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Infinitésimale Erweiterungen komplexer Râume

von Hans Werner Schuster

Einleitung

In der Hochschild-Theorie der Ringerweiterungen werden Algebra-Epimorphis-
men betrachtet, deren Kerne nilpotente Idéale sind. Eine analoge Situation tritt in
der Théorie der komplexen Râume (deren Strukturgarben nilpotente Elemente
enthalten dûrfen) auf. Eine holomorphe Abbildung i;S-+Sf heiBt infinitésimale Er-
weiterung, wenn S ein durch eine lokal-nilpotente Idealgarbe definierter analytischer
Unterraum von S' und / die kanonische Injektion ist. i ist bestimmt durch einen

Epimorphismus ®S'-*®s> dessen Kern lokal-nilpotent ist.
In der Hochschild-Theorie interessiert man sich unter anderem dafur, wann eine

gegebene Ringerweiterung trivial ist. In der Funktionentheorie wird in § 4 von uns
die entsprechende Frage untersucht: i;S->S' sei eine infinitésimale Erweiterung, ist i
linksinvertierbar? Ein komplexer Raum S heiBt glatt, wenn jede infinitésimale Erweiterung

von S->S' linksinvertierbar ist. Es wird gezeigt: Ein Steinscher Raum ist
genau dann glatt, wenn er keine Singularitât besitzt (4.4, 4.7) ; ein komplexer Raum S
ist genau dann eine Steinsche Mannigfaltigkeit, wenn Sx C glatt ist (4.11), ein holo-
morph-konvexer glatter Raum ist eine Steinsche Mannigfaltigkeit (4.10). Dièse Sâtze

werden gewonnen mit Hilfe der folgenden Tatsache (4.5): Ist der komplexe Raum S
glatt, so ist die Garbe der Pfaffschen Formen ein projektives Objekt in der (abelschen)
Kategorie der kohârenten Modulgarben auf S.

Der Begriff glatter Raum hat sein Analogon in den ,,Algèbres formellement lisses",
wie sie Grothendieck in EGA (0, 19) definiert und untersucht hat. Grothendieck
behandelt vor allem lokale noethersche Ringe, aber es konnten doch manche Beweis-
ideen von ihm ûbernommen werden.

Ist S ein komplexer Raum, / eine holomorphe Funktion auf S, i:S-+S' eine
infinitésimale Erweiterung, so kann man fragen, ob sich/nach S' fortsetzen lâBt,
d.h. ob es eine holomorphe Funktion/' auf S' gibt, sodaB/7=/ist. In (8.3) zeigen
wir, daB dièse Frage im allgemeinen negativ beantwortet werden muB.

Ist der komplexe Raum S nicht Steinsch, so ist nach Grauert [4] auch Sred nicht
Steinsch. Wir bringen in (8.5) das Beispiel eines komplexen Raumes, der nicht holo-
morph-konvex ist, aber dessen Reduktion holomorph-konvex ist. AuBerdem wird ein
komplexer Raum angegeben (8.6), der nicht holomorph-separabel ist, aber dessen

Reduktion holomorph-separabel ist.
Auf einem reduzierten Raum bilden die regulâren Punkte das Complément einer

diinnen analytischen Menge. Dièse Aussage ist aber fur nicht reduzierte Râume falsch.
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Nun hat Grauert in [4] folgende Définition gegeben: Ein Punkt eines komplexen
Raumes heiBe gewôhnlich (in [4] steht hierfûr ^regulâr"), wenn er eine Umgebung
besitzt, die biholomorph auf das direkte Produkt eines einpunktigen komplexen
Raumes mit einem Polyzylinder abgebildet werden kann. Wir zeigen in (5.9), dafî die

gewôhnlichen Punkte eines komplexen Raumes das Complément einer analytischen
Menge bilden, die jedoch i.a. nicht dunn ist. Denn man kann komplexe Râume an-
geben (6.4), die keine gewôhnlichen Punkte besitzen.

In § 1 stellen wir Notationen und kleine technische Hilfssâtze zusammen. In § 2

wird der folgende Satz bewiesen: Ist i:S-+S' eine infinitésimale Erweiterung,/:*S-*X
eine eigentliche Abbildung mit diskreten Fasern, so existiert in der Kategorie der

komplexen Râume das Fasercoprodukt von i und/und der kanonische Morphismus
ix:X-+XXA^s S'ist eine infinitésimale Erweiterung. §4 behandelt glatte komplexe
Râume. § 5 beschâftigt sich mit gewôhnlichen Punkten komplexer Râume. In § 6

bringen wir Beispiele komplexer Râume ohne gewôhnliche Punkte. In § 7 wird gezeigt,
da8 ein gewôhnlicher Raum i.a. nur dann als Faserbûndel uber seiner Reduktion
aufgefaBt werden kann, wenn er Steinsch ist. In § 8 wird die Reichhaltigkeit der

Algebra der globalen Funktionen auf infinitesimalen Erweiterungen untersucht.
Es sei mir gestattet, Herrn Prof. Dr. K. Stein und Herrn Dr. O. Forster fur zahl-

reiche Anregungen und wertvolle Hinweise zu danken.

§ 1. Notationen und Bereitstellung von Hilfsmitteln

Sei A eine Kategorie; beziiglich der Définition einer Garbe mit Werten in A wird

auf (EGA, 0; 3.1.2.) verwiesen.

DEFINITION 1.1. Die Kategorie G(A) wird wie folgt definiert:
a) Die Objekte von G (A) sind die Paare (X, (9X), wobei X ein topologischer Raum

und <9X eine Garbe auf X mit Werten in A ist.
b) Sind (X9 (9X)9 (F, d)Y) Objekte aus G{À)9 so sind die Morphismen von (X, (Px) in

(F, (Py) die Paare (u9a)9 wobei u:X-+Y eine stetige Abbildung und <x:(9Y-*u*®x

ein Garbenmorphismus ist.

c) Ist (u9 a)eHom ((X, <9X), (Y9 ®Y))9

(v9 0)eHom ((F, <9Y)9 (Z, 0z% so ist
(t>, fi)o(u, et) : (t?o u, v*(a)oP).
Fttr (X9 0X) schreibt man meist kurz Z.
Unter einem Ring wird stets ein kommutativer, assoziativer Ring mit 1 verstanden,

der Fall 1 «0, also der NuMng, wird zugelassen. Von einem Ringhomomorphismus
wird stets vorausgesetzt, daB er das Einselement in das Einselement iiberfûhrt. Unter

einem Modul wird stets ein unitârer Modul verstanden.

Ist K ein Ring, so ist eine ^-Algebra ein Ring B zusammen mit einem Ringhomo-
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morphismus K-+B. Mit Al-K wird die Kategorie der Â-Algebren bezeichnet. Die
Objekte von GJAl-K) heifien X-algebrierte Râume.

DEFINITION 1.2. Seien X-^S^-S' zwei Morphismen aus einer Kategorie A.
Ein Objekt Z aus A zusammen mit Morphismen px:Z-+X9 ps,:Z-+S\ die das Dia-
gramm

X+-Z
i l
S*-S'

kommutativ machen, heifît Faserprodukt von X und S' iiber S (genauer: Faser-

produkt von u und v), wenn folgendes gilt: Hat man ein kommutatives Diagramm

X+-Z'
•A I
S 4- S'

u

so gibt es genau einen Morphismus Z'-+Z9 sodaiî

kommutiert. {Z9px,ps) ist dann bis auf Isomorphie eindeutig und man schreibt

Z=:XxsS'.
Die duale Définition ist auch wichtig:

DEFINITION 1.3. Seien X^-S-^Sf zwei Morphismen aus einer Kategorie A.
Ein Objekt Z aus A zusammen mit Morphismen ix:X-+Z9 is,:S'-+Z9 die das

Diagramm

X-+Z
î î

kommutativ machen, heiBt Fasercoprodukt von X und 5" unter S (genauer: von u
v)9 wenn folgendes gilt: Hat man ein kommutatives Diagramm

•î î
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so gibt es genau einen Morphismus Z-*Z\ sodaB

kommutiert. (Z, iX9 is,) ist dann bis auf Isomorphie eindeutig und man schreibt

Z= *X±±so
Sind J^-ïWAj/' zwei Morphismen von Garben von £-Algebren auf dem feste

topologischen Raum X, so existiert &x ^$0' und kann durch

Z3 U= Û-> {(x, y)eJ?(U) x s*'(U):vv{x) uv{y)}

definiert werden. Diekanonischen Morphismen S£*-3?x ^stf'-ïstf' sind die Restrik-
tionen der kanonischen Projektionen.

