Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 45 (1970)

Artikel: Hinreichende Bedingungen für die Regularität einer komplexen

Funktion.

Autor: Meier, Kurt

DOI: https://doi.org/10.5169/seals-34657

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Hinreichende Bedingungen für die Regularität einer komplexen Funktion¹)

Von Kurt Meier (Zürich)

In einem beschränkten Gebiet der z-Ebene (z=x+iy) sei eine komplexe Funktion f(z) definiert. Wir setzen voraus, dass f(z) in allen Punkten von G endliche partielle Ableitungen f_x and f_y besitzt, welche in fast allen Punkten von G die Cauchy-Riemannsche Bedingung $f_x+if_y=0$ erfüllen.

Schon unter diesen Voraussetzungen lässt sich beweisen, dass es Teilgebiete von G gibt, in welchen f(z) regulär analytisch ist. Wie aus dem von P. Montel angegebenen Beispiel $f(z) = e^{-1/z^4}$, f(0) = 0 hervorgeht, darf aber aus diesen Voraussetzungen nicht auf die Regularität von f(z) in G geschlossen werden.

Unter der zusätzlichen Voraussetzung, dass f(z) in G die Werte 0, 1 und ∞ nicht annimmt, steht hingegen die Regularität von f(z) in G fest. Dies ist die Behauptung, die wir in der vorliegenden Arbeit beweisen werden.

An die Funktion f(z) stellen wir demnach die folgenden Bedingungen:

- I. f(z) nimmt in G die Werte 0, 1 und ∞ nicht an.
- II. In jedem Punkt z von G besitzt f(z) endliche partielle Ableitungen f_x und f_y .
- III. In fast allen Punkten von G ist $f_x + if_y = 0$.

Damit können wir jetzt den zu beweisenden Satz folgendermassen aussprechen:

Sind die Bedingungen I, II und III erfüllt, so ist f(z) in G regulär analytisch.

Für den Fall, dass anstelle von I die Beschränktheit von f(z) in G vorausgesetzt wird, hat G. P. Tolstov [3] diesen Satz bewiesen.

Den Beweis unseres Satzes führen wir folgendermassen durch: Wir zeigen zunächst, dass aus den Bedingungen I, II und III die Stetigkeit von f(z) in G folgt. Als Hilfsmittel verwenden wir dabei einen Satz von W. Gross ([1], p. 292): Münden in z_0 zwei vom gleichen Punkt ausgehende Jordanwege W_1 , W_2 , welche ein einziges Innengebiet D begrenzen, ist ferner f(z) in D und auf seinem Rand mit Ausnahme von z_0 meromorph und strebt f(z) bei Annäherung von z_0 auf W_1 und W_2 gegen den gleichen Grenzwert a, so strebt entweder f(z) für $z \rightarrow z_0$ in D gleichmässig gegen a oder f(z) nimmt in D jeden Wert mit höchstens zwei Ausnahmen unendlich oft an.

Nach dem Satz von Looman-Menchoff ([2], p. 199) ist eine in G stetige Funktion f(z), welche die Voraussetzungen II und III erfüllt, in G regulär analytisch. Auf diesen Satz berufen wir uns am Schluss des Beweises.

¹⁾ Die Ausführung dieser Arbeit wurde ermöglicht durch einen Beitrag aus dem Schweizerischen Nationalfonds.

Beweis. Unter A verstehen wir die Menge derjenigen Punkte des Gebietes G, in welchen f(z) regulär analytisch ist und unter B das Komplement von A in bezug auf G. Auf Grund der Voraussetzungen I, II und III haben wir zu beweisen, dass die Punktmenge B leer ist.

Wir definieren zu jeder natürlichen Zahl n folgendermassen eine Punktmenge B_n : ζ ist Element von B_n , falls die Kreisscheibe $|z-\zeta| < 2/n$ dem Gebiet G angehört, und ausserdem für $|h| \le 1/n$ (h reell) die Bedingungen $|f(\zeta+h)-f(\zeta)| \le n|h|$, $|f(\zeta+ih)-f(\zeta)| \le n|h|$ erfüllt sind.

Wir beweisen zunächst, dass die Punktmengen B_n (n=1, 2, 3, ...) abgeschlossen sind.

