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An Algebraic Classification of Some Knots of Codimension Two?)

by J. LEVINE

An n-knot will denote a smooth oriented submanifold K of the (n+2)-sphere
S"*2 where K is homeomorphic to S". If n is odd, one can associate to K a square
integral matrix A, called a Seifert matrix of K, using a submanifold of $"*2 bounded
by K (see [13] for n=1, and [4] or [8] in general). When n=1, it is known that two
Seifert matrices of isotopic knots are related by certain algebraic “moves” (see [11],
[16]). In this paper we will generalize this fact to all n. We then consider, for n odd,
n-knots (referred to as simple) whose complements are of the same ((n—1)/2) type
as a circle, i.e. I1,(S"*?—K)~1II,(S") for g<(n—1)/2. This is the most that can be
asked without making K unknotted (see [7]). We will show that two simple n-knots
(n=3) are isotopic if and only if their Seifert matrices are related by such “moves”.
Thus it will follow that the semi-group of isotopy classes of simple n-knots depends
only on the residue class, mod4, of n for n>4.

By contrast, Lashof and Shaneson [6] (and, independently, Browder) have shown
that the isotopy class of an n-knot (n>3) K, whose complement is of the same 1-type
as a circle is determined by the homotopy type of its exterior pair (X, 0X), where X
is the complement of an open tubular neighborhood of Kin S"*2 - except for one other
possible knot 7 (K), obtained from K by removing a tubular neighborhood twisting,
and reinserting in S"* 2. It is not known whether t(K) is ever different from K. As a
straightforward application, we will show that t(K) is isotopic to K if K is simple.

We conclude with some remarks on the algebraic problems which arise.

1. Let K be a (2g—1)-knot in S??*!. We recall the definition of a Seifert matrix of K.
Let M be a smooth oriented submanifold of $22*! bounded by K. The l-pairing of M:

0:H,(M)® H, (M)~ Z

is defined by letting 0 («®p) be the linking number L (z,, z,), where z, is a cycle in M
representing o and z, is the translate in the positive normal direction off M of a cycle
in M representing f. A Seifert matrix 4 of K is then a representative matrix of 0 with
respect to a basis of the torsion-free part of H, (M) - see e.g. [8].

We recall also the formula [8]:

0(@®p)+ (- 1) 0(BRa)=a-p

1) This work was done while the author was partially supported by NSF GP 8885.
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where - is the intersection number in M. Thus 4 +(—1)? A7 is unimodular (47 is
the transpose of A) and, if g=2, A+ A" has signature a multiple of 16 (see [9]).

2. Let A be a square integral matrix. Any matrix of the form:

4] 0 A]p 0
(oz 0 0) or (0 0 1)
010 00

where o is a row vector, f a column vector, will be called an elementary enlargement
of A. A is an elementary reduction of any of its elementary enlargements. Two matrices
(or their associated pairings) are equivalent if they can be connected by a chain of
elementary enlargements, reductions and unimodular congruences. It is proved in [11]
that Seifert matrices of isotopic 1-knots are equivalent. We shall prove:

THEOREM 1: Seifert matrices of isotopic knots of any (odd) dimension are
equivalent.

THEOREM 2: Let q be a positive integer and A a square integral matrix such that
A+(—1) AT is wnimodular and, if =2, A+ A" has signature a multiple of 16. If q#2,
there is a simple (2q— 1)-knot with Seifert matrix A; if =2, there is a simple 3-knot
with Seifert matrix equivalent to A.

THEOREM 3: Let ¢=2 and K, K, simple (2q— 1)-knots with equivalent Seifert
matrices. Then K, is isotopic to K.