Ist/:X->7 eine stetige Abbildung, so gilt:
(1.3.1.) M&x **')=/*&x^**'.
In der Kategorie G(Al-K) interessiert uns die Existenz von X ± ±s S' nur in

dem Fall, daB der Morphismus u:S-+S' infinitésimal ist:

DEFINITION 1.4. u:S-+Sf heifit infinitésimal (Abgekûrzt: inf.), wenn die u zu-

grundeliegende stetige Abbildung die Identitât von S ist.

Seien X^-S^Xs' Morphismen in G(Al-K\ (w, P) sei inf. Man definiere

^llsS-(^«zXM«,)»»(y und ix'-X->X±±sS'> is>'-S'->X±±sS' durch

ix: (idX9n±)9 is> : (v, n2), wobei nt : <Dx±±8S'->Qx> ni: ®x±±ss'~*v*®s' die kanonischen

Morphismen sind. Aus (1.3.1) folgt dann sofort das

LEMMA 1.5. (X±±sSf, ix, is>) ist das Fasercoprodukt von X und S' unter 5.

LEMMA 1.6. Seien XASAS" Morphismen in G{Al-K\ u sei inf. ; ist U= ÛaX,
so definieren w, v Morphismen

(u, ox | u)±(v-\u\ os | v-Hu)y^(v^(U)9 e>8. \ v~\u))
und (U, 0x±±as* | U) ist das Fasercoprodukt von v1 und u\ Der Beweis ergibt sich

sofort aus der Définition von X1 ±SS\
LEMMA 1.7. Seien X+^S^^S' Morphismen in G{Al-K\ {u, p) sei inf., wei-

ter seien p und ##(/?) Epimorphismen. Dann hat man eine exakte Sequenz:

0->(0) x t;*(keriS) q? @x±xss'-^®x~>0

Der Beweis ergibt sich sofort aus der Gleichung u*(ker j$)=ker (#*/?).
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Sind 3$-îUsrf<?-s0' Morphismen von Garben von X-Algebren auf einem festen

topologischen Raum Zund ist /:J"-»^ ein Epimorphismus, so hat man eine exakte

Sequenz:

(1.8.1) 0-»ker/ x (0) c> <T xJ,œ?'f*J*J'')<%xJ!/jtf'-+0

wobei fx^s/' so definiert ist: Fur U=ÛcXist (/x^j/% {x,y)-{fv{x\y).

LEMMA 1.8. Seien Xf^-X^-S—^Sf Morphismen in G{Al-K\ (u, p) sei

inf., X sei eine abgeschlossene Teilmenge von X\j sei die kanonische Injektion, y sei

surjektiv. Dann hat man einen kanonischen Morphismus (7, y) : XJ [_s S ' -*X' J \_s S '

mit: y ist surjektiv und kery kery x (0).
Beweis: Der Beweis folgt aus (1.8.1) mit œ? (jv)*(9s, ^=j^(PXf s#' (jv)*@s>,

%' &x>, »=7»(a), û=(jvUp), }=y. Nach (1.3.1) i*tU{QXLLaS) das Faserprodukt
von j#(<x) v und (jv)*(P) û, und @x'±±ss' ist 0n dieser Umschreibung) das

Faserprodukt von den Morphismen J'Aj/f-j^',

LEMMA 1.9. Seien X<—^-S-—^—>S" Morphismen in G(Al—K), i sei infinitésimal.

Dann definiert die Zuordnung hv-+his,, eine Bijektion

{heBom(X±±sS\ X):hix idx}->{h'eHom(S', X):f=h'i}.
Der Beweis folgt sofort aus (1.3) und (1.5).
(1.10) Sind ^Aja/A^' Morphismen von Garben von i£-Algebren auf dem festen

topologischen Raum X, so induziert ein geHom^, s/') mit v ug einen wichtigen
Isomorphismus fur 0& x ^ s&'. kert/ wird durch g ein ^-Modul und man kann aus £8

und kerw den «^-Modul «^xkeri/ bilden. ^xkerw ist sogar eine J'-Algebra, wenn
man die Multiplikation so erklârt: ûber U= Ûc Zsei

(a, c)-(a\ c/): (aa/,gl7(ûf)-c'+gt7(a/)-c+c-c').

Die so definierte ^-Algebra wird mit ^+kerw bezeichnet.
Es ist ç?:^+kerw->^x^j//, (a, c)\-+(a,gv(à)+c) ûber U=Ûc:X ein

Isomorphismus von Garben von J^-Algebren. (1.10.1)
Die inverse Abbildung \j/: J>x<^j/->JJ+kerw wird durch (b9 a')h+(b, ar-gv(b))

iiber C/=^cArgegeben.
(1.10.2) Durch q> wird insbesondere ^x^stf' ein J*-Modul. Die kanonischen

Morphismen ^<-^x ^ se'-*$$' sind ^-linear, wobei s/r durch g ein J*-Modul ist.

(1.11) Sei (j/a) ein projektives System von Garben von X-Algebren auf dem

topologischen Raum X. Die Zuordnung Id 17= Ûh->lim<s/X(U) ist eine Prâgarbe auf

•£ Nach (EGA, 0, 3.2.6) ist dièse Prâgarbe bereits eine Garbe und ist auch der pro-
jektive Limes des Systems (**/A), und daher wird sie mit limj/A bezeichnet.
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Istf:X-+ Teine stetige Abbildung, so istf^s/k=^-f^s/k. Daraus folgt sofort,
daB (X, <^s/k) der induktive Limes des induktiven Systems ((X, s/x)) ist, d.h.

(i.ii.D

§2. Infinitésimale Erweitenmgen

DEFINITION 2.1. Ein Morphismus (w, a) aus G(Al-K) heiBt
a) abgeschlossene Einbettung, wenn gilt:

i) u ist eine injektive abgeschlossene Abbildung,
ii) a ist surjektiv und kera ist eine kohârente Idealgarbe;

b) infinitésimale Erweiterung, wenn gilt:
i) (w, a) ist eine abgeschlossene Einbettung,
ii) (w, a) ist infinitésimal.

Ist auBerdem fur ein «eN(kera)w+1=0, so heiBt (w, a) eine inf. Erweiterung vom
Grad n.

Bemerkung: Ein Morphismus (u,a):X-*Y ist genau dann eine abgeschlossene

Einbettung, wenn (u, a) ein Isomorphismus von X auf einen durch ein kohârentes

0y-ldeal definierten Unterraum von Y ist.
Von nun an wâhlen wir K: C. Mit PB, «eN, meinen wir folgendes Objekt aus

G (Al-- C): Der unterliegende topologische Raum ist

{(xu...,xn)eCn:\Xi\<l9 Ki^n}9
die Strukturgarbe ist die Garbe der Holomorphie auf diesem Raum.