Es sei $\zeta_0 = \xi_0 + i\eta_0$ ein Häufungspunkt von B_n und $\zeta_{\lambda} = \xi_{\lambda} + i\eta_{\lambda}$ ($\lambda = 1, 2, 3, ...$) eine gegen ζ_0 konvergierende Folge von Punkten der Menge B_n . Ist $|h| \le 1/n$, so bestehen die Ungleichungen $|f(\zeta_{\lambda} + h) - f(\zeta_{\lambda})| \le n |h|$ und $|f(\zeta_{\lambda} + ih) - f(\zeta_{\lambda})| \le n |h|$ ($\lambda = 1, 2, 3, ...$)

Die Gültigkeit dieser Ungleichungen ist nun auch für $\lambda = 0$ nachzuweisen. Wir führen den Beweis nur für die Ungleichung $|f(\zeta_0 + h) - f(\zeta_0)| \le n |h|$ und beschränken uns zudem auf den Fall $0 < h \le 1/n$. Die Zahl h bleibt während der folgenden Uberlegung fest. Um dies anzudeuten setzen wir $h = h_0$.

Nach der Voraussetzung II unseres Satzes ist f(z) bei festem y eine in x stetige Funktion. Wird x festgehalten, so ist f(z) stetig als Funktion von y. Dasselbe gilt auch für

$$F(z) = \frac{f(z+h_0) - f(z)}{h_0}.$$

Ist ε eine beliebig kleine positive Zahl, so können wir daher einen Punkt $\zeta_0' = \zeta_0 - \sigma_0 (0 < \sigma_0 < h_0)$ so festlegen, dass

$$|F(\zeta_0') - F(\zeta_0)| \leqslant \varepsilon \tag{1}$$

ist. Ferner gibt es im Intervall $(0, h_0)$ eine Zahl t_0 mit der folgenden Eigenschaft: Für $|t| \le t_0$ (t reell) ist

$$|F(\zeta_0' + it) - F(\zeta_0')| \le \varepsilon \tag{2}$$

Mit R_0 bezeichnen wir die offene Rechteckfläche mit den Ecken

$$\zeta'_0 - it_0, \qquad \zeta'_0 - it_0 + h_0, \qquad \zeta'_0 + it_0 + h_0, \qquad \zeta'_0 + it_0.$$

Der Punkt ζ_0 liegt in R_0 und die Punktfolge $\{\zeta_{\lambda}\}$ ($\lambda = 1, 2, 3, ...$) konvergiert gegen ζ_0 . Es sei $\zeta^* = \xi^* + i\eta^*$ ein in R_0 liegender Punkt dieser Folge und $\zeta_0'' = \zeta_0' + i(\eta^* - \eta_0)$. Wegen $|\eta^* - \eta_0| < t_0$ gilt jetzt nach (2)

$$|F(\zeta_0'') - F(\zeta_0')| \leqslant \varepsilon \tag{3}$$

Der Punkt ζ^* liegt auf der Strecke mit den Endpunkten ζ_0'' und $\zeta_0'' + h_0$. Wegen

 $\zeta^* \in B_n$ bestehen die Ungleichungen

$$|f(\zeta_0'' + h_0) - f(\zeta^*)| \le n |\zeta_0'' + h_0 - \zeta^*|, \qquad |f(\zeta_0'') - f(\zeta^*)| \le n |\zeta_0'' - \zeta^*|,$$

welche die folgende Abschätzung ermöglichen; $|f(\zeta_0'' + h_0) - f(\zeta_0'')| \le |f(\zeta_0''' + h_0) - f(\zeta_0''')| \le |f(\zeta_0''' + h_0) - f(\zeta_0''' + h_0) - f(\zeta_0'' + h_0) - f(\zeta_0'''$

$$|f(\zeta_0''+h_0)-f(\zeta^*)|+|f(\zeta_0'')-f(\zeta^*)| \leq n|\zeta_0''+h_0-\zeta^*|+n|\zeta_0''-\zeta^*|=nh_0.$$

Aus dieser Abschätzung folgt $|F(\zeta_0'')| \le n$ und daraus weiter auf Grund von (3) und (1) $|F(\zeta_0)| \le n + 2\varepsilon$. Diese Ungleichung ist aber für jede beliebig kleine positive Zahl ε gültig. Folglich ist $|F(\zeta_0)| \le n$, also $|f(\zeta_0 + h_0) - f(\zeta_0)| \le nh_0$.

Da die Kreisscheibe $|z-\zeta_0| < 2/n$ offensichtlich in G liegt, steht jetzt fest, dass die Punktmengen B_n (n=1, 2, 3, ...) abgeschlossen sind.

