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Gleichungen und Ungleichungen fiir die Geriiste von konvexen

Polytopen und Zellenkomplexen

D. G. LARMAN und P. Man11)
1. Einleitung

Wir befassen uns hier mit Eigenschaften der k-dimensionalen Geriiste von Zellen-
komplexen, wobei uns die Randkomplexe von Polytopen besonders interessieren. In
Abschnitt 2 fiihren wir, in Anlehnung an die Arbeit [4] von H. Hadwigger, den Be-
griff des k-ten dusseren Winkels eines Polytops ein und gewinnen Beziehungen, die
eine Verbindung zwischen der diskreten Form der Formel von Gauss-Bonnet fiir
die Aussenwinkel und der Formel von Euler-Gram fiir die Innenwinkel eines Polytops
darstellen. Wir zeigen, dass diese Beziehungen in einem gewissen Sinn eindeutig sind,
und erweitern sie auf beliebige geradlinige Zellenkomplexe. In Abschnitt 3 beweisen
wir eine Unterhalbstetigkeitsaussage fiir die inneren Winkelsummen von Polytopen und
leiten notwendige Bedingungen fiir die Gleichheit her. Abschnitt 4 enthilt eine
Untersuchung des r-dimensionalen Hausdorffschen Masses des r-Geriists von Poly-
topen und Zellenkomplexen, und kann als eine Fortsetzung der von H. G. Eggleston,
B. Griinbaum und V. Klee in [1] gemachten Studien angesehen werden.

2. Die k-dimensionalen Winkelsummen

E* sei der d-dimensionale euklidischen Raum. Wir sagen, zwei Ebenen (lineare
Mannigfaltigkeiten) E und F von E? seinen in allgemeiner Lage, wenn fiir die zu E
und F parallelen Unterrdume E’, F’ die Gleichung

dim(E’' N F’) = max {0, dim E’ + dim F' — d}

zutrifft,

Wenn E ein Unterraum von E? und xe E? ein Punkt ist, iibertrigt sich die eukli-
dische Struktur von Ec E® durch Translation auf E+x, wobei x zum Ursprung
des ,,euklidischen Raumes E+ x* wird. Die Grassmannsche Mannigfaltigkeit aller
k-dimensionalen Unterrdume von E? bezeichnen wir mit V}; hier nehmen wir-
1<k<d an. Es gibt genau ein drehinvariantes Haarsches Mass pj auf V{ mit der
Eigenschaft, dass uf (V) =11st.

Unter einem (geradlinigen) Zellenkomplex U in E¢ verstehen wir eine endliche
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Menge von (konvexen) Polytopen des E? derart, dass mit einem Polytop auch alle
seine Seiten zu A gehéren, und dass der Durchschnitt zweier Elemente aus U stets eine
gemeinsame Seite ist. Das durch 2 bestimmte Polyeder bezeichnen wir mit ||, sodass
also || = Uxcu X gilt. Fiir jede ganze Zahl i sei 4°(N) die Menge der i-dimensionalen
Zellen in A, wobei wir 4 (W) =0 haben, wenn i nicht zum Interval [— 1, dim U] gehort.
Unter f*(A) verstehen wir die Méchtigkeit von 4°(), und WA'=J;; 4° () steht
fiir das i-dimensionale Geriist von . Zu jedem Polytop P gehort der natiirliche
Komplex P, dessen Zellen die i-dimensionalen Seiten (—1<i<dimP) von P sind.
Gelegentlich werden wir statt 4°(B) und f*(B) einfach 4*(P) und f*(P) schreiben.
Wenn ein Polytop P, ein Unterraum EeV; und ein Punkt xeP gegeben sind, bezeich-
nen wir mit A (P, E, x) den dusseren Winkel des Polytops PN (E + x) in der Ebene E+ x
und beim Punkt x.A4 (P, E, x) ist, mit anderen Worten, die Menge der Richtungen im
euklidischen Raum E+x, welche das Polytop Pn(E+x) an der Stelle x stiitzen.
A*"1 sei das (k—1)-dimensionale Hausdorffsche Mass auf der Einheitssphére S in
E+x, welche den Ursprung x als Mittelpunkt hat. Wit normieren A*~! so, dass
A*¥"1(S)=1 ausfillt, und setzen & (P, E, x)=A*"1(A(P, E, x)). Fiir jede Teilmenge
M < E® bezeichnen wir mit convM die konvexe Hiille von M, mit aff M die affine
Hiille von M, mit relint M das Innere von M beziiglich der Topologie t von aff M und
mit relbd M den Rand von M beziiglich r. Wenn nun die Punkte x und y zum relativen
Inneren der gleichen Seite X eines Polytops P gehoren, gilt stets & (P, E, x)=¢&(P, E, »).
Darauf gestiitzt definieren wir é(P, E, X), indem wir einen Punkt xerelint X wihlen
und ¢ (P, E, X)=¢(P, E, x) setzen. Im Fall dim X +dim E> d finden wir ¢ (P, E, X)=0.
Der (k—1)-dimensionale dussere Winkel a;_ (P, X) von P an der Seite X ist durch
die Beziehung

t1(P, X) = f (P, E, X) d(p)

festgelegt, wobei E die Menge V¢ durchliuft. Wit setzen

“lic—l(P)= >, %1 (P, X)

Xed!(P)

und definieren die totale (k—1)-dimentionale dussere Winkelsumme o, _; (P) durch
die Formel

“k-—1(P)=i§,O(— 1)i“§c—1(P)- (L

Fiir i>d—k verschwinden die Ausdriicke (—1)'«}_; (P) auf der rechten Seitc
von (1). Im Falle k=d liefert das polyedrische Analogon der Formel von Gauss-

Bonnet die Gleichung «,_, (P)=1. Als Erweiterung dieser Gleichung beweisen wir
zunichst
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SATZ 1. Fiir jedes Polytop P< E* und jede natiirliche Zahl k mit 1<k<d gilt
%1 (P)=1.
Beweis. Wit setzen, bei gegebenem EcVy,
d-k

¢&(P,E)y= Y ¢&(P,E,X) und ¢(P,E)=Y (—1)¢&(P,E).
Xed'(P) i=0
Vo< V¢ sei die Menge der Unterrdume, welche sich zu allen Ebenen aff X (Xe %) und
zu allen Geraden aff{p, g} (p, g€ 4°(*B)) in allgemeiner Lage befinden.
Wir wollen zeigen, dass fiir jeden Unterraum Ee V,, die Beziechung