Ein Objekt (X, d)x) aus G(Al-C) heiBt komplexer Raum, wenn gilt:
i) X ist hausdorffsch,

ii) zu jedem xeX gibt es eine offene Umgebung U von x, ein «eN und eine ab¬

geschlossene Einbettung (U, 0x | U)^>Pn.

Mit ^^(genauer ^A^c) bezeichnen wir die Kategorie der komplexen Râume, d.h.

die durch die Klasse der komplexen Râume definierte voile Unterkategorie von

G(Al-K).

DEFINITION 2.2. Sei/=(/, a):X-^F ein Morphismus aus AN;f heiBt endlicK

wenn
a) /abgeschlossen ist,
b) aile Fasern von/endliche Mengen sind.

(2.3) Fur endliche Morphismen/:X->7 ist folgendes bekannt:
a) Ist SF ein kohârenter Modul auf X, so ist/*(#") ein kohârenter Modul auf Y,

b) ist O-^'-^-^'-^O eine exakte Sequenz von kohârenten Moduln auf X, so

ist die Sequenz 0-»/É(F)-4/$(#)^(/>0 auch exakt.
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Ein Beweis hierfur findet sich etwa in ([9], II, Cor. von Theor. 2).

(2.4) Ist/: X-+ Fein endlicher Morphismus und./ ein lokal-nilpotentes kohârentes
Idéal auf X, so ist auch/*(e/) lokal-nilpotent.

In der Tat: ist U eine offene relativkompakte Umgebung von ye Y, so ist /*({/)
relativkompakt. Nach ([4], § 1, Satz 4) gibt es ein neN mit (./ I/1 (£/))"=0, also

(2.5.1) Sei A ein Ring, B eine .4-Algebra, (*,)i6/ eine Familie von Elementen aus B.

Dann heiBt (xt)ieI ein Erzeugendensystem von B, wenn der Morphismus

ein Epimorphismus ist.

(2.5.2) B heifît eine nilpotent erzeugte ^4-Algebra, wenn es ein Erzeugendensystem

(xdiei gibt, derart daB fur aile iel xt nilpotent ist.

DEFINITION 2.5. Sei S ein komplexer Raum. Eine kohârente, nilpotent
erzeugte Algebra auf S ist eine Garbe j/ von 0s-Algebren m*t:

i) als (9S-Mod\û ist ^ kohârent,
ii) fur aile se S ist s/s als (9StS~Algebra nilpotent erzeugt.

SATZ 2.6. Sei S ein komplexer Raum, se eine kohârente nilpotent erzeugte Algebra
auf S, es sei Supp(j/) 5r. Dann ist (S, j/) ein komplexer Raum.

Beweis: Sei seS. Dann gibt es eine offene Umgebung U von s und tl9..., treF(U9
d) mit f"=0 1 ^/< r fur ein /ieN, derart dafî s/\ C/als 0s | £/-Modul von 1, tl9..., tr
erzeugt wird. Also ist der durch Tth^ti9 l</<r, definierte Morphismus ^[Tx,...,
7;]-*j2/ | C/ surjektiv, wobei ®v: ®s \ Uht. Da /"=0 ist, erhâlt man einen Epimorphismus

Nun ist/^^-linear und ^ ist ein kohârenter (P^-Modul, also ist ker/ein <VModul
von endlichem Typ, daher ist ker/ein J'-Ideal von endlichem Typ. (C/, J1) ist isomorph
zu (U, 0v) x P, wobeiP der durch das Idéal (z",..., z?) definierte einpunktige Unterraum
des Cr ist. ^ ist also ein kohârenter ^-Modul, und da ker/von endlichem Typ ist,
ist ker/ ein kohârenter J"-Modul. Also ist der durch / definierte Morphismus (U,
<$# | U)-+(U9 âS) eine abgeschlossene Einbettung, und da die Komposition von ab-
geschlossenen Einbettungen eine abgeschlossene Einbettung ist, folgt daraus, daB
{U, <sé | U) ein komplexer Raum ist. Da .yeS beliebig war, ist ailes bewiesen.

Sind X+-S~^Sf Morphismen in AN und ist i eine inf. Erweiterung, so existiert
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nach (1.5) in der Kategorie G(Al—C) das Fasercoprodukt X±±SS' von X und S'
unter S und man hat kanonische Morphismen Xj+X} \_sSf^S\ die insbesondere

so beschaffen sind, daB ^/=/s, * ist. Eine wichtige Frage ist es dann natiirlich, ob

X_\ [_sSr ein komplexer Raum ist. Dièse Frage wird im folgenden Satz teilweise
beantwortet.

SATZ 2.7. Xj_Sj_>S' seien Morphismen in AN, i sei dabei eine inf. Erweiterung

undfsei eine endliche Abbildung. Dann ist XJ \_SS' ein komplexer Raum und ix ist

eine inf. Erweiterung.
Beweis: 1. Der Satz wird fur den Fall bewiesen, daB X ein Steinscher Raum mit

endlicher Einbettungsdimension ist. Es gibt dann ein «eN und eine abgeschlossene

Einbettungy:Z->Cn. Da X Steinsch und/endlich ist, ist auch S steinsch, also ist auch

S" Steinsch. Aus Theorem B folgt dann, daB ein geHom(S", Cn) existiert mit jf=gi.
Da i infinitésimal ist, ist auch g endlich.

Sei nun ./=(/, y),f=(f, a), /=(/, J8), g=(g, g). Nach (2.3.b) ist O/)*(jS) surjektiv,
nach (1.10.1) ist also ^Cnnss'^^c-+ker(t//)3|t(i9) ^cn+g*(kerj5). Dagendlich und

ker/? kohârent ist, ist auch (2.3.a) ^(ker/?) ein kohârenter Modul auf dem C".

Daraus und aus (2.4) folgt, daB 0c«+#*(ker/?) eine kohârente nilpotent erzeugte

Algebra auf dem Cn ist. Nach (2.6) ist also C"J \_SS' ein komplexer Raum.
Man betrachte nun die kanonischen Morphismen n± : ^c»nss'"^ ^c»> ni: ^c»iiss"^

-*(jf)+®s'\ sie sind nach (1.10.2) 0Cn-linear.S- kery; nach (1.8) iste/ x (0) ein Idéal

von 0CnLLsS: Es ist./ x (0) n\ (f) n ker tt2.f x (0) ist also ein kohârenter 0c«-Modul,
also ein 0c»±±ss'"Idéal von endlichem Typ, also ein kohârenter Modul auf C J Ls^ •

Daraus folgt nach (1.8), daB XJ \_SS' ein komplexer Raum ist.
Es bleibt zu zeigen, daB (idx, n): ix eine inf. Erweiterung ist: Da/endlich ist,

ist/*(/O surjektiv, also ist nach (1.7) n surjektiv. Da X±_±SS' ein komplexer Raum

ist, ist kerrc kohârent; da i eine inf. Erweiterung ist, folgt mit (2.4), daB kerrc lokal-

nilpotent ist.
2. Zist ein beliebiger komplexer Raum: Sei xeX. Es gibt eine Steinsche offene

Umgebung U von x mit endlicher Einbettungsdimension. Nach Teil 1 und wegen

(1.6) ist (£/, @xL±ssf | V) ein komplexer Raum. Daraus folgt sofort die Behauptung.

§ 3. Die universelle Eigenschaft der Garbe der Keime von Pfaffschen Formen

auf komplexen Râumen

(3.0) Ist S ein komplexer Raum, so bezeichnen wir mit MC(S) die Kategorie der

kohârenten 0rModuln. Man weiB, daB Mc(S) eine abelsche Kategorie ist.

