Q2)—S. Da Iy(f) eine inf. Erweiterung und da & ein endlicher Morphismus
ist, gibt es (4.2) ein y: I[;(F)—S mit =y, I(f). Also idg=06oig=7.Is(f) ig=7ois-
Aus (3.2) und (3.4) folgt nun die Existenz eines g:Q—F mit y=05.I5(g); also
0=0.I(g) Ii(f)=0.I(fg). Also ist nach (3.4) fg=1,,.

COROLLAR 4.6. Sei S=S<C". Dann sind die folgenden Aussagen dquivalent:
i) S ist Steinsch.
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i) S ist glatt.
Beweis: i) impliziert ii): folgt aus (4.4)
i impliziert i): Nach (4.5) ist Qs=0Us ein projektives Objekt von M.(S).
Auf S gilt also Theorem B und daher ist S Steinsch.
Das folgende Corollar, zusammen mit (4.4), rechtfertigt die Bezeichnung ,,glatt*.

COROLLAR 4.7. Jeder glatte Steinsche Raum ist eine Mannigfaltigkeit.

Beweis: Ist S ein glatter Steinscher Raum, so ist Qg ein projektives Objekt von
M_(S), also nach ([2], Satz 6.2) lokalfrei. Die Behauptung folgt nun aus ([7], VII, 3.4).

Es soll nun gezeigt werden, daB3 jeder holomorph-konvexe glatte Raum eine
Steinsche Mannigfaltigkeit ist. Dazu bendtigen wir die folgenden Lemmata:

LEMMA 4.8. Sei f:X— Y ein endlicher Morphismus, & ein projektives Objekt
in M.(Y). Dann ist f *(%) ein projektives Objekt in M, (X).

Beweis: Sei AB die Kategorie der abelschen Gruppen,

T :M.(X)—AB sei durch T :=Hom(f*#, —),

T":M.(Y)—AB sei durch 7':=Hom(&#, —) definiert.

Nach (2.3.) definiert f einen Funktor fy:M (X)->M_.(Y). Es ist T~T"of,. Da T’
und f exakt sind, ist auch T exakt, also ist f *&# projektiv.

LEMMA 4.9. Ist X ein kompakter komplexer Raum, & ein projektives Objekt
von M (X), so ist der Trédger von # eine endliche Menge.

Beweis: Nach ([4], § 2, Satz 6) ist Hom (&, Ox) ein endlicher C-Modul, d.h. es
gibt ein neN mit Hom (&, Ox)~C". Dann besteht der Tréger von & aus hochstens
n Punkten. In der Tat, sind x,, ..., x, verschiedene Punkte aus Supp(#) und ist #
das Ideal von {x,, ..., x,}, so induziert die exakte Sequenz Ox— Uy, ,—0 eine exakte
Sequenz

Hom(f, wx) - Hom(f, GX/]) = I_I Homaxi (‘?xg’ C) - 0.
i=0
Das ist aber ein Widerspruch, denn

{H Homy, (%, C):C] >n+1.
i=0

SATZ 4.10. Sei X ein glatter, holomorph-konvexer Raum. Dann ist X sogar eine
Steinsche Mannigfaltigkeit.

Beweis: Nach ([12]) gibt es einen Steinschen Raum R(X) und eine eigentliche
Abbildungf: X—R(X). Sei xe X. Dannist f*(fx)=L, v L,, L,:=Supp(Qy | f*(fx)),
Ly:=f1(fx)N (X\Suppy). Nach (4.8) und (4.9) ist L, eine endliche Menge. L, ist
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eine diskrete Menge, also ist /! (fx) ein diskreter Raum. Die Abbildung f ist also
endlich, damit ist X Steinsch, und die Behauptung folgt aus (4.7).

SATZ 4.11. Fiir einen komplexen Raum X sind folgende Aussagen gle‘;'chwertig:
1) X ist eine Steinsche Mannigfaltigkeit
ii) Cx X ist glatt.