E(P,E)=1 (2)

gilt. Mit FeV | bezeichnen wir das orthogonale Komplement von E in E® und
mit 7: E*—~ F die Normalprojektion lings E auf den Unterraum F. Wir setzen P’ = 7t(P)
und IT={n(X) | XeP*"*}. Da E zu V, gehort, ist die Einschrinkung von = auf X
fiir jede Zelle Xe P*~* ein Homdomorphismus zwischen X und 7 (X), und ausserdem
induziert 7 eine Bijektion # von P * auf I1. Wir werden unsere weiteren Uber-
legungen auf diese einfachen Tatsachen stiitzen, ohne sie jeweils besonders zu er-
wihnen. Als eine erste Konsequenz derselben finden wir, dass sich durch die Beziechung
n(Y)=¢(P, E, #71(Y)) (Yell) eine Abbildung 5 von IT in die reellen Zahlen R
definieren ldsst. Wir setzen n'(II)=)n(Y), fiir Yell, dimY=i, und ()= {2}
(—1)'n*(IT). Zum Beweis von (2) geniigt es, die Beziechung

n(Il) =1 A3)
zu sichern. Zunéchst wollen wir zeigen, dass fiir jeden Punkt ye P’ die Gleichung
Yn(Y)=1, fir Yell, yerelinty, 4)

zutrifft. Nun féllt im Polytop (E+y) n P die Menge der Eckpunkte mit der Menge der
Durchschnitte (E+y)nrelint(27! Y), fiir yerelint Y, YelIl, zusammen, und daraus
folgt (4) sofort durch Anwendung der Formel von Gauss-Bonnet auf (E+y)nP. Zu
jeder Zelle YelIl wihlen wir ein Rechtsinverses von 7, welches #71(¥) ,,enthalt*,
genauer, eine Abbildung 6:P'—P und einen Subkomplex F<=P?~* so, dass die
Beziehungen |§|=0(P’), no=1p, und o(¥)eF gelten, wo |F| das zu & gehdrige
Polyeder ist. Die Existenz einer solchen Abbildung o geht aus dem , lifting theorem*
fiir; Polytope von D. W. Walkup und R. J.-B. Wets (8) hervor. Die Menge A(Y)=
={n(F)| Feg} ist ein Zellenkomplex mit A(Y)<II, |A(Y)|=P' und YeA(Y).
Unter dem Durchschnitt W ={\yz A(Y) verstehen wir den Zellenkomplex U
bestehen aus allen Durchschnitten der Form A=y 4(Y), mit 4 (Y)eA(Y).
Offenbar ist |%| =P’, und weiter gilt fiir jedes Paar von Zellen A€, Yell entweder
relint 4 crelint ¥ oder relint 4 N relint ¥=0. So kénnen wir eine Abbildunge: U x IT-R
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durch die Gleichungen ¢(4, Y)=#n(Y) (relint A crelint Y) und e(4, ¥)=0 (relint4
nrelint Y =0) festlegen. Die Formel von Euler liefert

Y (- )i A= p(P)=1. (5)

Ael

Hierbei bedeutet y die Eulersche Charakteristik. Falls, fiir eine gegebene Zelle
A€, p im relativen Inneren von A4 liegt, so gehort p genau dann zu relint Y (Yell),
wenn relint 4 crelint Y gilt. So finden wir, unter Beriicksichtigung von (4), fiir jedes 4

YZ;IS(A, Y)=1. (6)
Aus (5) und (6) ergibt sich
L= 3 (= 1F"4(T o4, V) = 3 0() (T* (- D*™4), 0

wobei das Zeichen Z* bedeutet, dass iiber alle Zellen 4 mit relint 4 crelintY zu
summieren ist. Da die Menge der A€ mit relint A<= Y eine Zellenzerlegung von Y
ist, finden wir

¥ (= 174 = 4 (¥) = g (relbd ¥) = 1 — (1 = (= 1)), ®)
Indem wir (7) mit (8) kombinieren, erhalten wir
1=% (=)™ "n(Y),

Yell

woraus sich (3) und mithin (2) ergibt. Der Beweis von Satz 1 folgt unmittelbar durch
Integration von (2) iiber die Menge V,, wenn wir noch beriicksichtigen, dass V —V;
eine uj-Nullmenge ist.

Um zu zeigen, dass sich aus Satz 1 die Formel von Euler-Gram unmittelbar
ableiten lisst, fithren wir zunichst den zu a,_,; komplementiren Winkel f,_, ein.
Wir setzen, wenn P nach wie vor ein Polytop des E¢ bedeutet, fiir xeP und Ee V,f,
n(P, E, x)=1—¢&(P, E, x). Wiederum finden wir, dass n(P, E, x) fiir alle Punkte
xerelintX (Xe®P) gleich ausfillt, was uns erlaubt, n(P, E, X) und den (k— 1)-
dimensionalen inneren Winkel

Bios(P, X) = f 1(P, E, X) d ()

zu definieren. Ebenso legen wir fj_,; (P) und

s (P)= . (= 1) Bies (P
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analog zu den entsprechenden Ausdriicken fiir « fest. Aus Satz 1 ergibt sich sodann
Bi-i (P)=x(PB*"¥)—1, wo x wieder die Eulersche Charakteristik bezeichnet. Im
Falle k=1 ist dies die Formel von Euler-Gram fiir Polytope.

Zu jedem Unterraum EeVy und jedem Punkt xe EnS%! gehort eine (k—1)-
dimensionale Hemisphére

H(E,x)={yeEnS"'[(x,y) > 0}.

Mit W;_, bezeichnen wir die Menge aller Hemisphiren H(E, x) (Ee V¢, xe En§*™1),
zusammen mit der Hausdorff Metrik. Auf W;_, gibt es genau ein Haarsches Mass
oi_,, fiir welches o', (W_,)=1 gilt. Wir erwiihnen hier ohne Beweis.

LEMMA 1. Wenn P ein Polytop und X eine Seite von P ist, gilt

Bi-1(P, X) =lim X((x+3H)mP)d(Q:—1)-

e—0
wi_,

Dabei is x ein beliebiger Punkt in relint X, H durchlduft die Menge W_,, und y ist
die Eulersche Charakteristik, welche in dem speziellen Fall, auf den sich unser Lemma
bezieht, nur die Werte 0 und 1 annimt. Fiir k=d ist das Lemma #quivalent zur
Tatsache, dass der Aussenwinkel eines Polytops P an seiner Stelle pe P mit der Menge
der Stiitzrichtungen von P in p zusammenfilit.

Nun bedeute M irgendeinen Zellenkomplex in E? und M=|IR| das zugehorige
Polyeder. Zu jedem nichtleeren X9 wihlen wir einen Punkt xerelint X und setzen

e (M, X) = 1 — By (M, X) = 1 — lim f 1((x + eH) A M) d(gl_,).

e—=0
Wii-1

Einfache Uberlegungen (vgl. etwa (6), Lemma 1) zeigen, dass a,_, (MM, X) nicht von
der Wahl des Punktes xerelint X abhingt. Ausserdem ersehen wir aus Lemma 1, dass
%G1 (M, X)=04_, (M, X) gilt, wenn M der aus den Seiten eines Polytops M be-
stehende Komplex ist. Wie zuvor definieren wir

G- (M= Y o (M, X),
XeA‘(SJl)
und

d—k
%1 (M) = ';0 (= Doy (M),
sowie, in analoger Weise, §; _ ; () und ;_, (M).