(3.1) Sei S ein komplexer Raum, & ein Objekt aus MC(S). Fur jedes J7«

kann man in (0sx^")(C/) folgende Verknûpfung einfiihren: (a9f)(af9f'):ss(<ia'>

af +</*). Damit hat ®s x& die Struktur einer Garbe von Ringen. Fur jedes U= Ûc S
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ist die Abbildung

&sxtF)(U)
a, 0)

ein Ringhomomorphismus, daher kann man (Psx^ die Struktur einer 0s-Algebra
aufprâgen. Mit Os-\-^ bezeichnen wir die so definierte 0s-Algebra.

Offenbar ist (Ps+^ eine kohârente, nilpotent erzeugte 0s-Algebra, daher (2.6)
ist Js(Jr): (5, ®s+^) ein komplexer Raum. Die ^S-Algebra-Struktur von 0$+^
definiert einen Morphismus ;v : Js(^)-+S. Die Projektion von (9S+1F auf den ersten

Faktor definiert einen Morphismus i^iS-^IsÇ^), der eine inf. Erweiterung vom Grad
1 ist.

Ein Homomorphismus/:^-»^"' induziert einen Morphismus @s+#r-*(9s+#r'
und definiert so einen Morphismus /$(/) : 4(^')~* ^sO^)- Man hat also einen Funktor
Is: Mc(S)°->AN deûnkrt.

DEFINITION 3.2. Sei S ein komplexer Raum, & ein kohârenter Modul auf S.

Unter Der(0s, ^) versteht man die abelsche Gruppe aller C-Modul-Garben Homo-

morphismen/von Os in IF, die liber jedem U= ÛczS die Identit&t fu(xy) xfu(y) +
+fu(x) yVx9ye (9S(U) erfullen.

Ist DeT>er(Os, #") und weHom^, &'\ so ist UoDeDer((9Si &'\ also definiert

«^h^Der(^s, &) einen Funktor von ^(5*) in die Kategorie der abelschen Gruppen.
(3.3.1) Ist Z>eDer(0s, 3F\ so definiert die Zuordnung <Ps(U)bx\->(x, Dv(x))e

s{ps-\-^) (U) fur jedes U= ÛcS einen Morphismus ®s-+(9s+&r und damit einen

Morphismus

LEMMA 3.3. Die in (3.3.1) angegebene Zuordnung definiert eine natûrliche Bijek-
tion von Der(0s, ^~) auf die Menge der Linksinversen von />.

Sei S ein komplexer Raum. Die Diagonalabbildung d:S-+SxS ist eine abge-
schlossene Einbettung, lâBt sich also faktorisieren.

> SxS

Hierbei istj die kanonische Injektion. Mit J bezeichnen wir die Idealgarbe von d(S).
Die Garbe Q, genauer Qs, der Keime von Pfaffschen Formen auf S, wird definiert

als die analytische Urbildgarbe d*J von J unter d, vgl. dazu ([7], VII). Man kann
zeigen, daB dièse Définition mit der in ([5]) gegebenen Définition âquivalent ist. Es

ist bekannt, daB die Funktoren Hom(QSi -):MC(S)-+AB, Der((Ps, -):MC(S)-^AB
isomorph sind. Da aber in der Literatur hierfur ein expliziter Beweis nicht zu existieren
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scheint, will ich dies hier, wenn auch nicht in aller Ausfûhrlichkeit, beweisen. Die
Beweisidee ist (EGA, 0, 20.4) entnommen, wo der Differentialmodul linear-topolo-
gisierter Algebren behandelt wird.

d(S)': (d(S)9 ®Sxs/sr2 | d(S)). Man hat eine kanonischeInjektion/:d(S)^û?(S)';
mit i"=(a, e) bezeichnen wir die Komposition ioa; seij':d(S)'->SxS die kanonische

Injektion, mit/?i (a"1, nt)9 /=1, 2, bezeichnen wir die Komposition pr^y".

LEMMA 3.4. Es gibt einen Isomorphismus co:Is(Q)-+d(S)f mitpQ=ploœ.
Beweis: Es ist Qn{pt)+ (kerd), wo 5 durch i=(idd(S)9 9) definiert ist (vgl. [7],

VII). Man mu8 also einen Isomorphismus Is((/?i)* (ker#))-»rf(S)' mit der entspre-
chenden Eigenschaft angeben. Man definiert

ç: 0m. -> a* (0S + (px)m (ker S)) am0s + ker »

z\

fiir offene Mengen Uc:d(S).

(a"1,^): d(S)f -* Is((Pi)* (ker S)) wird so definiert :

^:^ + (Pi)*(kerô)->(a-%^(Sr
(b9x)\ >(*i)i/(*) + *

fiir offene Mengen Ucd(S).
Man rechnet leicht nach, daB (a, ç)) und (a""1, ^) zueinander invers sind und daB

SATZ 3.5. Die Funktoren Hom(O, ~):Mc(Sr)-->AB

5i/irf zueinander isomorph.
Zum Beweis geben wir fur ein Objekt #" aus Mc(»Sr) eine Bijektion Hom(O, #)-?

->Der(^5, &) an; daB dièse Bijektion mit der Gruppenstruktur vertrâglich und daB

sie funktoriell in 3F ist, zeigen wir nicht.
Nach (3.3) ist Der(0s, &) isomorph zu

G:« {ueHom(/S(«F), S):uoi> ids);

nach (3.4) ist Hom(O, #") isomorph zu

oi^ T, p^ ptv}.

Weilp2i'sssids ist, definiert vt~*p2v eine Abbildung a:G'-+G.
t:G->Gf wird wie folgt definiert: Sei ueG. Aus der Définition des direkten Pro-

duktes folgt, daB es genau einen Morphismus z6Hom(/s(«F), Sx S) gibt, sodaB das
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Diagramm

SxS

kommutiert (3.5.1).

Also ist w> pr2 (zï>), /v o ï>=p^ (z*>). Weil we G ist, folgt k/s=pr2 (z/>)=p^ (zî>).
Also ist d=zip. Daraus folgt, daB der durch z gegebene Morphismus ®Sxs-+z*®is(P)
auf y2 verschwindet, also induziert z ein v:Is(^r)-^d(SY mit: z=j'v. Es ist veG'.
In der Tat: j'{vi^)=zi^ d—j'i\ also (y" ist ein Monomorphismus) vi<F i'; ptv

(VTi)J'v=:PTiz~P& (wegen 3.5.1). Man setzt nun x(u): v und hat so eine Abbil-
dung x:G-+G' konstruiert. Aus der Définition von t ergibt sich unmittelbar, daB a
und t zueinander invers sind.

§4. Glatte komplexe Râume

In diesem Kapitel werden mit S, S', T, T", X, X1 stets komplexe Râume bezeichnet.

DEFINITION 4.1. Ein komplexer Raum S heiflt glatt, wenn jede infinitésimale
Erweiterung i:S-*Sf ein Linksinverses besitzt.

SATZ 4.2. Fur jeden komplexen Raum S sind die folgenden Âussagen âquivalent:
1. Sistglatt;
2. Istf: J-»S endlich und i : T->T eine inf. Erweiterung, so gibt es ein ge Hom T\ S)

Beweis:
1. impliziert 2. : Ist S glatt, so besitzt nach (2.7) is:S-+S±±TT' ein Linksinverses.

Aus (1.9) folgt dann die Existenz eines geHom(:T, S) mit f=gi.
2. impliziert L: Man wâhle speziell T=S,f=ids.

SATZ 4.3. Ein komplexer Raum S ist bereits dann glatt, wenn jede inf, Erweiterung
vont Grad eins i:S-+S' ein Linksinverses besitzt.

