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Zur Storungstheorie linearer Operatoren in Banachriumen

PETER HESS

I. Einleitung und Resultate

1. Es bezeichne T einen selbstadjungierten Operator eines Hilbertraumes H und
A einen beziiglich T relativ kompakten Operator. Gohberg und Krein beweisen in
ihrem Ubersichtsartikel [3], dass das nichtreelle Spektrum von T+A aus isolierten
Eigenwerten endlicher algebraischer Vielfachheit besteht (Satz 5.1). Im Beweis dieses
Satzes wird wesentlich verwendet, dass ein kompakter Operator eines Hilbertraumes
beliebig genau durch degenerierte Operatoren approximiert werden kann.

Die Autoren verallgemeinern ferner dieses Resultat, indem sie von der Moglichkeit
gebrauch machen, einen symmetrischen Operator zu einem selbstadjungierten Opera-
tor in einem eventuell grosseren Hilbertraum erweitern zu kénnen:

Es sei T ein symmetrischer Operator eines Hilbertraumes H, und es sei A T-kom-
pakt. Dann sind alle nichtreellen Zahlen, mit Ausnahme eventueller isolierter Eigen-
werte, Punkte reguldren Typs von T+ A4, und die Defektzahlen von T und T+ A4
stimmen (ausser in diesen isolierten Punkten) iiberein (Satz 9.4).

2. Das Ziel der vorliegenden Arbeit ist es, entsprechende Sétze fiir Operatoren in
Banachriumen zu formulieren. Wir untersuchen, wann eine unbeschrinkte Kompo-
nente der Resolventenmenge (bzw. des Regularitidtsgebietes) eines abgeschlossenen
linearen Operators T eines Banachraumes X bis auf isolierte Punkte invariant ist
unter relativ kompakten Storungen. Mit € (X) bezeichnen wir die Menge der abge-
schlossenen linearen Operatoren T des Banachraumes X und mit ¢(7) die Resol-
ventenmenge von 7.

DEFINITION. Eine Folge {1,}c¢(T) mit |A,| "+ heisst Folge minimalen
Wachstums fiir die Resolvente des Operators Te € (X), falls mit einer gewissen Kon-
stanten X fiir n=1, 2,... gilt

K
T-1)=s—. 1
IC Bl T (1)
Agmon hat gezeigt, dass die Resolvente fiir |A| /' + 00 nicht stirker abklingen
kann ([1], p. 182, Satz 12.5).
Eine Kombination bekannter Beweismethoden [(3], Satz 5.1, und [6], p. 250)
ergibt folgendes Resultat:
Es sei X ein Banachscher Raum derart, dass jeder kompakte Operator in der
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Operatornorm beliebig genau durch degenerierte Operatoren approximiert werden kann.
Der Operator Te€(X) und sein adjungierter Operator T* seien in X bzw. X* dicht
definiert. Falls eine Komponente der Resolventenmenge o(T) eine Folge minimalen
Wachstums enthdlt, so ist sie bis auf isolierte Punkte eine Komponente von o(T+ A),
wo A ein T-kompakter Operator ist.

Die Frage, ob in einem beliebigen (oder reflexiven) Banachraum kompakte Opera-
toren durch degenerierte approximiert werden konnen, ist unseres Wissens offen?).
Mit Hilfe einer neuen Beweisidee erhalten wir jedoch Aussagen fiir beliebige reflexive
Banachrdume. Unser Hauptresultat ist

SATZ 1. Es sei X ein reflexiver Banachraum und Te % (X). Eine Komponente der
Resolventenmenge o(T), welche eine Folge minimalen Wachstums enthdilt, ist bis auf
isolierte Punkte eine Komponente von 9(T+A), wo A T-kompakt ist. Die isolierten
Punkte sind Eigenwerte endlicher algebraischer Vielfachheit des Operators T+ A.

Eine Zahl A heisst Punkt reguliren Typs des Operators T, falls mit einer Konstanten
¢>0 die Ungleichung [|[(T— A) u|| = c||u| fiir alle ue D(T) gilt. Die Menge der Punkte
reguldren Typs wird Regularititsgebiet von T genannt. Eine Verallgemeinerung von
Satz 1 ist

SATZ 2. Sei X reflexiv, und sei Te € (X). Enthdlt eine Komponente des Regulari-
titsgebietes von T eine Folge {1,} mit |1,| /' + oo und mit der Eigenschaft, dass

(T — A)ul = K™ 2, llull (K >0) @)

fiir alle u der Definitionsmenge D(T), so bleibt diese Komponente (bis auf isolierte
Punkte) eine Komponente des Regularititsgebietes von T+ A, wo A T-kompakt ist.
Die Defektzahlen von T— A und T+ A — A stimmen iiberein, falls A in der gemeinsamen
Komponente der Regularititsgebiete liegt.

