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An Algebraic Classification of Some Knots of Codimension Two1)

by J. Levine

An H-knot will dénote a smooth orientée submanifold K of the (« + 2)-sphere
Sn+2, where K is homeomorphic to Sn. If n is odd, one can associate to K a square
intégral matrix A, called a Seifert matrix of K, using a submanifold of Sn+2 bounded

by K (see [13] for n== 1, and [4] or [8] in gênerai). When n 1, it is known that two
Seifert matrices of isotopic knots are related by certain algebraic "moves" (see [11],
[16]). In this paper we will generalize this fact to ail n. We then consider, for n odd,
«-knots (referred to as simple) whose compléments are of the same ((«—1)/2) type
as a circle, i.e. i7€(5"I+2-i^)«i7€(S'1) for q^(n-l)/2. This is the most that can be

asked without making K unknotted (see [7]). We will show that two simple «-knots

(n^3) are isotopic if and only if their Seifert matrices are related by such "moves".
Thus it will follow that the semi-group of isotopy classes of simple «-knots dépends

only on the residue class, mod4, of n for «^4.
By contrast, Lashof and Shaneson [6] (and, independently, Browder) hâve shown

that the isotopy class of an «-knot («^3) K, whose complément is of the same 1-type
as a circle is determined by the homotopy type of its exterior pair (X, dX), where X
is the complément of an open tubular neighborhood ofK in Sn+2 - except for one other
possible knot x (K), obtained from K by removing a tubular neighborhood twisting,
and reinserting in Sn+2. It is not known whether x(K) is ever différent from K. As a

straightforward application, we will show that x(K) is isotopic to K if K is simple.
We conclude with some remarks on the algebraic problems which arise.

1. Let A: be a (2q- l)-knot in S2q+1. We recall the définition of a Seifert matrix of K.
Let M be a smooth oriented submanifold of S2q+i bounded by K. The l-pairing of M:

0:Hq(M)®Hq(M)-*Z

is defined by letting 0(ot®P) be the linking number L(zl, z2), where zt is a cycle in M
representing a and z2 is the translate in the positive normal direction off M of a cycle
in M representing fi. A Seifert matrix A of K is then a représentative matrix of 6 with
respect to a basis of the torsion-free part of Hq(M) - see e.g. [8].

We recall also the formula [8]:

(- 1)€ 0(0 ®<x) a-fl

This work was done while the author was partially supported by NSF GP 8885.



186 J.LEVINE

where a-/? is the intersection number in M. Thus A + (-1)* AT is unimodular (AT is

the transpose of A) and, if q 2, A+AT has signature a multiple of 16 (see [9]).

2. Let A be a square intégral matrix. Any matrix of the form:

/A_\p ON

or

where a is a row vector, f$ a column vector, will be called an elementary enlargement
oîA. A is an elementary réduction of any of its elementary enlargements. Two matrices

(or their associated pairings) are équivalent if they can be connected by a chain of
elementary enlargements, réductions and unimodular congruences. It is proved in [11]
that Seifert matrices of isotopic 1-knots are équivalent. We shall prove:

THEOREM 1 : Seifert matrices of isotopic knots of any (odd) dimension are

équivalent,

THEOREM 2 : Let q be a positive integer and A a square intégral matrix such that

A+(—\)q AT is unimodular and, ifq=29A+AT has signature a multiple of lô.Ifq^l,
there is a simple (2q— \)-knot with Seifert matrix A; ifq 2, there is a simple 3-knot

with Seifert matrix équivalent to A.

THEOREM 3: Let q^-2 and Ku K2 simple (2q- \)-knots with équivalent Seifert
matrices. Then Kt is isotopic to K2.

3. Proof of Theorem 1: Suppose KUK2 are isotopic (2#-l)-knots bounding
manifolds Ml9M2, respectively, of S2q+1. We first construct a submanifold V (with
corners) of IxS2q+1 meeting 0xS2q+1 along 0xMl and lxS2q+i along lxM2
with boundary the union of 0 xMt ; 1 xM2 and the trace X of an isotopy from Kt to

K2. We use the Pontriagin-Thom construction as follows. First construct a normal

vector field to (0 xM^uIu (1 xM2)= Y in / x S2q+1, which is tangent to J x S2q+1

along 0xMtul xM2. If ##1, there is no obstruction. If q=\, the obstruction to

extending such a vector field from 0xM1ulxM2 over F is the différence in its

winding numbers about Kt and K2. But since the field is defined over Mt and M2,
thèse winding numbers are zéro.

