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Gleichungen und Ungleichungen fiir die Gerûste von konvexen

Polytopen und Zellenkomplexen

D. G. Larman und P. Mani1)

1. Einleitung

Wir befassen uns hier mit Eigenschaften der fc-dimensionalen Geriiste von
Zellenkomplexen, wobei uns die Randkomplexe von Polytopen besonders interessieren. In
Abschnitt 2 fiihren wir, in Anlehnung an die Arbeit [4] von H. Hadwigger, den Be-

griff des fc-ten âusseren Winkels eines Polytops ein und gewinnen Beziehungen, die
eine Verbindung zwischen der diskreten Form der Formel von Gauss-Bonnet fiir
die Aussenwinkel und der Formel von Euler-Gram fiir die Innenwinkel eines Polytops
darstellen. Wir zeigen, dass dièse Beziehungen in einem gewissen Sinn eindeutig sind,
und erweitern sie auf beliebige geradlinige Zellenkomplexe. In Abschnitt 3 beweisen
wir eine Unterhalbstetigkeitsaussage fiir die inneren Winkelsummen von Polytopen und
leiten notwendige Bedingungen fiir die Gleichheit her. Abschnitt 4 enthâlt eine

Untersuchung des r-dimensionalen Hausdorffschen Masses des r-Geriists von
Polytopen und Zellenkomplexen, und kann als eine Fortsetzung der von H. G. Eggleston,
B. Grûnbaum und V. Klee in [1] gemachten Studien angesehen werden.

2. Die /c-dimensionalen Winkelsummen

Ed sei der </-dimensionale euklidischen Raum. Wir sagen, zwei Ebenen (lineare
Mannigfaltigkeiten) E und F von Ed seinen in allgemeiner Lage, wenn fiir die zu E
und Fparallelen Unterrâume E\F' die Gleichung

dim(£' n F') max {0, dim Er + dim F' - d}

zutrifft.
Wenn E ein Unterraum von Ed und xeEd ein Punkt ist, ùbertrâgt sich die eukli-

dische Struktur von EczEd durch Translation auf E+x, wobei x zum Ursprung
des ,,euklidischen Raumes E+x" wird. Die Grassmannsche Mannigfaltigkeit aller
fc-dimensionalen Unterrâume von Ed bezeichnen wir mit V%; hier nehmen wir-
l^k^d an. Es gibt genau ein drehinvariantes Haarsches Mass iidk auf Vd mit der
Eigenschaft, dass a4(F?) 1 ist.

Unter einem (geradlinigen) Zellenkomplex 51 in Ed verstehen wir eine endliche

x) Der erste Verfasser ist von einer Harkness Fellowship des Commonwealth Fund unterstiitzt
worden, der zweite Verfasser von einem Stipendium des Schweizerischen Nationalfonds.
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Menge von (konvexen) Polytopen des Ed derart, dass mit einem Polytop auch aile
seine Seiten zu 31 gehôren, und dass der Durchschnitt zweier Elemente aus 31 stets eine

gemeinsame Seite ist. Das durch 31 bestimmte Polyeder bezeichnen wir mit |3I|, sodass

also |3I| [JXen X gilt. Fiir jede ganze Zahl i sei 4* (31) die Menge der f-dimensionalen
Zellen in 31, wobei wir Al (31) 0 haben, wenn i nicht zum Interval [¦— 1, dim 31] gehôrt.

Unter/'(3l) verstehen wir die Màchtigkeit von ^l(3I), und 3II=Uj<i^'/W steht

fiir das /-dimensionale Geriist von 31. Zu jedem Polytop P gehôrt der natiirliche
Komplex ^î, dessen Zellen die f-dimensionalen Seiten —l</<dimP) von P sind.

Gelegentlich werden wir statt A\S$) und/'(?P) einfach A\P) und/*(P) schreiben.

Wenn ein Polytop P, ein Unterraum EeVj? und ein Punkt xeP gegeben sind, bezeichnen

wir mit A (P, E, x) den âusseren Winkel des Polytops P n (E+x) in der Ebene E+ x
und beim Punkt x. A (P, E, x) ist, mit anderen Worten, die Menge der Richtungen im
euklidischen Raum E+x, welche das Polytop Pn(E+x) an der Stelle x stùtzen.
A11'1 sei das (fc-l)-dimensionale Hausdorffsche Mass auf der Einheitssphàre S in

E+x, welche den Ursprung x als Mittelpunkt hat. Wit normieren A*'1 so, dass

Ak~1(S)=l ausfâllt, und setzen £(P, E, x) Ak'1(A(P9 E, x)). Fiir jede Teilmenge
MaEd bezeichnen wir mit convM die konvexe Huile von M, mit affM die affine

Huile von M, mit relintM das Innere von M beziiglich der Topologie t von affM und

mit relbdM den Rand von M beziiglich t. Wenn nun die Punkte x und y zum relativen

Inneren der gleichen Seite X eines Polytops P gehôren, gilt stets £ (P, E,x) — £, (P, E, y).

Darauf gestiitzt definieren wir <^(P, E, X), indem wir einen Punkt xerelint^wâhlen
und£(P, E9 X) Ç(P, E, x)setzen.ImFalldimX+ dimE>dûndcnwir£(P, E, X)=0.
Der (k— l)-dimensionale àussere Winkel ak_t (P, X) von P an der Seite X ist durch

die Beziehung

f

festgelegt, wobei Zs die Menge Vi durchlâuft. Wit setzen

und definieren die totale (k— l)-dimentionale âussere Winkelsumme <xk-1(P) durch

die Formel

Fiir i>d—k verschwinden die Ausdriicke (— l)fai_1(P) auf der rechten Seite

von (1). Im Falle k=d liefert das polyedrische Analogon der Formel von Gauss-

Bonnet die Gleichung ad_1(P)=l. Als Erweiterung dieser Gleichung beweisen wir

zunâchst
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SATZ 1. Fur jedes Polytop PcEd und jede naturliche Zahl k mit \<k<d gilt

Beweis. Wit setzen, bei gegebenem Ee Vdy

£ ,X) und d£^
sei die Menge der Unterrâume, welche sich zu allen Ebenen affX(Xety) und

zu allen Geraden aff{/?, q) (/?, qeA°(S$))in allgemeiner Lage befinden.
Wir wollen zeigen, dass fiir jeden Unterraum Ee Vo die Beziehung