3. Proof of Theorem 1: Suppose K,, K, are isotopic (2¢—1)-knots bounding
manifolds M,, M,, respectively, of S29*!, We first construct a submanifold ¥V (with
corners) of Ix S2?*! meeting 0 x $%4*! along 0 xM, and 1x S??*! along 1xM,
with boundary the union of 0 x M, ; 1 xM, and the trace X of an isotopy from K, to
K,. We use the Pontriagin-Thom construction as follows. First construct a normal
vector field to (0xM,)u XU (1 xM,)=Y in I x §24*!, which is tangent to I x §?¢*"
along 0xM, Ul xM,. If g#1, there is no obstruction. If g=1, the obstruction to
extending such a vector field from 0xM,; Ul xM, over Y is the difference in its
winding numbers about K; and K,. But since the field is defined over M; and M,
these winding numbers are zero.

Let T be a tubular neighborhood of X. We can “translate” (X, v | X) to a framed
submanifold of 8T which agress with the framed submanifold (0xM; U1 xM,, )

on TN (I xS?*1). Let W=IxS??*'—T; the Pontriagin-Thom construction on
the above framed submanifolds of W determines a map dW—S'. An extension of
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this map over W will determine the desired V. The obstruction lies in
HY*(W,0W)~ H*(I x S***', X ul x S¥* )~ H' (X ul x §**") = 0.

4. Now let @": V=1 be the “height” function defined by the restriction of the projec-
tion Ix S29*1 1. We may assume @’ has no critical points in a neighborhood of 6V
(omitting corners). Let ¢ be a C2-approximation to ¢’ which agrees with @’ in a
neighborhood of 0¥ and has only non-degenerate critical points (except at corners)
which are mapped one-one into 7 (see e.g. [10]). We can move V so that ¢ becomes
the new height function. In fact if p: ¥—S24*1 is defined by the projection Ix $29*1—
—S24*1 and @ is a close enough approximation to @', then xi—(®(x), p(x)) defines
a new imbedding V—1Ix S$27*! which agrees with the original inclusion near 6 and
has @ as its new height function.

5. Let 0=ty,<t,<---<t,=1 be a partition of / satisfying

(i) each ¢, is a regular value of @,

(ii) at most one critical value of @ lies in each interval (¢;, ¢;+,).
Let @' (¢,)=t; xM}; then each M] is bounded by a knot isotopic to K, and K;, and
My=M,, M;=M,. This shows that it suffices to consider the case where @ has only
one critical point.

LEMMA 1: Leta, «'€H,(M,)and B, p'e H,(M,) and suppose that o is homologous
to B and o’ homologous to B’ in V. Then 6, (o, ')=0,(B, B’), where 0; is the l-pairing
of M,. ‘

Proof: Let C, C’' be (¢q+1)-chains in V such that 0C=a—f, 0C'=a'—pf’. Then
it follows from the definition of 6,, 6, that 0, (¢, «')—0,(B, B’) is the intersection
number of C and the translate of C’ off ¥ in the positive normal direction — but this
is obviously zero.

6. Now consider the following diagram:

Hyy (V. My)
!
Hq(MZ)
!
H., (V,M)-> Hq(Ml) - H,(V)- H,(V, M,)

!
H,(V, M)

Consisting of the exact homology sequences of (¥, M,) and (¥, M,). If the index of
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the critical point of @ is not g or g+1, then
IIq(V’ Ml) = Hq+1 (V? Ml) = Hq(V7 MZ) = Hq+1 (V’ MZ) =0
and we have
H,(M,) =~ H,(V) = H,(M,).
It follows from Lemma 1 that 6, and 0, are congruent.
If the index of the critical point of @ is ¢, then
HWV,M)~H, (V.M))~ Z
and
H,(V,M,)=H,,(V, M;)=0.
If ae H,;(M,) is the image of a generator of H_,, (V, M,), then the composite
H,(M,)-» H,(V)->H,(V,M) ~ Z

can be defined by f—a- f=intersection number in M » (see [S]). If a has finite order,
then it follows that H,(M,)~ H,(V)~H,(M,), modulo torsion, and, therefore, 0, and
0, are congruent modulo torsion.