Let T be a tubular neighborhood of X, We can "translate" (X, v \ X) to a framed

submanifold of dT which agress with the framed submanifold (OxMjUl xM2, u)

on dTn(ixS2q+1). Let W=IxS2q+1-T; the Pontriagin-Thom construction on

the above framed submanifolds of ôW détermines a map ÔW-+S1. An extension of
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this map over W will détermine the desired V. The obstruction lies in

H2(W, dW) « H2(I x S2q+\ Xut x S2q+1) « Hl(Xut x S2q+i) 0.

4. Now let <P': V-*I be the "height" function defined by the restriction of the projection

/x S2q+1-*I. We may assume $' has no critical points in a neighborhood of dV
(omitting corners). Let # be a C2-approximation to $' which agrées with #' in a

neighborhood of ôV and has only non-degenerate critical points (except at corners)
which are mapped one-one into / (see e.g. [10]). We can move V so that # becomes

the new height function. In fact if/?: V-^S2q+1 is defined by the projection IxS2q+1->
-+S2q+1 and 0 is a close enough approximation to &\ then x\-*(<P(x),p(x)) defines

a new imbedding F-»/x S2q+1 which agrées with the original inclusion near ôV and
has 4> as its new height function.

5. Let 0 t0 < tx < • • • < tk 1 be a partition of / satisfying
(i) each tt is a regular value of 0,

(ii) at most one critical value of 0 lies in each interval (th ti+i).
Let $~1(ti) ti xM'ii then eachM^ is bounded by a knot isotopic to £0 and Kl9 and

Mo=Ml9Mfc=M2. This shows that it suffices to consider the case where 0 has only
one critical point.

LEMMA 1 : Let oc9 a' e Hq (Mx and /?, f}'eHq(M2) and suppose that a is homologous
to P and a' homologous to /?' in V. Then 91((xi a') 02(& P'), where 0f is the l-pairing
ofMt.

Proof: Let C, C" be (# + l)-chains in V such that dC=<x~P9 dC <*'-?. Then
it follows from the définition of 9i9 62 that 6i(oc, a/)-02(j5, p') is the intersection
number of C and the translate of C" off K in the positive normal direction - but this
is obviously zéro.

6. Now consider the foliowing diagram :

Hq+1(V,M2)

i
Hq(M2)

ï
^+i(F,M1)^/f,(M1)->^(F)^i/JÏ(K,M1)

i
Hq(V,M2)

consisting of the exact homology séquences of (V.M^ and (V,M2). If the index of
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the critical point of <P is not q or q +1, then

Hq(V, MO Hq+1(V, Mx) Hq(V9 M2) Hq+l(V, M2) 0

and we hâve

It follows from Lemma 1 that 0± and 02 are congruent.
If the index of the critical point of $ is q9 then

and

If aeHg(M2) is the image of a generator of Hq+i (F, M2), then the composite

can be defined by /?->a'/^intersection number lnM2 (see [5]). If a has finite order,
then it follows that Hq{M^)^Hq{V)^Hq{M2), modulo torsion, and, therefore, 9t and

02 ave congruent modulo torsion.

7. Suppose a has infinité order; then a is a multiple of a primitive élément a0 and there

exists p0eHq(M2) with ao-/?o 1. Suppose yi,..., yfseHq(M2) such that:
(i) y- is homologous to yt in F, and

(ii) a0, /?0, y'u..., y^ is a basis of Hq(M2), modulo torsion.
We now examine 92 on the éléments a0, /?0, yi,..., y's. By Lemma 1 we can
from (i) that 62(yl, y'j) O1(yh y^). Since a is null-homologous in F, 0

9i(0>yi) Q and 02(a, a) 02(O, 0)=0. Thus 02(ao, y!) 02(ao, ao) 0;
^(7^ ao)=O. We also recall that (§ 1):

conclude

2(a?yO

similarly

(«o, Po) + (" » «o) - ao-j8o -
8. We may summarize this as follows. Let A be the matrix représentative of 6X with

respect to the basis yl5..., y5. The the matrix représentative of 62 with respect to the

basis yi,..., y's, a0, j50 has the form:

n
A
0...0

0

where x, y are integers, *+(-!)» jc'=-l,i!;is a row vector and r\ is a column vector.
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Recall from e.g. [8] that the polynomial AA(t) det(tA + (-l)q AT), where A is

a Seifert matrix for a knot K, is an invariant of the isotopy class of K (up to multiplication

by a unit in Z [t, t~1]). But it is easily verified that:

AB(t) (tx + (- 1)" x') (tx' + (- l)"x) AA{t)

Thus x (or x') is zéro, since x±x'= — 1, then xr (or x) is +1. It now is easily checked

that 5 is congruent to an elementary enlargement of A.