Beweis: 1) impliziert ii): das folgt aus (4.4)

ii) impliziert i): Nach ([5], Hilfssatz 3.1) ist Q¢ x ~pr1Q2c@pr3Qy, also ist
nach (4.5) Ocx ein projektives Objekt von M, (C x X), denn O¢, x~priQc ist ein
direkter Summand von Q¢ x. Damit ist Cx X Steinsch, und die Behauptung folgt
aus (4.7).

Im allgemeinen wird wohl ein glatter Raum weder Steinsch noch eine Mannig-
faltigkeit sein. Es gilt aber

SATZ 4.12. Ein glatter Raum, der eine abgeschlossene Einbettung in eine Mannig-
faltigkeit zulift, ist eine Mannigfaltigkeit.

Beweis: Seii:S— X eine abgeschlossene Einbettung, S sei glatt, X sei eine Mannig-
faltigkeit. Dann hat man ([7], VII, 4.2) einen kanonischen Epimorphismus p:i*Qx—
— . Nach (4.5) besitzt p ein Rechtsinverses; da 7,Qy lokalfrei ist, ist also auch Qg
lokalfrei und daraus ergibt sich die Behauptung.

§ 5. Gewohnliche Punkte in komplexen Riiumen

Mit C[<X,,..., X,>] bezeichnen wir die C-Algebra der Potenzreihen aus C[[X;,
...s X,]], die in einer Umgebung des Ursprungs des C" konvergieren. A heiBt analy-
tische Algebra (iiber C), wenn es ein neN und einen Epimorphismus von C-Algebren
C[{Xy,..., X,»]—A gibt. Mit den C-Algebra-Homomorphismen als Morphismen bil-
den die analytischen Algebren eine Kategorie ANAL, die antidquivalent ist zur Kate-
gorie der Keime von komplexen Rdumen.

Das analytische Tensorprodukt zweier analytischer Algebren 4 und B ist das Co-
produkt von 4 und B in ANAL und wird daher mit A | | B bezeichnet.

Ist A4 eine analytische Algebra, so bezeichnen wir mit 2, den 4-Modul der Pfaff-
Formen auf 4. Man hat eine universelle' Derivation d: 4—Q, und fiir jeden endlichen
A-Modul M definiert fi—fd einen Isomorphismus Hom, (Q2,, M)—Der(4, M).

DEFINITION 5.1.

a) Ein Objekt B aus ANAL heiBt gewdhnlich, wenn es Objekte A, C aus ANAL
gibt mit: B~A4 | | C, dim C=0, A ist reguldr.

b) Sei X ein komplexer Raum, xeX; x heiBt gewohnlicher Punkt von X, wenn
Oy, . gewohnlich ist.



Infinitesimale Erweiterungen komplexer Riume 279

c) Ein komplexer Raum X heift gewohnlich, wenn X nur aus gewéhnlichen Punk-
ten besteht.

Der Begriff stammt von Grauert ([4]). Er nennt einen komplexen Raum X regulir in
xeX, wenn es eine offene Umgebung von x gibt, die biholomorph auf das direkte
Produkt einer Mannigfaltigkeit mit einem einpunktigen komplexen Raum abgebildet
werden kann. Offenbar ist X genau dann reguldr in x (in diesem Sinne), wenn x ein
gewohnlicher Punkt von X ist.

In diesem Paragraphen soll gezeigt werden, daB die gewohnlichen Punkte eines
komplexen Raumes das Komplement einer analytischen Menge bilden. Hierzu braucht
man einen gewissen ,,Rang‘‘-Begriff von Moduln:

DEFINITION 5.2. Sei 4 ein kommutativer Ring, M ein endlich erzeugter A-

Modul. Dann wird das Maximum der Menge {neN: es gibt einen Epimorphismus
M- A"} mit r (M) bezeichnet.

LEMMA 5.3. Sind M, N endlich erzeugte 4-Moduln, A4 ein lokaler Ring, so ist
r(M®N)=r(M)+r (N).

Den einfachen Beweis iibergehen wir.

Ist M ein A-Modul, so hat man fiir jedes neN einen kanonischen Homomorphis-
mus ¢,: A"M*® , AN"M— A, der durch

(pn((fl At A fn)®(m1 AN /\m,,)):= det(fi(mj))

definiert ist.