SATZ 2. Fiir jeden Zellenkomplex I und jedes k, 1 <k <d, gilt o (W) =y (M).
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Beweis. Zwecks formaler Vereinfachung setzen wir, wenn O den leeren Komplex
bedeutet, o, _; (O)=0. Aus Satz 1 folgt, dass fiir jede nichtleere Zelle Xe M, mit dem
aus allen Seiten von X bestehenden Komplex X, die Beziehung o, _, (¥X)=1 gilt. Zudem
ergibt sich aus des Definition der Funktion «,_,, dass fiir beliebige Subkomplexe
B, € von M die Gleichung

%-1(B) + % (€) =0 (BLE) + o (B E)

richtig ist. Daher stimmt oy, _; mit der Eulerschen Charakteristik y iiberein, was zu
zeigen war.

Mit M<IN bezeichnen wir die Menge der Zellen XeIR, fiir welche X <M gilt,
wo M den Rand des Polyeders M =|9| beziiglich der Topologie von E¢ bedeutet.
Analog zu o, _; (M) definieren wir

“k—l(im)= Z (_1)dimXak_1(§IR,X)

Xeﬁld“k
und
ﬁk—l(Sﬁz) = Z\ (_ l)dimxﬁk—1(§m’ X)-
XeMa-k

SATZ 3. Fiir jeden Zellenkomplex I gilt
Bre—1 (D) = 5 (TE™F) — 2 (M).

Beweis. X sei eine Zelle in 9 — M. Jeder Punkt xerelint X gehdrt zum Inneren
M?® von M in der Topologie von E¢, und wir finden eine Zahl ¢(x) so, dass fiir jedes
¢ mit 0<e<e(x) und jedes HeW;_, die Sphire x+&H eine Teilmenge von M ist.
Daraus folgt x ((x+&H) n M)=1 und weiter o,_, (IR, X)=0. So finden wir a,_, ()=
=0y _; (M) =yx (M), und Satz 3 folgt unmittelbar, im Hinblick auf die Definition von
Br—1 ().

Im Fall k=1 finden wir B, ()= (M) —x M) =(—1)?"" x(M°), was mit propo-
sition 2 in P. Mani [6] iibereinstimmt. Wir konnen B, _, (B) fiir eine beliebige Zellen
zerlegung B von M definieren, und eine dem Satz 3 entsprechende Aussage beweisen.
Es ist uns nicht bekannt, ob zu jeder Zerlegung B von M sets eine Zerlegung M des
ganzen Polyeders so existiert, dass =B ist. Fiir weitere Anwendungen wollen
wir den Wert von &, _, in einem besonders einfachen Fall bestimen.

LEMMA 2. Wenn P< E® ein Polytop der Dimension d—k+1 und X eine (d—k)-
dimensionale Seite von P ist, so gilt o, _, (P, X)=14. .
Beweis. EcV;® bedeute einen hinsichtlich B allgemeinen Unterraum. Indem wir
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einen Punkt xerelintX wihlen, finden wir, dass (E+x)naffP eine Gerade L ist,
die nicht in affX verlduft. Daher ist der Durchschnitt LN P eine abgeschlossene
Strecke S mit x als einem ihrer Endpunkte. Der Aussenwinkel von S in der Ebene
E+ x an der Stelle x hat das Mass 4, woraus unser Lemma sich ergibt.

PcE? sei ein Polytop der Dimension d—k. Wir wihlen perelintP und eine
Richtung e, welche zu aff P senkrecht steht, und setzen p,=p+te (0<t<1) sowie
P,=conv(Pu {p,}). Mit P (B,) bezeichnen wir den natiirlichen Komplex von P (P,).
Wir finden B,=Pu {conv(Xu{p,})| XeB}. Es gibt einen naheliegenden Isomor-
phismus @, . : B, ->P,,, der P fest ldsst und p,, in p,, iiberfiihrt. Wir setzen, fiir
jedes Xe ‘B, und jedes (0, 1), X,= P, ,(X). Wegen Lemma 2 gilt fiir alle
ta,_{(P, P)=1, und wir bemerken hier ohne Beweis

LEMMA 3. P und (P,),c (0,17 Seien wie oben gegeben. Wenn Xe'P, den Punkt P,
enthdlt, gilt oy, _ (P, X,)—% fiir t—0. Wenn Y eine nichtleere Seite in B—{P} ist,
gilt oy (P, Y,)—1 fiir t—0.

Schliesslich stellen wir fest

LEMMA 4. Fiir einen (d—k + 1)-dimensionalen Wiirfel W in E° gilt
i d—k+1
s om=("T1).

)

Beweis. Bei der Integration fiir B;_, konnen wir uns auf die Menge Vo< V¢
derjenigen Unterrdume beschrianken, die sich zu allen Ebenen affX (XeIR) in all-
gemeiner Lage befinden. Wir betrachten eine i-dimensionale Seite X von W und
einen Punkt xerelintX. Fiir jedes EeV, ist (E+x)n W eine (eventuell entartete)
Strecke, und daraus folgt, dass B,_{ (W, X) mit dem in aff W gemessenen Innen-
winkel von W an der Stelle x iibereinstimmt. Fiir die Summe der i-dimensionalen
Kantenwinkel eines (d—k+ 1)-dimensionalen Wiirfels finden wir aber leicht den

Wert (d_{ﬂ- 1) .
i

Mit diesen Vorbereitungen konnen wir ohne Miihe die beiden nachfolgenden
Eindeutigkeitssitze fiir die Winkelsummen beweisen.

SATZ 4. Wenn &, &, ..., E,—, reelle Zahlen sind, sodass fiir jedes (d— k +1)-dimen-
sionale Polytop P<E® die Beziehung Y i-X(—1)'¢&uk_,(P)=¢ gilt, so ist E=¢,
fiirallei,0<i<d—*k.
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Beweis. P sei ein beliebiges (d—k)-dimensionales Polytop in E%. Wir betrachten
eine Familie von Polytopen (P,),c(0,1; Wie in Lemma 3. Gemiss Lemma 3 finden
wir, fiir

t—’Oa “l?—l(Pt)_’fo(P) + %‘9
%-1(P)=>f(P)+(B)f7(P) (1<i<d-k-—1)
und

% 1(R) - D TP+ ().

Durch Einsetzen dieser Werte in die Beziehung

d—k
X (=1 m-a(P)=¢ ©
erhalten wir
d—k—1
Y D E- D) B =~ Db~ B ) (10

Da (10) fiir alle (d— k)-dimensionalen Polytope gilt, erhalten wir aus der Eindeutig-
keit der Eulerschen Relation (B. Griinbaum [2]), indem wir zur Abkiirzung d=¢, —¢&,
setzen, die Gleichungen

E=E+6(2-1) (O<i<d-k)

E=¢+(8)2)((— 1)y 277% —1).