Ç(P,E)=l (2)

gilt. Mit FeVd_x bezeichnen wir das orthogonale Komplement von E in Ed und
mit n : Ed-*F die Normalprojektion lângs E auf den Unterraum F. Wir setzen P' n(P)
und n {n(X) | Xetyd~k}. Da £ zu Fo gehôrt, ist die Einschrânkung von n auf X
fiir jede Zelle Xetyd~k ein Homôomorphismus zwischen Xund tt^), und ausserdem
induziert n eine Bijektion â von ç$d~k auf 77. Wir werdeii unsere weiteren Ûber-
legungen auf dièse einfachen Tatsachen stûtzen, ohne sie jeweils besonders zu er-
wâhnen. Als eine erste Konsequenz derselben finden wir, dass sich durch die Beziehung
ri(Y) Ç(P, E, 7t~1(Y)) (Yen) eine Abbildung r\ von 77 in die reellen Zahlen R
definieren lâsst. Wir setzen ^(77) ^(^), fur Yen,dim7=/, und rç(77) £?=5
(— 1)Î^I(77). Zum Beweis von (2) genùgt es, die Beziehung

rj(n)=l (3)

zu sichern. Zunâchst wollen wir zeigen, dass fiir jeden Punkt yeP' die Gleichung

=l, fur 7 e il, y erelint 7, (4)

zutrifft. Nun fâllt im Polytop (E+y)nP die Menge der Eckpunkte mit der Menge der
Durchschnitte (E+y)nrQlint(û~i Y), fiir jerelinty, ye77, zusammen, und daraus
folgt (4) sofort durch Anwendung der Formel von Gauss-Bonnet auf (E+y)nP. Zu
jeder Zelle ye77 wâhlen wir ein Rechtsinverses von n, welches A'1 (Y) ,,enthâlt",
genauer, eine Abbildung a:P'-+P und einen Subkomplex gc^3d~k so, dass die
Beziehungen \%\ a(p')9 no=\P, und (r(Y)e^ gelten, wo |3f| das zu $ gehôrige
Polyeder ist. Die Existenz einer solchen Abbildung a geht aus dem ,,lifting theorem"
fiir; Polytope von D. W. Walkup und R. J.-B. Wets (8) hervor. Die Menge %{Y)

{7t(F)|F6 3-} ist ein Zellenkomplex mit 9I(Y)c:77, \%(Y)\=Pf und Ye%(Y).
Unter dem Durchschnitt 2t=nyeu^(^) verstehen wir den Zellenkomplex %
bestehen aus allen Durchschnitten der Form A C]YeII A(Y% mit A (Y)e%(Y).

Offenbar ist |2I| =Pf, und weiter gilt fur jedes Paar von Zellen A e% YeTI entweder
relintA c relint Yoder relintA n relint Y= 0. So kônnen wir eine Abbildung e : 31 x 77-»R
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durch die Gleichungen e(A, Y) rj(Y) (relint ,4 c: relint Y) und s(A, F)=0 (relint^
n relint Y= 0) festlegen. Die Formel von Euler liefert

K
Hierbei bedeutet % die Eulersche Charakteristik. Falls, fur eine gegebene Zelle

Ae%p im relativen Inneren von A liegt, so gehôrt/? genau dann zu relint Y (7eJ7),
wenn relintA c relint Ygilt. So finden wir, unter Berùcksichtigung von (4), fur jedes A

I s(A,Y)= 1. (6)
Yen

Aus (5) und (6) ergibt sich

i Z (- if^d b(4, y))= Z
A9 rl Yeil

wobei das Zeichen ]T* bedeutet, dass iiber aile Zellen A mit relint ^4 c relint 7 zu

summieren ist. Da die Menge der Ae^H mit relintA a Y eine Zellenzerlegung von Y

ist, finden wir

1 - (l - (- l)dimy). (8)

Indem wir (7) mit (8) kombinieren, erhalten wir

Yen

woraus sich (3) und mithin (2) ergibt. Der Beweis von Satz 1 folgt unmittelbar durch

Intégration von (2) ûber die Menge Vo, wenn wir noch beriicksichtigen, dass F/- Vo

eine /^-Nullmenge ist.

Um zu zeigen, dass sich aus Satz 1 die Formel von Euler-Gram unmittelbar
ableiten lâsst, fuhren wir zunâchst den zu (xk^l komplementâren Winkel j?k-i ein-

Wir setzen, wenn P nach wie vor ein Polytop des Ed bedeutet, fiir xeP und EeVk,

ri(P,E9x)=l-Ç(P,E,x). Wiederum finden wir, dass rj(P,E,x) fur aile Punkte

xerelintX (Xety) gleich ausfâllt, was uns erlaubt, rj(P,E,X) und den (fc-1)-
dimensionalen inneren Winkel

zu definieren. Ebenso legen wir /%_ 1 (P) und
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analog zu den entsprechenden Ausdriicken fur a fest. Aus Satz 1 ergibt sich sodann

ft_1(P) ^(^d~fe)—1, wo x wieder die Eulersche Charakteristik bezeichnet. Im
Falle k 1 ist dies die Formel von Euler-Gram fur Polytope.

Zu jedem Unterraum EeVd und jedem Punkt xeEnSd~l gehôrt eine (â:-1)-
dimensionale Hemisphâre

H(E,x)={yeEnSd-1\(x,y)>0}.

Mit W£-t bezeichnen wir die Menge aller Hemisphâren H(E, x) (EeVd, xeEnS*'1),
zusammen mit der Hausdorff Metrik. Auf Wk- gibt es genau ein Haarsches Mass
Qd_u fur welches Qdlt (Wd_t)= 1 gilt. Wir erwâhnen hier ohne Beweis.

LEMMA 1. Wenn P ein Polytop und X eine Seite von P ist, gilt

f
J

Dabei is x ein beliebiger Punkt in relintX, H durchlâuft die Menge W£-l9 und x ist
die Eulersche Charakteristik, welche in dem speziellen Fall, auf den sich unser Lemma
bezieht, nur die Werte 0 und 1 annimt. Fur k d ist das Lemma âquivalent zur
Tatsache, dass der Aussenwinkel eines Polytops P an seiner Stclle peP mit der Menge
der Stiitzrichtungen von P in/? zusammenfâllt.