LEMMA 5.4. Ist A4 ein lokaler Ring, M ein endlich erzeugter A-Modul, neN,
so gilt: ¢, ist genau dann surjektiv, wenn r (M) >n ist.

Auch hier iibergehen wir den einfachen Beweis.

Im Rest des Paragraphen werde ein komplexer Raum stets mit der Zariski-Topo-

logie versehen, d.h. eine Teilmenge ist genau dann abgeschlossen, wenn sie analytisch
ist,

SATZ 5.5. Sei F ein kohdrenter Modul auf dem komplexen Raum X. Dann ist
die Abbildung r:X-1Z
xt-r(F))
halbstetig nach unten.
Beweis: Sei neN; die Garbe A"F*® g, A"F ist kohdrent und die Zuordnung
iber U=UcXx

(finnf) Qox(wy(*1 A+ A x,)>det(fi(x;)))
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definiert einen Homomorphismus

@n:/\g*®0x/\f—’0X
Nach (5.4) ist {xe X:r(#,)<n}=Supp (coker ¢,), also eine analytische Menge.

DEFINITION 5.6. Ist A eineanalytische Algebra, so wird mit ¢(4) das Maximum
der Menge

{neN: es gibt ein Objekt B aus ANAL mit: 4~B_| | C[{X,,..., X,>]}

bezeichnet.
Der folgende Satz ist eine hier niitzliche Formulierung eines Resultates von Rossi

([11], Cor. 3.4).

SATZ 5.7 (Rossi). Ist A eine analytische Algebra, so ist ¢(A)=r(Q,)

Beweis: r(Q4)>o(A): trivial, man vgl. ([5], Hilfssatz 3.1). r(2,)<o(4): Beweis
durch Induktion nach r(Q,):

Fiir r(2,)=0 ist nichts zu beweisen. Sei also die Behauptung fiir alle 0<i<n=
=r(Q,) schon bewiesen. Also ist ¢(4)>n—1, also gibt es ein Objekt B aus ANAL,
sodaB A~B | | C[<{X,,..., X,-1y] ist. Man hat eine kanonische Injektion i:B—4;
es ist ([S], Hilfssatz 3.1): Q,~4""'®(Q,®3p4). Nach (5.3) ist also r(Qz®pz4)>1,
da i linksinvertierbar ist, folgt daraus daB r(Qz)>1 ist. Es gibt also a;, b;e B, 1<i<m,
und ein fe Hom (Qp, B), sodaB gilt: f (a,db, + -+ +a,db,)=1. Da B ein lokaler Ring
ist, kann man annehmen, daB f(db,) inversibel ist, also ist (f(db,))~ ! (fod)=:D
eine Derivation von B mit: D(b,)=1. Nach ([11], 3.2) folgt daraus, daB ¢(B)>1 ist;
also ist (A)=Zn—1+1=n.

Aus (5.7) und (5.5) folgt sofort folgendes

COROLLAR 5.8. Ist X ein komplexer Raum, so ist die Abbildung
0:X-Z halbstetig nach unten.

xHQ(mX,x) ‘

COROLLAR 5.9. Ist X ein komplexer Raum, so bilden die nicht gewohnlichen

Punkte von X eine analytische Menge.
Beweis: Die durch x+—dim 0y , definierte Abbildung 6: X—Z ist halbstetig nach

oben, also ist nach (5.8) ¢g—d:X—Z halbstetig nach unten, also ist
{xeX: 0y , ist nicht gewohnlich} = {xeX:(¢—9) (x)< —1}

eine analytische Menge.



Infinitesimale Erweiterungen komplexer Rdume 281

§ 6. Beispiel eines komplexen Raumes ohne gewohnliche Punkte.

LEMMA 6.1. Sei p:X'— X ein rechtsinvertierbarer infinitesimaler Morphismus
in AN, dabei sei X eine Mannigfaltigkeit. Dann sind fiir ein xeX’ die folgenden
Aussagen dquivalent:

i) x ist ein gewohnlicher Punkt von X’

ii) p ist in x lokaltrivial.

