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Plongements des variétés de Stein

Otto Forster

Introduction

D'après un théorème de Remmert-Narasimhan-Bishop ([16], [13], [2]), pour toute
variété de Stein X de dimension n il existe un plongement X-*C2n+1, c'est-à-dire une

application biholomorphe de Zsur une sous-variété analytique fermée de C2n+i. Le
but de cet article est de démontrer le résultat plus précis suivant: Si «^2, il existe

un plongement X-^C2n, et si n^6, il existe même un plongement X-+C2n~k, où

k=[(n — 2)/3]. Nous démontrerons également une généralisation d'un théorème de

Gunning-Narasimhan [8] : Toute variété de Stein de dimension n peut être immergée

holomorphiquement dans C2""1. (Pour «^6, ce résultat est déjà contenu dans le

théorème sur les plongements.)
Je tiens à remercier M. A. Haefliger de sa contribution essentielle à ce travail.

Je lui dois l'idée qui m'a permis d'améliorer et de généraliser aux plongements une
méthode que j'avais pour les immersions. Je remercie également MM. R. Narasimhan,
J. Mather et F. Ronga des discussions utiles relatives à cet article.

Notations et conventions générales

Si X est un espace analytique complexe, on notera 0x son faisceau structural. Un
sous-ensemble analytique de X est fermé par définition. Si A est un sous-ensemble

analytique d'un ouvert U de X, nous dirons que A est localement analytique dans X.

Toute variété analytique complexe aura au plus un nombre dénombrable de

composantes connexes, qui seront toutes de même dimension. Si Xct F sont deux variétés

analytiques complexes, une immersion (resp. submersion) f:X-+ Y sera une
application holomorphe telle que, pour tout xeX, l'application tangente df(x):Tx(X)-+
~»T/(JC)(y) soit injective (resp. surjective). Un plongement est une immersion injective

propre. Alors/induit une application biholomorphe de X sur une sous-variété

analytique (fermée) de 7.

1. Singularités des applications X->CN

1.1. Soient Xune variété analytique complexe et/= (fu...,fN):X-+CN une
application holomorphe. Pour xeX, désignons par ax(f) l'idéal de 0Xx engendré par les

germes des fonctions/i —fi(x)9...,fN —/#(*). On voit facilement que les assertions

suivantes sont équivalentes:
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(i) (Px,xlax(f) est un espace vectoriel de dimension finie sur C.

(ii) II existe keN tel que îtt*c: <**(/), où m* est l'idéal maximal de <9Xx.

(iii) x est un point isolé de la fibre/"1 (/(*)).
Soit cx(f) dimc(®Xxlax(f)); trivialement c,(/)> 1. On a cx(/) 1 si et seulement

si ax(f) mx. Ceci signifie que le rang de t^au point x est égale à la dimension de X,
c'est-à-dire que/est une immersion au voisinage de x. Si cx(f)^k, alors Vfikxczax(f).

Pour voir cela, on considère la chaîne

d>x.x => m* ax(f) + mx=> ax(f) + m2x => - => ax(f) + m*+1,

et l'affirmation se déduit du lemme de Nakayama.
Pour étudier le comportement de cx(f) par rapport à x et à/, considérons l'espace

Jk(X9 CN) des jets d'ordre k d'applications holomorphes de X dans CN. Jk(X9 CN)

est un fibre vectoriel analytique sur X et la fibre en xeX s'identifie à (0xfX/îîtï+1)N.
Désignons par n:Jk(X, CN)-^Zla projection.

Si/: U-*CN est une application holomorphe d'un voisinage U de x dans CN, nous
désignerons pary*(/) son jet d'ordre k, c'est-à-dire la classe d'équivalence de/dans
(®x,xi™kx+1)N- La décomposition canonique ^,x=C©ntx donne naissance à une
décomposition

Jk(X,CN) CN xJl(X,CN)9

la fibre de /* (X, CN) en x étant (mx/m*+1f.
Soit TeJk(X, CN) et n(x) x, c'est-à-dire t (t1s rN)e(d)XtXlxnkx+ y, et soit a(r)

l'idéal de l'anneau ®x,xl™x+1 engendré par t1-t1(x),..., ïn-tn(x). Désignons par
c(t) la codimension de a(t) considéré comme sous-espace vectoriel complexe de

®x,xlmkx+1. Si/: U^CN est une application holomorphe dans un voisinage U de x,
al°rs a(jkx(f))^ax(f)moâmk+\ Trivialement c(jkxif))<cx(f)9 et si c(jkx(f))<k9
on a même égalité: c{jkx(f))=cx{f). (On applique de nouveau le lemme de

Nakayama.)