9. If the index of the critical point of 4> is q +1 ; then its index as a critical point of
— 0 is q. The preceding arguments apply to show that 92 is congruent to 0u or has,

as représentative matrix, an elementary réduction of a représentative matrix of Qv

This complètes the proof of Theorem 1.

10. Proof of Theorem 2: For q^2, this is proved in [4] (see also [9]). For q 2,wo
must show that A is équivalent to a matrix B, where B+BT is a matrix représentative
of the intersection pairing of some simply-connected closed 4-manifold. By an argument

in [9], such a B can be obtained by adding enough blocks f J to A ; but

this is a séquence of elementary enlargements of A, so B is équivalent to A.

11. Proof of Theorem 3: We reduce Theorem 3 to two lemmas. Recall (see [7]) that
a simple (2q— l)-knot bounds a (q— l)-connected submanifold of S2q+1. A Seifert
matrix obtained from the /-pairing of such a submanifold will be called spécial.

LEMMA 2: Let K be a simple (2q— \)-knot with a spécial Seifert matrix A. IfB
is an elementary enlargement ofA, then B is also a spécial Seifert matrix of K.

LEMMA 3: Ifq^2, then simple (2q—l)-knots admitting identical spécial Seifert
matrices are isotopic.

12. We first show that Theorem 3 follows from Lemmas 2 and 3. Let K9 K' be simple
(2q— l)-knots with équivalent Seifert matrices, q^2. Let A, A' be spécial Seifert
matrices of K, K\ respectively. Thus there exists a séquence: A AU A29..., Ak=A\
where each Ai+l is unimodularly congruent to an elementary enlargement or réduction,

of A{ It follows from Theorem 2 that, for q>29 each At is a spécial Seifert matrix
of a simple (2q- l)-knot Kt (actually the proof of Theorem 2 (see [4]) realizes S as a
spécial Seifert matrix of a simple knot). If q=2, we can enlarge each At by adding a

constant number of blocks to obtain a new séquence A'u A2,..., A'k. Each

^i+i is again congruent to an elementary enlargement or réduction of A\ - and it
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now follows from the argument in § 10 that each A\ is a spécial Seifert matrix of a

simple 3-knot K(.
We now prove that each Kt is isotopic to Ki+1. Suppose Ai+l is congruent to an

elementary enlargement of Av It follows from Lemma 2 that Ai+1 (or A'i+1) is a

spécial Seifert matrix of Kt. Then Lemma 3 implies Kt and Ki+1, both of which now
admit Ai+1 (or A'i+l) as a spécial Seifert matrix, are isotopic. If Ai+1 is congruent
to an elementary réduction of Ah the same argument works, switching the rôles of
Kt and Ki+i.

We may as well hâve chosen Kl=K and Kk K' if q>29 but if q—2 we need to
show that Kt is isotopic to iTand Kk is isotopic to À^. It follows from Lemma 2 that
A[ is a spécial Seifert matrix of K, since A[ is obtained from ^ by a séquence of
elementary enlargements. Then Lemma 3 implies K and Kt are isotopic - similarly
for K' and Kk.

13. Proof of Lemma 2: Let Af be a (#— l)-connected submanifold of S2q+1 bounded

by K, and a1?..., an a basis o(Hq(M), modulo torsion, such that A is the corresponding
matrix représentative of the /-pairing of M. Let xl9..., *„ be an arbitrary séquence of
integers. It follows from Alexander duality that there exists a cycle zeHq(Sq+i—M)
such that the linking numbers L(z, af) xi9 for i= 1,..., «. Now 5r2«+1 — M is (#— 1)-

connected and so z is spherical; by gênerai position, z can be represented by an im-
bedded ^-sphère aczS2q+1 — M. The normal bundle to a is trivial and so a tubular
neighborhood Jean be identified with axDq+1 -we may assume T disjoint from M.