7. Suppose a has infinite order; then a is a multiple of a primitive element o, and there
exists BoeH,(M,) with oy B, =1. Suppose y3,..., y,€ H,(M,) such that:

(i) y; is homologous to y, in ¥, and

(i) oo, Bos V1,--+» 75 is a basis of H,(M,), modulo torsion.
We now examine 6, on the elements a,, Bo, 71, ..., Y5 By Lemma 1 we can conclude
from (i) that 0,(yi, y})=0; (y» v;). Since o is null-homologous in ¥, 6,(a, ;)=
=0,(0,y,)=0 and 6, (o, ®)=0,(0,0)=0. Thus 8, (e, y;)=0, (g, %) =0; similarly
0, (7, 2o)=0. We also recall that (§ 1):

0, (%o, Bo) + (_ 1)10,(Bo, %0) = — 9" o =— 1

8. We may summarize this as follows. Let A be the matrix representative of 0, with
respect to the basis y;,..., y,. The the matrix representative of 6, with respect to the
basis 93, ..., J. %, Bo has the form:

- 0 O

Al
0

0.0 10 «x

L ¢ XY

where x, y are integers, x +(—1)? x'=—1, £ is a row vector and # is a column vector.
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Recall from e.g. [8] that the polynomial 4 ,(¢)=det(t4+(—1)? A7), where 4 is
a Seifert matrix for a knot X is an invariant of the isotopy class of K (up to multipli-
cation by a unit in Z [z, ¢t "1]). But it is easily verified that:

Ap(1) = (tx + (= 17 x) (tx" + (= 1)"x) 4,(2)

Thus x (or x') is zero, since x+x’= —1, then x" (or x) is + 1. It now is easily checked
that B is congruent to an elementary enlargement of A.

9. If the index of the critical point of @ is g+1; then its index as a critical point of

— @ is q. The preceding arguments apply to show that 0, is congruent to 6, or has,

as representative matrix, an elementary reduction of a representative matrix of 6,.
This completes the proof of Theorem 1.

10. Proof of Theorem 2: For g#2, this is proved in [4] (see also [9]). For g=2, we
must show that 4 is equivalent to a matrix B, where B+ BT is a matrix representative
of the intersection pairing of some simply-connected closed 4-manifold. By an argu-

ment in [9], such a B can be obtained by adding enough blocks (g (1)> to A; but

this is a sequence of elementary enlargements of A4, so B is equivalent to 4.

11. Proof of Theorem 3: We reduce Theorem 3 to two lemmas. Recall (see [7]) that
a simple (2g—1)-knot bounds a (g— 1)-connected submanifold of $2?*!, A Seifert
matrix obtained from the /-pairing of such a submanifold will be called special.

LEMMA 2: Let K be a simple (2q— 1)-knot with a special Seifert matrix A. If B
is an elementary enlargement of A, then B is also a special Seifert matrix of K.

LEMMA 3: If q=2, then simple (2g— 1)-knots admitting identical special Seifert
matrices are isotopic.

12, We first show that Theorem 3 follows from Lemmas 2 and 3. Let K, K’ be simple
(2g—1)-knots with equivalent Seifert matrices, g=>2. Let 4, A’ be special Seifert
matrices of K, K’, respectively. Thus there exists a sequence: A=A, 4,,..., A,=A4,
where each 4, , is unimodularly congruent to an elementary enlargement or reduc-
tion. of A4, It follows from Theorem 2 that, for ¢>2, each A, is a special Seifert matrix
of a simple (2g—1)-knot K; (actually the proof of Theorem 2 (see [4]) realizes S as a
special Seifert matrix of a simple knot). If g=2, we can enlarge each A4, by adding a
constant number of blocks (g (1)> to obtain a new sequence Aj, 45,..., 4;. Each
Ai4y is again congruent to an elementary enlargement or reduction of 4; — and it
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now follows from the argument in § 10 that each A; is a special Seifert matrix of a
simple 3-knot K.