Nun bedeute SDÎ irgendeinen Zellenkomplex in Ed und M=|2R| das zugehôrige
Polyeder. Zu jedem nichtleeren Xe$R wâhlen wir einen Punkt xerelintZund setzen

f sH)nM)d(Qdk_1)-

Einfache Oberlegungen (vgl. etwa (6), Lemma 1) zeigen, dass afc_1(9W, X) nicht von
der Wahl des Punktes xerelintZ abhângt. Ausserdem ersehen wir aus Lemma 1, dass

a*-i(9W, X)=<xk_l(M, X) gilt, wenn $01 der aus den Seiten eines Polytops M be-
stehende Komplex ist. Wie zuvor definieren wir

«i-i (îR)= Z ^
X e J<(9W)

und

z
i 0

sowie, in analoger Weise, $_ t (2R) und pk.i (501).

SATZ 2. Furjeden Zellenkomplex 2R undjedes k, 1 <k<dt gilt
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Beweis. Zwecks formaler Vereinfachung setzen wir, wenn D den leeren Komplex
bedeutet, afc_1(O) 0. Aus Satz 1 folgt, dass fur jede nichtleere Zelle Xe50t, mit dem

aus allen Seiten von Xbestehenden Komplex X, die Beziehung ak_x (X)= 1 gilt. Zudem
ergibt sich aus des Définition der Funktion afc_1? dass fur beliebige Subkomplexe
23, (£ von 501 die Gleichung

richtig ist. Daher stimmt OLk-t mit der Eulerschen Charakteristik x ûberein, was zu
zeigen war.

Mit 50lcz9Jl bezeichnen wir die Menge der Zellen Xe50t fiir welche XaÛ gilt,
wo Û den Rand des Polyeders M=|50l| beziiglich der Topologie von Ed bedeutet.

Analog zu ak _ t (50Î) definieren wir

I {-If1** <*-!<&, X)
XeSld~k

und

SATZ 3. Furjeden Zellenkomplex 501 gilt

Beweis. X sei eine Zelle in 501 —501. Jeder Punkt xerelint X gehôrt zum Inneren
M° von M in der Topologie von Ed, und wir finden eine Zahl s(x) so, dass fiir jedes

e mit 0<s<e(x) und jedes HeWd_l die Sphâre x + sH eine Teilmenge von M ist.

Daraus folgt x ((x+eH)nM)=l und weiter <xk _ t (9W, Z) 0. So finden wir afe _ ±
(S0Î)

afc_1 (SR) x(9K), und Satz 3 folgt unmittelbar, im Hinblick auf die Définition von

Im Fall k l finden wir j5o($0l) x(^)-x(5DÎ) (-l)d"1 z(^°X was mit proposition

2 in P. Mani [6] iibereinstimmt. Wir kônnen pk^1 (S) fur eine beliebige Zellen

zerlegung 58 von j& definieren, und eine dem Satz 3 entsprechende Aussage beweisen.

Es ist uns nicht bekannt, ob zu jeder Zerlegung S von Û sets eine Zerlegung W des

ganzen Polyeders so existiert, dass 501=93 ist. Fur weitere Anwendungen wollen

wir den Wert von ock-1 in einem besonders einfachen Fall bestimen.

LEMMA 2. Wenn PcEd ein Polytop der Dimension d-k + l und X eine (d-k)-
dimensionale Seite von P ist, so gilt cck _ t (P, X) \.

Beweis. EeVk bedeute einen hinsichtlich 5J} allgemeinen Unterraum. Indem wir
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einen Punkt xerelintX wâhlen, finden wir, dass (E+x)n&ÏÏP eine Gerade L ist,
die nicht in affX verlâuft. Daher ist der Durchschnitt LnP eine abgeschlossene
Strecke S mit x als einem ihrer Endpunkte. Der Aussenwinkel von S in der Ebene

E+ x an der Stelle x hat das Mass i, woraus unser Lemma sich ergibt.
Pc:Ed sei ein Polytop der Dimension d—k. Wir wâhlen pextlintP und eine

Richtung e, welche zu affP senkrecht steht, und setzen pt=p + te (0<f<l) sowie

Pt conv(Pu {pt}). Mit ^3 (^}f) bezeichnen wir den natûrlichen Komplex von P (Pt).
Wir finden ^t ^ \j {conv (Xu {pt}) | Xety}. Es gibt einen naheliegenden Isomor-
phismus &t1,t2:<$ti~*($t29 ^er *$ fest l&sst unc* Pti m Pt2 ûberfuhrt. Wir setzen, fiir
jedes Xe ($l und jedes te (0, 1), Xt $t > t (X). Wegen Lemma 2 gilt fiir aile

/a&_ 1(Pf, jP) ^, und wir bernerken hier ohne Beweis

LEMMA 3. P und(Pt)te(Otll seien wie oben gegeben. Wenn Xe^1 den Punkt Pt
enthàlt, gilt otk_l(Pt,Xt)-+ifur t-+0. Wenn Y eine nichtleere Seite in ^3-{P} ist,

Schliesslich stellen wir fest

LEMMA 4. Fiir einen (d—k + \)-dimensionalen Wurfel W in Eà gilt

Beweis. Bei der Intégration fiir yS^_± kônnen wir uns auf die Menge VQdV^
derjenigen Unterrâume beschrânken, die sich zu allen Ebenen affX (XeSDÎ) in all-
gemeiner Lage befinden. Wir betrachten eine f-dimensionale Seite X von W und
einen Punkt jcerelintX. Fiir jedes EeV0 ist (E+x)nW eine (eventuell entartete)
Strecke, und daraus folgt, dass pk.1(W, X) mit dem in afîW gemessenen Innen-
winkel von W an der Stelle x ûbereinstimmt. Fiir die Summe der /-dimensionalen
Kantenwinkel eines (d— fc+l)-dimensionalen Wiirfels finden wir aber leicht den

Mit diesen Vorbereitungen kônnen wir ohne Miihe die beiden nachfolgenden
Eindeutigkeitssâtze fiir die Winkelsummen beweisen.

SATZ 4. Wenn £, £0,..., £d_fc réelle Zahlen sind, sodassfiir jedes {d—k-\-\)-dimen-
sionale Polytop PcEd die Beziehung £?=o(-0'£iai-i(^) É gilt, so ist { {„
fur aile i,
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Beweis. P sei ein beliebiges (J—&)-dimensionales Polytop in Ed. Wir betrachten
eine Familie von Polytopen (Pt)te(o,ii w*e *n Lemma 3. Gemâss Lemma 3 finden
wir, fur

und

Durch Einsetzen dieser Werte in die Beziehung

i 0

erhalten wir

z
i 0

Da (10) fiir aile (</—&)-dimensionalen Polytope gilt, erhalten wir aus der Eindeutig-
keit der Eulerschen Relation (B. Grûnbaum [2]), indem wir zur Abkùrzung ô — ^ — <^0

setzen, die Gleichungen

Nun sei Wein (d— &)-dimensionaler Wiirfel. Wegen Lemma 3 gilt

Da (9) auch fur FFanstelle von Pt zutreffen muss, haben wir

ï
woraus sich, ausser im trivialen Fall d=k, die den Beweis von Satz 4 sichernde

Gleichung <5=0 ergibt.