Beweis: Sei i:S-+S' eine beliebige inf. Erweiterung; / definiert also ein lokal-
nilpotentes Idéal J auf S' und man kann annehmen, daB i die kanonische Injektion
(S, 0s,A,)-+(sj @s) ist. Sn: (S, ®S't,n+i) fur neN. Fur n^m>0 definiert der
kanonische Epimorphismus ^s7^»+i~>^s7^w+1 e*ne in^ Erweiterung i™:Sm-+Sn. Da jedes

eine offene Umgebung U besitzt, derart daB fur ein «seN {J \ Ufs=0 ist, ist

kanonische Morphismus ^s ~*4~^s7^»+l e*n Isomorphismus. Nach (1.11.) ist also

^~-+Sn. Fur aile weN ist offenbar îjj"1 eine inf. Erweiterung vom Grad 1.
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Wir definieren nun induktiv fur jedes n eN, n ^ 0, ein pne Hom (Sn9 So) mitpni°n ids.
Da i? vom Grad 1 ist, gibt es ein px mit pj^ids. Sei fur aile v<n schon px

definiert. Man kann daim das Fasercoprodukt der Morphismen

bilden. Der kanonische Morphismus is von S in das Fasercoprodukt ist eine inf.
Erweiterung vom Grad 1, besitzt also ein Linksinverses. Nach (1.9) gibt es daher ein

pH:SH-+S mit pn-.t ^pJl'1. Es ist ids=pn^.l =pjnn~H*-1 =/V«- Damit pn fur aile

n ^ 1 definiert.
Aus/>„_!=/>„#"x folgt durch Induktion, daB pm=pJn fur aile m^n ist. Es lâfît

sich also jp :=--?/?„ bilden und es ist pi=ids.

SATZ 4.4. Steinsche Mannigfaltigkeiten sind glatt.
Beweis: Sei i:S-*S' eine inf. Erweiterung, *S eine Steinsche Mannigfaltigkeit; o.E.d.A.
ist S zusammenhângend, es gibt also eine abgeschlossene Einbettungy:S-*Cn fur ein

neN. Nach ([8], S. 257) istj(S) ein Umgebungsretrakt, d.h. es gibt eine offene Um-
gebung Uvonj (S) und ein Linksinverses/? der durchy definierten Abbildung/ : S-> U.

Da *S" Steinsch ist, gibt es nach Theorem B ein g:S'-*Cn mit j=gi. Da / inf. ist,
definiert g einen Morphismus g' :S'-+Umitj' =g'i. Also \stpg' ein Linksinverses von L

Im folgenden wird der Begriff ,,projektiv" benutzt. Ein Objekt P einer Kategorie
A heiBt projektiv, wenn fur jeden Epimorphismus u von A die Abbildung Hom(P, u)

surjektiv ist. Ein Objekt P einer abelschen Kategorie ist genau dann projektiv, wenn

jeder Epimorphismus auf P ein Rechtsinverses hat.
Ist S ein komplexer Raum und MC(S) die (abelsche) Kategorie der kohârenten

Moduln auf S, so ist Os genau dann ein projektives Objekt von MC(S), wenn S

Steinsch ist.
Es gilt nun folgendes

THEOREM 4.5. Ist S ein glatter komplexer Raum, so ist Qs ein projektives Objekt

von MC(S).
Beweis: Scif:&~-+Q, Q:=QS, ein Epimorphismus. Zu zeigenist, dafî/ein

Rechtsinverses besitzt.
Der universellen Dérivation d: (9S~+Q entspricht nach (3.2) eindeutig ein Morphismus

ô;Is(Q)-*S. Da Is(f) eine inf. Erweiterung und da ô ein endlicher Morphismus
ist, gibt es (4.2) ein y;Is(^)-*$ mit <5=yo Js(/). Also ids=ôoiQ=yoIs(f) ïfl=y°*V-
Aus (3.2) und (3.4) folgt nun die Existenz eines g.Q-*^ mit y=ôols(g);
ô~ôo Is(g) Is(f)=ôols(fg). Also ist nach

COROLLAR 4.6. Sei S=ScC". Dann sind die folgenden Aussagen âquivalent:

i) S ist Steinsch.
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ii) S ist glatt.
Beweis: i) impliziert ii) : folgt aus (4.4)

^) impliziert i): Nach (4.5) ist Qs—Ol ein projektives Objekt von MC(S).
Auf S gilt also Theorem B und daher ist S Steinsch.

Das folgende Corollar, zusammen mit (4.4), rechtfertigt die Bezeichnung ,,glatt".

COROLLAR 4.7. Jeder glatte Steinsche Raum ist eine Mannigfaltigkeit.
Beweis: Ist S ein glatter Steinscher Raum, so ist Qs ein projektives Objekt von

MC(S), also nach ([2], Satz 6.2) lokalfrei. Die Behauptung folgt nun aus ([7], VII, 3.4).
Es soll nun gezeigt werden, daB jeder holomorph-konvexe glatte Raum eine

Steinsche Mannigfaltigkeit ist. Dazu benôtigen wir die folgenden Lemmata:

LEMMA 4.8. Sei/:X-» F ein endlicher Morphismus, & ein projektives Objekt
in MC(Y). Dann ist/*^) ein projektives Objekt in MC(X).

Beweis: Sei AB die Kategorie der abelschen Gruppen,
T :MC(X)->AB sei durch T : Hom(/*J^, -),
r :Mc(F)->AB sei durch r: Hom(^, -) definiert.
Nach (2.3.) definiert/einen Funktor/*:MC(X)-+Mc(r). Es ist TcaTof*. Da T

und/exakt sind, ist auch Texakt, also ist/*^" projektiv.

LEMMA 4.9. Ist X ein kompakter komplexer Raum, !F ein projektives Objekt
von MC(X), so ist der Trâger von !F eine endliche Menge.

Beweis: Nach ([4], § 2, Satz 6) ist Hom^, 0x) ein endlicher C-Modul, d.h. es

gibt ein «eN mit Hom^, ®x)~Cn. Dann besteht der Trâger von & aus hôchstens

n Punkten. In der Tat, sind x0,..., xn verschiedene Punkte aus Supp(^") und ist J
das Idéal von {x0,..., xn}, so induziert die exakte Sequenz ®x-*®x/s-*Q eine exakte

Sequenz

^, C) -> 0.
i O

Das ist aber ein Widerspruch, denn

Lt=o

SATZ 4.10. Sei X ein glatter, holomorph-konvexer Raum. Dann ist X sogar eine
Steinsche Mannigfaltigkeit.

Beweis: Nach ([12]) gibt es einen Steinschen Raum R{X) und eine eigentliche

Nach (4.8) und (4.9) ist Lt eine endliche Menge. L2 ist
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eine diskrete Menge, also ist f1(fx) ein diskreter Raum. Die Abbildung / ist also

endlich, damit ist X Steinsch, und die Behauptung folgt aus (4.7).

SATZ4.11. Fur einen komplexen Raum X sind folgende Aussagen gleichwertig:
i) X ist eine Steinsche Mannigfaltigkeit
ii) CxXistglatt.

Beweis: i) impliziert ii): das folgt aus (4.4)

ii) impliziert i): Nach ([5], Hilfssatz3.1)ist OCxA:^prÎDc®pr*^ also ist
nach (4.5) (PCxX e*n projektives Objekt von Mc(CxI), denn (PCxJf~pr*&c ist ein

direkter Summand von QCxx- Damit ist Cxi Steinsch, und die Behauptung folgt
aus (4.7).

Im allgemeinen wird wohl ein glatter Raum weder Steinsch noch eine
Mannigfaltigkeit sein. Es gilt aber

SATZ 4.12. Ein glatter Raum, der eine abgeschlossene Einbettung in eine

Mannigfaltigkeit zulâfit, ist eine Mannigfaltigkeit.
Beweis: Sei i:S-+Xeine abgeschlossene Einbettung, S sei glatt, Zsei eine

Mannigfaltigkeit. Dann hat man ([7], VII, 4.2) einen kanonischen Epimorphismus/?:/*&*-?
-»OS. Nach (4.5) besitzt/? ein Rechtsinverses; da i*Qx lokalfrei ist, ist also auch Qs

lokalfrei und daraus ergibt sich die Behauptung.