We now prove that each K; is isotopic to K;, ;. Suppose 4;,, is congruent to an
elementary enlargement of A;. It follows from Lemma 2 that 4,,, (or 4;,,) is a
special Seifert matrix of K;. Then Lemma 3 implies K; and K; ., both of which now
admit A4,,, (or A;,,) as a special Seifert matrix, are isotopic. If 4;,, is congruent
to an elementary reduction of A;, the same argument works, switching the roles of
K;and K; ;.

We may as well have chosen K; =K and K, =K' if g>2, but if g=2 we need to
show that K| is isotopic to K and K| is isotopic to K'. It follows from Lemma 2 that

| is a special Seifert matrix of K, since A] is obtained from A; by a sequence of
elementary enlargements. Then Lemma 3 implies K and K, are isotopic — similarly
for K’ and K.

13. Proof of Lemma 2: Let M be a (g— 1)-connected submanifold of $2?*! bounded
by K, and a, ..., a, a basis of H,(M), modulo torsion, such that 4 is the corresponding
matrix representative of the /-pairing of M. Let x,,..., x,, be an arbitrary sequence of
integers. It follows from Alexander duality that there exists a cycle ze H,(S?*!—M)
such that the linking numbers L (z, a;)=x;, for i=1,..., n. Now §2¢*!1 — M is (g—1)-
connected and so z is spherical; by general position, z can be represented by an im-
bedded g-sphere 6= S27*! — M. The normal bundle to o is trivial and so a tubular
neighborhood T can be identified with o x D?*! — we may assume T disjoint from M.
Orient 0T so that the positive normal direction in S2¢*! points into 7 and let M’ be
the connected sum in §24*! of M and 8T. Then H,(M’) has rank two greater than the
rank of H,(M), and a,,..., a, may be extended to a basis of H,(M"), modulo torsion,
by adjoining the homology classes f,, B, of ¢ x y, and x, x S?= 0o x $?9=0T, respec-
tively. The representative matrix of the /-pairing of M’ with respect to the basis

Olgseeny ®ps ﬂly ﬂz iS

fﬁ +x; 0
X, 0

* X,
xl...x" X 0
_0..0 +1 0

which is congruent to:

All?
Xg us
0..

.x, 0 0
010
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If z is chosen so that L(a;, z)=x; for i=1,...,n, and 0T is oriented so that the
positive normal direction points out from 7, then the representative matrix of the
l-pairing of M’ with respect to a4, ..., a,, B, B, is:

r! x; 0 )

J

0
+x;...+x, x =£1
. 0...0 0 O

which is congruent to:
r ! x; O
x, O

0..0 0 1
(0..0 0 0

Thus we can realize any elementary enlargement of A4 as a special Seifert matrix of K.

14. Proof of Lemma 3: Suppose K and K’ are (2¢g— 1)-knots bounding (g—1)-con-
nected submanifolds M and M’ of $?4*! with [-pairings 6 and 0’. Suppose also that
there exists an isomorphism &:H,(M)—H,(M') preserving the [-pairings, i.e.
0=0"0 (SR ).

Let us assume, for now, g>2; we will show that M and M’ are isotopic submani-
folds of S24*1, According to [15], M and M’ have handle decompositions:

M=D*¥Uh,U--Uh,

M =D*¥Uhju---Uh,
where each 4, h; is a handle of index g - diffeomorphic to D?x D% The h;(h;) are
attached to D*? by disjoint imbeddings S?~ ' x D?»0D?%, Let C,(C;) be the “core”
of h;(h;), i.e. the submanifold corresponding to D?x 0 — then dC;=C,;n D4,

The imbedded disks (C;, 0C;)= (M, D*9) represent a basis {«;} of H,(M, D*%)~
~ H,(M). According to handle body theory (see [17]), we can choose a handle-decom-
position realizing any prescribed basis {«;}. Thus if {«;} is the basis of H, (M) defined
by (C, 0C{)=(M’, D*1), we may, by setting o; =@ (a;), assume 0 (a;, o;)=0" (2}, o)),