Nun sei W ein (d— k)-dimensionaler Wiirfel. Wegen Lemma 3 gilt

(11)

1

; i i d—k+1 —k—i
“k—l(W)=f(W)“ﬁk—1(W)=< : >(2d ).
Da (9) auch fiir W anstelle von P, zutreffen muss, haben wir

T (1 Goro@ - (PTET @ o
=0 +(8/2) ((— 12" "—1),

woraus sich, ausser im trivialen Fall d=k, die den Beweis von Satz 4 sichernde
Gleichung 6 =0 ergibt.

SATZ 5. Wenn &, &, ..., &, reelle Zahlen sind, sodass fiir jedes (d— k +1)-dimen-
sionale Polytop P E° die Gleichung

d—k
ZO (— 1) &Bi-r(P)=(—1)""*¢ (12)

gilt,soist E=¢&, fiirallei,0<i<d—k.
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Beweis. Wie im Beweis von Satz 4 finden wir fiir jede Familie (P,),c(0,1; VoD
Pyramiden mit #—0 die Konvergenzen

B (P)=%,  Boi(P)>(B)STH(P) (I<i<d—k+1),
BZIP) > (B) + (D) STFN(P).
Durch Einsetzen dieser Werte in (12) ergibt sich

d—k-1

Y (m )& fi(P) =&+ (= 1) g —2¢.
i=0
Die Eindeutigkeit der Eulerschen Relation liefert weiter

&= —26(- 1))/t - 2(-)'). (13)

Indem wir diese Zahlen in (12) einsetzen und (12) fiir einen (d—k + 1)-dimensionalen
Wiirfel berechnen, erhalten wir

fort 3, (= 1) (o = 26(= D) 1 = 2(= ¥

woraus sich &, =¢ und, wegen (13), auch ¢;=¢ (1 <i<d—k) ergibt.
Satz 5ist fiir den Fall k=1 zuerst von W. H6hn in (5) bewiesen worden.

d—k+1
i

)=(=1rre.

3. Ein Unterhalbstetigkeitssatz fiir die Innenwinkel konvexer Polyeder

Unter einem konvexen Polyeder verstehen wir hier, in leichter Abweichung von
der Definition in Abschnitt 2, den Durchschnitt einer endlichen Menge von abge-
schlossenen Halbriumen des E?, sodass also ein beschrinktes Polyeder ein Polytop
ist. Zu einem gegebenen konvexen Polyeder P gehdren wie im Fall der Polytope der
aus allen Seiten von P bestehende Komplex B, das k-dimensionale Geriist P* von P
und die Menge 4*(‘B) der k-dimensionalen Zellen in . Wir betrachten ein konvexes
Polyeder P mit dimP=m und wihlen Xe4*(P), xerelintX. Zu jedem MeV}_,..,
setzen wir ¥(P, X, M)=1, falls (x+M)nP#{x} ist und ¥(P, X, M)=0 andern-
falls. Dam gilt fiir den in aff P gemessenen Innenwinkel B, von P an der Kante X die
Beziehung

Bo(P, X) = (3) f W (P, X, M) d(im 1),

und wir definieren die k-te innere Winkelsumme wie gewohnt durch

B’:)(P)= Z ﬁo(P’ X)-

X € A%(P)

Wir sagen, eine Folge P, von konvexen Polyedern P; konvergiere gegen das konvexe
Polyeder P und schreiben P,— P, wenn fiir jede positive ganze Zahl r die Folge der
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Polytope (rW)n P; im Sinne der Hausdorff Metrik gegen (rW)nP konvergiert.
Hierbei bedeutet W einen Einheitswiirfel, der den Ursprung als Symmetriezentrum
hat. Wenn e, eine reelle Zahlenfolge ist, bezeichnen wir mit lim infe, den limes
inferior und mit lim supe, den limes superior von e,. Zunichst beweisen wir ein
Lemma, das den in (1) hergeleiteten Halbstetigkeitssatz fiir die Seitenzahlen eines
Polytopes als unmittelbares Korollar enthilt.

LEMMA 5. P seieinPolytop und P, eine gegen P konvergierende Folge von Polytopen
so, dass die Folge f ° (P,) beschrdnkt ist. Dann gibt es eine Teilfolge P,; von P,, zu jeder
natiirlichen Zahl k eine Folge von bijektiven Abbildungen ¥} : A*(P,)— A*(P;,) und zu
jedem Ye A*(P) eine Teilmenge W(Y) von A*(P,,) so, dass alle Folgen'? i3 (A4) (AeU(Y))
konvergieren und die Beziehung | ) 4o y)lim ‘Pa’,‘,, (A)=Y gilt. Ausserdem kinen wir
fordern, dass die Mengen W (Y,) und A(Y,) (Y, #Y,) stets disjunkt seien.

Beweis. Zunichst bemerken wir, dass mit f°(P,) alle Folgen f*(P,) beschrinki
sind. Daher finden wir eine Teilfolge P,; so, dass alle Folgen /*(P,;) konstant sind.
Gestiitzt auf den Blaschkeschen Auswahlsatz konnen wir P,; so fein wéhlen dass es
Folgen ¥,3 von bijektiven Abbildungen ¥/ :4*(P;,)—4"*(P;)) gibt, fiir welche jede
Folge ¥ (X) (Xe4*(P,)) gegen ein Polytop X P konvergiert. Wir wollen zeigen,
dass

U X o 14%(P)|, fir Xed*(R), (14)

gilt. Andernfalls finden wir Ye4*(P) und perelint ¥ so, dass p nicht in (JX, fiir
Xed*(P,), liegt. Es gibt eine Folge p,; von Punkten Pi, 0, dass limp,;=p ist. Unsere
Gegenannahme besagt, dass die Folge d,; der euklidischen Abstinde d; =|p;, I‘B,-'j.l |
nicht gegen Null streben kann. Daher gibt es 6 >0 und eine Teilfolge p,g, von p,s s0,
dass jeder Punkt p; Mittelpunkt einer (k+1)-dimensionalen Kugel K; —P; mit
Radius 6 ist. Nach dem Blaschkeschen Auswahlsatz finden wir sofort, dass eine
(k+1)-dimensionale Kugel KcP mit Zentrum p und Radius ¢ existiert, was der
Beziehung pe|P¥| widerspricht. Damit ist (14) bewiesen. Zu jeder Zelle Ye4*(P)
setzen wir WA (Y)={Xe4*(P,) | relint X nrelint Y5#0}. Aus (14) ergibt sich unmittel-
bar Y ycucr) X>7Y. Da X jeweils eine Teilmenge von P und Y ein Element von
A* (P)ist, folgt andererseits aus relint X nrelint Y # 0 dass relint X crelint ¥ und damit
Uxeum X c Y gilt. Wenn Y; und Y, verschiedene Seiten in 4*(P) sind, ist U (¥;)
AA(Y,)=0; denn sonst gibe es Xed*(P,) derart, dass relint X crelintY; (i=1, 2)
und weiter relint X = (relint ¥; nrelint ¥,)=0 gilte. Die Mengen % (Y) geniigen daher
allen in Lemma 5 geforderten Bedingungen.