SATZ 5. Wenn Ç, Ç09..., £,_* réelle Zahlen sind, sodassfur jedes (d-k+ iydimen-
sionale Polytop PczEâ die Gleichung

gilt, so istÇ Çtfur aile i,0<i<d-k.
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Beweis. Wie im Beweis von Satz 4 finden wir fur jede Familie (Pr)fe(o,i] von
Pyramiden mit t->0 die Konvergenzen

Durch Einsetzen dieser Werte in (12) ergibt sich

'1 '
(-1)' ii+Jl(P) ïo + (-1)'"* «<-» - 2£.

i 0

Die Eindeutigkeit der Eulerschen Relation liefert weiter

l/-*)/(l - 2(- 1)"-*). (13)

Indem wir dièse Zahlen in (12) einsetzen und (12) fur einen (d— fc-f l)-dimensionalen
Wiirfel berechnen, erhalten wir

woraus sich £0 £ und, wegen (13), auch £,- £ (1 < i<d—k) ergibt.
Satz 5 ist fur den Fall k — 1 zuerst von W. Hôhn in (5) bewiesen worden.

3. Ein Unterhalbstetigkeitssatz fiir die Innenwinkel konvexer Polyeder

Unter einem konvexen Polyeder verstehen wir hier, in leichter Abweichung von
der Définition in Abschnitt 2, den Durchschnitt einer endlichen Menge von abge-
schlossenen Halbrâumen des Ed9 sodass also ein beschrânktes Polyeder ein Polytop
ist. Zu einem gegebenen konvexen Polyeder P gehôren wie im Fall der Polytope der
aus allen Seiten von P bestehende Komplex ^}, das A>dimensionale Gerûst S$k von ty
und die Menge Ak(ty) der À>dimensionalen Zellen in ^3. Wir betrachten ein konvexes
Polyeder P mit dimP=m und wâhlen XeAk(ty), xeretintJf. Zu jedem MeV£-m+1
setzen wir ¥(P,X9M) l, falls (x + M)nP^{x} ist und Y(P, X, M) 0 andern-
falls. Dam gilt fur den in affP gemessenen Innenwinkel jS0 von P an der Kante X die
Beziehung

h(P, X) (i) J V(P9 X, M) d(/iî-w
V*d-n

und wir definieren die k-te innere Winkelsumme wie gewohnt durch

Wir sagen, eine Folge Pa von konvexen Polyedern Pt konvergiere gegen das konvexe
Polyeder P und schreiben Pa->P, wenn fur jede positive ganze Zahl r die Folge der
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Polytope (rW)nPi im Sinne der Hausdorff Metrik gegen (rW)nP konvergiert.
Hierbei bedeutet W einen Einheitswûrfel, der den Ursprung als Symmetriezentrum
hat. Wenn ea eine réelle Zahlenfolge ist, bezeichnen wir mit liminfea den limes
inferior und mit lim supea den limes superior von ea. Zunâchst beweisen wir ein
Lemma, das den in (1) hergeleiteten Halbstetigkeitssatz fur die Seitenzahlen eines

Polytopes als unmittelbares Korollar enthâlt.
LEMMA 5. P sei ein Polytop undPa eine gegen P konvergierende Folge von Polytopen

so, dass die Folgef° (Pa) beschrânkt ist. Dann gibt es eine Teilfolge PaP von Pa, zujeder
natiirlichen Zahl k eine Folge von bijektiven Abbildungen xF?j:Ak(Pll)-*Ak(Pij) undzu
jedem YeAk(P) eine Teilmenge 31 (Y) von Ak(Ph) so, dass alleFolgenW^(A) (Ae3I(Y))
konvergieren und die Beziehung UAe2r(y)lim¥^(yl)= Y gilt. Ausserdem kônen wir
fordern, dass die MengenSH(Y1) und%{Y2) Y"i # Y2) stets disjunkt seien.

Beweis. Zunâchst bemerken wir, dass mit/°(Pa) aile Folgen/fe(Pa) beschrânki
sind. Daher finden wir eine Teilfolge PaP so, dass aile Folgen/*(Pai8) konstant sind.

Gestiitzt auf den Blaschkeschen Auswahlsatz kônnen wir Pap so fein wâhlen dass es

Folgen Wkfi von bijektiven Abbildungen Wfj:Ak(Pil)-+Ak(Pij) gibt, fiir welche jede

Folge ¥%(X) (XeAk(Ph)) gegen ein Polytop XczP konvergiert. Wir wollen zeigen,
dass

[jX^\Ak(P)\, fur XeAk(Ph)9 (14)

gilt. Andernfalls finden wir YeAk(P) und perelintF so, dass p nicht in (JX, fiir
XeAk(Pil), liegt. Es gibt eine FolgepaP von Punkten/?^ so, dass limpaP=p ist. Unsere

Gegenannahme besagt, dass die Folge daP der euklidischen Abstânde dtj= \\ptj, |^J*|||

nicht gegen Null streben kann. Daher gibt es ô>0 und eine Teilfolgepafiy vonpaP so,

dass jeder Punkt pijt Mittelpunkt einer (fc+l)-dimensionalen Kugel KijiczPiji mit

Radius ô ist. Nach dem Blaschkeschen Auswahlsatz finden wir sofort, dass eine

(/c+l)-dimensionale Kugel KczP mit Zentrum p und Radius ô existiert, was der

Beziehung />e|^J3fc| widerspricht. Damit ist (14) bewiesen. Zu jeder Zelle YeAk(P)
setzen wir <&(Y) {XeAk(Pil) \ relintXnrelintF^O}. Aus (14) ergibt sich unmittel-
bar Y<xeW(Y) ^^ Y. Dsl 5£ jeweils eine Teilmenge von P und Y ein Elément von
Ak (P) ist, folgt andererseits aus relintJ? n relint Y^ 0 dass relintJ" c relint Fund damit

[JXem(Y)%c:Y gilt. Wenn Yx und Y2 verschiedene Seiten in Ak(P) sind, ist 9I(¥i)
n%(Y2)=0; denn sonst gâbe es XeAk(Ph) derart, dass relintZcrelint Yf (i=l, 2)

und weiter relintX a (relint Yx n relint Y2)=0 gâlte. Die Mengen 31 Y) geniigen daher

allen in Lemma 5 geforderten Bedingungen.