15. Now consider the links {C;} and {0C/} in dD??; by [17] and § 1 we have:
L(ac;, 0C;) = oy oy = — 0 (e, ;) — (= 1)* 0(oy, );
similarly for L(0C;, C}). Therefore L(9C;, 0C,;)=L(8C;, C}), for i#j, and, since
9>2, the links {0C;} and {0C;} are isotopic in 0D
Clearly we may assume that the base disks D?? in the handle decompositions of
M and M’ coincide as imbedded in S2¢*1. Thus the cores C; and C;, as imbedded
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in $29*1 may be assumed to coincide on their boundaries: 0C;=0C;. We next show
how to isotopically defrom {C;} onto {C/}, keeping {0C;} fixed and avoiding any
intersections with D?? (except, of course, along 9C)).

Assume inductively that C;=C; for i<k. We will isotopically deform C, to Cj,
avoiding intersections with D*?UC;uU---uUC,_,. Given such an isotopy, we can
extend it to an isotopy of h, LAy U - Uh; In

S?*1 (DU h U Uk y);

the result is an isotopy of M to a new imbedding satisfying C;,=C; for i<k. We
begin with an isotopy of C, to Cj, rel0C,, avoiding D?%; this exists according to Wu
[20] because the imbeddings of C, and C, and S$2?"!—intD?? are homotopic
reldC,=0C, and S??*1—intD?? is simply-connected. We would then like to use
Whitney’s procedure, as in [20], to remove the intersections of this isotopy with
IxC;(i=1,...,k—1)in §??*! — D% since g>2 and S24*1 — D?9is simply-connected.
The only obstruction to this is the intersection number, which is easily seen to be (up
to sign) 0 («;, o) — 0’ (o, o) =0.

16. We now have achieved C;=C; for i=1,...,r. By the tubular neighborhood
theorem we may assume h;n D*?=h;n D??. Let v;(v;) be the positive unit normal
field to A;(h;) on C;=Cj.

By the tubular neighborhood theorem, we may assume that 4;(#;) is the orthogonal
complement of v;(v;) in a normal disk bundle neighborhood N of C;=C/ in $2¢*1.
Therefore if we can homotopically deform v; to v;, reldC;, we obtain an isotopy,
relh, D4, of h; to h; within N. Doing this for all i achieves, finally, an isotopy of
Mto M'.

Since v;=wv; along 6C,, v; differs from v; by an element of I1,(S?)~ Z (the normal
space to C; in S27*! has dimension g+1). But this element can be identified with
0 (a;, a;)—0' (o, 2;)=0, and so Lemma 3 is proved — for g>2.

17. For g=2, more work is required to repair those parts of the preceding argument
which are no longer valid. First of all M and M’ are not necessarily diffeomorphic.
On the other hand, they are simply-connected 4-manifolds with boundaries diffeo-
morphic to S* and isomorphic intersection pairings (since their [-pairings are iso-
morphic). It then follows from [19] that, after adding on a number of copies of
S?x 8%, M and M’ will be diffeomorphic. Since these enlargements of M and M’

can be realized by adding to the Seifert matrices blocks (g é), as is demonstrated

in § 13, we may as well assume that M and M’ are diffeomorphic to start with. In
fact, by [18], there is a diffeomorphism f:M—M' preserving the l-pairings i.c.
0=0'o(f®fs), where f,,:H,(M)—-H,(M’) is the induced homomorphism.
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We reformulate the situation so far as follows. M is a simply-connected 4-manifold,
0M diffeomorphic to S3, and we have imbeddings g, g’: M— S such that g(0M)=K
and g’ (0M)=K'. The Il-pairings of g(M) and g’'(M) are identical, as pairings on

18. Now let
M=D*Uhlu--UR URIU--UR VR U URS*

be a handle decomposition of M, where A is a handle of index i. Since H, (M)=0 we
can choose the handles of index 2 in such a way that the first k£ of them - 42, ..., hZ -
homologically cancel out the handles of index 1 (see e.g. [10], Theorem 7.6)) i.e. if
V=D*Uhiu...Uh;, then the boundary operator H, (M, V)—H, (V) maps the sub-
group of H, (M, V) generated by the “cores” of A, ..., hi isomorphically onto H, (V).
Then

A=D*Uhiu--Uhiuhiu- UK}
is acyclic. Set
M0=Auh£+1U""Jhlz.

