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Hinreichende Bedingungen fiir die
Regularitiit einer komplexen Funktion')

Von KURT MEIER (Ziirich)

In einem beschriankten Gebiet der z-Ebene (z=x +iy) sei eine komplexe Funktion
S (z) definiert. Wir setzen voraus, dass f(z) in allen Punkten von G endliche partielle
Ableitungen f, and f, besitzt, welche in fast allen Punkten von G die Cauchy-Rie-
mannsche Bedingung f, +if, =0 erfiillen.

Schon unter diesen Voraussetzungen ldsst sich beweisen, dass es Teilgebiete von G
gibt, in welchen f(z) reguldr analytisch ist. Wie aus dem von P. Montel angegebenen
Beispiel f(z)=e™ Y et f(0)=0 hervorgeht, darf aber aus diesen Voraussetzungen nicht
auf die Regularitidt von f(z) in G geschlossen werden.

Unter der zusitzlichen Voraussetzung, dass f(z) in G die Werte 0, 1 und oo nicht
annimmt, steht hingegen die Regularitdt von f(z) in G fest. Dies ist die Behauptung,
die wir in der vorliegenden Arbeit beweisen werden.

An die Funktion f(z) stellen wir demnach die folgenden Bedingungen:

I. £(z) nimmt in G die Werte 0, 1 und oo nicht an.
II. In jedem Punkt z von G besitzt f(z) endliche partielle Ableitungen f, und f,.

IIL. In fast allen Punkten von G ist £, +if,=0.

Damit kénnen wir jetzt den zu beweisenden Satz folgendermassen aussprechen:

Sind die Bedingungen 1, 11 und 111 erfiillt, so ist f(z) in G reguldr analytisch.

Fiir den Fall, dass anstelle von I die Beschranktheit von f(z) in G vorausgesetzt
wird, hat G. P. Tolstov [3] diesen Satz bewiesen.

Den Beweis unseres Satzes fiihren wir folgendermassen durch: Wir zeigen zu-
nichst, dass aus den Bedingungen I, II und III die Stetigkeit von f(z) in G folgt. Als
Hilfsmittel verwenden wir dabei einen Satz von W. Gross ([1], p. 292): Miinden in z,
zwei vom gleichen Punkt ausgehende Jordanwege W, W,, welche ein einziges Innen-
gebiet D begrenzen, ist ferner f(z) in D und auf seinem Rand mit Ausnahme von Zo
meromorph und strebt £ (z) bei Anniherung von z, auf W, und W, gegen den gleichen
Grenzwert a, so strebt entweder f(z) fiir z—z, in D gleichmissig gegen a oder f(2)
nimmt in D jeden Wert mit héchstens zwei Ausnahmen unendlich oft an.

Nach dem Satz von Looman-Menchoft ([2], p. 199) ist eine in G stetige Funktion
f(2), welche die Voraussetzungen II und I1I erfiillt, in G regulir analytisch. Auf diesen
Satz berufen wir uns am Schluss des Beweises.

1) Die Ausfithrung dieser Arbeit wurde ermoglicht durch einen Beitrag aus dem Schweizerischen
Nationalfonds.
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Beweis. Unter A verstehen wir die Menge derjenigen Punkte des Gebietes G, in
welchen f(z) reguldr analytisch ist und unter Bdas Komplement von A4 in bezug auf G.
Auf Grund der Voraussetzungen I, IT und III haben wir zu beweisen, dass die Punkt-
menge B leer ist.

Wir definieren zu jeder natiirlichen Zahl n folgendermassen eine Punktmenge
B,:( ist Element von B,, falls die Kreisscheibe |z—{| <2/n dem Gebiet G angehort,
und ausserdem fiir |4| < 1/n (hreell) die Bedingungen |/ ({ +A)—f ()| <nlAl, | f (+ik)—
—f (O)|<n |A| erfiillt sind.

Wir beweisen zunéchst, dass die Punktmengen B, (n=1, 2, 3,...) abgeschlossen
sind.