Nun folgt aus der Voraussetzung II eine weitere wichtige Aussage über die Mengen B_n : Ihre Vereinigungsmenge ist mit G identisch. Ist nämlich ζ ein beliebiger Punkt von G, so gilt $\zeta \in B_n$ für jede hinreichend grosse natürliche Zahl n.

Entgegen der Behauptung unseres Satzes nehmen wir nun an, die Punktmenge B sei nicht leer. Ihrer Definition entsprechend ist B eine in G abgeschlossene Punktmenge. Wir haben nachgewiesen, dass sie durch die abgeschlossenen Punktmengen B_n vollständig überdeckt wird. Nach einem Satz von R. Baire ([2], p. 54) gibt es daher eine natürliche Zahl n_0 und ein Teilgebiet G_0 von G derart, dass der Durchschnitt $B_0 = B \cap G_0$ eine nichtleere Teilmenge von B_{n_0} ist. Demnach sind nun in sämtlichen Punkten ζ von G0 für $|h| \leq 1/n_0$ die folgenden Bedingungen erfüllt:

$$|f(\zeta+h)-f(\zeta)| \le n_0 |h|, \qquad |f(\zeta+ih)-f(\zeta)| \le n_0 |h| \tag{4}$$

Die Tatsache, dass B_0 nicht leer ist, spielt am Schluss des Beweises eine entscheidende Rolle.

Sind $\zeta_1 = \xi_1 + i\eta_1$ und $\zeta_2 = \xi_2 + i\eta_2$ zwei Punkte von B_0 , welche die Voraussetzungen $|\xi_2 - \xi_1| \le 1/n_0$, $|\eta_2 - \eta_1| \le 1/n_0$ erfüllen, so gilt

$$|f(\zeta_2) - f(\zeta_1)| < 2n_0 |\zeta_2 - \zeta_1| \tag{5}$$

Bezeichnen wir nämlich mit ζ' den Punkt $\xi_2 + i\eta_1$, so ist nach (4)

$$|f(\zeta_{2}) - f(\zeta')| \leq n_{0}|\zeta_{2} - \zeta'|, |f(\zeta') - f(\zeta_{1})| \leq n_{0}|\zeta' - \zeta_{1}| \text{ und damit}$$

$$|f(\zeta_{2}) - f(\zeta_{1})| \leq |f(\zeta_{2}) - f(\zeta')| + |f(\zeta') - f(\zeta_{1})| \leq n_{0}|\zeta_{2} - \zeta'| + n_{0}|\zeta' - \zeta_{1}| < 2n_{0}|\zeta_{2} - \zeta_{1}|.$$

Nun sei $z_0 = x_0 + iy_0$ ein beliebiger Punkt von B_0 und Q_0 ein Quadrat $|x - x_0| \le q_0$, $|y - y_0| \le q_0$. Die positive Zahl q_0 wählen wir so, dass Q_0 ganz in G_0 liegt und ausserdem die Bedingung $q_0 < 1/n_0$ erfüllt ist. Wie aus der Voraussetzung II hervorgeht, ist die Funktion

$$\phi(z) = \frac{f(z) - f(z_0)}{z - z_0}$$

auf dem Rand des Quadrates Q_0 stetig. Dabei ist zu beachten, dass in dieser Aussage die Funktion ϕ nur auf dem Rand von Q_0 betrachtet wird. Es gibt demnach eine Schranke N_0 derart, dass $4|\phi(z)| \leq N_0$ für alle Randpunkte z von Q_0 gilt. An N_0 stellen wir noch die zusätzliche Bedingung $N_0 > 8n_0$.

Wir beweisen nun, dass unter der Bedingung $z \in Q_0$ die folgende Ungleichung gültig ist:

$$|f(z) - f(z_0)| \le N_0 |z - z_0| \tag{6}$$

Durch die Geraden $x=x_0$ und $y=y_0$ wird Q_0 in vier Quadrate zerlegt. Mit C_0 bezeichnen wir das Quadrat $x_0 \le x \le x_0 + q_0$, $y_0 \le y \le y_0 + q_0$ und mit Γ_0 seinen Rand. Den Beweis von (6) führen wir nur für den Fall $z \in C_0$.

Liegt z auf Γ_0 , so gilt

$$|f(z) - f(z_0)| \le \frac{N_0}{4} |z - z_0| \tag{7}$$

denn für die beiden Seiten des Quadrates C_0 , welche auf dem Rand von Q_0 liegen, ist bereits $|\phi(z)| \le N_0/4$, und für die beiden andern Seiten folgt (7) aus (4) wegen $N_0 > 8n_0$.