BEMERKUNG 1. Falls die betrachtete Komponente des Regularititsgebietes
zur Resolventenmenge gehort, ist eine Folge mit der Eigenschaft (2) Folge minimalen
Wachstums fiir die Resolvente.

BEMERKUNG 2. Beispiele von abgeschlossenen Operatoren im Banachrdumen,
die Folgen minimalen Wachstums besitzen, findet man z.B. in [6], p. 483-484. Wir
fiilhren zwei Kriterien an, wann eine Punktfolge minimalen Wachstums fiir die
Resolvente eines Operators eines Hilbertraumes H ist:

1) Vergleiche dazu die Arbeiten von Maddaus [7] und Phillips {8], in denen gezeigt wird.,. ngS
diese Approximation jedenfalls in den Riumen C[K], L? (L < p £ + ), L? (1 £ p £ + ) moglich
ist.
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(i) Die (konvexe) numerische Wertemenge @ (T) des Operators Te € (H) sei echte
Teilmenge der komplexen Ebene, und im Komplement von @ (T) existiere ein reguli-
rer Punkt z von 7. Dann gehért jede ausserhalb von © (T') gelegene und z enthaltende
offene Halbebene zu ¢ (7). Eine Punktfolge {4,}, die auf einem in einer solchen Halb-
ebene enthaltenen und nicht zu deren Berandung parallelen Halbstrahl liegt, ist Folge
minimalen Wachstums.

(i) Es sei Te¥(H) normal. Eine unbeschrinkte Folge {4,}<=o(T) ist Folge
minimalen Wachstums fiir die Resolvente dann und nur dann, wenn es eine positive
Konstante ¢ gibt derart, dass alle Kreisscheiben {z:|z—4,| <c|4,|} in ¢(T) enthalten
sind.

3. Der Beweis der Sdtze 1 und 2 beruht wesentlich auf dem vom Autor in [4]
aufgestellten

SATZ (A). Sei X ein reflexiver Banachraum, sei T ein abschliessbarer Operator
in X, und sei A T-kompakt. Dann ist A T-beschrinkt mit T-Schranke null.

Dass Satz (A) fiir nichtabschliessbare Operatoren T nicht richtig sein muss, sieht
man, wenn man einem unbeschrdnkten Operator T mit endlichdimensionaler Werte-
menge betrachtet: der Operator 4 =T ist zwar T-kompakt, hat aber 7-Schranke eins.
Das folgende Beispiel zeigt, dass im Allgemeinen auch nicht auf die Reflexivitit von
X verzichtet werden kann:

Es sei X=C|[0, 1], T=d?/dx* mit den Randbedingungen

u(Q)=u(1)=0, ie. D(T)={ueX:u(0)=u(l)=0, u"eX},
und es sei
A:ueD(T)— Au=u"(0).

Der Operator A ist T-kompakt mit 7-Schranke eins. Der erste Teil dieser Behauptung
folgt unmittelbar; fiir die Abschidtzung der 7-Schranke verwendet man z.B. die
Funktionenfolge {u,(x)=sin?(nnx)}, n=1,2,....

Satz 1 ergibt sich auf Grund der Invarianz der Defektzahlen in Fredholmgebieten
([31, § 3 und Satz 4.2) und unter Verwendung von Satz (A) unmittelbar aus

PROPOSITION 1. Der abgeschlossene lineare Operator T des Banachraumes X
besitze eine Folge {A,} minimalen Wachstums fiir die Resolvente, d.h. es sei
I(T-2)" Y<K/ |A,| fiir alle n. Ferner sei A ein T-beschrinkter Operator mit T-Schranke
kleiner (1 +K)~!. Dann existiert eine Zahl n, derart, dass {An}n>n, in der Resolventen-
menge von T+ A enthalten ist.