KOROLLAR. P, sei eine gegen ein konvexes Polyeder P konvergierende Folge von
konvexen Polyedern. Dann ist fiir jede natiirliche Zahl k lim inf f*(P,) > f*(P)

Beweis. Wir wihlen r so gross, dass das Innere des Wiirfels 7 von jeder Kante
Yed*(P) einen Punkt p(Y)erelintY enthilt. Bei gegebener Punktmenge X< E ‘
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setzen wir X' =XnrW. Y’ ist fiir jedes Y in 4*(P) ein Element von 4*(P’). Wenn
eine Folge X, von Mengen vorliegt, soll X, die Folge der Mengen X; nrW bedeuten.
Unter der Annahme, unser Korollar sei falsch, finden wir eine Teilfolge P,z von P,
so, dass lim sup f*(P,,)< f*(P) gilt. Weiter gibt es eine Teilfolge P,5, von P,;,, welche
die in Lemma 5 erwihnten Eigenschaften hat. Um unsere Bezeichnungen zu verein-
fachen, nehmen wir an, wir hitten P, do ,,dlinn* gewdhlt, dass wir P,;, =P, setzen
koénnen. Gemédss Lemma 5 gibt es dann zu jedem YeA*(P) eine Menge 4 (Y)eA(Y)
c4*(P)) so, dass p(Y)elimP%(4(Y))< Y’ gilt. Fiir geniigend grosse Indexe i muss
Pi(A(Y)) die Form FnrW (Fed*(P)) haben, da die iibrigen Mengen von 4*(P))
dem Rand von W angehoren und sich dem Punkt p (Y) nicht beliebig ndhern kénnen.
Da A(Y;) und 4(Y,) stets verschieden sind, folgt fiir hinreichend grosse i

S¥(P) = card {A(Y) | YeA*(P)} = f*(P),

was wir beweisen wollten.

LEMMA 6. Pc E? sei ein m-dimensionales Polytop und P, eine gegen P konver-
gierende Folge von Polytopen mit lim inf dim P,=j. Die Folge X, (X ;€ A4*(P), k<m—1)

= N\
konvergiere gegen eine Teilmenge Y P. X sei diejenige Zelle im Randkomplex ‘P, fiir
welche relint Ycrelint X zutrifft. Dann gilt fiir die Mengen ®}' der m-dimensionalen
Seiten von P;, welche X ; enthalten:

liminf ) Bo(G, X,)=>(j—m+1)By(P, X).

G e 6,

Beweis. Indem wir, wenn notig, kleine Translationen auf die Polytope P; ausiiben,
koénnen wir ohne Einschrinkung der Allgemeinheit annehmen, es gelte

relint X n () relint X;) # 0,
i=1

und wir setzen voraus, der Ursprung liege in diesem Durchschnitt. Wir definieren
H={MeV; ., |MnrelintP # 0}

und bezeichnen mit H" die abgeschlossene Teilmenge von H, welche alle Unterrdume
enthilt, deren Distanz von V{_,,, , — H wenigstens 1/n ist. Dann gilt

Bo(P, X) = tim pi_,,. (H").

n-—*o

Entsprechend setzen wir

Hi={MeV;_,., | MAnrelintP, # 0} .
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Wir wollen zeigen, dass zu jedem »n ein Index i, existiert, sodass fiir i> i, die Beziechung
H" < H, (15)

gilt. Andernfalls finden wir eine Teilfolge P,; von P, und eine gegen einem Unterraum
N konvergierende Folge N,z (Nije V4 _m+1) SO, dass fiir alle i ; N;,; zur Menge H"—H;
gehort. Daraus ergibt sich, dass Ne H" das Polytop P stiitzt, was nur moglich ist,
wenn entweder (a) N nrelint P=0 oder (b) aff P< N gilt. (a) widerspricht offensichtlich
der Definition von H™", aber auch (b) ist ausgeschlossen, da N zum Inneren von H
beziiglich der Topologie von V{_, ., gehoren muss and X auf dem Rand P liegt.
ZcV, .+, sei die Menge aller Elemente, welche zu einer der Ebenen aff X (Xe
oder XeP,;, 1 <i<oo) nicht allgemein sind. Es gilt uj_,,,{(Z)=0. Nun sei N irgend-
ein Unterraum in H"—Z. Fiir i>i, ist die Menge P;(N)=NnP,; ein (j—m+1)-
dimensionales Polytop. Der Ursprung o ist ein Eckpunkt von P;(N), und jede von o
ausgehende eindimensionale Kante ist ein Durchschnitt NnG mit Ge®} und
NnrelintG#0. Da von o in P;() mindestens j—m+1 verschiedene Kanten aus-
gehen, gibt es j—m+1 Seiten G, (1<r<j—m+1) in &} so, dass N zu allen Mengen
H(G,)={XeV;_ 1 | XnrelintG,#0} gehort. Durch Integration ergibt sich daraus,
fiir i> 1,

G ng BO(G’ Xl) 2 (.] —-m+ 1) ”g—m-i-l(Hn)’
und, mit n— oo, der Beweis unseres Lemmas.

Wenn X eine Seite des konvexen Polyeders P ist, bezeichnen wir mit X den aus
allen Seiten von X bestehenden Komplex. Wir definieren sodann fiir i<k

(@)=Y (Y Bo(X 7).

X e d(P) Y e di(X)

Im Falle k=dimP gilt natiirlich yg“(P)=p,(P). Das Hauptergebnis diese Ab-
schnitts liegt im

SATZ 6. P, sei eine Folge von konvexen Polyedern des E°, welche gegen ein m-
dimensionales konvexes Polyeder P konvergiert. Aus lim inf dimP,>j folgt dann
fir0<k<m-1

lim infy§™(P) > (j — m + 1) B5(P).

Wenn P ein Polytop ist, kann Gleichheit nur im Falle lim inf f*(P,)=f*(P) eintreten.

Beweis. Wie im Beweis des Korollars zu Lemma 5 wihlen wir einen Wiirfel r,
dessen Inneres von jeder Kante YeA*(P) einen Punkt p(¥)erelint ¥ enthélt. Wie-
derum setzen wir fiir jede Menge Q< E* Q' = Q N rW. Wenn die Folge der f°(P/) nicht
beschrinkt ist, zeigt eine einfache Abschitzung, dass auch die Folge der Michtig-
keiten card {X nrW | Xe4*(P,)} nicht beschriinkt ist, woraus sich im Hinblick auf
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Lemma 6 sofort ergibt, dass y§™(P,) gegen oo divergiert. So finden wir, wenn Satz 6
falsch ist, eine gegen ein m-dimensionales Polyeder P konvergierende Folge P,
von j-dimensionalen Polyedern so, dass y&™(P,) konvergiert und die Beziehung
lim y§™ (P,) < (j—m+1) B§(P) gilt. Indem wir den Wiirfel W und die Punkte p(Y)
wie oben wihlen, konnen wir zusitzlich annehmen, dass die Folge der f°(P;) be-
schrinkt ist. Nach Lemma 5 gibt es eine Teilfolge P,; von P, und zu jeder Seite
YeA*(P) eine Folge von Seiten