Es sei {,=¢&, +in, ein Hiufungspunkt von B, und {,=¢&,+in, (A=1, 2, 3,...) eine

gegen {, konvergierende Folge von Punkten der Menge B,. Ist |#| <1/n, so bestehen
die Ungleichungen | (¢ ;+h)— £ (()I<n Al und |f ({;+ih)— £ ({)I<n Al (A=1,
2,3,...)
Die Giiltigkeit dieser Ungleichungen ist nun auch fiir A =0 nachzuweisen. Wir fiihren
den Beweis nur fiir die Ungleichung |f ({o+4)—f ({o)|<n |h| und beschrinken uns
zudem auf den Fall 0</<1/n. Die Zahl A bleibt wahrend der folgenden Uberlegung
fest. Um dies anzudeuten setzen wir A=h,.

Nach der Voraussetzung II unseres Satzes ist f(z) bei festem y eine in x stetige
Funktion. Wird x festgehalten, so ist /' (z) stetig als Funktion von y. Dasselbe gilt auch
fiir

f(z+ ho) — f(2)
ho '

Ist ¢ eine beliebig kleine positive Zahl, so konnen wir daher einen Punkt
Lo=Co—0,(0<0,<h,) so festlegen, dass

IF (o) — F(lo)l <& (D

ist. Ferner gibt es im Intervall (0, A,) eine Zahl ¢, mit der folgenden Eigenschaft: Fiir
lt]<t, (2 reell) ist

|F(Lo + it) — F(Co)l < e (2)

Mit R, bezeichnen wir die offene Rechteckfliche mit den Ecken

F(z) =

Lo — ity Lo — ity + hg, Lo + ity + hg, Lo + itg.

Der Punkt {,, liegt in R, und die Punktfolge {{,} (A=1, 2, 3,...) konvergiert gegen {,.
Es sei {*=¢* +in* ein in R, liegender Punkt dieser Folge und {§={g+i(n*—n,).
Wegen [n* —n,| <1, gilt jetzt nach (2)

IF({5) — F(Lo)l <e 3
Der Punkt {* liegt auf der Strecke mit den Endpunkten {5 und {p+h,. Wegen
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{*e B, bestehen die Ungleichungen

(L5 + ho) = (CM < mllo+ho =¥, 1f(L0) =S < nlLs— ¥,
welche die folgende Abschitzung ermdglichen; |f ({g+ho)—f (£0) <
Lf (Co+ho)—f (T +1£ (o) —f CN<nILG+ho—T*| 40|l — {*| =nhy,

Aus dieser Abschitzung folgt |[F({g)|<n und daraus weiter auf Grund von (3) und
(1) |F({o)| <n+2e. Diese Ungleichung ist aber fiir jede beliebig kleine positive Zahl ¢
giiltig. Folglich ist |F({o)| <, also | f ({o+ho)—f (Lo)| <nhy.

Da die Kreisscheibe |z— {,| <2/n offensichtlich in G liegt, steht jetzt fest, dass die
Punktmengen B, (n=1, 2, 3,...) abgeschlossen sind.

Nun folgt aus der Voraussetzung II eine weitere wichtige Aussage iiber die
Mengen B, : Thre Vereinigungsmenge ist mit G identisch. Ist nimlich { ein beliebiger
Punkt von G, so gilt {eB, fiir jede hinreichend grosse natiirliche Zahl n.

Entgegen der Behauptung unseres Satzes nehmen wir nun an, die Punktmenge B
sei nicht leer. Ihrer Definition entsprechend ist B eine in G abgeschlossene Punkt-
menge. Wir haben nachgewiesen, dass sie durch die abgeschlossenen Punktmengen B,
vollstindig iiberdeckt wird. Nach einem Satz von R. Baire ([2], p. 54) gibt es daher
eine natiirliche Zahl n, und ein Teilgebiet G, von G derart, dass der Durchschnitt
B,=Bn G, eine nichtleere Teilmenge von B, ist. Demnach sind nun in sdmtlichen
Punkten { von B, fiir |h|<1/n, die folgenden Bedingungen erfiillt:

1fC+h) = FOl<nolhl,  1f(C+ih) = f(OI < nolhl )

Die Tatsache, dass B, nicht leer ist, spielt am Schluss des Beweises eine entscheidende
Rolle.