1.2. Pour tout p> 1, soit

Mp {teJ*(Z,CN):c(T)>p}.
Evidemment Mi =/*(JSf, C*). Si/KA;+1, les raisonnements précédents montrent que

En considérant la décomposition Jk(X, CN)=CN xJk+(X, CN) on voit aussitôt que
les ensemblesMp sont de la formeMp=CNxMp+, oùMp+ aJk(X, CN).

PROPOSITION 1. Mp est un sous-ensemble analytique de Jk(X, CN).

Démonstration. Le problème étant local, on peut supposer que X=Cn. La trans-
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lation xv-+x—a dans C" induit un isomorphisme canonique 0c»>fl^0c»o. Ceci nous
permet d'identifier Jk(X, CN) àCx AN, où

A

l'ensemble des t (t15 t^e^ tels que dimc(A/a(x))^p, a(t) étant l'idéal
engendré par xt-xt (0), ...,xN-xN(0). Alors on aMp=C" xMj.

Soit ZmeA la classe de zm modulo(zl5..., zn)k+1, l^m^n. Les monômes Z'
Zî1...Z^n, /=(/!,..., fn)eNw, \i\ il-\ hin<:k, forment une base de l'espace vectoriel

complexe A. Soit

tv= £ aviZl9 (v=l,...,JV).

Alors û(t) est engendré comme sous-espace vectoriel de A par les éléments

La condition dim(^4/û(T))^/? revient à dire que le rang d'une certaine matrice, dont
les coefficients sont des avi et des zéros, soit inférieur ou égal à dimc(A)—p. Ceci

prouve que M°p est un sous-ensemble analytique de AN, ce qui achève la
démonstration.

PROPOSITION 2. Soient X une variété analytique complexe de dimension n9 <

et N=n-{-q. Alors pour 1 ^p^4 et k^p—l, la codimension de MpaJk(X9 CN) est

supérieur ou égale à (p— 1) {q+1).
Démonstration, a) Soit X1 l'ensemble des jets xeJk(X9 CN) tels que corang(r)^/,

c'est-à-dire que rang(4fi(x),..., dfN(x))^n — i pour x=jkx{fl9...9fn). I1 est un sous-

ensemble analytique de Jk(X9CN) de codimension 1(0 + 1) et Z^Z^I1*1 est une

sous-variété (sans singularité) localement analytique (cf. [3]). On a M2 Ë19 d'où

notre assertion pour/? 2. (Le cas/?=l est trivial.)
b) Considérons maintenant l'ensemble M3. Il suffit de montrer que la codimension

de M3 en chaque point x°eZ1 nM3=M3\Z2 est ^2(#+l)o Soit x°=jx(f?9...,/£)•
Sans restreindre la généralité on peut supposer que/J—zl9...9 /n°_ 1 zn-l9oiizl9...,zn
est un système de coordonnées locales centré en x. Soit E1cJk(X9 CN) l'ensemble des

jets au dessus de x de la forme x=jk(zu...9 zlï_1,/n,...,/n+€). Pour que x appartienne
à E1 nM3, il faut et il suffit que

——(x) •••= (x) 0 (x) •••= (x) 0

Donc codimto (Ex nM39 Et)=2 (0 +1), d'où codimto (M3) ^ 2 (0 +1).
c) Pour évaluer la codimension deM4, considérons d'abord un point x°eE1 nM4

=M4\Z2. En conservant les notations et conventions de b), on voit qu'un jetr
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=jkx(zu~"> zn-ufn>'~>fn+q) appartient à I1 nM4 si et seulement si

dz\ dzln

Donc codim^^x nM4, E1) 3(q+l) et codimTo(M4)^3(<7+l).
Il reste à montrer que codimÇS2nM4)^3(q+l). Puisque codimI3>3(^+1), il

suffit d'évaluer la codimension en un point T1eZ2nM4. Soit ^^jxifî,•.;/£)>
Comme avant, on peut supposer que/j1 zl9...9 /„*_ 2 zn _ 2 où z1,..., zn est un système
de coordonnées locales en x. Soit E2czJk(<X, CN) l'ensemble des jets de la forme