Beweis: i) impliziert ii): Die Aussage ist lokaler Art, 148t sich also innerhalb der
Kategorie ANAL ausdriicken:

Der Morphismus f:4=C[{X,,..., X,>]— B besitze ein Linksinverses p’, es gebe
einen Isomorphismus g:B—A4 | | Cmitdim C=0. Dann gibt es einen Isomorphismus
g:B—»A4| | (B®,C)derart daBg’f die kanonische Injektion 44 | | (B®,C)ist.

Um dies nachzuweisen, mul man nach ([5], Satz 3.3) zeigen, daB es zu jedem
DeDer(A, A) ein D"eDer(B, B) gibt mit foD=D"of. Sei q:A_| | C— A die kano-
nische Projektion. Da kerp’'g~!ckerq ist, gibt es ein h: 4—A4 mit hg=p'g™!; also
ist & surjektiv, also sogar bijektiv. f,:=gfh; es ist hgf,=p’g "' ogfh=h, also qf,=id,.

Zu jedem DeDer(4, A) gibt es ein D'eDer(4_| | C, A | C) mit: D'f,=f,D.
Inder Tat: Mittels der kanonischen Injektion fasse man A als Unterringvon 4 | | C
auf. Wegen qf,=id, ist f,(X;)=X;+a;, a; nilpotent, fiir 1 <i<n. Seien D;, 1 <i<n,
die elementaren Derivationen auf A; sie lassen sich zu Derivationen D, auf 4 | | C
fortsetzen. Da D;(a;) nilpotent ist fiir 1 <i, j<n, ist det(D;(f;(X}))) eine Einheit in
A | C. Es gibt also ein (@;;)eGL(n, A | | C) derart daB fiir alle 1<i, j<n gilt:

5ij = Zj iy D~v(f2 (Xj))'

Setzt man D}=Y", a,;,D,, so ist fiir 1 <i<n Do fr=f,D,.

Seinun DeDer(A, A). EsgibteinD,eDer(4 | | C,A | | C)mit D, f,=f,h~'Dh.
Also D,gfh=gfhh~*Dh=gfDh, also g 'D,gf=fD. Setzt man D":=g 'D,g, so ist
also D"f=fD.

ii) impliziert i): trivial,

(6.2) Sei A4 ein kommutativer Ring, ue4. In A" definiert man wie folgt eine
A-Algebra Struktur. Seien e;, 0<i<6, die kanonischen Basisvektoren des A”.

Man setze: eye; =€;-¢p=¢; 0<i<6

e;'e; =0 1<i,j<6, i#j

esres=eg =0

e;re; =es+u"leg 1<i<4
Man definiere A— 47 durch a—a-e,. Dadurch wird 47 zu einer unitiren, kommuta-
tiven, assoziativen A-Algebra und wird als solche mit 4" bezeichnet.

Ist (S, o) ein geringter Raum, uel (S, &), so wird die &/-Algebra &* durch
S2V=Vieod (V) definiert.
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SATZ 6.3. Sei k ein Korper, A eine nullteilerfreie k-Algebra, ucA. Ist D eine
k-lineare Derivation von A in sich und ist D(u)+#0, so ldft sich D nicht zu einer Deriva-
tion von A" in sich fortsetzen.

Beweis: Mann kann annehmen, daB 4 ein Korper ist (ansonsten betrachtet man
den Quotientenkorper von A4). Angenommen, D lasse sich zu einer Derivation D’
von A* fortsetzen. Dann ist:

6
D'(e)= ), xe;, x,ed, also
Jj=0
6
D’ (eiz) = 2¢, Z x;;e; = 2x;(es + u"1e6) + 2x;0e; fir 1<i<4;
j=0
daneben ist fiir 1<i<4
& _ 6
D'(¢)=D'(es+u'"leg)= Y. xs;e;+(i—1)u'2es+u'™" Y xge;
j=o =0

(denn man kann annehmen, dal D(u)=1 ist).
Zieht man diese Gleichungen voneinander ab und multipliziert sie mit u, so liefert

ein Koeffizientenvergleich
2ux; — UXss — U'xgs =0 . )
2u'xy — uxsg — (i— 1) u' ™! — ulxgg =0 (1D

Multipliziert man nun (I) mit »*~! und subtrahiert dann davon (II), so erhilt man
u'(xs6 — Xg6) + Xesu> ' —xssu=(i—1)u'"" fir 1<i<4.

