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Zur Stôrungstheorie linearer Operatoren in Banachrâumen

Peter Hess

I. Einleitung und Resultate

1. Es bezeichne r einen selbstadjungierten Operator eines Hilbertraumes H und
A einen beziiglich T relativ kompakten Operator. Gohberg und Krein beweisen in
ihrem Ubersichtsartikel [3], dass das nichtreelle Spektrum von T+A aus isolierten
Eigenwerten endlicher algebraischer Vielfachheit besteht (Satz 5.1). Im Beweis dièses

Satzes wird wesentlich verwendet, dass ein kompakter Operator eines Hilbertraumes
beliebig genau durch degenerierte Operatoren approximiert werden kann.

Die Autoren verallgemeinern ferner dièses Résultat, indem sie von der Môglichkeit
gebrauch machen, einen symmetrischen Operator zu einem selbstadjungierten Operator

in einem eventuell grôsseren Hilbertraum erweitern zu kônnen :

Es sei T ein symmetrischer Operator eines Hilbertraumes //, und es sei A T-kom-
pakt. Dann sind aile nichtreellen Zahlen, mit Ausnahme eventueller isolierter Eigen-
werte, Punkte regulâren Typs von T+A, und die Defektzahlen von T und T+A
stimmen (ausser in diesen isolierten Punkten) ùberein (Satz 9.4).

2. Das Ziel der vorliegenden Arbeit ist es, entsprechende Sâtze fiir Operatoren in
Banachrâumen zu formulieren. Wir untersuchen, wann eine unbeschrânkte Kompo-
nente der Resolventenmenge (bzw. des Regularitâtsgebietes) eines abgeschlossenen
linearen Operators T eines Banachraumes X bis auf isolierte Punkte invariant ist
unter relativ kompakten Stôrungen. Mit ^(X) bezeichnen wir die Menge der
abgeschlossenen linearen Operatoren T des Banachraumes X und mit g(T) die

Resolventenmenge von T.

DEFINITION. Eine Folge {Àn}cQ(T) mit |AJ/' + oo heisst Folge minimalen
Wachstums fiir die Resolvente des Operators Te^(X)9 falls mit einer gewissen Kon-
stanten ATfiir «=1, 2,... gilt

IKr-J.)-1!^. (i)

Agmon hat gezeigt, dass die Resolvente fiir \A\/* + oo nicht stârker abklingen
kann ([1], p. 182, Satz 12.5).

Eine Kombination bekannter Beweismethoden [(3], Satz 5.1, und [6], p. 250)

folgendes Résultat:
Es sei X ein Banachscher Raum derart, dass jeder kompakte Operator in der
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Operatornorm beliebig genau durch degenerierte Operatoren approximiert werden kann.

Der Operator Tefê(X) und sein adjungierter Operator T* seien in X bzw. X* dicht

definiert. Falls eine Komponente der Resolventenmenge q(T) eine Folge minimalen
Wachstums enthâlt, so ist sie bis auf isolierte Punkte eine Komponente von q(T+à),
wo A ein T-kompakter Operator ist.

Die Frage, ob in einem beliebigen (oder reflexiven) Banachraum kompakte Operatoren

durch degenerierte approximiert werden kônnen, ist unseres Wissens offen1).
Mit Hilfe einer neuen Beweisidee erhalten wir jedoch Aussagen fur beliebige reflexive
Banachrâume. Unser Hauptresultat ist

SATZ 1. Es sei X ein reflexiver Banachraum und Te^{X). Eine Komponente der

Resolventenmenge q(T), welche eine Folge minimalen Wachstums enthâlt, ist bis auf
isolierte Punkte eine Komponente von q(T+A), wo A T-kompakt ist. Die isolierten
Punkte sind Eigenwerte endlicher algebraischer Vielfachheit des Operators T+A.

Eine Zahl k heisst jPw«&* regulâren Typs des Operators T, falls mit einer Konstanten
c>0 die Ungleichung \\(T-k) u\\ ^c\\u\\ fur aile ueD(T) gilt. Die Menge der Punkte

regulâren Typs wird Regularitàtsgebiet von T genannt. Eine Verallgemeinerung von
Satz 1 ist

SATZ 2. Sei X reflexiv, und sei Tetë(X). Enthâlt eine Komponente des Regulari-
tâtsgebietes von T eine Folge {kn} mit \ku\f + co und mit der Eigenschaft, dass

Xn)u\\^K-l\U\\u\\ (K>0) (2)

fur aile u der Definitionsmenge D(T), so bleibt dièse Komponente (bis auf isolierte

Punkte) eine Komponente des Regularitâtsgebietes von T+A, wo A T-kompakt ist.