Entsprechend geniigt es gemiss [3], § 3 oder § 8 fiir den Beweis von Satz 2, die
folgende leichte Verallgemeinerung von Proposition 1 zu zeigen:
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PROPOSITION 2. Es sei {A,}, |4,| /" + 00, eine Folge von Punkten reguliren Typs
des Operators Te % (X) derart, dass ||(T—4,) u| =K~ 1|4, |u| fiir alle ue D(T), mit
einer positiven Konstanten K. Falls der Operator A T-beschrinkt ist mit T-Schranke
kleiner (1+K)™', so existiert eine Zahl ny mit der Eigenschaft, dass {J,}y>n, im
Regularitditsgebiet von T+ A liegt.

4. Im Folgenden untersuchen wir Satz 1 eingehender. Dazu beweisen wir

PROPOSITION 3. Sei X ein Banachraum, und sei Te € (X). Falls die Resolventen-
menge 0(T + A) nichtleer ist fiir alle T-kompakten Operatoren A, so ist T dicht definiert
in X.

Durch Kombination von Satz (A) mit den Propositionen 1 und 3 erhalten wir auf
andere Art ein Resultat von Kato [5], das in der Theorie der infinitesimalen Erzeu-
genden von Halbgruppen von Bedeutung ist:

Es sei X reflexiv. Der Operator Te € (X) besitze eine Folge minimalen Wachstums
fiir die Resolvente. Dann ist T dicht definiert.

Satz 1 ist in nichtreflexiven Rdumen nicht allgemein richtig, wie folgendes Bei-
spiel zeigt: Es sei X=C|[0, 1], T=d?/dx* mit den Randbedingungen u(0)=u(1)=0.
Das Spektrum von T besteht aus den isolierten Eigenwerten p,= —n?n%, n=1, 2,....
Jede positive Folge A,— + oo ist Folge minimalen Wachstums fiir die Resolvente. Der
Operator T ist nicht dicht definiert, so dass geméiss Proposition 3 ein 7-kompakter
Operator A existiert derart, dass ¢(7'+ A) leer ist. Ein solcher ist z.B. der Operator,
welcher der Funktion ueD(T) die konstante Funktion Au= —u"(0) zuordnet (vgl.
das Beispiel nach dem Beweis von Proposition 3).

Man konnte sich fragen, ob nicht jede unbeschrinkte Komponente der Resolven-
tenmenge eines dicht definierten Operators eines reflexiven Raumes invariant ist unter
relativ kompakten Stérungen. In [2] wurde vom Verfasser folgendes Beispiel kon-
struiert: ein in einem separablen Hilbertraum dicht definierter Operator 7' mit kom-
pakter Resolvente und ein T-kompakter Operator A4 derart, dass o(7+ A) leer ist.

BEMERKUNG 3. Nachdem der Autor diese Arbeit zur Publikation eingereicht
hatte, teilte ihm R. Beals folgende Variante von Proposition 1 mit:

Der Operator Te ¥ (X) sei dicht definiert und besitze eine Folge {J,} minimaler.
Wachstums fiir die Resolvente, und der Operator A sei T-kompakt. Dann ist {Ay}n>no
fiir geeignetes ng in der Resolventenmenge von T+ A enthalten.

Dieses Resultat verallgemeinert Proposition 1 insofern, als es in beliebigen Ba-
nachriumen Giiltigkeit hat, wihrenddem Proposition 1 (in Verbindung mit Satz (A),)
nur fiir 7-kompakte Operatoren in reflexiven Rdumen Aussagen macht (wobei dann
allerdings nicht a priori vorausgesetzt wird, dass T dicht definiert sei). Jedoch ldsst sich
Beals’ Beweismethode nicht auf den Fall von Proposition 2 verallgemeinern.
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II. Beweise

5. Beweis von Proposition 1. Da
T+A—-2,=[1+A(T-2)"1(T-41),

geniigt es, die Existenz einer Zahl n, mit |4(7T—4,)" || <1 fiir n>n, zu beweisen.
Nach Voraussetzung ist der Operator 4 T-beschrinkt mit 7-Schranke kleiner
(1+K)~'. Es gibt also Zahlen a<(1+K)~! und b(a) derart, dass |Av||<al Tv| +
+b{a) ||v| fir alle ve D(T). Fiir festes n setzen wir v=(T—21,)"! u, ueX. Dann wird
IA(T — 4) ™ 'ull £ a IT(T — 4) " "ul + b(a) (T — 4,)" "ul
< llull [a + a | I(T = )"l + b(a) I(T — 2,)" "]
b(a) K]
| Al

< ull [a(1+K)+

fiir alle ue X. Folglich ist

b(a) K
2l

Da a(1+K)<1 und [4,|/+0c0, gibt es eine Zahl n, mit der Eigenschaft, dass
1A(T—2,)" | <1 fiir n>n,y, q.e.d.