§ 5. Gewôhnliche Punkte in komplexen Râumen

Mit C[<Z1,..., Xrt>] bezeichnen wir die C-Algebra der Potenzreihen aus C[[Xl5
Xj], die in einer Umgebung des Ursprungs des Cn konvergieren. A heiBt analy-

tische Algebra (ûber C), wenn es einneN und einen Epimorphismus von C-Algebren
C [<X1,..., Xn}]-+A gibt. Mit den C-Algebra-Homomorphismen als Morphismen bil-

den die analytischen Algebren eine Kategorie ANAL, die antiâquivalent ist zur Kate-

gorie der Keime von komplexen Râumen.
Das analytische Tensorprodukt zweier analytischer Algebren A und B ist das Co-

produkt von A und B in ANAL und wird daher mit A J [_B bezeichnet.

Ist A eine analytische Algebra, so bezeichnen wir mit QA den ^4-Modul der Pfaff-

Formen auf A. Man hat eine universelle Dérivation d:A-+QA und fur jeden endlichen

>4-Modul M definiert/W/rf einen Isomorphismus HomA(QA, M)-+Der(A, M).

DEFINITION 5.1.

a) Ein Objekt B aus ANAL heiBt gewôhnlich, wenn es Objekte A, C aus ANAL
gibt mit: B~A±±C, dim C=0, A ist regulâr.

b) Sei X ein komplexer Raum, xeX; x heiBt gewôhnlicher Punkt von X9 wenn

@x,x gewôhnlich ist.
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c) Ein komplexer Raum A'heifit gewôhnlich, wenn Znur aus gewôhnlichen Punk-
ten besteht.

Der Begriff stammt von Grauert ([4]). Er nennt einen komplexen Raum X regulàr in
xeX, wenn es eine offene Umgebung von x gibt, die biholomorph auf das direkte
Produkt einer Mannigfaltigkeit mit einem einpunktigen komplexen Raum abgebildet
werden kann. Offenbar ist X genau dann regulâr in x (in diesem Sinne), wenn x ein

gewôhnlicher Punkt von X ist.

In diesem Paragraphen soll gezeigt werden, daB die gewôhnlichen Punkte eines

komplexen Raumes das Komplement einer analytischen Menge bilden. Hierzu braucht
man einen gewissen ,,Rang"-Begriff von Moduln:

DEFINITION 5.2. Sei A ein kommutativer Ring, M ein endlich erzeugter A-
Modul. Dann wird das Maximum der Menge {«eN: es gibt einen Epimorphismus
M-*An) mit r (M) bezeichnet.

LEMMA 5.3. Sind M, N endlich erzeugte ^4-Moduln, A ein lokaler Ring, so ist

Den einfachen Beweis iibergehen wir.
Ist M ein ^4-Modul, so hat man fur jedes neN einen kanonischen Homomorphis-

mus cpn: f\nM*®A /\nM^>A, der durch

<P»((/i a-a/„)$(!»! a--a mn)):= dît (f^mj))

definiert ist.

LEMMA 5.4. Ist A ein lokaler Ring, M ein endlich erzeugter ^4-Modul, neN,
so gilt: q>n ist genau dann surjektiv, wenn r (M)^n ist.

Auch hier iibergehen wir den einfachen Beweis.

Im Rest des Paragraphen werde ein komplexer Raum stets mit der Zariski-Topo-
logie versehen, d.h. eine Teilmenge ist genau dann abgeschlossen, wenn sie analytisch
ist.

SATZ 5.5. Sei & ein kohârenter Modul auf dem komplexen Raum X. Dann ist
die Abbildung r : X->Z

halbstetig nach unten.
Beweis: Sei neN; die Garbe t\n^*®oxl\n^ *st kohârent und die Zuordnung

ûber U^
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definiert einen Homomorphismus

n n

Nach (5.4) ist {xeAr:r(«^rJC)<«} Supp(coker cpn), also eine analytische Menge.

DEFINITION 5.6. Ist A eine analytische Algebra, so wird mit q (A) das Maximum
der Menge

{neN: es gibt ein Objekt B aus ANAL mit: AczB±±C[(X±,..., Xn}~\}

bezeichnet.

Der folgende Satz ist eine hier nutzliche Formulierung eines Résultâtes von Rossi

([11], Cor. 3.4).

SATZ 5.7 (Rossi). Ist A eine analytische Algebra, so ist Q(A) r(QA)
Beweis: r(QA)^g{A)\ trivial, man vgl. ([5], Hilfssatz 3.1). r(QA)^Q(A): Beweis

durch Induktion nach r(QA):
Fur r(QA) 0 ist nichts zu beweisen. Sei also die Behauptung fur aile 0^i<n

~r(QA) schon bewiesen. Also ist Q(A)^n—l9 also gibt es ein Objekt B aus ANAL,
sodaB A~BJ LC[<Xl5..., Xn-Xy2 ist. Man hat eine kanonische Injektion i:B-^A;
es ist ([5], Hilfssatz 3.1): QA^An'1®(QA®BA). Nach (5.3) ist also r(QB®BA)>\,
da /linksinvertierbar ist, folgt daraus daB r(QB)^l ist. Es gibt also ah bteB, l^i^m,
und ein/eHom(£B, B)9 sodaB fflt:f(a1db1+-" +amdbm)=l. Da B ein lokaler Ring
ist, kann man annehmen, daRfÇdb^) inversibel ist, also ist (f(dbi))~î-(fod)=:D
eine Dérivation von B mit: D(bi)-l. Nach ([11], 3.2) folgt daraus, daB q(B)^ 1 ist;
also ist Q(A)^n—l +1=«.

Aus (5.7) und (5.5) folgt sofort folgendes

COROLLAR 5.8. Ist X ein komplexer Raum, so ist die Abbildung
q : JSf-» Z halbstetig nach unten.

COROLLAR 5.9. Ist X ein komplexer Raum, so bilden die nicht gewôhnlichen
Punkte von X eine analytische Menge.

Beweis: Die durch x^àimOXx definierte Abbildung ô:X^Z ist halbstetig nach

oben, also ist nach (5.8) q — ô:X-+Z halbstetig nach unten, also ist

{xsX: (9Xx ist nicht gewôhnlich} {xeX:(g-~ô) (x)< -1}
eine analytische Menge.
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§ 6. Beispiel eines komplexen Raumes ohne gewôhnliche Punkte.

LEMMA 6.1. Sei p:X'-+X ein rechtsinvertierbarer infinitesimaler Morphismus
in AN, dabei sei X eine Mannigfaltigkeit. Dann sind fur ein xeX' die folgenden
Aussagen âquivalent:

i) x ist ein gewôhnlicher Punkt von X'
ii) p ist in x lokaltrivial.
Beweis: i) impliziert ii): Die Aussage ist lokaler Art, lâBt sich also innerhalb der

Kategorie ANAL ausdrùcken:
Der Morphismus f:A C[(X1,...l> Xny\-*B besitze ein Linksinversesp\ es gebe

einen Isomorphismus g : B-^A J \_C mit dim C=0. Dann gibt es einen Isomorphismus
g' : B-+A _L J_ (B ®A C) derart dafig/die kanonische Injektion A-+A J_J_ (B®A C) ist.