Orient dT so that the positive normal direction in S2q+1 points into T and let M' be

the connected sum in S2q+1 of M and dT. Then Hq{Mr) has rank two greater than the

rank of Hq(M), and al9..., aw may be extended to a basis of Hq(M'\ modulo torsion,

by adjoining the homology classes ftl9 p2 of a xy0 and x0 x Sqczax Sq ôT, respec-

tively. The représentative matrix of the /-pairing of M' with respect to the basis

ocl9...9<xn,pl9p2is

A 0"

±xn 0

X1...X,,
0...0

x
±1

which is congruent to :

A 0 0~

x,...x. 0 0

0...0 1 0
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If z is chosen so that L(cth z) xt for /= 1,...,«, and dT is orientée so that the

positive normal direction points out from T, then the représentative matrix of the

/-pairing of M' with respect to al9..., an, pl9 fi2 is:

A
±*i ...±xttl 0...0

X

X

X

0

which is congruent te

[A
0...0 0

0...0 0

(T

0

1

0,

i 0

- o

±1
0

•

Thus we can realize any elementary enlargement of A as a spécial Seifert matrix of K.

14. Proof of Lemma 3: Suppose K and K' are (2q — l)-knots bounding (q — l)-con-
nected submanifolds M and M' of S2q+1 with /-pairings 0 and 0'. Suppose also that
there exists an isomorphism <P:Hq(M)^>Hq(Mf) preserving the /-pairings, i.e.

Let us assume, for now, q>2; we will show that M and M' are isotopic submanifolds

of S2q+1. According to [15], M and M' hâve handle décompositions:

where each hi9 h't is a handle of index q - diffeomorphic to DqxDq. The ht{hf^ are
attached to D2q by disjoint imbeddings S*"1 xDq^dD2q. Let Cf(C/) be the "core"
of h^h'i), i.e. the submanifold corresponding to Dqx0 - then dCi Cir\D2q.

The imbedded disks (C,, 5Qc(M, D2q) represent a basis {a,} of Hq(M9 D2q)&
&Hq(M). According to handle body theory (see [17]), we can choose a handle-decom-
position realizing any prescribed basis {af}. Thus if {aj} is the basis ofHq(M') defined
by (C/, dCI)cz(M'9 D2% we may, by setting a; *(a,), assume 0(a,, aj)=0'(<x'h a}).

15. Now consider the links {3CJ and {5C/} in 5D2€; by [17] and § 1 we hâve:

L(dCh ÔCj) ocrocj - 0(Œ|, Œi) - (- l)f 0(ay, a,);

similarly for L(BC'i9 dCj). Therefore L(dCh dCj)=L(dC'i9 dC'j), for i^j, and, since

q>2, the links {ÔCJ and {5C/} are isotopic in 5D€.

Clearly we may assume that the base disks D2q in the handle décompositions of
M and M' coincide as imbedded in S2q+1. Thus the cores C* and C'h as imbedded
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in S2q+1, may be assumed to coincide on their boundaries: dCt dC(. We next show
how to isotopically defrom {Ct} onto {C/}, keeping {dCt} fixed and avoiding any
intersections with D2q (except, of course, along dCt).

Assume inductively that Ct Cl for i<k. We will isotopically deform Ck to Ck\

avoiding intersections with D2quC1u-"KjCk_l. Given such an isotopy, we can
extend it to an isotopy of hk u hk+1 u • • • u ht in

the resuit is an isotopy of M to a new imbedding satisfying Ct C( for /<£. We

begin with an isotopy of Ck to Ck\ re\dCk, avoiding D2q; this exists according to Wu
[20] because the imbeddings of Ck and Ck and S2q+1 — intD2q are homotopic
reldCk ôCk and S2q+1-intD2q is simply-connected. We would then like to use

Whitney's procédure, as in [20], to remove the intersections of this isotopy with
/x Ct (i= 1,..., k-1) in S2q+1-D2q, since q>2 and S2q+1 -D2q is simply-connected.
The only obstruction to this is the intersection number, which is easily seen to be (up
to sign) 0(ah <xj -0'(a,', 0=0.

16. We now hâve achieved Ci Cft for /=l,...,r. By the tubular neighborhood
theorem we may assume hinD2q=hfinD2q. Let vt(v[) be the positive unit normal
field to hiih'i) on Ct C(.

By the tubular neighborhood theorem, we may assume that ht (/*•) is the orthogonal
complément of vt(v[) in a normal disk bundle neighborhood N of Ct C[ in »S29+1.