X fx(Zu~.,Z.-2,fn-»U-.',f.+J.
Pour que x appartienne à I2 nM4, il faut et il suffit que

_^(x) ^(x) 0 v n-l n + q
dzn_1 ôzn

et que le rang de la (q + 2, 3)-matrice

n_x ÔZn_tÔZn ÔZn

soit <2. Comme la codimension de l'ensemble des (q+29 3)-matrices de rang
dans l'espace des (q + 2, 3)-matrices est égale à q, il s'ensuit que

codinv (E2 n I2 nM4,E2) 2 (q + 2) + q 3q +4.
Par conséquent codimTi(I2nM4)^3#+4> 3(^+1), ce qui achève la démonstration
de la proposition 2.

1.3. Pour r^ 1, considérons le produit cartésien Jk(X, CN)r de r exemplaires de

Jk(X,CN), qui est un fibre vectoriel sur Xr. Pour toute application holomorphe
f:X-+CN et fo,..., xr)eXr posons

Soit XrczXr l'ensemble des (jCi,..., xr)eXr tels que x^Xj pour /^7*. Désignons par
Jk(X, CN\ la partie de Jk(X, CN)r qui se projette sur Xr. Si F est un ensemble d'applications

f:X-+CN, on a une application

Jr'-VxXr-+Jk(X,CN)r,
définie par (/; ^,..., xr)^fXl ,r(/).

LEMME 1. Soient gu..., gm des fonctions holomorphes sur une variété analytique
complexe X telles que l'application (gl,...,gm):X-*Cm soit une immersion injective.
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Soit V un espace vectoriel d'applications holomorphes X-+CN de dimension finie qui
contient toutes lesf= (/i,..., fN) dont les composantes fv sont des polynômes engu...,gm
de degré <(&+1) r. Alors Vapplication

j,:VxXr^Jk(X,CN)r
est une submersion surjective.

Démonstration. Puisque jr est un morphisme de fibres vectoriels analytiques sur

Xr, il suffit de montrer que jr est surjective. Or, ceci est une conséquence immédiate
d'un simple problème d'interpolation sur X.

Remarque. Sur une variété de Stein X il existe toujours des fonctions gi,...9gm
satisfaisant aux conditions du lemme. C'est la partie facile du théorème de plonge-
ment de Remmert-Narasimhan-Bishop.

Par des raisonnements standards de transversalité (cf. [1], [3], [17]) on déduit du

lemme 1

LEMME 2. Sous les hypothèses du lemme 1 soit M un sous-ensemble analytique

(resp. localement analytique sans singularité) de codimension s dans Jk(X, CN)r. Alors

il existe un ensemble maigre Te V tel que pour toutfe V\T,

Y {(xu...,xr)eXr:jkXu_Xr(f)eM}

soit un ensemble analytique (resp. localement analytique sans singularité) de codimension

s dans Xr. En particulier, si s>dimXr, on aura Y=0.

1.4. Soit X un espace de Stein de dimension n. Nous dirons qu'un ensemble

ouvert relativement compact PcX est un polyèdre analytique spécial, s'il existe des

fonctions holomorphes Fu..., Fn sur X telles que P soit réunion de composantes

connexes de l'ensemble

D'après Bishop [2], il existe une suite P1,P2,... de polyèdres analytiques spéciaux

avec \JPj=Xet Fj^Pj+i pour touty>l. Une application f=(fl9...,fN):X-+CN est

propre si et seulement si la suite des nombres Oj=inf |/(Pj+1\Pj)| tend vers l'infini

pourj-»oo. (Ici \f(x)\=m2Lx{\fl(x%...9 \fN(x)\}.) On a le théorème d'existence

suivant (Bishop [2], voir aussi [10], p. 124):

Soit yï9 y2,... une suite de nombres réels arbitraire. Si N^n+l, il existe une
application holomorphe f: X-+CN avec

inf|/ (Pj+t\Pj)\ ^ yj pour tout j>l.
On peut déduire de ce théorème le lemme suivant:
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LEMME 3. Soient X un espace de Stein de dimension n et V un espace vectoriel

d'applications holomorphes X->CN de dimension finie. Si N^n+l, il existe un espace
vectoriel de dimension finie F'idF d'applications holomorphes X-*CN et un sous-
ensemble ouvert et dense Ucz V tel que chaque ge U soit une application propre.