Sind {; =¢&, +in, und {, =&, +in, zwei Punkte von B, welche die Voraussetzungen
&= &< 1/ny, |n, —nyl<1/n, erfiillen, so gilt

1£(£2) = F(ED)I < 2m01L2 — ¢4 (5)

Bezeichnen wir ndmlich mit {’ den Punkt ¢, +in,, so ist nach (4)

I €2)=F N <nolla =Ll 1f () =F C)I<noll’ =1l und damit

IfF &) —FEN<IfE)—SEN+IFE)=F () <
nolly = Ul + no " — L1l < 2m(82 — Gl

Nun sei z,=x, + iy, ein beliebiger Punkt von B, und Q, ein Quadrat |x — x| <o,
| ¥ —yol <q,. Die positive Zahl g, wihlen wir so, dass Q, ganz in G, liegt und ausser-
dem die Bedingung g, <1/n, erfiillt ist. Wie aus der Voraussetzung IT hervorgeht, ist
die Funktion

é(z) = f(2) = f(z0)

Z"'Zo
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auf dem Rand des Quadrates Q, stetig. Dabei ist zu beachten, dass in dieser Aussage
die Funktion ¢ nur auf dem Rand von Q, betrachtet wird. Es gibt demnach eine
Schranke N, derart, dass 4|¢(z)| <N, fiir alle Randpunkte z von Q, gilt. An N,
stellen wir noch die zusitzliche Bedingung N, > 8n,.

Wir beweisen nun, dass unter der Bedingung zeQ, die folgende Ungleichung
giiltig ist:

1/ (2) = f(20)l < Nolz — zo (6)

Durch die Geraden x=x, und y=y, wird Q, in vier Quadrate zerlegt. Mit C,
bezeichnen wir das Quadrat x, <x<xy+¢g, Yo <Y <Vo+¢go und mit I', seinen Rand.
Den Beweis von (6) fiihren wir nur fiir den Fall ze C,,

Liegt z auf Iy, so gilt

0

116 = Fe) < 2 1z = 2o ™

denn fiir die beiden Seiten des Quadrates C,, welche auf dem Rand von Q, liegen,
ist bereits |¢(z)| < Ny/4, und fiir die beiden andern Seiten folgt (7) aus (4) wegen
Ny >8n,,.

Ist z ein innerer Punkt von C,, so unterscheiden wir die beiden Félle ze B, und
ze A,y. Dabei verstehen wir unter 4, das Komplement von B, in bezug auf G,,.

Im ersten Fall sind fiir die Punkte z,=x,+iy, und z=x+iy die Bedingungen
20€By, zeB,, |x—xo| <q, und |y —y,| <q, erfiillt, wobei g,<1/n, ist. Aus (5) folgt
unter diesen Bedingungen | f (z) —f (zo)| <2no|z —z,|, und damit ist wegen N, > 8n, die
Ungleichung (6) erfiillt.

Der Beweis von (6) fiir den Fall ze A, bereitet erhebliche Schwierigkeiten.

Es sei z=Z, ein beliebiger Punkt von A4,, welcher im Innern des Quadrates C,
liegt. Diesen Punkt halten wir wihrend den folgenden Uberlegungen fest.

Zunichst schliessen wir aus der Voraussetzung II, dass der Differenzquotient

f(Zo)“'f(Zo"a)
ZO—ZO+6

b

als Funktion der reellen Verinderlichen & betrachtet, an der Stelle d=0 stetig ist.