Therefore if we can homotopically deform vt to v'h rel5Ch we obtain an isotopy,
relAfOD24, of A4 to h[ within N. Doing this for ail i achieves, finally, an isotopy of
MtoM'.

Since vt vfi along dCi9 vt differs from v\ by an élément of IJq(Sq)^Z (the normal

space to Ci in S2q+1 has dimension # + 1). But this élément can be identified with
6(oci9 (Xi) — d'((xfh a-)=0, and so Lemma 3 is proved -for q>2.

17. For q=2, more work is required to repair those parts of the preceding argument
which are no longer valid. First of ail M and M' are not necessarily diffeomorphic.
On the other hand, they are simply-connected 4-manifolds with boundaries
diffeomorphic to S3 and isomorphic intersection pairings (since their /-pairings are iso-

morphic). It then follows from [19] that, after adding on a number of copies of
S2 x S2, M and M' will be diffeomorphic. Since thèse enlargements of M and M'

can be realized by adding to the Seifert matrices blocks j, as is demonstrated

in § 13, we may as well assume that M and M' are diffeomorphic to start with. In

fact, by [18], there is a diffeomorphism f:M-*Mf preserving the /-pairings i.e.

0=0/o(/)K®/j|{)5 where/#:H2(M)->H2(M/) is the induced homomorphism.
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We reformulate the situation so far as follows. Mis a simply-connected 4-manifold,
dM diffeomorphic to S3, and we hâve imbeddings g, g':M-+S5 such that g(dM) K
and g'(dM) Kr. The /-pairings of g (M) and g'(M) are identical, as pairings on
H2(M).

18. Now let

M D4 u h\ u ••• u hl u h\ u ••• u hf u h\ u ••• u h^*

be a handle décomposition of M, where A} is a handle of index /. Since H^ {M)=0 we
can choose the handles of index 2 in such a way that the first k of them -h\,...,h\-
homologically cancel out the handles of index 1 (see e.g. [10], Theorem 7.6]) i.e. if
V=D4vh{u..,u^, then the boundary operator H2(M, V)-*^(V) maps the sub-

group of H2(M, V) generated by the "cores" of h2u..., hl isomorphically onto Hx (V).
Then

is acyclic. Set

Mo Au hl+ u • • • u hf.

We will show that g | Mo and g' \ Mo are isotopic.
First we show that g\A and g'\ A are isotopic by extending g/og~1:g(^)->g'(J)

to an orientation preserving diffeomorphism of S5. Begin by extending it to a tubular
neighborhood T of g (A) diffeomorphic to g(A)xI (with corners rounded). Now dT
is a homology 4-sphere bounding the contractible 5-manifold S5 — T- similarly for
7" a tubular neighborhood of g'(A). That S5-Tis acyclic follows from Alexander

duality; that S5 — Tis simply-connected follows from the fact that A collapses onto
a 2-dimensional polyhedron (it has only handles of index one and two) which has

codimension >2 in S5. We now invoke the case n 5 of the foliowing lemma (stated
by Kato for the PL case in [3]) since F5 0, to obtain the extension over S5.

19. LEMMA 4: IfCuC2 are contractible smooth manifolds of dimension n^S, then

any diffeomorphism d:dC1->dC2 extends to a diffeomorphism of Cx onto C2, after
perhaps changing d on an (n— \)-disks in dCv

Proof of Lemma 4: Consider W=Ci vdD2, a homotopy «-sphère. Since «^5, W
is homeomorphic to Sn ([15]) and, by changing d, we can insure that W is

diffeomorphic to Sn. Then W bounds a copy of Dn+i which détermines an A-cobordism

*) In fact an argument of A. Wallace, communicated to me by C. T. C. Wall, shows that only
handles of index 2 are needed after connected sum with enough copies of S2 x S2. This obviâtes the
need for the arguments of § 18, 19 and 21, since A D4 and Mo M.
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from Ct to C2, trivial from dC1 to dC2 (identifying them by d). By the relative version
of the A-cobordism theorem ([15, Cor. 3.2]), d extends to a diffeomorphism from
Q onto C2.