Démonstration. Soit fi:X-*CN9 ï=1,...,&, une base de l'espace vectoriel F et

Pl9 P2," une suite de polyèdres analytiques comme ci-dessus. Soit

Pj= max sup\fi(Pj+1\Pj)\.

Alors pour chaque fe V il existe une constante c>0 telle que

sup |/ (PJ+ t\Pj)\ < cfij pour tout j.
Posons yj (pj+l)j. Il existe une application holomorphe/oiA^C* avec

inf |/o (Pj+ APj)\ > 7j Pour j l,2,....
Soit V'=V+Cf0. L'ensemble U=V+C*f0 est ouvert et dense dans V. Soit geU,
g=f+Wo,feV9X¥>0. Alors

\g(J+1\j)\>
inf |/0(Pi+1\P/)l - sup|/(Pi+1\Py)l >

>Wyj-cpj>W j + (\2\j-c)Pj.
On voit que oij-+œ pour j-+oo9 donc g est une application propre, c.q.f.d.

1.5. Soient Xune variété de Stein ctf:X-+CN une application holomorphe propre.
Comme tout sous-ensemble analytique compact d'un espace holomorphiquement
séparable est fini, les fibres de/sont finies. Pour xeX posons

où cz{f) a été défini dans 1.1. On peut interpréter les nombres dx(f) à l'aide du
faisceau image &r=f*@x- & est un faisceau analytique cohérent sur C* (voir par
exemple [14]). Si xl9..., xr sont les points de la fibre f~l{y\ y=f(x), on peut identifier

&y à 0xfjri© —©0jr,*r- Soit my l'idéal maximal de <9c*tr Alors on a

Il en résulte que ^(/)
THÉORÈME 1. Soit X une variété de Stein de dimension n. Soient {

(«-2)/3} et N=n + q. Alors il existe une application holomorphe propre f:X-+CN telle
que pour tout p^l
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soit un ensemble analytique de dimension ^n — (p—

A'p Apn {xeX: rang df(x) < n}

soit de dimension ^n — (p—l)q—l.
Remarque. Si A2 0, l'application/est un plongement ; si Ar2 0,/est une immersion.

Donc, en posant q=n+\ resp. q n, le théorème contient comme cas particuliers
l'existence d'un plongement X-+C2n+1 et d'une immersion propre X-^C2n.

Démonstration. Montrons d'abord que pour toute application holomorphe propre
f:X-+CN, l'ensemble Ap est analytique. En effet, comme ^=f^x est cohérent,
l'ensemble

Bp {yeCN: dim(^/m^) ^ p}

est analytique, donc également Ap=f~1(Bp).
Fixons k ^ 3. D'après les lemmes 1 et 3, il existe un espace vectoriel V d'applications

holomorphes X-+CN de dimension finie tel que pour chaque r= 1,..., n + 2

jr:VxX,-+Jk{X,CN)r

soit une submersion surjective et que chaque élément d'un certain sous-ensemble

ouvert et dense Ua V soit une application propre.
Pour chaque r-uple d'entiers (Pw-iPrX K/>c<4, Kr^n+ 2, désignons par

MP1 Pr
l'ensemble des multi-jets (ri9...9 rr)eJk(X, CN)r jouissant des propriétés

suivantes:

(i) T1(x1)= -=Tr(xr) oixxe n(xQ)

(ii) c(xe)^pe pour^ l,...,r.
(Les notations sont celles de 1.1.) Rappelons qu'on a une décomposition Jk(X, CN)=

CN x Jl (X, CN)9 qui induit une décomposition

Jk(X, CN)r (CN)r x 4 (X, CNJ.

Soient A {(y»...9 Jr)e(CN)r:yx -=yr} et

M*...*. A x MPt x... x Mp+r cz Jk(X, CNJ.