Um dies nachzuweisen, muô man nach ([5], Satz 3.3) zeigen, daB es zu jedem
DeDer(A, A) ein D"eDer(B, B) gibt mitfoD D"of. Sei q:A±±C-*A die
kanonische Projektion. Da kerp'g^cker^ ist, gibt es ein h:A-+A mit hq=p'g~1; also

ist h surjektiv, also sogar bijektiv./2:=g/7i; es ist hqf2=p'g~1 ogfh h, also qf%~idA.
Zu jedem DeDer(^, A) gibt es ein D'eDer(A±±C, A±±C) mit: D'f2=f2D.

Inder Tat: Mittels der kanonischen Injektion fasse man A als Unterring von A J \_C
auf. Wegen qfi — idA hif2{X^ XiJtah at nilpotent, fur K/<n. Seien Dh l<i<n,
die elementaren Derivationen auf ^4; sie lassen sich zu Derivationen Dt auf A J LC
fortsetzen. Da D^aj) nilpotent ist fur 1 Ki9j^n9 ist det(3t(f2(Xj))) eine Einheit in

Es gibt also ein (ao)eGL(«, y4J_.lC) derart daB fur aile l^i,j^n gilt:

Setzt man /)'f Xv aiv^^ so ist fur <i<n D'iof2=f2Di.
SQinunDeDQr(A,A).EsgibtemDieBcr(A±±C,A±±C)mitDlf2=f2h'1Dh.

Also D1gfh=gfhh~1Dh=gfDh9 also g~1D1gf=fD. Setzt man D"\=g~1Dig, so ist
also D"f=fD.

ii) impliziert i) : trivial.
(6.2) Sei ^4 ein kommutativer Ring, ueA. In ^47 definiert man wie folgt eine

-4-Algebra Struktur. Seien eh 0</<6, die kanonischen Basisvektoren des A1.

Man setze: e^e{ =ei*e0=ei

Man definiere A-+A1 durch oh-*a*^0. Dadurch wird A1 zu einer unitâren, kommuta-
tiven, assoziativen ^4-Algebra und wird als solche mit Au bezeichnet.

Ist (S9 se) ein geringter Raum, ueF(S, stf\ so wird die j^-Algebra s/u durch
definiert.
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SATZ 6.3. Sei k ein Kôrper, A eine nullteilerfreie k-Algebra, ueA. Ist D eine

k-lineare Dérivation von A in sich und ist Z>(w)#O, so lâfit sich D nicht zu einer Dérivation

von Au in sich fortsetzen.
Beweis: Mann kann annehmen, dafi A ein Kôrper ist (ansonsten betrachtet man

den Quotientenkôrper von A). Angenommen, D lasse sich zu einer Dérivation Dr

von Au fortsetzen. Dann ist:

6

D'(e0= Z xijep *ue^> also

6

D'{e2) 2et £ x^j 2x^(^5 + w4"1^) + 2xiOet fiir 1 ^ i < 4;

daneben ist fiir

(denn man kann annehmen, da8 D(u)= 1 ist).
Zieht man dièse Gleichungen voneinander ab und multipliziert sie mit w, so liefert

ein Koeffizientenvergleich

2uxu - ux55 - ulx65 0 (I)

2u% - wx56 - (i - 1) m1" 1 - t/fx66 0 (II)

Multipliziert man nun (I) mit m1""1 und subtrahiert dann davon (II), so erhàlt man

i 2ii(i-l)ui-1 fur l</<4.
Hieraus folgt, indem man /= 1 setzt, dafi x56=x65 +x55 ~-x66 ist. Fiir 2</<4 ist also

(X55 - X66) (Uf - tl) + X65CU21-1 - II) - (i - 1) U^1

Also ist

u2

u3

H4

— U

-u
— u

u3

u5

u1

— u

— M

-M

u
lu2
3«3 0.

Also ist u algebraisch iiber dem Primkôrper von k. Das ist aber unmôglich, denn

D(«)#0. Also hat man einen Widerspruch.
Man kann nun komplexe Râume ohne gewôhnliche Punkte angeben:

COROLLAR 6.4. Sei (S, *j/) eine komplexe Mannigfaltigkeit, uer(S, s/) sei auf

keiner Komponente von S konstant Dann ist (S, <stfu) ein komplexer Raum ohne

gewôhnliche Punkte.
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Beweis: DaB (S, stfu) ein komplexer Raum ist, folgt aus (2.6). Sei se S beliebig.
Wegen (6.1) muB man zeigen, daB der Strukturmorphismus (S, stfu)-*{S, s/) in s

nicht lokaltrivial ist. Hierzu muB nach (6.3) und ([5], Satz 3.3) nur nachgewiesen
werden, daB es ein 2)eDer(*s/s, j/s) gibt mit D(us)^0. Dies aber ist klar, da us kein
konstanter Funktionskeim ist.

Beispiel: Ist zeF(C, @c) die Koordinatenfunktion, so ist (C, $£) :% e*n
komplexer Raum ohne gewôhnliche Punkte. X lâBt sich realisieren als der Unterraum des
C7 (mit den Koordinaten funktionen z0,...,z6), der definiert wird durch das Idéal

/ 6 \3

V=i /
(6.5) Es gibt ùberabzâhlbar viele, paarweise nicht isomorphe, einpunktige kom-

plexe Râume. Dies folgt sofort aus dem folgenden Corollar.

COROLLAR 6.6. Sei Kein Kôrper der Charakteristik0; u, veKseien algebraisch
unabhângig ûber Q. Dann sind die ^-Algebren Ku und Kv nicht isomorph.

Beweis: Da v transzendent ûber Q(w) ist, gibt es eine Q(w)-lineare Dérivation
D.K-+K mit: D(v)^0. Da D(w) 0 ist, lâBt sich D zu einer Dérivation D' von KU

in sich fortsetzen. Angenommen, es gebe einen X-Algebra-Isomorphismus/:^-»^".
Dann wâre/^oiT/eine Fortsetzung von D auf Kv. Da (Z"1/)'/) (v)¥*0 ist, ist das
ein Widerspruch zu (6.3).

Aus (6.6) folgt (6.5), wenn man K—C setzt und beachtet, daB eine Transzendenz-
basis von C uber Q eine iiberabzâhlbare Menge ist.

§ 7. Globale Eigenschaften gewôhnlicher Râume

Unter einem ,,mehrfachen Punkt" verstehen wir im Folgenden einen einpunktigen
komplexen Raum. Ist p:Xf ->X eine holomorphe Abbildung, so heiBt {X\p, X) ein
Bûndel mehrfacher Punkte, wenn es einen mehrfachen Punkt So gibt, sodaB (Xf, p, X)
ein analytisches Faserbûndel mit So als typischer Faser und der komplexen Liegruppe
Aut(£0) als Strukturgruppe ist.

(7.1) Ist (X',p9 X) ein Biindel mehrfacher Punkte, Zeine Mannigfaltigkeit, so ist
X' ein gewôhnlicher Raum und es ist X~X'rcd. Es ergibt sich also die Frage, zu wel-
chen gewôhnlichen Râumen X' es eine holomorphe Abbildung/? :X'->Xr'ed gibt, sodaB
(X'9 p, Xr'cd) ein Bûndel mehrfacher Punkte ist.

Ist X' ein gewôhnlicher Raum, X:=X'red9 i\X-*X' die kanonische Einbettung, so
gelten die folgenden Aussagen:

(7.1.1) Ist p ein Linksinverses von i, so ist (Xf, p9 X) ein Bûndel mehrfacher Punkte.
(7.1.2) Gibt es ein//eHom(JT, X), derart daB (JT,/, X) ein Bûndel mehrfacher

Punkte ist, so ist i linksinvertierbar.
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(7.1.1) folgt aus (6.1) und ([10], Satz 1).

Zum Beweis von (7.1.2): Ist (X',p', X) ein Bûndel mehrfacher Punkte, so ist/?,ed
ein biholomorpher Automorphismus von X, also ist (pred)~x op' ein Linksinverses von /.