Es ist daher moglich, den Punkt zp=2z,—8,, 0<d,<q, so festzulegen, dass die
Funktion

by T = 1)

zZ—2zg
die folgende Bedingung erfiillt:

¥ (Z,) — ¢ (Zo)l < No/2. ®)
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Da Z,=X,+iY, ein Punkt der Menge A, ist, konnen wir jetzt eine natiirliche
Zahl p, so wihlen, dass die Funktion f(z) in allen Punkten des Quadrates
|x—=Xo| <qo/po, |¥— Yol <qo/Po reguldr analytisch ist. An die Zahl p, stellen wir die
zusédtzliche Bedingung p,d, > 44,.

Unter C;; verstehen wir das Quadrat
(’—1)q°<x<xo+l—€9, y0+(1—1)CIO<y<yO+J_qO.

Po Po Do Po
Die Quadrate C;; (i,j=1, 2, 3,..., pp) bilden ein Netz, welches C, liberdeckt. Q,
(k=1,2,3,..., k,) seien diejenigen Quadrate dieses Netzes, deren abgeschlossene
Flache mindestens einen Punkt der Menge B, enthilt. Mit R, bezeichnen wir die
kleinste Rechteckfliche g, <x<b,, ¢, <y<d, mit der Eigenschaft R,2B,n Q. (Es
ist moglich, dass R, zu einer Strecke oder einem einzigen Punkt entartet.) Auf jeder
Seite des Rechtecks R, liegt nun mindestens ein Punkt von B,. Ferner folgt aus
DPodo>4q,, dass die Seitenldngen von R, kleiner als J,/4 sind.

Die Menge derjenige inneren Punkte des Quadrates C,, welche auf keinem der
Rechtecke R, liegen, bezeichnen wir mit D,. Diese Punktmenge ist offen. Ihr Rand
4, lasst sich in endlichviele Punkte und Strecken zerlegen, und jede dieser Strecken ist
entweder zur reellen oder zur imagindren Achse parallel. Die Funktion f(z) ist in
allen Punkten von D, reguldr analytisch.

Die Quadrate C;; haben die Seitenlinge go/p,. Wir haben die Zahl p, so gross
gewihlt, dass f(z) in simtlichen Punkten der abgeschlossenen Quadratfliche
|x—Xol <qo/Po, |V — Yol <qo/po reguldr ist. Z, ist infolgedessen ein Punkt von D,.

Wir beweisen nun, dass die Funktion f(z) (zeD, +4,) auf D, + 4, stetig ist und
machen dabei von der folgenden Tatsache Gebrauch: Es geniigt offensichtlich, die
Stetigkeit von f(z) unter der Bedingung nachzuweisen, dass z auf einer beliebigen ab-
geschlossenen Rechteckfliche mit achsenparallelen Seiten variiert, deren Inneres in
D, liegt.

Es sei also D eine Rechteckfliche a<x<b, c<y<d, welche die Bedingung
Dc D, erfiillt. Mit 4 bezeichnen wir den Rand von D und mit D die abgeschlossenf
Rechteckfliche D +A4. Wir haben zu beweisen, dass die Funktion f(z) (ze D) auf D
stetig ist.

Die Funktion f'(z) ist in Dy, also auch in D regulir analytisch. Es ist daher noch
die Stetigkeit von f(z) (ze D) in den Punkten { von 4 nachzuweisen. Die folgende Be-
griindung beschrinkt sich auf diejenigen Punkte von 4, welche auf der abgeschlosse-
nen Rechteckseite mit den Endpunkten {,=a+ic, {,=>b+ic liegen.

Sind {=¢ +ic, {'=¢& +ic zwei Punkte dieser Rechteckseite und ist £ <¢’, so ver-
stehen wir unter (¢, {’) die offene Strecke mit den Endpunkten { und {'. Die Menge
derjenigen Punkte von ({,, {}), welche zu A, gehoren, ist offen und zerfillt daher in
abziihlbar viele Strecken ({;, ) (k=1, 2, 3,...). Wir wihlen nun die reelle Zahl d’ 50,

Xo +
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dass die Bedingung ¢ < d’ <d erfiillt ist und definieren die abgeschlossenen Rechteck-
flichen F, (k=1, 2, 3,...) durch &, <x<¢&;, c<y<d'.