Die Defektzahlen von T—k und T+A — k stimmen ûberein, falls k in der gemeinsamen

Komponente der Regularitâtsgebiete liegt.

BEMERKUNG 1. Falls die betrachtete Komponente des Regularitâtsgebietes

zur Resolventenmenge gehôrt, ist eine Folge mit der Eigenschaft (2) Folge minimalen
Wachstums fur die Resolvente.

BEMERKUNG 2. Beispiele von abgeschlossenen Operatoren im Banachrâumen,
die Folgen minimalen Wachstums besitzen, findet man z.B. in [6], p. 483-484. Wir
fiihren zwei Kriterien an, wann eine Punktfolge minimalen Wachstums fur die

Resolvente eines Operators eines Hilbertraumes H ist:

l) Vergleiche dazu die Arbeiten von Maddaus [7] und Phillips [8], in denen gezeigt wird, dass

dièse Approximation jedenfalls in den Râumen C[K], &> (L ^ p <; + oo), D> (1 S p g + <») môglich
ist.
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(i) Die (konvexe) numerische Wertemenge O(T) des Operators Te^(H) sei echte

Teilmenge der komplexen Ebene, und im Komplement von 0(T) existiere ein regulâ-
rer Punkt z von T. Dann gehort jede ausserhalb von 0{T) gelegene und z enthaltende
offene Halbebene zu q{T). Eine Punktfolge {Àn}, die auf einem in einer solchen Halb-
ebene enthaltenen und nicht zu deren Berandung parallelen Halbstrahl liegt, ist Folge
minimalen Wachstums.

(ii) Es sei Te^(H) normal. Eine unbeschrânkte Folge {!*}<= q(T) ist Folge
minimalen Wachstums fur die Resolvente dann und nur dann, wenn es eine positive
Konstante c gibt derart, dass aile Kreisscheiben {z:|z —^J<c|AJ} in q(T) enthalten
sind.

3. Der Beweis der Sâtze 1 und 2 beruht wesentlich auf dem vom Autor in [4]
aufgestellten

SATZ (A). Sei X ein reflexiver Banachraum, sei T ein abschliessbarer Operator
in X, und sei A T-kompakt. Dann ist A T-beschrànkt mit T-Schranke null.

Dass Satz (A) fur nichtabschliessbare Operatoren T nicht richtig sein muss, sieht

man, wenn man einem unbeschrânkten Operator T mit endlichdimensionaler Wertemenge

betrachtet: der Operator A T ist zwar T-kompakt, hat aber T-Schranke eins.
Das folgende Beispiel zeigt, dass im Allgemeinen auch nicht auf die Reflexivitât von
X verzichtet werden kann :

Es sei X=C[0, 1], T=d2jdx2 mit den Randbedingungen

fi(O) n(l) O, i.e.

und es sei

A:ueD(T)->Au u"(O).

Der Operator A ist T-kompakt mit T-Schranke eins. Der erste Teil dieser Behauptung
folgt unmittelbar; fur die Abschâtzung der T-Schranke verwendet man z.B. die

Funktionenfolge {un(x) sin2{nnx% « 1,2,....
Satz 1 ergibt sich auf Grund der Invarianz der Defektzahlen in Fredholmgebieten

(PL § 3 und Satz 4.2) und unter Verwendung von Satz (A) unmittelbar aus

PROPOSITION 1. Der abgeschlossene lineare Operator T des Banachraumes X
besitze eine Folge {Ân} minimalen Wachstums fur die Resolvente, d.h. es sei