Ist z ein innerer Punkt von C_0 , so unterscheiden wir die beiden Fälle $z \in B_0$ und $z \in A_0$. Dabei verstehen wir unter A_0 das Komplement von B_0 in bezug auf G_0 .

Im ersten Fall sind für die Punkte $z_0 = x_0 + iy_0$ und z = x + iy die Bedingungen $z_0 \in B_0$, $z \in B_0$, $|x - x_0| < q_0$ und $|y - y_0| < q_0$ erfüllt, wobei $q_0 \le 1/n_0$ ist. Aus (5) folgt unter diesen Bedingungen $|f(z) - f(z_0)| < 2n_0|z - z_0|$, und damit ist wegen $N_0 > 8n_0$ die Ungleichung (6) erfüllt.

Der Beweis von (6) für den Fall $z \in A_0$ bereitet erhebliche Schwierigkeiten.

Es sei $z=Z_0$ ein beliebiger Punkt von A_0 , welcher im Innern des Quadrates C_0 liegt. Diesen Punkt halten wir während den folgenden Überlegungen fest.

Zunächst schliessen wir aus der Voraussetzung II, dass der Differenzquotient

$$\frac{f(Z_0)-f(z_0-\delta)}{Z_0-z_0+\delta},$$

als Funktion der reellen Veränderlichen δ betrachtet, an der Stelle $\delta=0$ stetig ist. Es ist daher möglich, den Punkt $z_0'=z_0-\delta_0$, $0<\delta_0\leqslant q_0$ so festzulegen, dass die Funktion

$$\psi(z) = \frac{f(z) - f(z'_0)}{z - z'_0}$$

die folgende Bedingung erfüllt:

$$|\psi(Z_0) - \phi(Z_0)| < N_0/2. \tag{8}$$

Da $Z_0 = X_0 + iY_0$ ein Punkt der Menge A_0 ist, können wir jetzt eine natürliche Zahl p_0 so wählen, dass die Funktion f(z) in allen Punkten des Quadrates $|x-X_0| \le q_0/p_0$, $|y-Y_0| \le q_0/p_0$ regulär analytisch ist. An die Zahl p_0 stellen wir die zusätzliche Bedingung $p_0 \delta_0 > 4q_0$.

Unter C_{ij} verstehen wir das Quadrat

$$x_0 + \frac{(i-1)q_0}{p_0} \le x \le x_0 + \frac{iq_0}{p_0}, \quad y_0 + \frac{(j-1)q_0}{p_0} \le y \le y_0 + \frac{jq_0}{p_0}.$$

Die Quadrate C_{ij} $(i, j=1, 2, 3, ..., p_0)$ bilden ein Netz, welches C_0 überdeckt. Q_k $(k=1, 2, 3, ..., k_0)$ seien diejenigen Quadrate dieses Netzes, deren abgeschlossene Fläche mindestens einen Punkt der Menge B_0 enthält. Mit R_k bezeichnen wir die kleinste Rechteckfläche $a_k \le x \le b_k$, $c_k \le y \le d_k$ mit der Eigenschaft $R_k \supseteq B_0 \cap Q_k$. (Es ist möglich, dass R_k zu einer Strecke oder einem einzigen Punkt entartet.) Auf jeder Seite des Rechtecks R_k liegt nun mindestens ein Punkt von B_0 . Ferner folgt aus $p_0 \delta_0 > 4q_0$, dass die Seitenlängen von R_k kleiner als $\delta_0/4$ sind.

Die Menge derjenige inneren Punkte des Quadrates C_0 , welche auf keinem der Rechtecke R_k liegen, bezeichnen wir mit D_0 . Diese Punktmenge ist offen. Ihr Rand Δ_0 lässt sich in endlichviele Punkte und Strecken zerlegen, und jede dieser Strecken ist entweder zur reellen oder zur imaginären Achse parallel. Die Funktion f(z) ist in allen Punkten von D_0 regulär analytisch.

Die Quadrate C_{ij} haben die Seitenlänge q_0/p_0 . Wir haben die Zahl p_0 so gross gewählt, dass f(z) in sämtlichen Punkten der abgeschlossenen Quadratfläche $|x-X_0| \leq q_0/p_0$, $|y-Y_0| \leq q_0/p_0$ regulär ist. Z_0 ist infolgedessen ein Punkt von D_0 .