14(T = 4,)"" | < a(l +K) +

Beweis von Proposition 2. Wir setzen?) R(T—A,)=X, und erhalten so eine Folge
{X,} von Unterriumen von X. Der Operator T—J,, aufgefasst als Abbildung
D(T)c X—X,, ist invertierbar, und es gilt

T + A - in = [.]n +A(T'— A'n)—l] (T—A"'n)'

Dabei bezeichnet j, die Einbettung von X, in X. Wie vorher beweist man, dass die
Operatoren A(7T—4,)":X,— X, fiir grosse n beschrinkt sind mit Norm kleiner eins.
Fiir diese n existiert folglich kein von 0 verschiedener Vektor ueX, mitu+A4(7T—21,) "
u=0. Damit ist gezeigt, dass die Operatoren T+ 4 — A, (n>n,) invertierbar sind. Da
die Wertemenge von T+ A4 — A, fiir n>n, abgeschlossen ist, ist nach dem Satz vom
abgeschlossenen Graphen 4, (n>n,) Punkt reguldren Typs von T+4, q.e.d.

6. Der Beweis von Proposition 3 stiitzt sich auf das folgende
LEMMA ([3], p. 201, 2°). Sei X ein Banachraum, Te € (X), und Aco(T). Es sei

Terner 4 ein Operator in X mit D(A)>D(T). Dann ist notwendig und hinreichend fiir
lie T. -Kompaktheit von A, dass der Operator A(T—2)~* kompakt ist.

®) R(T) bezeichnet die Wertemenge des Operators 7.
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Beweis von Proposition 3. Nach Voraussetzung ist die Resolventenmenge o(7T)
nichtleer. Es sei Aeg(7’). Wir nehmen an, dass der Operator T nicht dicht definiert ist
und zeigen, dass dann ein 7-kompakter Operator A so gefunden werden kann, dass
0(T+ A) leer ist. Dazu wéihlen wir einen kompakten Operator B so, dass — 1 Punkt
des Spektrums von B ist, und dass R(1+B)>D(T)3). Wir setzen A=B(T—A).
Gemaiss Lemma ist 4 7-kompakt. Aus der Beziehung

T+A—p=[14+A(T-2)""'+A-w(T-2)""](T-42)

und unserer Wahl von B folgt R(T+ A—p)< R(1 + B). Da die Wertemenge R(1 + B)
echte Teilmenge von X ist, liegen alle Zahlen u im Spektrum des Operators T+ A4,
g.e.d.

BEMERKUNG 4. Es soll noch ein kompakter Operator B mit den im Beweis
von Proposition 3 geforderten Eigenschaften konstruiert werden. Der Unterraum

M=l—5_(7"—) sei echter Teilraum von X, und es sei M*={feX*:(f,u)=0 fir alle
ue M}. Dann gilt M={ueX:(f, u)=0 fiir alle feM*}. Wir wéhlen ein Funktional
fieM*, f;#0, und setzen X, ={ue X:(f;, u)y=0}. Der Unterraum X, enthilt M und
hat Codimension 1, i.e. X=X, + {Ax,} mit x,#0. Es bezeichne P den Projektor auf
den eindimensionalen Unterraum {Ax,} in Richtung von X,. Der Operator B= —P
geniigt nun den gewiinschten Bedingungen.

Beispiel. Zum Operator T=d?/dx* mit den Randbedingungen u(0)=u(1)=0 im
Raume X=C|[0, 1] konstruieren wir einen T-kompakten Operator 4 so, dass die
Resolventenmenge ¢(7 + A) leer ist. Der Operator B:u(x)e X— —u(0)e X ist kompakt,
hat den Eigenwert —1, und erfiillt die Beziehung R(1 +B)>D(T). Da Oeg(T), ist
somit nach dem Beweis von Proposition 3 A=BT:ueD(T)— —u"(0) ein gesuchter
Operator.
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