Es sei Fi. eine dieser Rechteckflichen, welche die Bedingungen {.#{, und
(=g erfiillt. Unter diesen Bedingungen ist die Funktion f(z) in allen Punkten von
Fi» mit Ausnahme von {;.+ und {;. reguldr analytisch. Um das Verhalten von f(z)
im Punkt (. zu untersuchen, fithren wir die folgende Bezeichnung ein: Ist r>0, so
verstehen wir unter S(r) die Sektorfliche, deren Punkte {;.+¢ e'® durch O0<go<r,
0<@<n/2 charakterisiert sind. Wahlen wir r* hinreichend klein, so ist S(r*)< F.
Damit sind die folgende Bedingungen erfiillt: Die Funktion f (z) ist in allen Punkten
von S(r¥*) reguldr und nimmt die Werte 0 und 1 nicht an. Fiir 2A—0 (4 reell und
positiv) streben f ({3« +h) und f({;.+ih) zufolge der Voraussetzung II gegen f ().
Nach dem in der Einleitung erwdhnten Satz von W. Gross strebt ‘also f(z) in S(r*)
fiir z— (. gleichmassig gegen f({,.). Dies bedeutet, dass f(z) (ze F;.) im Randpunkt
{,» stetig ist. Wie man ganz entsprechend begriindet, trifft dies auch fiir den Punkt
{i+ zu. Wir sind damit zum folgenden Ergebnis gelangt: Unter der Voraussetzung
L # Lo, Cr# (o ist die Funktion f(z) (ze Fy) auf der abgeschlossenen Rechteckfliche
F, stetig.

Nun sei {* ein beliebiger Punkt der Rechteckseite ({,, (o), also (*=¢&*+ic,
Eo<E* <&, Wir beweisen die folgende Behauptung: Fiir z—({*, zeD strebt f(z)
gegen f({*). Den Beweis fiihren wir nur fiir den Fall durch, dass z=x +iy im Winkel-
raum x>&*, y>c gegen (* strebt. Fiir den Winkelraum x<¢&*, y>c verlduft der
Beweis ganz analog.

Die Behauptung trifft offensichtlich zu, falls {*e 4, ist. Fiir den Fall, dass {* mit
einem der Punkte {, (k=1,2,3,...) zusammenfillt, folgt sic aus dem Satz von
W. Gross. Ist {*eB, und (*#¢(, (k=1,2,3,...), so lisst sie sich folgendermassen
begriinden:

Es sei x* eine reelle Zahl, welche die Bedingung &*<x* <&, z*=x*+iceB,
erfiillt, D* die Rechteckfliche £* <x<x*, c<y<d’ und 4* der Rand von D*. Zu-
folge der Voraussetzung II ist £ (z) und damit auch

PARCE g(c*)

als Funktion von zeA* in jedem von &* verschiedenen Punkt von A* stetig. Fiir #—0
(h reell und positiv) streben ferner y*({* +k) und W* ({* +ih) gegen endliche Grenz-
werte. Die Funktion y*(z) ist folglich fiir ze 4*, z5 {* beschriankt. Es gibt also eine
Schranke n* derart, dass fiir zeA*, z# {*

1f(2) = F(E < n*|z - | ©®

gilt. Die Schranke n* wihlen wir so gross, dass n* > 2n, ist.
Um die Giiltigkeit der Ungleichung (9) auch fiir einen beliebigen inneren Punkt
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Z=X+iY von D* nachzuweisen, unterscheiden wir die beiden Fille Z'= X +iceB,
und Z'¢B,.

Im ersten Fall gelten nach (4) die Ungleichungen |/ (Z)—f(Z')|<ny |Z—Z’| und
If(Z)—f ({*)|<nolZ’' —(*|. Wie wir leicht bestétigen ist ferner |Z—Z'|+|Z'—(*| <
<2|Z—{*|. Wir schliessen daraus | f(Z)—f ((MI<If(Z)—-f (Z)+|f (Z")-f ({*¥)|<
<ng|lZ—Z'|+nglZ’ — {*| <2ny|Z —(*| <n*|Z—(*|.