On slMPi Pr=MPl_PrnJk(X, CN)n qui est un ensemble analytique. La proposition 2

entraîne que

codimMpi...Pr codimMp*...Pr ^ N(r - 1) + f (pe - \){q + 1).

D'après le lemme 2 il existe un ensemble maigre Ta V tel que pour tout fe V\T et

tout (Pi,-.*,pr) l'ensemble analytique
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soit de même codimension queMpi Pr. Donc, avec p=px H Ypr9 on a

n-q(r-l)-(p-r) £

Si on choisit fe U\T, f est propre et l'ensemble analytique Ap est la réunion des

ensembles prr(YPi Pr)pour I<r<«+1, K/^Oet/^H \-pr=p;iciprr:Xr-+Xdénote
la projection sur le premier facteur. En effet, en vertu de (*), les ensembles Yn tc:
cIn+2 et r4cl sont vides, c'est-à-dire que chaque fibre de/a au plus «+1 points
et cx(f) ^ 3 pour chaque xeX. Donc, si x appartient à Ap9 il existe des points xt=x,
x29---9 *r> (1 ^r^n+\), dans f~1(f(x)) et des entiers Pi,...9pr avec l^pQ^3 et

Pi + '-'+Pr^P* te*s quz cxe(f)>PQ- Par définition on a alors (xl5...,xr)e7pi Pr et

xe/?rr(FPl Pr). Puisque dim Fpi Pr^«-(/?-1) #, il s'ensuit que dim^^n-(p-1) ^r.

Pareillement on démontre que ^ est la réunion des ensembles prr(Ypi Pr) pour
l^r^n+l, \<lpe^39pl-\ \-pr=P,Pi>2> Alors p-r^l et dim^ Pr<«-
—(p —1)^—1, donc dimA'p^n — {p— 1) ^—1.

2. Plongements et immersions

2.1. Soient X une variété de Stein Qtf:X^>CN une application holomorphe propre.
Considérons le faisceau image ^"=/*^x qui est un faisceau cohérent de modules

sur &cn. Nous identifierons les sections de &> au dessus d'un ouvert UczCN à

r(f~l(U% ®x\ l'anneau des fonctions holomorphes sur/"1^). r(f'1{U)9 0x)
est une algèbre sur F(U, (9cN) moyennant l'homomorphisme

induit par/. Donc &'=f*®x Peut ®tre considéré comme faisceau d'algèbres sur (9cn.

LEMME 4. Soient X une variété de Stein, f=(fl9...,fN):X-*CN une application
holomorphe propre, ^—f^x et Je/(^)- Soient gl9...,gm des fonctions holomorphes
sur X qui engendrent la fibre tFy comme algèbre sur ®CN>y. Alors Vapplication

sépare les points de la fibref'1 (y) et ç est une immersion au voisinage de chaque point

Démonstration, Soient xx,..., xr les points de la fibre/ x (y). Ona^=^i3(1$...
'~®®x,Xr- Si on avait £„(**)=£„(*/) pour fi=l9...9m9 on aurait de même g(x()=
=g(xj) pour chaque élément g de la sous-algèbre Ga@OXtXq engendrée par gt,..., gm

sur 0CN9y. Mais G=®OXtxe Par hypothèse, donc les fonctions gu...9gm séparent les

points de la fibre/ "1 (y).
*
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Pour voir que ç soit une immersion au voisinage de chaque point xef~1(y), il
suffit de montrer que l'homomorphisme induit <pt:@c"+>",z^®x,x> où z (p(x)
(y,g(x))eCN+m, soit surjectif. Or, l'image de (p* contient d'une part les germes des

fonctions gl9...,gm et d'autre part l'image de l'homomorphisme ®c",y-*®x,x induit
par/. L'hypothèse du lemme entraîne alors que lm(p* (9Xx, c.q.f.d.

COROLLAIRE. Soient X une variété de Stein, f:X-+CN une application holo-

morphe propre et g (gu..., gm) un système de fonctions holomorphes sur X qui
engendre l'algèbre F(X, <9x) r(CN,f*@x) sur r(CN, (Pcn). Alors l'application (fg):
X->CN+m est un plongement.