KOROLLAR. Pa sei eine gegen ein konvexes Polyeder P konvergierende Folge von

konvexen Polyedern. Dann istfiirjede naturliche Zahl k lim inffk (Pa) >fk (P).
Beweis. Wir wâhlen r so gross, dass das Innere des Wiirfels rW von jeder Kante

YeAk{P) einen Punkt /?(7)erelinty enthâlt. Bei gegebener Punktmenge XaEd
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setzen wir X' XnrW. Y' ist fur jedes Fin Ak(P) ein Elément von Ak(P'). Wenn
eine Folge Xa von Mengen vorliegt, sollX^ die Folge der Mengen XfnrJFbedeuten.
Unter der Annahme, unser Korollar sei falsch, finden wir eine Teilfolge Pap von Pa

so, dass lim sup /* (Pa/9) < fk (P) gilt. Weiter gibt es eine Teilfolge P^y von P^v welche
die in Lemma 5 erwâhnten Eigenschaften hat. Um unsere Bezeichnungen zu verein-
fachen, nehmen wir an, wir hâtten Pa do ,,dûnn" gewâhlt, dass wir Pafiy Pa setzen

kônnen. Gemâss Lemma 5 gibt es dann zu jedem YeAk(P) eine Menge A(Y)etyL(Y)
cAk(P[) so, dassp(Y)elim*Fk(A(Y))cz Y' gilt. Fur geniigend grosse Indexe i muss
Wk(A(Y)) die Form FnrW{FeAk{P^) haben, da die iibrigen Mengen von Ak(P()
dem Rand von r JFangehôren und sich dem Punkt/?(F) nicht beliebig nâhern kônnen.
Da A (Yt) und A (Y2) stets verschieden sind, folgt fur hinreichend grosse /

fk(Pt)>ceird{A(Y)\YeAk(P)}=fk(P),

was wir beweisen wollten.

LEMMA 6. Pc:Ed sei ein m-dimensionales Polytop und Pa eine gegen P konver-

gierende Folge von Polytopen mitMm inf dimPa=y. Die FolgeXx (XieAk(Pi)9 k<m—\)
konvergiere gegen eine Teilmenge Ya P. X sei diejenige Zelle im Randkomplex ty,fur
welche relint Fcrelint^ zutrifft. Dann gilt fur die Mengen ©J" der m-dimensionalen
Seiten von Ph welche Xt enthalten:

lim inf Y h{G,Xx)>{j-m + \)p0{P,X).
Ge©am

Beweis. Indem wir, wenn nôtig, kleine Translationen auf die Polytope Pt ausûben,
kônnen wir ohne Einschrânkung der Allgemeinheit annehmen, es gelte

relintXn(f) relint Xt) # 0,

und wir setzen voraus, der Ursprung liège in diesem Durchschnitt. Wir definieren

H {Me F/_m+1 | M n relintP # 0}

und bezeichnen mit Hn die abgeschlossene Teilmenge von H, welche aile Unterrâume
enthâlt, deren Distanz von F/_m+ x -Hwenigstens \\n ist. Dann gilt

h(P, X)= lim »dd_m+1(Hn).
«-?oo

Entsprechend setzen wir

Ht {MeF/.m+1 | MnrelintP, # 0}.
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Wir wollen zeigen, dass zu jedem n ein Index i0 existiert, sodass fiir /> i0 die Beziehung

Hn c Ht (15)

gilt. Andernfalls finden wir eine Teilfolge PaP von Pa und eine gegen einem Unterraum
N konvergierende Folge Nap(NijeVa-m+i) so, dass fur aile ij Ntj zur Menge Hn — Htj
gehôrt. Daraus ergibt sich, dass NeHn das Polytop P stiitzt, was nur môglich ist,
wenn entweder (a) Nn relintP=0 oder (b) affPc N gilt. (a) widerspricht offensichtlich
der Définition von Hn, aber auch (b) ist ausgeschlossen, da N zum Inneren von H
beziiglich der Topologie von Fj*_m+1 gehôren muss and X auf dem Rand P liegt.
ZczVa-m+i sei die Menge aller Elemente, welche zu einer der Ebenen affX (Xety
oder XeS$h l<i<oo) nicht allgemein sind. Es gilt ^j_m+1(Z)=O. Nun sei JVirgend-
ein Unterraum in Hn-Z. Fiir i>iQ ist die Menge Pi(N) NnPi ein (j-/w+l)-
dimensionales Polytop. Der Ursprung o ist ein Eckpunkt von Pt (N), und jede von o

ausgehende eindimensionale Kante ist ein Durchschnitt NnG mit Ge&? und

Nn relint G #0. Da von o in Pf(5l) mindestens j—m+l verschiedene Kanten aus-

gehen, gibt esj—m+1 Seiten Gr (1 <r<j—m +1) in (5™ so, dass N zu allen Mengen

H(Gr)={XeVd-m+1 | XnrelintGr^0} gehôrt. Durch Intégration ergibt sich daraus,

fur/>/0,

E h (G, Xt) > (j - m + 1) /4-m+x (Jf1),

und, mit «-» oo, der Beweis unseres Lemmas.
Wenn JSf eine Seite des konvexen Polyeders P ist, bezeichnen wir mit X den aus

allen Seiten von Xbestehenden Komplex. Wir definieren sodannfiir i<k
E E

Im Falle A:=dimP gilt natiirlich y|;fc(P)=^0(P). Das Hauptergebnis dièse Ab-
schnitts liegt im

SATZ 6. Pa sei eine Folge von konvexen Polyedern des Ed, welche gegen ein m-

dimensionales konvexes Polyeder P konvergiert. Aus lim inf dimPa>j folgt dann

furO<k<m-l
lim infyk0>m(P) > (j - m + 1) j5*(P).

Wenn P ein Polytop ist, kann Gleichheit nur im Falle lim inf/*(Pa)=/*(P) eintreten.