Wir beweisen nun, dass die Funktion f(z) ($z \in D_0 + \Delta_0$) auf $D_0 + \Delta_0$ stetig ist und machen dabei von der folgenden Tatsache Gebrauch: Es genügt offensichtlich, die Stetigkeit von f(z) unter der Bedingung nachzuweisen, dass z auf einer beliebigen abgeschlossenen Rechteckfläche mit achsenparallelen Seiten variiert, deren Inneres in D_0 liegt.

Es sei also D eine Rechteckfläche a < x < b, c < y < d, welche die Bedingung $D \subseteq D_0$ erfüllt. Mit Δ bezeichnen wir den Rand von D und mit \bar{D} die abgeschlossene Rechteckfläche $D + \Delta$. Wir haben zu beweisen, dass die Funktion f(z) $(z \in \bar{D})$ auf \bar{D} stetig ist.

Die Funktion f(z) ist in D_0 , also auch in D regulär analytisch. Es ist daher noch die Stetigkeit von f(z) ($z \in \overline{D}$) in den Punkten ζ von Δ nachzuweisen. Die folgende Begründung beschränkt sich auf diejenigen Punkte von Δ , welche auf der abgeschlossenen Rechteckseite mit den Endpunkten $\zeta_0 = a + ic$, $\zeta'_0 = b + ic$ liegen.

Sind $\zeta = \xi + ic$, $\zeta' = \xi' + ic$ zwei Punkte dieser Rechteckseite und ist $\xi < \xi'$, so verstehen wir unter (ζ, ζ') die offene Strecke mit den Endpunkten ζ und ζ' . Die Menge derjenigen Punkte von (ζ_0, ζ_0') , welche zu A_0 gehören, ist offen und zerfällt daher in abzählbar viele Strecken (ζ_k, ζ_k') (k=1, 2, 3, ...). Wir wählen nun die reelle Zahl d' so,

dass die Bedingung c < d' < d erfüllt ist und definieren die abgeschlossenen Rechteckflächen F_k (k = 1, 2, 3, ...) durch $\xi_k \le x \le \xi'_k$, $c \le y \le d'$.

Es sei F_{k^*} eine dieser Rechteckflächen, welche die Bedingungen $\zeta_{k^*} \neq \zeta_0$ und $\zeta'_{k^*} = \zeta'_0$ erfüllt. Unter diesen Bedingungen ist die Funktion f(z) in allen Punkten von F_{k^*} mit Ausnahme von ζ_{k^*} und ζ'_{k^*} regulär analytisch. Um das Verhalten von f(z) im Punkt ζ_{k^*} zu untersuchen, führen wir die folgende Bezeichnung ein: Ist r > 0, so verstehen wir unter S(r) die Sektorfläche, deren Punkte $\zeta_{k^*} + \varrho e^{i\varphi}$ durch $0 < \varrho < r$, $0 < \varphi < \pi/2$ charakterisiert sind. Wählen wir r^* hinreichend klein, so ist $S(r^*) \subset F_{k^*}$. Damit sind die folgende Bedingungen erfüllt: Die Funktion f(z) ist in allen Punkten von $S(r^*)$ regulär und nimmt die Werte 0 und 1 nicht an. Für $h \to 0$ (h reell und positiv) streben $f(\zeta_{k^*} + h)$ und $f(\zeta_{k^*} + ih)$ zufolge der Voraussetzung II gegen $f(\zeta_{k^*})$. Nach dem in der Einleitung erwähnten Satz von W. Gross strebt also f(z) in $S(r^*)$ für $z \to \zeta_{k^*}$ gleichmässig gegen $f(\zeta_{k^*})$. Dies bedeutet, dass f(z) ($z \in F_{k^*}$) im Randpunkt ζ_{k^*} stetig ist. Wie man ganz entsprechend begründet, trifft dies auch für den Punkt ζ'_{k^*} zu. Wir sind damit zum folgenden Ergebnis gelangt: Unter der Voraussetzung $\zeta_k \neq \zeta_0$, $\zeta'_k \neq \zeta'_0$ ist die Funktion f(z) ($z \in F_k$) auf der abgeschlossenen Rechteckfläche F_k stetig.