We will show that g | M, and g’ | M, are isotopic.

First we show that g|4 and g’|4 are isotopic by extending g'.g~':g(4)—g’ (4)
to an orientation preserving diffeomorphism of S°. Begin by extending it to a tubular
neighborhood T of g(4) diffeomorphic to g(4) x I (with corners rounded). Now T

is a homology 4-sphere bounding the contractible 5-manifold S5—T- similarly for
T’ a tubular neighborhood of g’(4). That S S5 —T is acyclic follows from Alexander
duality; that S5—T is simply-connected follows from the fact that 4 collapses onto
a 2-dimensional polyhedron (it has only handles of index one and two) which has

codimension >2 in S°. We now invoke the case n=35 of the following lemma (stated
by Kato for the PL case in [3]) since I'*=0, to obtain the extension over S°.

19. LEMMA 4: If C,, C, are contractible smooth manifolds of dimension n>5, then
any diffeomorphism d:0C,—dC, extends to a diffeomorphism of C, onto C,, after
perhaps changing d on an (n—1)-disks in 0C;.

Proof of Lemma 4: Consider W=C, u,D,, a homotopy n-sphere. Since n>5, W
is homeomorphic to S” ([15]) and, by changing d, we can insure that W is diffeo-
morphic to S$* Then W bounds a copy of D"*! which determines an A-cobordism

*) In fact an argument of A. Wallace, communicated to me by C. T. C. Wall, shows that only
handles of index 2 are needed after connected sum with enough copies of S2 X S2. This obviates the
need for the arguments of § 18, 19 and 21, since 4 = D* and Mo = M.
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from C; to C,, trivial from 0C, to dC, (identifying them by d). By the relative version
of the h-cobordism theorem ([15, Cor. 3.2]), d extends to a diffeomorphism from
C, onto C,.

20. Now M, is obtained from 4 by attaching handles of index two. Since we may
assume that g|4=g’| 4, the problem of showing g|M, isotopic to g’| M, is similar to
(but not exactly the same as) the argument above in § 15, 16. We need first to know
that the /-pairings on H, (M), defined from g and g’, are identical, but this is because
they are induced from the /-pairings on H, (M) by the inclusion My= M. The argu-
ment in § 15 will then serve to show that g and g’ are isotopic on the cores of the
handles. To extend the isotopy to the entire handles, it will suffice to show that the
normal 2-fields to the imbedded cores in S°, defined by applying the differentials of
g and g’ to the standard normal 2-fields to the cores in the handles of M, are homo-
topic. But the obstructions are elements of II,(V; ,)=0, where V; , is the Stiefel
manifold of 2-fields in 3-space.

21. We now have shown that g|M, is isotopic to g’|M,. The proof of Lemma 3
for g=2 will be completed by showing that M can be isotopically deformed, in M,
inside M. This will use the engulfing theorem in its most naive form ([12, Lemma
2.7]). Let N be the closed simply-connected 4-manifold obtained from M by attaching
a 4-disk D to dM. Given any handle-decomposition of N it follows from the engulfing
theorem that the handles of index one are contained in a 4-disk imbedded in N.
Applying this to the dual handle decomposition of that postulated in § 18, we find
that N—M,, is contained in a 4-disk D’ in N. Since any two similarly oriented n-disks
in an unbounded n-manifold are isotopic, D and D’ are isotopic in N. It also may be
arranged that any given point in (intD)n(intD’) is fixed during the isotopy. It is

then easy to see that dD(=0dM) and 0D’ are isotopic in M =N—D. This completes
the proof of Lemma 3, and so Theorem 3.