2.2. Soit & un faisceau analytique cohérent sur un espace de Stein Y. Pour y s Y,

posons

où my est l'idéal maximal de 0Y r D'après le lemme de Nakayama, dy{^) est égal au

nombre minimal de générateurs du module tFy sur 0Yy. Les ensembles

sont analytiques, donc des espaces de Stein. Posons

0 si Sp(&) 0

p si dimSp(#") <

p + [(1 + sp)j2~\ si dim Sp

LEMME 5. Soit 3F un faisceau analytique cohérent sur un espace de Stein Y et

supposons Z> sup{ôp(^"):/?^l}<oo. Alors il existe b sections de !F qui engendrent

le module r(Y9&) sur F (Y, QY).

Démonstration. D'après [4], Satz 4.3, il existe une famille finie/=(/i,...,/&) de

sections de & qui engendre r(F, J*") sur T(F, ®Y). Soit Xy\T{Y,^)-^^y\vay^y
l'homomorphisme canonique. Désignons par Ây(f) le fc-uple de vecteurs Ay(/i), •••

...5 Jly(fk)e&rylmt0ry. On a rang(^(/))=rfy(^) pour tout yeY. Soit Mbk l'espace

des (b, jfc)-matrices à coefficients complexes. Pour T={tiJ)eMbk soit TXy(f) le l

(p=(<Pi) de vecteurs définies par

<Pt= £ hMfj)> * l,-.,6.
Soit

E {(y, T)e Y x Mbk: rang(TAy(/))

Muni de la projection canonique sur F, E est un fibre localement trivial sur chaque
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SP\SP+1 (cf. [6], Satz 1). La fibre Fp de E au dessus d'un point de SP\SP+1 a. le type
d'homotopie de Wbp9 la variété de Stiefel des ^-repères orthogonaux dans C*\ Une
section holomorphe de E-+ Y est une (b9 fc)-matrice T holomorphe sur Y telle que Tf
soit un è-uple de sections de & engendrant F (Y, &) sur F (Y, ®Y). D'après le principe
d'Oka, E-* Y admet une section holomorphe s'il admet une section continue ([6],
Satz 5). Pour qu'une section continue existe, il suffit que

(*) Hq+1 (Sp9 Sp+ ; nq(Fp)) 0 pour tout q^l9p^l.
([7], Lemma 2). Or,

et

H«+l(Sp,Sp+1;G) O

et tout groupe de coefficients G (cf. [12] ou [15]). Lorsque dim5*p=l, on a même

H2(SP, Sp+1; G)=0. Si q>2(b—p), la définition de b montre que q^l+dimSp,
resp. q^ 1 si dim»Sp= 1. Donc la condition (*) est toujours remplie, ce qui achève la
démonstration du lemme 5.

2.3. Nous pouvons maintenant énoncer le résultat principal.

THÉORÈME 2. Soit X une variété de Stein de dimension n^2. Alors il existe un
plongement (holomorphe propre) X-+C2n. Si n^6, il existe même un plongement

Démonstration, a) Posons

1 si n 2

2 si n 3,4, 5

[n/3] si n^6.
Soit f:X^>Cn+q une application holomorphe propre ayant les propriétés énoncées
dans le théorème 1. Soit ^=f^x le faisceau image du faisceau structural, N=n + q
et

_
(n__\n — q si 2<n^

~~ 1 n - q - [(n - 2)/3] si n>6.

Vu le corollaire du lemme 4, notre théorème sera démontré si nous arrivons à prouver
l'existence de fonctions holomorphes gl9..-,gm sur X qui engendrent F(X, 0X)
=r(CN, &) comme algèbre sur F(CN, (9cn).

b) Supposons d'abord «>3. Soit ^=#7(1) le faisceau de modules sur 0QN qui
est le quotient par le sous-module engendré par la fonction constante leF(X, 0*)

r(C/v, <^"). Evidemment, si F(CN, &) possède un système de m générateurs comme
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module sur F(CN, ®cn), il existe m sections de & qui engendrent F(CN, &) comme
algèbre sur F(CN, @cx). On a

dim(9ylmy&y) dim(^/m^) - 1 pour chaque yef(X).
Comme Sp(&r)=f(Ap), (avec les notations du théorème 1 et du lemme 5), on a pour
tout p ^ 1

donc

dimSp(&)^n- pq.