Hieraus folgt, indem man i=1 setzt, daB x5 =X45 + X355 — X¢¢ ist. Fiir 2<i<4 ist also
(xs5 — Xe6) (u' — u) + xg5(u*' ™' —u) = (i — 1) '™

Also ist

w—u ul—-u u
wW—u u-u 2
u*—u u' —u 3u3=0.

Also ist u algebraisch iiber dem Primkdrper von k. Das ist aber unmdglich, denn
D(u)#0. Also hat man einen Widerspruch.
Man kann nun komplexe Rdume ohne gewoéhnliche Punkte angeben:

COROLLAR 6.4. Sei (S, &) eine komplexe Mannigfaltigkeit, ueI' (S, ) sei auf
keiner Komponente von S konstant. Dann ist (S, &/“) ein komplexer Raum ohne
gewohnliche Punkte.
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Beweis: DaB (S, &*) ein komplexer Raum ist, folgt aus (2.6). Sei se S beliebig.
Wegen (6.1) muBB man zeigen, daB der Strukturmorphismus (S, &/*)—(S, &) in s
nicht lokaltrivial ist. Hierzu muB nach (6.3) und ([5], Satz 3.3) nur nachgewiesen
werden, daB es ein DeDer (%, ;) gibt mit D (u,)#0. Dies aber ist klar, da u, kein
konstanter Funktionskeim ist.

Beispiel: Ist zeI'(C, O¢) die Koordinatenfunktion, so ist (C, 0&)=:X ein kom-
plexer Raum ohne gewdhnliche Punkte. X 148t sich realisieren als der Unterraum des
C’ (mit den Koordinaten funktionen z,, ..., z¢), der definiert wird durch das Ideal

(E@) +@r+@r+ g 3 @)+ F 6 -zt

i=1 j=i+

(6.5) Es gibt iiberabzdhlbar viele, paarweise nicht isomorphe, einpunktige kom-
plexe Rdume. Dies folgt sofort aus dem folgenden Corollar.

COROLLAR 6.6. Sei X ein Korper der Charakteristik O; u, ve K seien algebraisch
unabhingig liber Q. Dann sind die K-Algebren K* und K" nicht isomorph.

Beweis: Da v transzendent liber Q(u) ist, gibt es eine Q(u)-lineare Derivation
D:K— K mit: D(v)#0. Da D(u)=0 ist, 1aBt sich D zu einer Derivation D’ von K*
in sich fortsetzen. Angenommen, es gebe einen K-Algebra-Isomorphismus f: K’— K",
Dann wire f ~'o D'f eine Fortsetzung von D auf K*. Da (f ~'D’f) (v)#0 ist, ist das
ein Widerspruch zu (6.3).

Aus (6.6) folgt (6.5), wenn man K=C setzt und beachtet, daB eine Transzendenz-
basis von C iiber Q eine iiberabzihlbare Menge ist.

§ 7. Globale Eigenschaften gewdhnlicher Riume

Unter einem ,,mehrfachen Punkt‘* verstehen wir im Folgenden einen einpunktigen
komplexen Raum. Ist p: X’'— X eine holomorphe Abbildung, so heiBt (X’, p, X) ein
Biindel mehrfacher Punkte, wenn es einen mehrfachen Punkt S, gibt, sodaB (X’, p, X)
ein analytisches Faserbiindel mit S, als typischer Faser und der komplexen Liegruppe
Aut(S,) als Strukturgruppe ist.

(7.1) Ist (X', p, X) ein Biindel mehrfacher Punkte, X eine Mannigfaltigkeit, so ist
X' ein gewdhnlicher Raum und es ist X~ X/ 4. Es ergibt sich also die Frage, zu wel-
chen gewohnlichen Rdumen X' es eine holomorphe Abbildung p: X’ — X4 gibt, sodaB
(X', p, X..,) ein Biindel mehrfacher Punkte ist.

Ist X’ ein gewohnlicher Raum, X:= X4, i:X— X' die kanonische Einbettung, so
gelten die folgenden Aussagen:

(7.1.1) Ist pein Linksinverses von i, so ist (X', p, X) ein Biindel mehrfacher Punkte.