20. Now Mo is obtained from A by attaching handles of index two. Since we may
assume that g \ A g' | A, the problem of showing g | Mo isotopic to g' | Mo is similar to
(but not exactly the same as) the argument above in § 15, 16. We need fîrst to know
that the /-pairings on H2 (Mo), defined from g and g\ are identical, but this is because

they are induced from the /-pairings on H2(M) by the inclusion Moc:M. The
argument in § 15 will then serve to show that g and g' are isotopic on the cores of the
handles. To extend the isotopy to the entire handles, it will suffice to show that the
normal 2-fields to the imbedded cores in S5, defined by applying the differentials of
g and gf to the standard normal 2-fields to the cores in the handles ofMo, are homo-

topic. But the obstructions are éléments of II2(V3 2) 0, where V32 is the Stiefel

manifold of 2-fields in 3-space.

21. We now hâve shown that g\M0 is isotopic to g'|M0. The proof of Lemma 3

for q=2 will be completed by showing that ÔM can be isotopically deformed, in M,
inside Mo. This will use the engulfing theorem in its most naive form ([12, Lemma

2.7]). Let N be the closed simply-connected 4-manifold obtained from M by attaching
a 4-disk D to ÔM. Given any handle-decomposition of Nit foliows from the engulfing
theorem that the handles of index one are contained in a 4-disk imbedded in N.

Applying this to the dual handle décomposition of that postulated in § 18, we find

that N—Mo is contained in a 4-disk D'in N. Since any two similarly oriented «-disks

in an unbounded «-manifold are isotopic, D and D' are isotopic in N. It also may be

arranged that any given point in (intD)n(intD') is fixed during the isotopy. It is

then easy to see that dD( dM) and dD' are isotopic in M=N—D. This complètes
the proof of Lemma 3, and so Theorem 3.

22. Let f:Sn^>Rn+2 be a smooth imbedding. Since its normal bundle is trivial,/
extends to an imbedding F: Sn x D2-+Rn+2 whose isotopy class is uniquely determined

by/, if n>l. Let h:S*xS1-+SnxS1 be the diffeomorphism defined by (x9y)-+
-» (# (y) • x9 y) where# : S1 -> 50 (n +1 represents the non-zero élémentofIIt (SO (n +1

Define

Ro Sn x D2 uFohRn+2 - F(Sn x D2)

Representing Rn+2 as the interior of D11*2, the construction of Ro represents Ro as

the interior of a compact manifold Do with boundary diffeomorphic to Sn+1. By [15],

Oo is diffeomorphic to Dn+2 if «^3; therefore Ro is diffeomorphic to Rn*2. Consider



An Algebraic Classification of some Knots of Codimension Two 195

the knot Snx0czSnxD2c:Ro&Rn+2, which we dénote by x(K), if K is thé knot
f(Sn). It follows easily that the isotopy class of x(K) dépends only on that of K.

The interest of x (K) is that its complément is diffeomorphic to the complément of
A: and, besides j^itself, is, up to isotopy, the only knot with this property (see [2] and
[6]). It is not known whether x (K) is ever not isotopic to K. We can prove :

COROLLARY 1 : IfKisa simple (2q- \yknot, q^2, then r(K) is isotopic to K

Proof: Let M be a submanifold of Rn+2aSn+2 bounded by K=f(Sn) - we may
assume that MnF(Snx D2) F(S"xq) where q is any ray from the origin in D2.
Since h(Sn x xo) Sn x x0, for any XqgS1, we may define

M' Sn xQu(MnRn+2 -F(Sn x D2)),

a submanifold of Ro bounded by x(K). It is obvious that M1 is diffeomorphic to M
and the /-pairings coïncide. Thus, by Theorem 3 (or even Lemma 3), K and x (K)
are isotopic.

23. Another conséquence of Theorem 3 - not surprisingly - is the unknotting theorem
of [7] and [14].* For if Kis a (2q — l)-knot with complément X and universal abelian
covering X, and A is a Seifert matrix for K, then tA +(— 1)* AT is a relation matrix
for Hq(X; Q), as a module over the rational group ring Q[Z] Q[t,t~1] (see [8]).
Now A is équivalent to a non-singular matrix A' (allowing A' 0) by Proposition 1

in § 24. But if A' has rank r, it follows easily that Hq(X; Q) has dimension rasa
ô-module. Thus, if Hq(X; 0 0, A must be équivalent to 0, which implies, by Theorem

3, that K is unknotted for

24. We now turn to the algebraic problem presented by the notion of équivalence
of matrices. Results are very incomplète, and most of them are contained implicitly
in [16].

PROPOSITION 1 : Any matrix A such that A +AT is unimodular is équivalent to
a non-singular matrix (i.e. with non-zero déterminant) or zéro.