Beweis. Wie im Beweis des Korollars zu Lemma 5 wâhlen wir einen Wûrfel rW,
dessen Inneres von jeder Kante YeAk(P) einen Punkt/?(F)erelint7 enthâlt. Wie-

derum setzen wir fur jede Menge Q<=Ed Q'^QnrW. Wenn die Folge der/°(P/) nicht

beschrânkt ist, zeigt eine einfache Abschâtzung, dass auch die Folge der Mâchtig-

keiten card {XnrW \ XeAk(Pt)} nicht beschrânkt ist, woraus sich im Hinblick auf
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Lemma 6 sofort ergibt, dass yQ'm(Pa) gegen oo divergiert. So finden wir, wenn Satz 6

falsch ist, eine gegen ein m-dimensionales Polyeder P konvergierende Folge Pa

von /-dimensionalen Polyedern so, dass ykom(Pa) konvergiert und die Beziehung
lim^'m(Pa)<0~m + l)^(P) gilt. Indem wir den Wiirfel rWund die Punkte/?(F)
wie oben wâhlen, kônnen wir zusâtzlich annehmen, dass die Folge der/°(^) be-

schrânkt ist. Nach Lemma 5 gibt es eine Teilfolge PaP von Pa und zu jeder Seite

YeAk(P) eine Folge von Seiten

Aij(Y)(Aij(Y)=Wl(A)9Ae%(Y))

in Ak{PQ so, dass Aij(Y1)^Aij(Y2)(Yi^Y2) und P(Y)elimAafi(Y)czY gilt Wie
im Beweis des Korollars zu Lemma 5 hat ^4^ fur hinreichend grosse Indexe ij jeweils
die Form Aij{Y) Xc\rW (XeAk(Pij)). Aus Lemma 6 folgt, im Widerspruch zu
unserer Gegenannahme,

lim/om(Pa)>lim £ (1^0(0,
Y s A*(P)

>(j-m + l) £ h{P, Y)
Y e Ak(P)

Hier bedeutet £*, dass liber aile m-dimensionalen Seiten G von Pt'j9 welche Ati(Y)
enthalten, zu summieren ist. Um die Bedingung fur die Gleichheit zu zeigen, betrach-
ten wir ein Polytop P und kônnen annehmen, jedes Pt sei ebenfalls ein Polytop mit
fk(Pi)>fk(P). Wenn unsere Behauptung falsch ist, gibt es eine Teilfolge PaP von P
so, dass ykom(Pap) gegen (j-m+ l)po(P) konvergiert. Wir wâhlen Ztj in Ak(PlJ)
"~Ere^fc(P) Atj(Y) und kônnen weiter annehmen, die Folge ZaP strebe gegen ein

Polytop Z in relbdP. Wegen Lemma 6 ist £2 $0{H, Za^)>0, wo das Zeichen £2
bedeutet, dass iiber aile m-dimensionalen Seiten H von Pij9 welche Z(j enthalten, zu
summieren ist. So finden wir

Y e Ak(P)

+ lim £2 Po (H, ZaP) > (j - m + 1) h (P) •

Damit ist unsere Gegenannahme widerlegt.
Die Bedingung lim/k(Pa)==/k(P) ist auch im Falle beliebiger konvexer Polyeder

fur die Gleichheit in Satz 6 notwendig, doch ist der Beweis dafûr etwas verwickelter,
und wir lassen ihn hier aus. Unterhalbstetigkeitssâtze sind niitzlich, um die Existenz
von Lôsungen bei Extremalproblemen zu sichern. Als Beispiel erwâhnen wir.

SATZ 7. B und C seien konvexe Kôrper des Ed mit Ba'mtC, undk sei eine natûr-
Hche Zahl U nter allen Polytopen P mit BaPcz C gibt es einesjûr welches der Wert der
Funktion /?£ minimal ist.
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Beweis. £ sei das Infimum von /?£ fur die in Frage stehende Klasse von Polytopen.
Pa sei eine Folge von Polytopen Ph BczP^C, so, das £ +1 > p^(Pt) >: Ç und lim fà(Pa) {
gilt. Wir kônnen lim Pa D annehmen, wo D ein zwischen B und C liegender kon-
vexer Kôrper ist. Da ^(Pf)<^ +1 fur aile i gilt, ist die Folge der/0(Pf) beschrânkt.
Daraus folgt, dass D ein Polytop sein muss, und aus Satz 6 ergibt sich

£ oder

4. Ungleichungen fiir die Inhalte von Geriisten

In diesem letzten Paragraphen studieren wir das Mass des r-dimensionalen Ge-

riists eines Polytops PaEd. Wir schliessen direkt an die Arbeit [1] von H. G. Eggles-

ton, B. Griinbaum und V. Klee an. In privater Mitteilung erfuhren wir von den

Autoren, sie seien nicht imstande, die am Ende von § 5 in (1) gemachte Behauptung
zu beweisen; vergleiche auch die Bemerkungen, die unserem Satz 11 vorangehen.
Fiir ein Polytop PaEd bedeutet £m(P) das m-dimensionale Hausdorffsche Mass des

#2-dimensionalen Geriistss von P. In (1) ist die Unterhalbstetigkeit der Funktion £m

bewiesen worden, und wir studieren hier die Existenz schârferer Ungleichungen,
wenn das Grenzpolytop im Verhâltnis zur approximierende Folge entartet ist.

SATZ 8. PczEd sei ein m-dimensionales Polytop und Pa eine gegen P konvergierende

Folge von Polytopen mit lim inf dimPa>j. Danngilt lim inf£m(Pa)> (j-m+l) £m(P).

Beweis. Wir kônnen annehmen, P liège in einem Unterraum Em c Ed. Mit Me F/_ m

bezeichnen wir den zu Em senkrechten Unterraum. Zu jedem Polytop Pt gibt es ein zu

Pt kongruentes Polytop P/, dessen hausdorffsche Distanz von Pt nicht grôsser als

l/i ist, derart, dass M in Bezug zu allen Ebenen affJf {Xety[) allgemein ist. Es gilt
P'a-+P und £m(Pf) £m(P/). Daher diirfen wir zum vorneherein annehmen, M sei in

Bezug auf aile Polytope von Pa allgemein. n bedeute die Projektion von Ed lângs M
auf Em. Offenbar ist lim7r(Pa)=P, und wegen der Stetigkeit des Volumensfiir konvexe

kompakte Teilmengen in Em finden wir.