A;,(Y) (4;,(Y) = ¥;,(4), Ae U(Y))

in 4*(P;) so, dass 4;,(Y;)#4,,(Y,) (Y;#Y,) und p(Y)elim4,,(Y)=Y gilt. Wie
im Beweis des Korollars zu Lemma 5 hat 4, fiir hinreichend grosse Indexe i; jeweils
die Form 4, (Y)=XnrW (Xe4*(P;)). Aus Lemma 6 folgt, im Widerspruch zu
unserer Gegenannahme,

limy™ (P)=lim Y (X! Bo(G, Ay (Y))

Y e 4%(P)

2(j—-m+1) Y Bo(P,Y)=(j—m+1)B(P).
Y € 4(P)
Hier bedeutet ) !, dass iiber alle m-dimensionalen Seiten G von P, welche 4, ,(Y)
enthalten, zu summieren ist. Um die Bedingung fiir die Gleichheit zu zeigen, betrach-
ten wir ein Polytop P und kénnen annehmen, jedes P; sei ebenfalls ein Polytop mit
f¥(P)>f*(P). Wenn unsere Behauptung falsch ist, gibt es eine Teilfolge P,; von P
so, dass yg™(P,) gegen (j—m+1) Bg(P) konvergiert. Wir wihlen Z;, in 4*(P,)
—Yve akpy 4i,(Y) und konnen weiter annehmen, die Folge Z,; strebe gegen ein
Polytop Z in relbd P. Wegen Lemma 6 ist Y 2 Bo(H, Z,5)>0, wo das Zeichen )2
bedeutet, dass iiber alle m-dimensionalen Seiten H von P, ,» welche Z; enthalten, zu
summieren ist. So finden wir

lim %™ (P,5) > lim zm (X! Bo (G, Au(Y))

Y € 4k

+1im Y2 Bo(H, Z,5) > (j — m + 1) By (P).

Damit ist unsere Gegenannahme widerlegt.

Die Bedingung limf*(P,)=/*(P) ist auch im Falle beliebiger konvexer Polyeder
fir die Gleichheit in Satz 6 notwendig, doch ist der Beweis dafiir etwas verwickelter,
und wir lassen ihn hier aus. Unterhalbstetigkeitssitze sind niitzlich, um die Existenz
von Ldsungen bei Extremalproblemen zu sichern. Als Beispiel erwdhnen wir.

SATZ 7. B und C seien konvexe Korper des E* mit B<intC, und k sei eine natiir-
liche Zahl.U nter allen Polytopen P mit B< P< C gibt es eines, fiir welches der Wert der
Funktion BX minimal ist.
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Beweis. ¢ sei das Infimum von B fiir die in Frage stehende Klasse von Polytopen.
P, sei eine Folge von Polytopen P,, Bc P,c C,s0,dasé+ 1> B&(P)=Eund limB§(P,)=¢
gilt. Wir konnen lim P,=D annehmen, wo D ein zwischen B und C liegender kon-
vexer Korper ist. Da 7 (P,)<¢+1 fiir alle i gilt, ist die Folge der f°(P;) beschrinkt.
Daraus folgt, dass D ein Polytop sein muss, und aus Satz 6 ergibt sich

¢ < Bo(D) <lim fG(P,)=¢ oder fg(D)=¢.
4. Ungleichungen fiir die Inhalte von Geriisten

In diesem letzten Paragraphen studieren wir das Mass des r-dimensionalen Ge-
riists eines Polytops P E®. Wir schliessen direkt an die Arbeit [1] von H. G. Eggles-
ton, B. Griinbaum und V. Klee an. In privater Mitteilung erfuhren wir von den
Autoren, sie seien nicht imstande, die am Ende von § 5 in (1) gemachte Behauptung
zu beweisen; vergleiche auch die Bemerkungen, die unserem Satz 11 vorangehen.
Fiir ein Polytop P< E* bedeutet &, (P) das m-dimensionale Hausdorffsche Mass des
m-dimensionalen Geriistss von P. In (1) ist die Unterhalbstetigkeit der Funktion &,
bewiesen worden, und wir studieren hier die Existenz schédrferer Ungleichungen,
wenn das Grenzpolytop im Verhiltnis zur approximierende Folge entartet ist.

SATZ 8. Pc E“ sei ein m-dimensionales Polytop und P, eine gegen P konvergierende
Folge von Polytopen mit lim inf dim P, > j. Dann gilt lim inf&,,(P,)= (j—m+1) &, (P).

Beweis. Wir kénnen annehmen, P liege in einem Unterraum E™ < E¢. Mit MeV,_,,
bezeichnen wir den zu E™ senkrechten Unterraum. Zu jedem Polytop P, gibt es ein zu
P; kongruentes Polytop P;, dessen hausdorffsche Distanz von P; nicht grosser als
1/i ist, derart, dass M in Bezug zu allen Ebenen aff X (Xe‘;) allgemein ist. Es gilt
P;—P und &,(P)=¢&,(P/). Daher diirfen wir zum vorneherein annehmen, M sei in
Bezug auf alle Polytope von P, allgemein. 7 bedeute die Projektion von E“ lings M
auf E™. Offenbar ist limn(P,)=P, und wegen der Stetigkeit des Volumens fiir konvexe
kompakte Teilmengen in E™ finden wir.

lim¢&, (n(P,)) =¢ ,.(P). (16)

Im Folgenden setzen wir fiir P, nur die Bedingung (16) und die allgemeine Lage
von M voraus. Unsere Behauptung folgt nimlich unmittelbar daraus, dass fiir jedes
Jj-dimensionale Polytop, beziiglich dessen M allgemein ist, die Beziehung

En(P) = (j — m + 1) &, (n(P)) 17)
zutrifft. Um (17) einzusehen, setzen wir

1= {x(X)| X B},
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und mit A bezeichnen wir den beim Beweis von Satz 1 eingefiihrten Zellenkomplex,
welcher aus Durchschnitten von Elementen aus IT besteht. Zu jedem A€ und
xerelint4 ist (x+M)n P ein (j—m)-dimensionales Polytop, dessen Eckpunkte
Durchschnitte von x+ M mit m-dimensionalen Seiten F,..., F; 4, (g(4)=j—m+1)
von P sind. Zwei Ebenen x+ M, y+ M (x, yerelint A) treffen stets dieselben Seiten
von P. Mit 4;cF; (1<j<q(4)) bezeichnen wir die Menge n~'(relintA)nF;. Da
n eine metrische Kontraktion ist, gilt A™ 4> A™(A), und daher

Ea(P)= 3 (2 A™(4)

Ae¥U 1<5j<q(4)

>(j—m+1) AZQI A™(A) = (j — m + 1) &, (n(P)),

womit (17) bewiesen ist.