Aus (4.4) und (7.1.1) folgt sofort der folgende Satz:

SATZ 7.2 Ist X ein gewôhnlicher Steinscher Raum, so besitzt die Reduktionsab-

bildung XTed-+X ein Linksinverses p und (X,p, Xrcà) ist ein Bûndel mehrfacher Punkte,

COROLLAR 7.3 Ist X ein gewôhnlicher Steinscher Raum und ist Xred kontrakti-
bel, so gibt es einen mehrfachen Punkt Z mit der Eigenschaft I^ZxIred.

Beweis: A" ist ein Faserbûndel ûber Xred. Da das assoziierte Prinzipalbiindel unter
den gemachten Voraussetzungen nach Grauert ([3]) trivial ist, folgt die Behauptung.

Es gibt viele gewôhnliche Râume, die nicht ein Faserbûndel iiber ihrer Reduktion
sind. Das folgt aus (7.1.2) und dem folgenden Satz.

SATZ 7.4 Sei X= le C" nicht holomorph-konvex. Dann gibt es eine inf. Erweite-

rung i:X->X' mit folgenden Eigenschaften:
1. X' ist ein gewôhnlicher Raum
2. / ist nicht linksinvertierbar.
Beweis: Nach ([1]) gibt es auf X endlich viele holomorphe Funktionen ohne

gemeinsame Nullstellen, die sich nicht linear zu 1 kombinieren lassen. Es gibt also

fur ein seN einen Epimorphismus ®x-+®x> der nicht rechtsinvertierbar ist. Also gibt
es fur ein reN einen Epimorphismus/: @rx-*QX9 ^er nicht rechtsinvertierbar ist.

Die universelle Dérivation d:(Px-^Qx definiert nach (3.2) ein ô:Ix(Qx)-+X- Man

definiert nun X' als das Fasercoprodukt der Morphismen <5 und Ix(f) und man

definiert i als den kanonischen Morphismus von ^ in X\ Nach (2.7) ist JT einkom-
plexer Raum und i eine inf. Erweiterung. Man zeigt leicht (vgl. den Beweis zu (4.5)),

da8 i nicht linksinvertierbar ist, da/nicht rechtsinvertierbar ist.

Ist U= ÙczX Steinsch, so besitzt nach (4.4) /1 U ein Linksinverses; daraus folgt

schnell, dafi (U, Qx. \ V)^îvi^&tf\ U) ist.

Da ker/lokalfrei ist, hat man gezeigt, daB X' ein gewôhnlicher Raum ist.

§ 8. Globale Funktionen auf infinitesimalen Erweiterungen

(8.1) Sei Sein komplexer Raum, J*", 9 Objekte aus Mc(5), DeDer(^s, ^),
ein Epimorphismus. Dann definiert D nach (3.3.1) ein 5eHom(/s(^s)» s)-
eine inf. Erweiterung, es lâBt sich also nach (2.7) das Fasercoprodukt der

Morphismen ô und Is(f) bilden; es werde mit SDf bezeichnet. Man hat einen

kanonischen Morphismus is:$-+$Dtf. Die durch is gegebene Abbildung r(SDtp
®sDJ~»r(S9 <PS) wird mit pDtf bezeichnet. Ist aer(S, (Ps)9 so wird fur r(S, D) (à)

kurz: D(a) geschrieben. Aus der Définition von SDtf folgt sofort:
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(8.1.1) Ist aeimpDtf, so gibt es ein meF (S, ^), fur welches gilt:
D(a) F(SJ)(m).

DEFINITION 8.2 Der komplexe Raum S hat die Eigenschaft E, wenn bei jeder
inf. Erweiterung (ids, n):S-*S' die Abbildung F(S, n):F(S, @s)->r(S9 <PS) surjektiv
ist. Aus Theorem B folgt, daB jeder Steinsche Raum die Eigenschaft E hat. Di
Umkehrung hiervon gilt nicht, denn jeder irreduzible kompakte Raum hat die Eigenschaft

E. Es gilt aber:

SATZ 8.3 Der komplexe Raum S habe die Eigenschaft E. Gibt es ein Z)eDer(0s,
Û)s) und ein ao€F(S, (Ps) mit D(ao)=l, so ist S Steinsch.

Beweis: Sei/:^->0s ein Epimorphismus in Mc(5). Mit den Bezeichnungen von
(8.1) gilt also: pDf ist surjektiv. Also ist aoeimpDf. Nach (8.1.1) existiert ein meF(S9
IF) mit F(S,f) (m)=l. Also ist / rechtsinvertierbar. Daher ist @s ein projektives
Objekt von MC(S), und daraus folgt die Behauptung.

COROLLAR 8.4 Sei S ein komplexer Raum. Hat S x C die Eigenschaft E, so
ist S Steinsch.

(8.5) Beispiel eines komplexen Raumes S', der folgende Eigenschaften hat:
i) S'ist nicht holomorph-konvex
ii) S: S'red ist holomorph-konvex.
Man wâhle S:=PX x C. Da Px nicht Steinsch ist, gibt es einen Epimorphismus von

kohârenten Modulgarben/':^'-»^ derart, daB r(P1?/') nicht surjektiv ist. Also

istr(P1,/0 O.

/ : prf /', J^: pr? J*"\ Offenbar ist

/ : ^ -> (9S ein Epimorphismus und F (S, f) 0.

2>: ~GDer(0s, (Ps)
oz

sei die partielle Ableitung nach der Variablen von C. D und / definieren nach (8.1)
den komplexen Raum S': SDff. Offenbar ist S'Ttd=S. S'ist nicht holomorph-konvex.
In der Tat: Sei aeimpD)f. Nach (8.1.1) gibt es ein meF(S, &) mit D(a)=F(S,f) (m),
also ist D(a)=0. Also ist a konstant. Die Werte jeder globalen Funktion auf S'
sind also konstant. S' ist also nicht holomorph-konvex, da *S" nicht kompakt ist.

(8.6) Ist S ein zusammenhângendes Riemannsches Gebiet ûber dem C, /i>1,
welches nicht holomorph-vollstândig ist, so kann ein komplexer Raum Sr konstruiert
werden mit den folgenden Eigenschaften:

ii) Jeder Morphismus S'-+C ist als Funktion konstant.
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Sei Ê die Holomorphiehiille von S. Mann wâhlt eine konvergente Folge
(sn)neiN von Punkten aus S9 derart daB gilt:

sneS fiir aile neN, s: lim sneS\S, sn ^ sm fur n # m.

Fiir weN sei mn das zum PunktsneS gehôrige kohârente 0S-Ideal.«/: HneiN m!l-

Ein $s-linearer Automorphismus a von s/: OsjJ wird wie folgt definiert: Fur
weN sei aSn die Multiplikation mit (—1)". Es $eip:@s-+<s/ die kanonische Projektion.
Mit 3F werde das Faserprodukt von p und (xop bezeichnet; man hat kanonische

Morphismen pl9p2 mit <Xopop1=pcp2. pt ist ein Epimorphismus und F(S9p1)=0.
In der Tat: Sei aeimF(S,p1). Es gibt dann ein beF(S9 (Ps) mit ps(b) (<xsops) (a).
Also ist (6 — (— l)na)sn etîtJI fur aile «eN. Da sich a und b in denPunkt.yeSholomorph
fortsetzen lassen, folgt as=ès=0. Also a=6=0, da S zusammenhângend ist.

Es gibt einen Isomorphismus /?:$2~OS; man setze f:=Popï:&rn-+Qs und
d: @S-+QS sei die universelle Dérivation. Dann hat S': SDtf (vgl. 8.1) diegewiinschten
Eigenschaften, wie sofort aus (8.1.1) folgt.
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