Nous allons maintenant appliquer le lemme 5 pour montrer que F(CN, &) est

engendré par m éléments; distinguons 4 cas:

(i) « 3, m=l. On a dim5i(0)<l, S2(&) 0, donc F(CN, &) est engendré par un
élément.

(ii) n 4, m 2. On a dimSr1(âT)<2, dimS2(ar)<0 et S3(^)=0, donc T(CN, £) est

engendré par deux éléments.

(iii) « 5,m 3.Ona dimSi(0)<3, dim52(^)^l et S3(^) 0, donc F(CN, &) est

engendré par trois éléments.

(iv) n ^ 6. Alors q [n/3] ^ 2. Donc pour /? ^ 1 on a

^) < n - pq < n - ^ - 2(p - 1)

et

p + [(1 + dimSp(^))/2] < p + [(n - q - 2p + 3)/2] [(n - q + 3)/2].

Il en résulte que F(CN, &) peut être engendré par 6 [(«-# + 3)/2] éléments. Or

m n - [fi/3] - [(n - 2)/3] [(n - [n/3] + 3)/2] b,

ce qui achève la démonstration du théorème pour «^3.
c) Traitons maintenant le cas w 2. L'ensemble analytique

où/:Jf->C3 est l'application définie dans a), est de dimension ^0, c'est-à-dire un
ensemble discret, tandis que

A'3 A3 n {xeX: rang df(x) < 2}

est vide, c'est-à-dire que/est une immersion au voisinage de tout point de A3. Il
existe une fonction holomorphe h sur X qui sépare les points de A3. Alors pour
chaque yeB3=f(A3), la fibre &y du faisceau &r=f+&x est engendré par l9h,h2

comme module sur ®&ty
Soit iïf'alF le sous-faisceau engendré comme module sur (Pc3 par les deux sec-
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tions 1, heF(X, 0x) r(C3, &) Chaque point yeB3 possède un voisinage V(y) avec
les propriétés suivantes

(i) V(y)nB3 {y}
(n) / | / * (V(y))-+C3 est une immersion

(m) h sépare f~1(z) pour tout ze V(y)
Alors 3tf' coïncide avec !F au dessus de V(y)\{y} En effet, pour chaque ze V(y)\{y},
la fibre/"1 (z) a au plus deux points Si/"1 (z) est réduit à un point, l'assertion est

évidente à cause de (n). Lorsque f~1(z)={xl, x2}, x1^x2, on a <&rz ®x,xl®®x,x2>
et en vertu de (n), les homomorphismes ®c\z^®x,xi et ^c* z-*®x,x29 induits par/,
sont surjectifs. L'assertion découle maintenant du fait qu'il existe des combinaisons
linéaires h^^+ fah; <xl9 faeC, tels que h1(x1)=l9 h1(x2) 0 et h2(x1) 0, h2(x2)=l.

Ceci nous permet de définir un sous-faisceau Jfcz^ comme suit.

yeB3.

Par construction, la fonction ler(Z, 0x) est une section de ^f. Soit ^=Jf/(l) le

faisceau quotient de 3tf par le sous-faisceau de modules engendré par cette section
sur 0C3. On a alors

B2 f(A2) et S2(âF) 0.

Puisque dimj52 ^ 1? ^(C3, ^) peut être engendré par un seul élément comme module
sur T(C3, 0c3) Ceci entraîne l'existence d'un ger(C3, ^f) tel que 1 et g engendrent
T(C3, Je) comme module sur T(C3, 0c3) Alors g engendre T(C3, J^) comme algèbre
sur T(C3, &&). Comme nous l'avons indiqué sous a), le théorème est ainsi démontré.

2.4. Gunning et Narasimhan [8] ont démontré que toute variété de Stein de

dimension 1 (c'est-à-dire toute surface de Riemann ouverte) peut être immergée dans
C En utilisant une méthode de Haefliger ([9], lemme 2), on peut généraliser le théorème

de Gunnmg-Narasimhan comme suit:

THÉORÈME 3. Soit X une variété de Stein de dimension n Alors il existe une

immersion X->C2n~l.
Remarque Pour les dimensions n ^ 8, le théorème 2 donne un résultat plus fort.
Démonstration. Nous utiliserons le lemme suivant de Gunning-Narasimhan:

LEMME. Soit Y une variété de Stein de dimension 1 et a une forme différentielle
holomorphe de degré 1 sur Y. Alors il existe des fonctions holomorphes F et g sur Y
telles que dF ega.