(7.1.2) Gibt es ein p’eHom(X’, X), derart daB (X', p’, X) ein Biindel mehrfacher

Punkte ist, so ist i linksinvertierbar.
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(7.1.1) folgt aus (6.1) und ([10], Satz 1).
Zum Beweis von (7.1.2): Ist (X', p’, X) ein Biindel mehrfacher Punkte, so ist p/ 4
ein biholomorpher Automorphismus von X, alsoist (p,.q) " op’ €in Linksinverses von i.
Aus (4.4) und (7.1.1) folgt sofort der folgende Satz:

SATZ 7.2 Ist X ein gewdhnlicher Steinscher Raum, so besitzt die Reduktionsab-
bildung X,.q— X ein Linksinverses p und (X, p, X, ist ein Biindel mehrfacher Punkte.

COROLLAR 7.3 Ist X ein gewOhnlicher Steinscher Raum und ist X, 4 kontrakti-
bel, so gibt es einen mehrfachen Punkt Z mit der Eigenschaft X~Z x X_,.

Beweis: X ist ein Faserbiindel iiber X,.4. Da das assoziierte Prinzipalbiindel unter
den gemachten Voraussetzungen nach Grauert ([3]) trivial ist, folgt die Behauptung.

Es gibt viele gewohnliche Rdume, die nicht ein Faserbiindel iiber ihrer Reduktion
sind. Das folgt aus (7.1.2) und dem folgenden Satz.

SATZ 7.4 Sei X=Xc<C" nicht holomorph-konvex. Dann gibt es eine inf. Erweite-
rung i: X— X' mit folgenden Eigenschaften:

1. X' ist ein gewohnlicher Raum

2. i ist nicht linksinvertierbar.

Beweis: Nach ([1]) gibt es auf X endlich viele holomorphe Funktionen ohne
gemeinsame Nullstellen, die sich nicht linear zu 1 kombinieren lassen. Es gibt also
fiir ein seN einen Epimorphismus @5 — 0y, der nicht rechtsinvertierbar ist. Also gibt
es fiir ein r eN einen Epimorphismus f: 03— Qy, der nicht rechtsinvertierbar ist.

Die universelle Derivation d: 0x— Qy definiert nach (3.2) ein J: Iy (Q4)— X. Man
definiert nun X’ als das Fasercoprodukt der Morphismen é und I;(f) und man
definiert i als den kanonischen Morphismus von X in X', Nach (2.7) ist X’ ein kom-
plexer Raum und i eine inf. Erweiterung. Man zeigt leicht (vgl. den Beweis zu (4.5)),
daB i nicht linksinvertierbar ist, da f nicht rechtsinvertierbar ist.

Ist U=Uc X Steinsch, so besitzt nach (4.4) i | U ein Linksinverses; daraus folgt
schnell, daB (U, Oy | U)xIy(ker f| U) ist.

Da ker f lokalfrei ist, hat man gezeigt, daB X’ ein gewohnlicher Raum ist.

§ 8. Globale Funktionen auf infinitesimalen Erweiterungen

(8.1) Sei S ein komplexer Raum, #, ¢ Objekte aus M.(S), DeDer(0s, %),
f:F - ein Epimorphismus. Dann definiert D nach (3.3.1) ein 6 Hom (Is(¥s), S)-
I(f) ist eine inf. Erweiterung, es 148t sich also nach (2.7) das Fasercoprodukt der
Morphismen & und Ig(f) bilden; es werde mit Sp , bezeichnet. Man hat einen ka-
nonischen Morphismus is:S—Sp ;. Die durch is gegebene Abbildung I (S, s>
Os,. )—T'(S, Os) wird mit p, , bezeichnet. Ist ael (S, 0s), so wird fiir I'(S, D) (@)
kurz: D(a) geschrieben. Aus der Definition von Sj, , folgt sofort:
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(8.1.1) Ist aeimpy, ,, so gibt es ein mel (S, #), fiir welches gilt:
D(a)=I'(S,f) (m).