Bemerkungen. In den Féllen j=m und j=m+1 tritt in Satz 8 stets Gleichheit ein.
Um dies einzusehen, kénnen wir zundchst ohne Einbusse an Allgemeinheit voraus-
setzen, dass alle Polytope P, demselben Raum E’ angehéren. Fiir j=m folgt unsere
Behauptung unmittelbar aus der Stetigkeit des Volumenfunktionals in E™ (vgl. H.
Hadwiger, [3]). Wenn j=m+1 gilt, bemerken wir zunichst, dass fiir jeden Einheits-
vektor u in E™*! die Projektionen n,( P;) lings u auf den zu u senkrechten m-dimen-
sionalen Unterraum gegen n,(P) konvergieren. Weiter ergibt sich die Konvergenz
von F, (P,)=(1/w,)[ &, (n,(P,) du gegen F,(P)=(1/w,)|&, (x,(P)) du. Hierbei be-
deutet w,, das Volumen der m-dimensionalen Einheitskugel. Nach der Formel von
Cauchy ([3], Seite 208) gilt aber F,,( P;)=¢,,(P;), wihrend wir die Beziehung F,,(P)=
=2¢,(P) leicht durch direkte Integration finden. Fiir j#m und 1<s<m braucht
nicht einmal lim¢& (P,)>¢&(P) zu gelten, obschon dies sicher fiir n<3 zutrifft.
Beispielweise ldsst sich das eindimensionale Geriist eines ,,nachbarlichen* vier-
dimensionalen Polytops mit j+1 Ecken beliebig genau durch das eindimensionale
Geriist eines j-dimensionalen Simplex approximieren.

In [1] haben H. G. Eggleston, B. Griinbaum und V. Klee bewiesen: Wenn r, s
und d natiirliche Zahlen sind, sodass s<d und r ein Teiler von s ist, so existiert eine
positive Konstante y(r, s, d) so, dass fiir alle Zellenkomplexe K der Dimension d gilt:
&(R)<y(r, s, d) E,(R)'". Inder Tat liess sich zeigen, dass unter den obigen Be-
dingungen y(r, s, d)=1 gesetzt werden kann, doch blieb das Problem fiir andere
Werte von r und s offen, sogar wenn man sich auf simpliziale Komplexe beschrinkte.
Hier beweisen wir ein schwicheres Resultat fiir simpliziale Komplexe, welches fiir
alle r und s zutrifft und das Ergebnis von (1) mitliefert. Wir werden zeigen, dass im
Fall r=5—1 diese schwichere Ungleichung fiir alle Zellenkomplexe gilt. Wenn r und

§#0 natiirliche Zahlen sind, bezeichnen wir mit {s/r) die kleinste natiirliche Zahl
>s/r.

SATZ 9. Q sei ein d-dimensionaler simplizialer Komplex in E". Dann existiert fiir
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alle s und r mit d>s>r eine Zahl y(r, s, d) so, dass

E(Q)'1E(Q) < y(r, s, d) (f7 ()=
gilt.

Beweis. Zunichst nehmen wir zusdtzlich r<s<2r an. Wenn Fed*(Q) ein
s-dimensionales Simplex ist, wéihlen wir ein (2r—s)-dimensionale Seite G von F so,
dass &,,_,(G)=¢,,_,(X) fiir alle (2r—s)-dimensionalen Seiten X von F gilt. Mit G,
und G, bezeichnen wir die beiden r-dimensionalen Seiten von F, deren Durchschnitt
G ist. Indem wir Satz 5.6 von (1) auf die Polytope G; (i=1, 2) anwenden, finden wir
eine Zahl k(r, 5) so, dass fiir alle Fe 4°(Q) gilt:

k(r, s) (6,(G)) > ™9 <&, _(G) i=1,2. (18)

Die Eckpunkte von G,, die nicht auch zu G, gehoren, bezeichnen wir mita, , ,, ..., @, ;.
Wir setzen fiirr+2<j<s+1

= “aj, aﬁ(Gl v {ar+29 seey aj—l})“
und

h; = ”aja aE(GU {ar+2a seey aj—l})” ’

wo |[x, M| den euklidischen Abstand des Punktes x von der Menge M bedeutet. Es

ist h;<hj, und nach der Formel fiir das Kegelvolumen gibt es Zahlen k’(r, s) und

k" (r, s) so, dass die Beziehungen

E(F) =K (r,9)&(G) T ky
et (19)
£:(G2) = k"(r, 5) &3, -5(G) 11 h}
gelten, Aus (18) und 19) folgt fiir alle Fin 4°(Q)
s+1
E(Gy) = k(r, s) kK" (r, 5) (£,(G,)) >~ H+ h;
oder
s+1
(6 (G ™" 2 k(r, ) K (ry5) I by (20)
j=r+2

Indem wir (19) mit (20) kombinieren, finden wir k* (r, s)> 0 so, dass fiir alle Fe 4*(Q)
die Ungleichung

E(F) < k*(r, 5) £.(Gy) (é:r(Gz))(s—')/'

zutrifft. Daraus folgt, wenn wir zur Verdeutlichung die zu F gehdrenden Seiten G; mit
G,(F) (i=1, 2) bezeichnen,

E(Q) < K*(ry s) FE;(Q) E,(G1(F)) (&,(GL(F)))e"rr, ey
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Nun ist sicher

Y &(G(F) (& (G )" <
Fe 4% (D)

S—r)/r (22)
(Y &@)( ¥ &G ).
Ge 47(Q) Gedr(Q)
Wegen der Ungleichung von Cauchy-Schwarz gilt ferner
Y @S Y E@) (T eI
GeA"(Q) G e A™(Q) GeAM(Q) (23)

= (gr (Q))(s—r)/r (fr(g))(Zr—s)/s )

Aus (21) bis (23) schliessen wir auf die Existenz einer Konstanten y (r, s, d), fiir welche
és (Q)I/s/ér (Q)ll' <y (r’ s, d) (fr(a))(lls)(Z = (s/r)) (24)

zutrifft. Im Falle s>2r wihlen wir eine positive ganze Zahl » so, dass (n+1)r<s<
(n+2)r gilt, und wenden Satz 5.4 von (1) an. So erhalten wir

&(Q) < &(W)' &-n (D)
und mit (24), angewendet auf s—nr, folgt die Existenz einer Zahl y(r, s, d) so, dass

ES(Q)I/S/fr(Q)I/r < ,y(r, s, d) (fr(D))(I/S)KSIr)-(S/r))

zutrifft, was wir beweisen wollten.

SATZ 10. Wenn Q ein d-dimensionaler Zellenkomplex in E" ist, so gibt es zu jeder
ganzen Zahl s <d eine Zahly (s, d)> 0 so, dass

§s+ : (Q)l/(s+ 1)/és(a)1/s < ’Y(S, d) (fs(n))(s— 1)/(s(s+ 1))
ist.