(Ce lemme est démontré dans [8] pour les formes différentielles qui ne s'annulent
pas sur Y. Mais la démonstration s'étend au cas général.)
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Considérons dans l'espace des jets J1 (X, C2n~2) les ensembles I1 et S2 (cf.
démonstration de la prop. 2). On a codiml^w—l et codimr2 2«. D'après le lemme 2,

il existe une application holomorphe/:Ar->C2/I~2 telle que l'ensemble

{xeX: jl{f)eî2} {xeX: rang df(x) < n - 2}

soit vide et que l'ensemble

Y {xeX: jlx(f)eE1} {xeX: rang df(x) n - 1}

soit une sous-variété analytique (sans singularité) de dimension 1. Comme tout fibre
vectoriel analytique sur une variété de Stein de dimension 1 est trivial, le fibre normal
de Y est trivial. Il existe donc un voisinage W de y et une application biholomorphe
<p de FF sur un voisinage W de Yx {0} dans FxC""1 qui envoie F sur Yx{0}.
Nous identifierons W et W à l'aide de cp.

Soit T* (X) le fibre cotangent de X et T le sous-fibré de T* (X) | Y, engendré par
df(y), yeY. Puisque (T*(X) | Y)jT' est un fibre de rang 1 trivial, il existe une section

holomorphe œ0 de T* (X) | Y telle que

rang (df (y), œ0 (y)) n pour tout y e Y.

C0O est la restriction à Y d'une forme différentielle a> sur W^W'cYxC""1 qui
s'écrit

w-l

Ici a est une forme différentielle sur Y, les af sont des fonctions holomorphes sur Y

et zi9...9 zn_! désignent les coordonnées de C"1. D'après le lemme de Gunning-
Narasimhan, il existe des fonctions holomorphes F et g sur F avec dF ega. Définissons

la fonction H sur W par la formule

On a

dH(y, z) X z^(c^> «,00) + ^ I «,00 ^*

donc d!H"| F=eg(œ | Y) egœ0. D'après le Théorème B il existe une fonction
holomorphe h sur Zavec h HmoAJ2 sur FF, où./ est le faisceau d'idéaux défini par Y.

Il s'ensuit que dh \Y=*dH\ 7, donc

rang (df (y), dh (y)) n pour tout y e Y.

Il en résulte que (/, A):Z-*C2ïl~1 est une immersion.
Remarque. Si «^3, on peut toujours s'arranger que l'application f:X-+C2n~~
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qui figure dans la démonstration, soit propre. On obtient ainsi une immersion propre
de X dans C2""1.

2.5. Pour finir, donnons quelques contre-exemples.

PROPOSITION 3. Soit n un nombre naturel et 7V=« + [«/2]. Alors il existe une
variété de Stein X de dimension n, qui ne peut pas être plongée dans CN ni immergée
dansC"'1.

Démonstration. Soit

Y {(x : y : z)eP2(C): x2 + y2 + z2 * 0}.
Posons

J7m si n 2m,
\YmxC si n 2m + l.

X est une variété de Stein de dimension n. Si on considère X comme variété différen-
tiable de dimension réelle 2n, on constate que la classe de Stiefel-Whitney duale w2m (X)
est non nulle (cf. [5], p. 715). Ceci implique qu'il n'existe aucun plongement X-+CN
et aucune immersion X-^C^"1 (voir par exemple [11], p. 261).

La proposition 3 montre que nos résultats sur les plongements et les immersions
des variétés de Stein de dimension 2 sont les meilleurs possibles. Pour les autres
dimensions on peut conjecturer que toute variété de Stein de dimension n se plonge
dans CJV+1 et s'immerge dans CN, où JV=/i + [7i/2]. Quoiqu'une étude plus détaillée
des singularités apporterait des petites améliorations à nos résultats pour n grand, la
démonstration de cette conjecture semble être très difficile. En effet, on ignore même,
si le disque D {zeC:\z\ < 1} peut être plongé proprement dans C2.
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