\imÇm(n(PJ)=Çm(P). (16)

Im Folgenden setzen wir fiir Pa nur die Bedingung (16) und die allgemeine Lage

von M voraus. Unsere Behauptung folgt nâmlich unmittelbar daraus, dass fiir jedes

y-dimensionale Polytop, beziiglich dessen M allgemein ist, die Beziehung

zutrifft. Um (17) einzusehen, setzen wir
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und mit 31 bezeichnen wir den beim Beweis von Satz 1 eingefuhrten Zellenkomplex,
welcher aus Durchschnitten von Elementen aus II besteht. Zu jedem Ae% und
xerelintA ist (x + M)nP ein (j—m)-dimensionales Polytop, dessen Eckpunkte
Durchschnitte von x + M mit m-dimensionalen Seiten Fl5..., Fq(A) (q(A)>j—m+l)
von P sind. Zwei Ebenen x + M, y + M (x, yerelintA) treffen stets dieselben Seiten

von P. Mit A'jCzFj (\<j<q(A)) bezeichnen wir die Menge tt"1 (relintA)nFj. Da
n eine metrische Kontraktion ist, gilt AmAj>Am(A), und daher

> (j - m + 1) £ Am{A) (j - m + 1) U
womit (17) bewiesen ist.

Bemerkungen. In den Fâlleny=m unà j=m+1 tritt in Satz 8 stets Gleichheit ein.
Um dies einzusehen, kônnen wir zunâchst ohne Einbusse an Allgemeinheit voraus-
setzen, dass aile Polytope Pt demselben Raum EJ angehôren. Fiir/=ra folgt unsere
Behauptung unmittelbar aus der Stetigkeit des Volumenfunktionals in Em (vgl. H.
Hadwiger, [3]). Wenny'=ra+1 gilt, bemerken wir zunâchst, dass fur jeden Einheits-
vektor u in Em+1 die Projektionen nu(Pi) lângs u auf den zu u senkrechten m-dimensionalen

Unterraum gegen nu(P) konvergieren. Weiter ergibt sich die Konvergenz
vonFw(Pa) (l/œm)J^(7rM(Pa)) du gegen Fm(P) (ll(Dm)^m(nu(P)) du. Hierbei be-
deutet œm das Volumen der m-dimensionalen Einheitskugel. Nach der Formel von
Cauchy ([3], Seite 208) gilt aber Fm(P/) ^m(Pl), wâhrend wir die Beziehung Fm(P)
— 2^m{P) leicht durch direkte Intégration finden. FiiryVm und \<s<m braucht
nicht einmal limÇs(Px)>Çs(P) zu gelten, obschon dies sicher fur n<3 zutrifft.
Beispielweise lâsst sich das eindimensionale Geriist eines ,,nachbarlichen" vier-
dimensionalen Polytops mity+1 Ecken beliebig genau durch das eindimensionale
Geriîst einesy-dimensionalen Simplex approximieren.

In [1] haben H. G. Eggleston, B. Griinbaum und V. Klee bewiesen: Wenn r, s
und d natùrliche Zahlen sind, sodass s<dund r ein Teiler von s ist, so existiert eine
positive Konstante y(r, s, d) so, dass fur aile Zellenkomplexe il der Dimension d gilt:
ÇS(R)1/S<y(r, s, d) ^r(il)1/r. Inder Tat liess sich zeigen, dass unter den obigen Be-
dingungen y(r, s, d)=l gesetzt werden kann, doch blieb das Problem fur andere
Werte von r und s offen, sogar wenn man sich auf simpliziale Komplexe beschrânkte.
Hier beweisen wir ein schwâcheres Résultat fiir simpliziale Komplexe, welches fiir
aile r und s zutrifft und das Ergebnis von (1) mitliefert. Wir werden zeigen, dass im
Fall r=s— 1 dièse schwâchere Ungleichung fur aile Zellenkomplexe gilt. Wenn r und
s t^O natiirliche Zahlen sind, bezeichnen wir mit <»s/r> die kleinste natiirliche Zahl
>s/r.

SATZ 9. Ci sei ein d-dimensionaler simplizialer Komplex in En. Dann existiert fur
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aile s undr mit d>s>r eine Zahl y(r,s, d) so, dass

yiYlr < y(r, s,

gilt.
Beweis. Zunâchst nehmen wir zusâtzlich r<s<2r an. Wenn FeAs(&) ein

•s-dimensionales Simplex ist, wâhlen wir ein (2r —,s)-dimensionale Seite G von F so,
dass Ç2r-s(G)>Ç2r-.s(X) fur a^e (2 r—.s)-dimensionalen Seiten X von .F gilt. Mit Gt
und G2 bezeichnen wir die beiden r-dimensionalen Seiten von F, deren Durchschnitt
G ist. Indem wir Satz 5.6 von (1) auf die Polytope Gt (i — 1, 2) anwenden, finden wir
eine Zahl k(r, s)so, dass fur aile FeAs(G) gilt:

k(r, s) (UGd)i2r~s)fr < è2r-s(G) i=U2. (18)

Die Eckpunkte von G2, die nicht auch zu Gi gehôren, bezeichnen wir mit ar+2,..., as+1.

Wir setzen îmr+2<j<s+l

und

wo ||jc, M II den euklidischen Abstand des Punktes x von der Menge M bedeutet. Es

ist hj<hp und nach der Formel fur das Kegelvolumen gibt es Zahlen k'(r, s) und
kn (r, s) so, dass die Beziehungen

s+l

(19)

gelten, Aus (18) und 19) folgt fur aile Fin As(&)
s+l

oder

(UGi)f~'Vr * k(r, s) k"(r, s) ']j hj. (20)

Indem wir (19) mit (20) kombinieren, finden wir k* (r, s)>0 so, dass fiir aile FeAs(£i)
die Ungleichung

zutrifft. Daraus folgt, wenn wir zur Verdeutlichung die zu Fgehôrenden Seiten Gt mit

Gi{F) (i 1, 2)bezeichnen,

^. (21)
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Nun ist sicher

Wegen der Ungleichung von Cauchy-Schwarz gilt ferner

Aus (21) bis (23) schliessen wir auf die Existenz einer Konstanten y(r, s, d), fiir welche

-)(2-(-/D) (24)

zutrifft. Im Falle s>2r wâhlen wir eine positive ganze Zahl n so, dass (n+ l)r<s<
(n + 2)r gilt, und wenden Satz 5.4 von (1) an. So erhalten wir

und mit (24), angewendet auf s—nr, folgt die Existenz einer Zahl y (r, s, rf) so, dass

zutrifft, was wir beweisen wollten.