22. Let f:S">R"*2 be a smooth imbedding. Since its normal bundle is trivial, f
extends to an imbedding F: S™ x D*— R**? whose isotopy class is uniquely determined
by f, if n>1. Let h:S"x S'—>S"x S! be the diffeomorphism defined by (x,y)—
—(®(»):x, y) where®: §*— 50 (n+ 1) represents the non-zero element of IT, (SO (7 +1)).
Define

Ry =S" x D* Uy ,R"*? — F(S" x D?)

Representing R"*? as the interior of D"*2, the construction of R, represents Ro as
the interior of a compact manifold D, with boundary diffeomorphic to S"**. By [15];
D, is diffeomorphic to D**2 if n>3; therefore R, is diffeomorphic to R**2. Consider
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the knot S"x0<S"x D*c Ry~ R"*2, which we denote by 7(K), if K is the knot
f(S™). 1t follows easily that the isotopy class of 7(K) depends only on that of K.

The interest of 7 (K) is that its complement is diffeomorphic to the complement of
K and, besides K itself, is, up to isotopy, the only knot with this property (see [2] and
[6]). It is not known whether 7 (K) is ever not isotopic to K. We can prove:

COROLLARY 1: If K is a simple (29— 1)-knot, =2, then ©(K) is isotopic to K_

Proof: Let M be a submanifold of R"*2cS"*? bounded by K=/ (S") — we may
assume that M N F(S" x D*)=F(S" x ¢) where g is any ray from the origin in D2
Since h(S" x xo)=S" X x,, for any x,€S*, we may define

M =5"xgu(MAR"?—F(S" x D),
a submanifold of R, bounded by 7(K). It is obvious that M’ is diffeomorphic to M

and the [-pairings coincide. Thus, by Theorem 3 (or even Lemma 3), K and t(K)
are isotopic.

23. Another consequence of Theorem 3 — not surprisingly — is the unknotting theorem
of [7] and [14].* For if K is a (2g— 1)-knot with complement X and universal abelian
covering X, and A is a Seifert matrix for K, then 4 +(=1)7 AT is a relation matrix
for H, (X; 0), as a module over the rational group ring Q[Z]=0Q[t, t '] (see [8]).
Now 4 is equivalent to a non-singular matrix 4" (allowing 4’=0) by Proposition 1
in § 24. But if 4’ has rank r, it follows easily that H,(X; Q) has dimension r as a
Q-module. Thus, if H, (X; 0)=0, 4 must be equivalent to 0, which implies, by Theo-
rem 3, that XK is unknotted for g=2.

24. We now turn to the algebraic problem presented by the notion of equivalence
of matrices. Results are very incomplete, and most of them are contained implicitly
in [16].

PROPOSITION 1: Any matrix A such that A+ A" is unimodular is equivalent to
a non-singular matrix (i.e. with non-zero determinant) or zero.

Proof: By the argument in [16, p. 484], if 4 is singular it admits an elementary
reduction. Thus by a sequence of elementary reductions (and congruences) we may
make 4 non-singular (or zero).

25. PROPOSITION 2: Suppose that A and B are equivalent non-singular matrices.
Then det A=det B=d, and A is congruent to B over any ring R in which d is a unit.

*) The argument here applies, of course, only for odd dimensional knots. The case ¢ = 2 was
also announced by C. T. C. Wall: Proc. Camb. Phil. Soc. 63 (1967), p. 6.
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Proof: This is proved implicitly in [16, Theorem 2] more or less as follows.
Consider the matrix t4— A7, with entries considered as elements of Z[t, ¢~ ']=4,
and the A-module H, with 4 — AT as relation matrix. Consider also the bilinear form
LI:H® (H-Q(A)/A=S(A) (Q(A) is the quotient field of A) defined, with respect
to the same generators of H, as 4 — A” is a relation matrix, by the matrix (t4 — A7)~ 1.
Note that t4—AT is non-singular over Q(A) because 4,(¢)=det(t4— AT) is non-
zero. In fact the leading coefficient of 4, (¢) is det 4 #0.