Proof: By the argument in [16, p. 484], if A is singular it admits an elementary
réduction. Thus by a séquence of elementary réductions (and congruences) we may
make A non-singular (or zéro).

25. PROPOSITION 2: Suppose that A and B are équivalent non-singular matrices.
Then det^4 deti?=d, and A is congruent to B over any ring R in which d is a unit.

*) The argument hère applies, of course, only for odd dimensional knots. The case q — 2 was
also announced by C. T. C. Wall: Proc. Camb. Phil. Soc. 63 (1967), p. 6.
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Proof: This is proved implicitly in [16, Theorem 2] more or less as follows.
Consider the matrix tA — AT, with entries considérée as éléments of Z[t, t~1] A,
and the ^1-module HA with tA — AT as relation matrix. Consider also the bilinear form
l]:H®AH-+Q(A)/A S(A) (Q(A) is the quotient field of A) defined, with respeci
to the same generators of HA as tA — AT is a relation matrix, by the matrix (tA — A7)'1.
Note that tA — AT is non-singular over Q(A) because AA(t) det(tA— AT) is non-
zero. In fact the leading coefficient of AA(t) is detA^O.

It is not hard to see that the isomorphism class of (HA; [,]) is an invariant of the

équivalence class of A, Furthermore the élément AA(t) det(tA — AT) is an invariant
of the équivalence class, up to multiplication by powers of t. From this it follows that

If A is unimodular over R9 then t — A~lAT is a présentation matrix of
HA®R(® ®z), so ^4® jR is a free jR-module of the same rank as A and (tA — A7)'1
is the matrix for [,] with respect to an iÊ-basis for HA®R. From this it follows that
there exists a matrix P with entries in, and unimodular over, R such that

P(tA-AT)~1PT (tB-BT)~1 in S(A)®R.

Let (tA-AT) be the "adjoint" of tA-AT ([1, p. 305)]. Then

A(t) AA(t) AB(t). J

in (I(
where

Since A and B are unimodular over R, A(t) has as leading coefficient a unit of
R. From this it follows that there exists a unique well-defined iMinear map

y:A/(A(t))®R-*R defined by the properties y(l)= 1 and y(tl) 0 for 0</<degree

A(t). Now every entry of tA—AT and tB—BT has degree<rankv4 degreeJ(/).
Therefore, applying y to équation (*) we find that PAPT B in R.

26. We cannot strengthen the conclusion of Proposition 2 to conclude that A and B

are congruent over K, as the following example shows. Set:

H 3). -G à)

We first show that A and B are not congruent over Z. Consider the solutions X of

XTAX=XTBX=2; they are Z=f ± M. If PTAP=B, it follows that PX= ±ZUay

(l\\. NowBX= fê\ and so YTBXi$ even, for any 7. Choose Fso thatPY= Lp
then YTBX= YrPTAPX= ± (PYfAX which one can calculate to be ± 1.
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To see that A and B are équivalent, we consider the following elementary enlarge-
ments, respectively, of A and B:

A' B'
B
0 0 0 0

^0010
A' and B' are congruent; in fact, PA'PT — B\ where

P

27. On the other hand, the converse of Proposition 2 is false. Consider the following
matrices for e + 1:

0

X

P2

0

0

0

SX

0

0

P2

0
0

0

0

0
1

0

0

0

0

8

0

0

0

0

0

0

0

p P{

0

0

0

0

0

(1 + 1

v +

0

X

p4

0

0

0

ex
0

0
1

0

0

0
0

0
1

0

0

0
0

s

0

0

0

0

0

0

0

p p
0

0

0

0

0

(1 + J

Z? 4

where p is any odd prime, and x i(p4— 1). It may be checked directly that A+eAT
and B+&BT are unimodular and éttA àetB is divisible by p. But A and B are

congruent over any ring in which p is a unit. In fact PAPT B where:

1/

0

0

Finally, A and B are not équivalent. To see this consider A-eAT and B-eBT over
Zp. It follows from Witts Theorem (see e.g. [21]) for e= -1, or the well-known
classification of skew-symmetric forms (see e.g. [1]) for s= +1, that the congruence class
of A — bAt over Zp is an invariant of the équivalence class of A. But A — eAT and

~eBT hâve ranks 2 and 4, respectively, over Zp.
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28. Finally we remark that the genus of the non-degenerate quadratic form A+AT
is an invariant of the équivalence class of A (see [16, Prop. 5.1]).
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