Nun sei ζ^* ein beliebiger Punkt der Rechteckseite (ζ_0, ζ_0') , also $\zeta^* = \xi^* + ic$, $\xi_0 < \xi^* < \xi_0'$. Wir beweisen die folgende Behauptung: Für $z \to \zeta^*$, $z \in \overline{D}$ strebt f(z) gegen $f(\zeta^*)$. Den Beweis führen wir nur für den Fall durch, dass z = x + iy im Winkelraum $x \geqslant \xi^*$, $y \geqslant c$ gegen ζ^* strebt. Für den Winkelraum $x \leqslant \xi^*$, $y \geqslant c$ verläuft der Beweis ganz analog.

Die Behauptung trifft offensichtlich zu, falls $\zeta^* \in A_0$ ist. Für den Fall, dass ζ^* mit einem der Punkte ζ_k (k=1,2,3,...) zusammenfällt, folgt sie aus dem Satz von W. Gross. Ist $\zeta^* \in B_0$ und $\zeta^* \neq \zeta_k$ (k=1,2,3,...), so lässt sie sich folgendermassen begründen:

Es sei x^* eine reelle Zahl, welche die Bedingung $\xi^* < x^* < \xi_0'$, $z^* = x^* + ic \in B_0$ erfüllt, D^* die Rechteckfläche $\xi^* \le x \le x^*$, $c \le y \le d'$ und Δ^* der Rand von D^* . Zufolge der Voraussetzung II ist f(z) und damit auch

$$\psi^*(z) = \frac{f(z) - f(\zeta^*)}{z - \zeta^*}$$

als Funktion von $z \in \Delta^*$ in jedem von ξ^* verschiedenen Punkt von Δ^* stetig. Für $h \to 0$ (h reell und positiv) streben ferner $\psi^*(\zeta^* + h)$ und $\psi^*(\zeta^* + ih)$ gegen endliche Grenzwerte. Die Funktion $\psi^*(z)$ ist folglich für $z \in \Delta^*$, $z \neq \zeta^*$ beschränkt. Es gibt also eine Schranke n^* derart, dass für $z \in \Delta^*$, $z \neq \zeta^*$

$$|f(z) - f(\zeta^*)| \le n^* |z - \zeta^*|$$
 (9)

gilt. Die Schranke n^* wählen wir so gross, dass $n^* > 2n_0$ ist.

Um die Gültigkeit der Ungleichung (9) auch für einen beliebigen inneren Punkt

Z=X+iY von D^* nachzuweisen, unterscheiden wir die beiden Fälle $Z'=X+ic\in B_0$ und $Z'\notin B_0$.

Im ersten Fall gelten nach (4) die Ungleichungen $|f(Z)-f(Z')| \le n_0 |Z-Z'|$ und $|f(Z')-f(\zeta^*)| \le n_0 |Z'-\zeta^*|$. Wie wir leicht bestätigen ist ferner $|Z-Z'|+|Z'-\zeta^*| < 2|Z-\zeta^*|$. Wir schliessen daraus $|f(Z)-f(\zeta^*)| \le |f(Z)-f(Z')|+|f(Z')-f(\zeta^*)| < n_0 |Z-Z'|+n_0 |Z'-\zeta^*| < 2n_0 |Z-\zeta^*| < n^*|Z-\zeta^*|$.

Die Gültigkeit der Ungleichung (9) steht damit für alle Punkte von D^* fest, welche nicht im Innern eines Rechtecks F_k liegen.

Im zweiten Fall ist Z=X+iY innerer Punkt einer Rechteckfläche F_k , für welche wegen $\xi_0 < \xi^* < X < x^* < \xi_0'$, $\zeta \in B_0$, $z^* \in B_0$ die Bedingung $\zeta_k' \neq \zeta_0'$, $\zeta_k \neq \zeta_0$ erfüllt ist. Da ζ^* mit keinem der Punkte $\zeta_1, \zeta_2, \zeta_3, \ldots$ zusammenfällt, ist $\zeta^* \notin F_k$. Mit f(z) ist daher auch die Funktion $\psi^*(z)$ ($z \in F_k$) auf F_k stetig und im Innern von F_k regulär analytisch. Auf dem Rand von F_k ist $|\psi^*(z)| \leq n^*$. Nach dem Maximumprinzip schliessen wir daraus $|\psi^*(Z)| \leq n^*$, also $|f(Z)-f(\zeta^*)| \leq n^*|Z-\zeta^*|$.

Die Ungleichung (9) ist damit für alle Punkte z von D^* erfüllt. Für $z \to \zeta^*$, $z \in D^*$ strebt also f(z) gegen $f(\zeta^*)$.