Die Giiltigkeit der Ungleichung (9) steht damit fiir alle Punkte von D* fest, welche
nicht im Innern eines Rechtecks F, liegen.

Im zweiten Fall ist Z=X+iY innerer Punkt einer Rechteckfliche F,, fiir welche
wegen o <E*<X<x*<&,, (eB,, z*eB, die Bedingung {;#{o, {,#{, erfiillt ist.
Da (* mit keinem der Punkte {,, {,, {3,... zusammenfillt, ist {*¢ F,. Mit f(z) ist
daher auch die Funktion y*(z) (ze F,) auf F, stetig und im Innern von F, regulir
analytisch. Auf dem Rand von F; ist |{/*(z)|<n*. Nach dem Maximumprinzip
schliessen wir daraus |y*(Z)|<nr*, also | f(Z)—f({¥)|<n*|Z—(*|.

Die Ungleichung (9) ist damit fiir alle Punkte z von D* erfiillt. Fiir z— (*, zeD*
strebt also f(z) gegen f({*).

Fiir jeden Punkt {*=¢&* +ic, der auf der Seite ({,, () des Rechtecks D liegt, ist
jetzt die folgende Behauptung bewiesen: Im Winkelraum x>&*, y>c strebt f(2)
gegen f({*) fiir z— {*. Wie bereits erwédhnt ldsst sich der Beweis fiir den Winkelraum
x< &*, y>c ganz analog durchfiihren. Die Funktion f(z), wobei ze D vorausgesetzt
wird, ist also im Randpunkt {* von D stetig. Diese Aussage kann offensichtlich auf
dem gleichen Weg fiir jeden Randpunkt {* von D bewiesen werden, der nicht mit einer
Ecke von D zusammenfillt. Aber auch fiir die Ecken von D versagt die Beweismethode
nicht. Ist zum Beispiel {*={(,, so kann sie unverdndert iibernommen werden, falls
die folgende Bedingung erfiillt ist: Es gibt eine positive Zahl § derart, dass auf der
offenen Strecke mit den Endpunkten {, und {, +id kein Punkt von B, liegt. Ist dies
nicht der Fall, so liefert die gleiche Beweismethode das gewiinschte Resultat, wenn
wir sie auf diejenige Seite des Rechtecks D anwenden, deren Endpunkte in {, und
o +id liegen.

Es steht jetzt also fest, dass die Funktion f(z) (ze D) auf der abgeschlossenen
Rechteckfliche D stetig ist. Daraus folgt aber, wie wir bereits bemerkt haben, auch
die Stetigkeit von f'(z) (ze D,) in jedem Punkt von D,. Auf Grund dieses Ergebnisses
konnen wir den Beweis unseres Satzes folgendermassen weiterfiihren:

Wegen zp¢ D, ist mit £(z) (ze D,) auch die Funktion

4@ =LD=TE) (. p,)

zZ -z,
in D, reguldr analytisch und auf D, stetig. Auf dem Rand 4, von D, gibt es daher
einen Punkt Z, derart, dass

W (Zo)l < ¥ (Zo)l (10)
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ist. Der Punkt Z; liegt entweder auf I'y oder auf dem Rand eines Rechtecks F,.
Liegt Z, auf I', so gilt nach (7)

N !
°1Z4 — zo|.

1@ - e <

Gestiitzt auf zo€ By, |25 —2o| <1/ny und 4ny< N, schliessen wir weiter aus (4)
/ NO '
1/ (20) — f(20)| < 4 |zo — 2ol -

Unter Anwendung der Ungleichungen |Z;—z,|<|Zg—zo] und |zp—zo| <|Z5—2zp)
fithrt uns nun die Abschétzung

1£(Zo) — f(20)l <1£(Zo) — f(2o)l + 1f(20) — f(20)l

< 012y ~ 2ol + 212 ~ 7ol < 22125 ~ 7
zum Ergebnis | (Z;)]| < Ny/2, aus welchem nach (10) zunidchst [y (Z,)| < Ny/2 und
sodann nach (8) |¢(Z,)| <N, folgt.