DEFINITION 8.2 Der komplexe Raum S hat die Eigenschaft E, wenn bei jeder
inf. Erweiterung (idg, n): S— S’ die Abbildung I'(S, n):I'(S, 0s)—T (S, 0g) surjektiv
ist. Aus Theorem B folgt, daB jeder Steinsche Raum die Eigenschaft E hat. Di
Umkehrung hiervon gilt nicht, denn jeder irreduzible kompakte Raum hat die Eigen-
schaft E. Es gilt aber:

SATZ 8.3 Der komplexe Raum S habe die Eigenschaft E. Gibt es ein DeDer (0s,
0Os) und ein ayeI (S, O5) mit D(ay)=1, so ist S Steinsch.

Beweis: Sei f: % — O ein Epimorphismus in M_(S). Mit den Bezeichnungen von
(8.1) gilt also: py, , ist surjektiv. Also ist aoeimpy, ;. Nach (8.1.1) existiert ein meI'(S,
F) mit I'(S,f) (m)=1. Also ist f rechtsinvertierbar. Daher ist 0g ein projektives
Objekt von M, (S), und daraus folgt die Behauptung.

COROLLAR 8.4 Sei S ein komplexer Raum. Hat S x C die Eigenschaft E, so
ist S Steinsch.

(8.5) Beispiel eines komplexen Raumes S’, der folgende Eigenschaften hat:

i) S’ ist nicht holomorph-konvex

it) §:=8,.4 ist holomorph-konvex.

Man wihle §: =P, x C. Da P, nicht Steinsch ist, gibt es einen Epimorphismus von
kohirenten Modulgarben f': %' — Op, derart, daB I' (P,, f') nicht surjektiv ist. Also
ist I' (P, f")=0.

fi=prf f', F:=pr{ F'. Offenbar ist
f :&F - O ein Epimorphismus und I'(S, f) =0.

0
D:= — eDer (0, 0s)
0z

Sei die partielle Ableitung nach der Variablen von C. D und f definieren nach (8.1)
den komplexen Raum S’: =S}, - Offenbar ist S;.4=S. S’ ist nicht holomorph-konvex.
In der Tat: Sei acimpp ;. Nach (8.1.1) gibt es ein meI' (S, F) mit D(a)=I'(S, f) (m),
also ist D(a)=0. Also ist a konstant. Die Werte jeder globalen Funktion auf S’
sind also konstant. S’ ist also nicht holomorph-konvex, da S’ nicht kompakt ist.

(8.6) Ist S ein zusammenhingendes Riemannsches Gebiet iiber dem C", n>1,
welches nicht holomorph-vollstindig ist, so kann ein komplexer Raum S’ konstruiert
werden mit den folgenden Eigenschaften:

i) S;ed'_‘S

i) Jeder Morphismus S’—C ist als Funktion konstant.
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Sei § die Holomorphiehiille von S. Mann wihlt eine konvergente Folge
(S,)sc1n Von Punkten aus S, derart daB gilt:

s,eS fiiralle neN, s:=lims,e8\S, s,#s, fir n#m.

n X oo

Fiir neN sei m, das zum Punkt s,eS gehorige kohédrente Og-Ideal. # : =), .y M~

Ein Og-linearer Automorphismus a von & :=0g/# wird wie folgt definiert: Fiir
neN sei a,, die Multiplikation mit (—1)". Es sei p: 05— die kanonische Projektion.
Mit &# werde das Faserprodukt von p und a.p bezeichnet; man hat kanonische
Morphismen py, p, mit aopop; =pop,. p; ist ein Epimorphismus und I'(S, p,)=0.
In der Tat: Sei aeimI'(S, p;). Es gibt dann ein bel' (S, Og) mit ps(b)=(ag.ps) (a).
Also ist (b—(—1)"a)s, em, fiir alle neN. Da sich a und b in den Punkt se S holomorph
fortsetzen lassen, folgt a,=b,=0. Also a=b=0, da S zusammenhéngend ist.

Es gibt einen Isomorphismus B:0g~Qg; man setze f:=f.p{:F">Qg und
d: 05— Qgsei die universelle Derivation. Dann hat §':=S), , (vgl. 8.1) die gewiinschten
Eigenschaften, wie sofort aus (8.1.1) folgt.
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