It is not hard to see that the isomorphism class of (H,; [,]) is an invariant of the
equivalence class of A. Furthermore the element 4, (z)=det (¢4 — A7) is an invariant
of the equivalence class, up to multiplication by powers of ¢. From this it follows that
det A=detB.

If A is unimodular over R, then t—A~!'4T is a presentation matrix of
H,®R(®=®3),so H,®R is a free R-module of the same rank as 4 and (t4—A")™’
is the matrix for [,] with respect to an R-basis for H,® R. From this it follows that
there exists a matrix P with entries in, and unimodular over, R such that

P(tA— A"y 'P"=(B-B")"" in S(4)®R.

Let (14— A7) be the “adjoint” of t4— AT ([1, p. 305)]. Then

P(tA— AT P"=tB— BT in (4/(4(1))®R, } *)

where A(t) = A4,(t) = 45(1).

Since A and B are unimodular over R, 4(¢) has as leading coefficient a unit of
R. From this it follows that there exists a unique well-defined R-linear map
v:4/(4(1))@ R—R defined by the properties y(1)=1 and y(¢))=0 for 0<i<degree
A(t). Now every entry of tA— AT and tB— BT has degree <rank A =degree ().
Therefore, applying y to equation (*) we find that PAPT=B in R.

26. We cannot strengthen the conclusion of Proposition 2 to conclude that 4 and B
are congruent over K, as the following example shows. Set:

2 0 2 1
(13 = 3)
We first show that 4 and B are not congruent over Z. Consider the solutions X of

1
0

0
X= ((1))) . Now BX = ((2)) and so YTBX is even, for any Y. Choose Y so that PY = (1);
then Y"BX=Y"PTAPX= + (PY)"AX which one can calculate to be +1.

XTAX=XTBX=2; they are x:(J—r ) If PTAP=B, it follows that PX = iX(say
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To see that 4 and B are equivalent, we consider the following elementary enlarge-
ments, respectively, of 4 and B:
B 0
(Bl
0 00
1

B =

S O O =

0
0
0
0 00

A’ and B’ are congruent; in fact, PA’PT=B’, where

0 0 2 1
0 -1 10
P= 1 0 -2 0
0 0 1 0

27. On the other hand, the converse of Proposition 2 is false. Consider the following
matrices forg=+1:

0 e 0 0 O 0 R (0 e 0 0 O 0 )

x 0 000 0 x 0 000 0

P> 0 0 ¢ O 0 p* 0 0 ¢ O 0
A= s ., B=

0 p2 1 0 0 0 0 1 100 0

0 0 0 0 p p(l+e)+1 0 0 00 p p(1+e)+1

L0 0 000 p+1 (0 0 0 00 p+1 )

where p is any odd prime, and x=3}(p*—1). It may be checked directly that A +eA”
and B+¢BT are unimodular and det4=detB is divisible by p. But A and B are
congruent over any ring in which p is a unit. In fact PAPT =B where:

p N
1, 0

P= p

p
O 1
- L

Finally, 4 and B are not equivalent. To see this consider A—¢eAT and B—¢BT over
Z,. It follows from Witts Theorem (see e.g. [21]) for e= —1, or the well-known clas-
sification of skew-symmetric forms (see e.g. [1]) for = +1, that the congruence class
of A—eA” over Z, is an invariant of the equivalence class of A. But 4—e4” and
B—¢BT have ranks 2 and 4, respectively, over Z,.
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28. Finally we remark that the genus of the non-degenerate quadratic form A4 + AT
is an invariant of the equivalence class of A4 (see [16, Prop. 5.1]).
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