Für jeden Punkt $\zeta^* = \xi^* + ic$, der auf der Seite (ζ_0, ζ_0') des Rechtecks \bar{D} liegt, ist jetzt die folgende Behauptung bewiesen: Im Winkelraum $x \geqslant \xi^*$, $y \geqslant c$ strebt f(z) gegen $f(\zeta^*)$ für $z \rightarrow \zeta^*$. Wie bereits erwähnt lässt sich der Beweis für den Winkelraum $x \leqslant \xi^*$, $y \geqslant c$ ganz analog durchführen. Die Funktion f(z), wobei $z \in \bar{D}$ vorausgesetzt wird, ist also im Randpunkt ζ^* von \bar{D} stetig. Diese Aussage kann offensichtlich auf dem gleichen Weg für jeden Randpunkt ζ^* von \bar{D} bewiesen werden, der nicht mit einer Ecke von \bar{D} zusammenfällt. Aber auch für die Ecken von \bar{D} versagt die Beweismethode nicht. Ist zum Beispiel $\zeta^* = \zeta_0$, so kann sie unverändert übernommen werden, falls die folgende Bedingung erfüllt ist: Es gibt eine positive Zahl δ derart, dass auf der offenen Strecke mit den Endpunkten ζ_0 und $\zeta_0 + i\delta$ kein Punkt von B_0 liegt. Ist dies nicht der Fall, so liefert die gleiche Beweismethode das gewünschte Resultat, wenn wir sie auf diejenige Seite des Rechtecks D anwenden, deren Endpunkte in ζ_0 und $\zeta_0 + id$ liegen.

Es steht jetzt also fest, dass die Funktion f(z) ($z \in \overline{D}$) auf der abgeschlossenen Rechteckfläche \overline{D} stetig ist. Daraus folgt aber, wie wir bereits bemerkt haben, auch die Stetigkeit von f(z) ($z \in \overline{D}_0$) in jedem Punkt von \overline{D}_0 . Auf Grund dieses Ergebnisses können wir den Beweis unseres Satzes folgendermassen weiterführen:

Wegen $z'_0 \notin \bar{D}_0$ ist mit f(z) ($z \in \bar{D}_0$) auch die Funktion

$$\psi(z) = \frac{f(z) - f(z'_0)}{z - z'_0} \quad (z \in \bar{D}_0)$$

in D_0 regulär analytisch und auf \bar{D}_0 stetig. Auf dem Rand Δ_0 von \bar{D}_0 gibt es daher einen Punkt Z_0' derart, dass

$$|\psi(Z_0)| \leqslant |\psi(Z_0')| \tag{10}$$

ist. Der Punkt Z'_0 liegt entweder auf Γ_0 oder auf dem Rand eines Rechtecks F_k . Liegt Z'_0 auf Γ_0 , so gilt nach (7)

$$|f(Z'_0)-f(z_0)| \leq \frac{N_0}{4}|Z'_0-z_0|.$$

Gestützt auf $z_0 \in B_0$, $|z_0' - z_0| \le 1/n_0$ und $4n_0 < N_0$ schliessen wir weiter aus (4)

$$|f(z'_0)-f(z_0)| \leq \frac{N_0}{4}|z'_0-z_0|.$$

Unter Anwendung der Ungleichungen $|Z_0'-z_0| \le |Z_0'-z_0'|$ und $|z_0'-z_0| \le |Z_0'-z_0'|$ führt uns nun die Abschätzung

$$\begin{split} |f(Z_0') - f(z_0')| &\leq |f(Z_0') - f(z_0)| + |f(z_0') - f(z_0)| \\ &\leq \frac{N_0}{4} |Z_0' - z_0| + \frac{N_0}{4} |z_0' - z_0| \leq \frac{N_0}{2} |Z_0' - z_0'| \end{split}$$

zum Ergebnis $|\psi(Z_0')| \leq N_0/2$, aus welchem nach (10) zunächst $|\psi(Z_0)| \leq N_0/2$ und sodann nach (8) $|\phi(Z_0)| \leq N_0$ folgt.

Für den Fall, dass Z_0' auf dem Rand eines Rechtecks F_k liegt, wählen wir zunächst den Punkt Z^* von B_0 so, dass Z_0' und Z^* auf der gleichen abgeschlossenen Rechteckseite liegen. Dies ist möglich, weil jede Seite von F_k mindestens einen Punkt von B enthält. Da die Seitenlängen von F_k kleiner als $\delta_0/4$ sind, ist $4|Z_0'-Z^*| < \delta_0$.