\\(T-Xn)~1\\<KI\Ân\furallen. Ferner sei A ein T-beschrânkter Operator mit T-Schranke
kleiner (1 +K)'1. Dann existiert eine Zahl n0 derart, dass {An}n>no in der Resolventen-

menge von T+A enthalten ist,
Entsprechend geniigt es gemâss [3], § 3 oder § 8 fur den Beweis von Satz 2, die

folgende leichte Verallgemeinerung von Proposition 1 zu zeigen:
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PROPOSITION 2. Es sei {An}, |AJ/l + oo, e/ne Folge von Punkten regulâren Typs
des Operators Tetf(X) derart, dass \\(T-Xn) u\\ ^K'1^ \\u\\ fur aile ueD(T), mit
einer positiven Konstanten K. Falls der Operator A T-beschrânkt ist mit T-Schranke
kleiner (l+K)'1, so existiert eine Zahl n0 mit der Eigenschaft, dass {An}n>Mo im
Regularitâtsgebiet von T+A liegt.

4. Im Folgenden untersuchen wir Satz 1 eingehender. Dazu beweisen wir

PROPOSITION 3. SeiXein Banachraum, undsei Te%{X). Falls die Resolventen-

menge q(T+A) nichtleer istfiir aile T-kompakten Operatoren A, so ist Tdicht definiert
inX.

Durch Kombination von Satz (A) mit den Propositionen 1 imd 3 erhalten wir auf
andere Art ein Résultat von Kato [5], das in der Théorie der infinitesimalen Erzeu-

genden von Halbgruppen von Bedeutung ist:
Es sei X reflexiv. Der Operator Te^{X) besitze eine Folge minimalen Wachstums

fur die Resolvente. Dann ist T dicht definiert.
Satz 1 ist in nichtreflexiven Râumen nicht allgemein richtig, wie folgendes Bei-

spiel zeigt: Es sei X=C[0, 1], T=d2\dx2 mit den Randbedingungen w(0) i/(l) 0.

Das Spektrum von Tbesteht aus den isolierten Eigenwerten \in— — n2n2, «=1,2,....
Jede positive Folge AB-* -f oo ist Folge minimalen Wachstums fiir die Resolvente. Der

Operator T ist nicht dicht definiert, so dass gemâss Proposition 3 ein T-kompakter
Operator A existiert derart, dass q(T+A) leer ist. Ein solcher ist z.B. der Operator,
welcher der Funktion ueD(T) die konstante Funktion Au=—u"(0) zuordnet (vgl.

das Beispiel nach dem Beweis von Proposition 3).
Man kônnte sich fragen, ob nicht jede unbeschrânkte Komponente der Resolven-

tenmenge eines dicht definierten Operators eines reflexiven Raumes invariant ist unter

relativ kompakten Stôrungen. In [2] wurde vom Verfasser folgendes Beispiel kon-

struiert : ein in einem separablen Hilbertraum dicht definierter Operator T mit kom-

pakter Resolvente und ein T-kompakter Operator A derart, dass q(T+A) leer ist.

BEMERKUNG 3. Nachdem der Autor dièse Arbeit zur Publikation eingereicht

hatte, teilte ihm R. Beals folgende Variante von Proposition 1 mit:
Der Operator Te&(X) sei dicht definiert und besitze eine Folge {Xn} minimale?

Wachstums fiir die Resolvente, und der Operator A sei T-kompakt. Dann ist {K}n>n0

fur geeignetes n0 in der Resolventenmenge von T+A enthalten.
Dièses Résultat verallgemeinert Proposition 1 insofern, als es in beliebigen Ba-

nachrâumen Giiltigkeit hat, wâhrenddem Proposition 1 (in Verbindung mit Satz (A),

nur fur T-kompakte Operatoren in reflexiven Râumen Aussagen macht (wobei dann

allerdings nicht a priori vorausgesetzt wird, dass T dicht definiert sei). Jedoch lâsst sich

Beals' Beweismethode nicht auf den Fall von Proposition 2 verallgemeinern.
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II. Beweise

5. Beweis von Proposition 1. Da

T + A - Xn [1 + A(T - A,)"1] (T - 2n),

geniigt es, die Existenz einer Zahl n0 mit \\A(T-kt)~1\\ <1 fur «>«0 zu beweisen.
Nach Voraussetzung ist der Operator A T-beschrânkt mit T-Schranke kleiner
(H-À)"1. Es gibt also Zahlen aKÇl+K)'1 und b(a) derart, dass Pt;||<a ||ri>|| +
+b(a) \\v\\ fiir aile veD(T). Fur festes n setzen wir v (T-Àn)~i u, ueX. Dann wird

\\A(T - J^iill g a ||T(T - Kr'uW + 6(a) ||(T - x^ll
S \\u\\ [a + a \Xn\ \\(T - KY'W + b(a) \\(T - Xn)~x\\]

fiir aile ueX. Folglich ist

Da a(l+^)<l und |AJ/* + oo, gibt es eine Zahl «0 mit der Eigenschaft, dassI1 q.e.d.