Beweis. Nach einer klassischen isoperimetrischen Ungleichung (H. Hadwiger [3])
gibt es eine Zahl y>0 so, dass fiir jedes FeA**'(Q) die Beziehung ¢, (F)'<
Pes(F)°*! gilt. § sei der aus allen Seiten von F bestehende Komplex. Eine einfache
Abschitzung liefert

Sei(FyY<y( X és(G))S(G ;m £(G) < v(X' E(G) (&, (I, (25)

G e 43%(§)

Dabei bedeutet }*, dass iiber alle Paare (G, H)e4*(F)x 4°(F) zu summieren ist.
Nun gilt fiir jede Seite Ge 4°(§)

@< Y &(H). (26)

H e 45() - {G}

Indem wir in (25) fiir ein Diagonalelement den Ausdruck rechts in (26) einsetzen,
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finden wir y* <2y so, dass

£s+1 (F) —<- y* 22 és (G) 6S(H)1/s
oder
&1 =7" Y (X2 E(G) E(H)') 27)
Feds*1(Q)
gilt, wobei Y ? vorschreibt, dass iiber alle Paare von Zellen G, H in 4°(F) mit G#H
summiert werden soll. Ein solches Paar kann nur zweimal auf der rechten Seite von

(27) erscheinen; denn conv (G U H) muss (s + 1)-dimensional und in einem Fe4°*!(Q)
enthalten sein. So gilt

&1 (Q) < 29* (G E ;(m £,(G)) (G e ;w) £,(G))
= CCY) M (A Co)) R

wo die letzte Ungleichung sich wieder aus der Formel von Cauchy-Schwarz ergibt.
Das heisst, es gibt eine Zahl y (s, d) so, dass, wie Satz 10 verlangt,

€s+ 1(Q’)l/.s+ 1/6S(Q)1/s < P (S, d) (fS(Q))(s- 1)/(s(s+ 1))
gilt.

In (1)ist der folgende Satz (theorem 5.10) bewiesen worden: r, s,d und k seinen ganze
d+1
s+1
Korpern (Polytopen mit hdchstens k s-dimensionalen Seiten) mit dem Volumen 1 in
E“ solche, fiir welche &, minimal ist. Die Autoren fiigen bei: ,,Wir konnten nicht
entscheiden, ob der vorstehende Satz richtig bleibt, wenn die Bedingung fiir das
Volumen durch die Forderung ersetzt wird, dass die Oberfliche den Wert 1 haben
sollen, obwohl dies im Fall r=1 leicht eingesehen werden kann.‘ Indessen haben uns
die Verfasser mitgeteilt, dass fiir r=1 zwar eine gleichmassig beschrankte Folge von
Polytopen P; existiert, fiir welche &, (P,) gegen den Minimalwert von &, strebt, die
Moglichkeit dass das Grenzpolytop entartet sein konnte, von ihnen jedoch iibersehen
worden ist. Der nichste Satz zeigt, dass solche Folgen von Polytopen fiir jedes
r (1<r<d) existieren, doch sind wir nicht imstande, zu entscheiden, ob das Grenz-
polytop entartet sein muss oder nicht.

Zahlen mit 1<r<d, 0<s<d und kz( ) Dann gibt es unter den konvexen

SATZ 11. r, t und d seien positive ganze Zahlen mit 1 <r<d—1. Dann gibt es eine
positive ganze Zahl n, die nur von r, t und d abhdngt, so, dass jeder konvexe Korper C
mit Durchmesser > n und Oberfliche eins der Bedingung £,(C) =t geniigt.

Beweis. Wir beweisen zuerst eine Hilfsaussage (*) y, J, 9 seien positive Zahlen so,
dass ein konvexer Korper D in E4~! den Bedingungen y<¢&,_,(D)<$, & (D)<9,
r<d-2, geniigt. Dann gibt es eine Zahl g, die nur von r, d, y, 6 und 9 abgingt, sodass
der Durchmesser von D nicht grosser als g ist.
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Andernfalls existiert eine Folge D, von konvexen Korpern in E4~! so, dass der
Durchmesser von D;>i ist und fiir welche die Bedingung y<¢&,_,(D;))<9, &,(D;)<é
erfiillt ist. Aus 9>¢&,_;(D,) folgt, dass die minimale Breite von D; fiir i»o0 gegen
Null strebt. Zu gegebenem &> 0 existiert daher ein Index i, so, dass es zu jedem i>1i,
eine (d—2)-dimensionale Ebene Q; in E”* gibt, deren Parallelmenge (Q;) ¢ den Kor-
per D, enthilt. Mit r; bezeichnen wir die Projektion von E?~! auf Q,. Dann existiert,
wegen Satz 5.6 von (1), eine Zahl y(r, d)>0 so, dass

S Dy(r, d) = &y, (D) =¢&,-, (”i (D))
fiir i > i, und daher
296Dy (r, d) = 2%¢E,_, (mi(D))) > €41 (D)) >y

gilt. Diese Ungleichung enthélt jedoch einen Widerspruch, wenn wir & so wihlen, dass
2%61=2/ry (r, d) < y ist, und die Hilfsaussage (*) ist gesichert.

Nun betrachten wir einen konvexen Korper C < E“ mit der Oberfliche ¢,_; (C)=1
und &,(C)<t. Ohne Einschriankung der Allgemeinheit konnen wir annehmen, C sei
ein Polytop und u=(1/d,..., 1/d) liege in Richtung eines Durchmessers von C.
Ci,..., C,; seien die Projektionen von C in den Richtungen e,..., ¢;, wobei e; der
Einheitsvektor e;=(dy;, ..., d,;) mit ;;=0 fiir j#i und é;;=1 ist. Wir wollen zeigen,
dass es einen Index &, (1 <k, <d) gibt, fiir welchen

(3d) &i-1(C) < &4-1(Cy) <1 (28)

zutrifft. v(F) sei ein zu aff F (Fe4°~'(C)) orthogonaler Einheitsvektor. Dann ist,
wenn , die Projektion in Richtung e, bezeichnet,

Ca—1 (nk(F)) = |(U(F)a ek), a-1(F)

und weiter

kgdl g1 (m(F)) = . Y & (F)=1. (29)

Fedd-1(g) € 44~ 1(€)

Andererseits ist die linke Seite von (29) gleich 2 Y%_, &,_;(C,), woraus sich
Yi=1 €,_1(C)=1% und damit die Existenz der in (28) geforderten Zahl k, ergibt. Nun
1st

£>¢,(C) 2 &(Cy,)- 30}

Indem wir die in (28) und (30) gefundenen Konstanten fiir C;, in Hilfssatz (*) ein-
setzen, finden wir die Existenz einer nur von r, ¢ und d abhingigen Zahl q so, dass
92 Durchmesser von C,,>d~'/2. Durchmesser von C gilt, wobei die letzte Unglei-
chung aus der Tatsache folgt, dass u=(1/d,..., 1/d) in der Richtung eines Durch-
messers von C liegt. Die Zahl n=[d'/?q]+1 erfiillt die in Satz 11 geforderten Be-
dingungen.
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