Mit C_0 haben wir die abgeschlossene Quadratfläche mit den Ecken $z_0, z_0 + q_0$, $z_0 + q_0 + iq_0, z_0 + iq_0$ bezeichnet. Die Lage des Punktes z_0' zum Quadrat C_0 geht aus $z_0' = z_0 - \delta_0$, $0 < \delta_0 \le q_0$ hervor.

Aus $Z^* \in C_0$ folgt $|z_0' - z_0| \le |Z^* - z_0'|$ und $|Z^* - z_0| \le |Z^* - z_0'|$. Zwischen den Seitenlängen des Dreiecks z_0, Z^*, Z_0' besteht ferner die Ungleichung $|Z^* - z_0'| \le |Z_0' - z_0'| + |Z_0' - Z^*|$, und wegen $4|Z_0' - Z^*| < \delta_0$ und $\delta_0 < |Z_0' - z_0'|$ ist $4|Z_0' - Z^*| < |Z_0' - z_0'|$. Aus diesen Ungleichungen schliessen wir $|Z_0' - Z^*| + 2|Z^* - z_0| + |Z_0' - z_0'| \le |Z_0' - Z^*| + 3|Z^* - z_0'| \le 4|Z_0' - Z^*| + 3|Z_0' - z_0'| < 4|Z_0' - z_0'|$. Wegen $Z^* \in B_0$ und $z_0 \in B_0$, $|Z_0' - Z^*| < 1/n_0$ und $|z_0' - z_0| < 1/n_0$ ist weiter nach (4) $|f(Z_0') - f(Z_0')| \le n_0 |Z_0' - Z_0'|$ und nach (5) $|f(Z^*) - f(Z_0')| < n_0 |Z_0' - Z_0'|$. Aus der Abschätzung $|f(Z_0') - f(z_0')| \le |f(Z_0') - f(Z_0')| + |f(Z_0') - f(z_0)| \le n_0 |Z_0' - Z_0'| + 2n_0 |Z^* - z_0| + n_0 |z_0' - z_0| < 4n_0 |Z_0' - z_0'|$ folgt jetzt $|\psi(Z_0')| < 4n_0$. Unter Anwendung der Ungleichungen $8n_0 < N_0$, (10) und (8) ziehen wir daraus nacheinander die Schlüsse $|\psi(Z_0')| < N_0/2$, $|\psi(Z_0)| < N_0/2$ und $|\phi(Z_0)| < N_0$, also $|f(Z_0) - f(z_0)| < N_0 |Z_0 - z_0|$.

Die Gültigkeit von (6) steht jetzt für jeden Punkt z der abgeschlossenen Quadratfläche C_0 fest. Dabei haben wir mit C_0 eines der vier Quadrate bezeichnet, in welche Q_0 durch die Geraden $x=x_0$ und $y=y_0$ zerlegt wird. Für die drei andern Quadrate kann der Beweis von (6) ganz analog geführt werden.

Wir haben damit bewiesen, dass es zu jedem Punkt z_0 von B_0 ein Quadrat $|x-x_0| \le q_0$, $|y-y_0| \le q_0$ und eine Schranke N_0 gibt, derart, dass $|f(z)-f(z_0)| \le N_0 |z-z_0|$ für jeden Punkt z dieses Quadrates gilt. Die Funktion f(z) ist somit in sämtlichen Punkten von B_0 stetig. Da f(z) definitionsgemäss in jedem Punkt von A_0 regulär analytisch ist, steht jetzt die Stetigkeit von f(z) im Gebiet $G_0 = A_0 \cup B_0$ fest. Damit sind aber für f(z) alle Voraussetzungen des in der Einleitung erwähnten Satzes von Looman-Menchoff erfüllt. Nach diesem Satz muss f(z) in G_0 regulär analytisch sein, im Widerspruch zur Tatsache, dass die Punktmenge B_0 nicht leer ist. Entgegen unserer Annahme folgt aus diesem Widerspruch, dass die Punktmenge B leer ist und damit die Behauptung unseres Satzes zutrifft.

BIBLIOGRAPHIE

- [1] W. Gross, Zum Verhalten analytischer Funktionen in der Umgebung singulärer Stellen, Math. Z. 2 (1918)
- [2] S. SAKS, Theory of the integral (New York 1937).
- [3] G. P. Tolstov, On the curvilinear and iterated integral, Trudy Mat. Inst. Steklov 35 (1950) (Russisch).

Eingegangen, 20. September 1969