Fiir den Fall, dass Z; auf dem Rand eines Rechtecks F; liegt, wihlen wir zunéchst
den Punkt Z* von B, so, dass Z; und Z* auf der gleichen abgeschlossenen Rechteck-
seite liegen. Dies ist moglich, weil jede Seite von F, mindestens einen Punkt von B
enthélt. Da die Seitenldngen von F, kleiner als d,/4 sind, ist 4|Z;— Z*| <4,.

Mit C, haben wir die abgeschlossene Quadratfliche mit den Ecken z,, z, + ¢,
Zo+qo +iqo, 2o +iq, bezeichnet. Die Lage des Punktes z, zum Quadrat C, geht aus
2o=24—0¢, 0<J,< g, hervor.

Aus Z*eC, folgt |zg—zy|<|Z*—1zy| und |Z*—zy|<|Z*—zg|. Zwischen den
Seitenldngen des Dreiecks z,, Z*, Z; besteht ferner die Ungleichung |Z* —zj|<
S|Zg—zg| +|Zg—Z*|, und wegen 4|Z;—Z*|<d, und 8y <|Zg—2zp] ist 4|Z5—Z*| <
<|Zy—zg|. Aus diesen Ungleichungen schliessen wir |Zy—Z*|+2|Z*—z,|+
+lzo— 20| S|Zo—Z*|+3|Z2* — 2| <4|Z o — Z*| + 3| Z — 25| <4|Zy —zo|. Wegen
Z*eB, und z,eB,, |Zj—Z*|<1/ny und |z5—2zo| <1/n, ist weiter nach (4) |f(Zy) —
~f(Z*)| < no1Zo — Z¥, 1£(26) = f(2o)l < molzo — zo| und nach (5) |f(Z*)—
— f(zo)l <2ny|Z* — zo|. Aus der Abschitzung |f(Zy) — f(zo)l < If(Zo) — f(Z%)
+1(Z*) = f(20)| + 1£(20) — f(20)| € no|Zo — Z*| + 219 |Z* — zo|+ o | 2o — 2o
<dny|Zy — zy| folgt jetzt |Y(Zg)|<4n,. Unter Anwendung der Ungleichungen
8ny < Ny, (10) und (8) ziehen wir daraus nacheinander die Schliisse |y (Zy)| < No/2,
W(Z,)| < No/2 und |¢(Zo)l < No, also | f(Zo) — f(20)l < NolZo — 2ol -

Die Giiltigkeit von (6) steht jetzt fiir jeden Punkt z der abgeschlossenen Quadrat-
fldche C, fest. Dabei haben wir mit C, eines der vier Quadrate bezeichnet, in welche
Qo durch die Geraden x=x, und y=y, zerlegt wird. Fiir die drei andern Quadrate
kann der Beweis von (6) ganz analog gefiihrt werden.



264 KURT MEIER

Wir haben damit bewiesen, dass es zu jedem Punkt z, von B, ein Quadrat
[x—x0l<qo, |¥y—»ol<go und eine Schranke N, gibt, derart, dass |f(z)—f (z,)| <
Ny |z—z,| fiir jeden Punkt z dieses Quadrates gilt. Die Funktion f(z) ist somit in simt-
lichen Punkten von B, stetig. Da f(z) definitionsgemdss in jedem Punkt von 4,
reguldr analytisch ist, steht jetzt die Stetigkeit von f(z) im Gebiet G, =4, U B, fest.
Damit sind aber fiir /(z) alle Voraussetzungen des in der Einleitung erwidhnten Satzes
von Looman-Menchoff erfiillt. Nach diesem Satz muss f(z) in G, reguldr analytisch
sein, im Widerspruch zur Tatsache, dass die Punktmenge B, nicht leer ist. Entgegen
unserer Annahme folgt aus diesem Widerspruch, dass die Punktmenge B leer ist und
damit die Behauptung unseres Satzes zutrifft.
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