SATZ 10. FFe/iw d ein d-dimensionaler Zellenkomplex in En ist, so gibt es zujeder
ganzen Zahls<d eine Zahl y (s, d)>0 so, dass

ist.

Beweis. Nach einer klassischen isoperimetrischen Ungleichung (H. Hadwiger [3])
gibt es eine Zahl y>0 so, dass fiir jedes FeAs+1(Q) die Beziehung i8+1(F)'^
yÇs(F)s+1 gilt. 5 sei der aus allen Seiten von F bestehende Komplex. Eine einfache
Abschâtzung liefert

)s. (25)

Dabei bedeutet J]1, dass iiber aile Paare (G, ^eA'^xA3^) zu summieren ist.
Nun gilt fiir jede Seite GeAs(%)

Indem wir in (25) fiir ein Diagonalelement den Ausdruck rechts in (26) einsetzen,
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finden wir y* < 2y so, dass

oder

* I <L2U)1/g) (27)

gilt, wobei £2 vorschreibt, dass uber aile Paare von Zellen G, H in ASÇ$) mit
summiert werden soll. Ein solches Paar kann nur zweimal auf der rechten Seite von
(27) erscheinen ; denn conv (G u H) muss (s + l)-dimensional und in einem FeAs+1
enthalten sein. So gilt

wo die letzte Ungleichung sich wieder aus der Formel von Cauchy-Schwarz ergibt.
Das heisst, es gibt eine Zahl y (s, d) so, dass, wie Satz 10 verlangt,

J<y(s,>
gilt.

In 1 ist der folgende Satz (theorem 5.10) bewiesen worden : r, s, dund k seinen ganze

Zahlen mit \<r<d, 0<s<d und k>( j. Dann gibt es unter den konvexen

Kôrpern (Polytopen mit hôchstens k s-dimensionalen Seiten) mit dem Volumen 1 in
Ed solche, fur welche fr minimal ist. Die Autoren fûgen bei: ,,Wir konnten nicht

entscheiden, ob der vorstehende Satz richtig bleibt, wenn die Bedingung fur das

Volumen durch die Forderung ersetzt wird, dass die Oberflâche den Wert 1 haben

sollen, obwohl dies im Fall r= 1 leicht eingesehen werden kann." Indessen haben uns

die Verfasser mitgeteilt, dass fur r— 1 zwar eine gleichmâssig beschrânkte Folge von

Polytopen Pt existiert, fur welche £>l (Pt) gegen den Minimalwert von Çr strebt, die

Môglichkeit dass das Grenzpolytop entartet sein kônnte, von ihnen jedoch iibersehen

worden ist. Der nâchste Satz zeigt, dass solche Folgen von Polytopen fiir jedes

r (\<>r<d) existieren, doch sind wir nicht imstande, zu entscheiden, ob das

Grenzpolytop entartet sein muss oder nicht.

SATZ 11. rtt und d seien positive ganze Zahlen mit \<r<d-\. Dann gibt es eine

positive ganze Zahl n9 die nur von r, t und d abhângt, so, dass jeder konvexe Kôrper C

mit Durchmesser > n und Oberflâche eins der Bedingung £r (C) > t genugt.
Beweis. Wir beweisen zuerst eine Hilfsaussage (*) y, <5, S seien positive Zahlen so,

dass ein konvexer Kôrper D in Ed~x den Bedingungen y<£d-i(£0<#> £r(^)—^'

r< d— 2, genugt. Dann gibt es eine Zahl q, die nur von r, d, y, S und # abgângt, sodass

der Durchmesser von D nicht grôsser als q ist.
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Andernfalls existiert eine Folge Da von konvexen Kôrpern in Ed~1 so, dass der

Durchmesser von Dt>i ist und fiir welche die Bedingung y<^d-1(Di)<&, £r(£>f)<<5

erfiillt ist. Aus #>£d-;(A) folgt, dass die minimale Breite von Dt fur /-»oo gegen
Null strebt. Zu gegebenem s>0 existiert daher ein Index i0 so, dass es zu jedem />/0
eine (d— 2)-dimensionale Ebene Qt in Ed~1 gibt, deren Parallelmenge (gf) s den Kôr-
per Dt enthâlt. Mit 7if bezeichnen wir die Projektion von Ed~1 auf Qt. Dann existiert,

wegen Satz 5.6 von (1), eine Zahl y(r9 d)>0 so, dass

5('-2)/'y(r, d) > Zt

fur i> i0 und daher

2Wd-2»'y(r, d) >

gilt. Dièse Ungleichung enthâlt jedoch einen Widerspruch, wenn wir e so wâhlen, dass

2deôid~2)/ry(r, d)<y ist, und die Hilfsaussage(*)ist gesichert.
Nun betrachten wir einen konvexen Kôrper CcEd mit der Oberfïàche ^d^t (C)= 1

und Çr(C)<t. Ohne Einschrânkung der Allgemeinheit kônnen wir annehmen, C sei

ein Polytop und u=(l/d,..., l/d) liège in Richtung eines Durchmessers von C.

Cj,..., Cd seien die Projektionen von C in den Richtungen el9...9ed9 wobei ^ der
Einheitsvektor el (5lï-,..., (5^) mit (5^ 0 fixrj^i und 5£|= 1 ist. Wir wollen zeigen,
dass es einen Index k0 (1 < kQ < d) gibt, fur welchen

m^-ii^K^^C^Kl (28)

zutrifft. y(F) sei ein zu aiïF (FeA^1^)) orthogonaler Einheitsvektor. Dann ist,
wenn nk die Projektion in Richtung ek bezeichnet,

und weiter

£ i( I «a-i(F)=l. (29)

Andererseits ist die linke Seite von (29) gleich 2Yi^iid-i(Çk)9 woraus sich

Z*=i £d-i (Q)>i und damit die Existenz der in (28) geforderten Zahl k0 ergibt. Nun
ist

*>€r(C)2>Ér(Cj. (30)

Indem wir die in (28) und (30) gefundenen Konstanten fiir Cfco in Hilfssatz (*) ein-
setzen, finden wir die Existenz einer nur von r, t und d abhângigen Zahl q so, dass

q>Durchmesser von Cko>d'112. Durchmesser von C gilt, wobei die letzte Ungleichung

aus der Tatsache folgt, dass w=(l/rf,..., l/d) in der Richtung eines
Durchmessers von C liegt. Die Zahl n=[d1/2q]+l erfullt die in Satz 11 geforderten Be-
dingungen.
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