Beweis von Proposition 2. Wir setzen2) R(T—Àn)=Xn und erhalten so eine Folge
{Xn} von Unterrâumen von X. Der Operator T—Àn, aufgefasst als Abbildung
D(T)czX-+Xn, ist invertierbar, und es gilt

Dabei bezeichnet yn die Einbettung von Xn in X. Wie vorher beweist man, dass die
Operatoren A(T—A.n)~1:Xn-+X, fiir grosse n beschrânkt sind mit Norm kleiner eins.
Fiir dièse n existiert folglich kein von 0 verschiedener Vektor ueXn mit u+A(T— A,,)"1
w=0. Damit ist gezeigt, dass die Operatoren T+A— ln (n>n0) invertierbar sind. Da
die Wertemenge von T+A — kn fur n>n0 abgeschlossen ist, ist nach dem Satz vom
abgeschlossenen Graphen ln (n>n0) Punkt regulâren Typs von T+A9 q.e.d.

6. Der Beweis von Proposition 3 stiitzt sich auf das folgende

LEMMA ([3], p. 201, 2°). Sei X ein Banachraum, TeV(X), und Xeq(T). Es sei
ferner A ein Operator in X mit D(A)^>D(T). Dann ist notwendig und hinreichendfiir
ïïe T-Kompaktheit von A, dass der Operator A(T-X)'1 kompakt ist.

2) R(T) bezeichnet die Wertemenge des Operators T.
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Beweis von Proposition 3. Nach Voraussetzung ist die Resolventenmenge q(T)
nichtleer. Es sei Aeg(T). Wir nehmen an, dass der Operator Tnicht dicht definiert ist
und zeigen, dass dann ein J-kompakter Operator A so geftmden werden kann, dass

q(T+A) leer ist. Dazu wâhlen wir einen kompakten Operator B so, dass — 1 Punkt
des Spektrums von B ist, und dass R(1+B)=>D(T)*). Wir setzen A B(T-X).
Gemâss Lemma ist A T-kompakt. Aus der Beziehung

T + A - fi [1 + A(T - A)"1 + (A - ai) (T - X)~x] (T - X)

und unserer Wahl von B folgt R(T+A-n)aR(\ +B). Da die Wertemenge R(l +B)
echte Teilmenge von X ist, liegen aile Zahlen \i im Spektrum des Operators T+A,

q.e.d.

BEMERKUNG 4. Es soll noch ein kompakter Operator B mit den im Beweis

von Proposition 3 geforderten Eigenschaften konstruiert werden. Der Unterraum

M=D(T) sei echter Teilraum von X, und es sei Mi {/eI*:(/,«) 0 fur aile

ueM}. Dann gilt M=*{ueX:(f9 u)=0 fur alle/eM1}. Wir wâhlen ein Funktional

fieM1Jlï0, und setzen Jf1 {weJr:(/1, u) 0}. Der UnterraumZx enthâlt M und

hat Codimension 1, i.e. X=X1 + {Àx2] mit x2¥:0. Es bezeichne P den Projektor auf
den eindimensionalen Unterraum {Àx2} in Richtung von 1^ Der Operator B—-P
geniigt nun den gewiinschten Bedingungen.

Beispiel. Zum Operator T=d2/dx2 mit den Randbedingungen u(0) u(l) 0 im

Raume X=C[0, 1] konstruieren wir einen T-kompakten Operator A so, dass die

Resolventenmenge q(T+A) leer ist. Der Operator B: u(x)eX^> — w(0)eXist kompakt,
hat den Eigenwert -1, und erfûllt die Beziehung R(l +B)^D(T). Da Oeo(T), ist

somit nach dem Beweis von Proposition 3 A BT:ueD(T)-+—u"(O) ein gesuchter

Operator.
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