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Plongements des variétés de Stein

OT110 FORSTER

Introduction

D’apres un théor¢me de Remmert-Narasimhan-Bishop ([16], [13], [2]), pour toute
variété de Stein X de dimension 7 il existe un plongement X—C?"*1, c’est-3-dire une
application biholomorphe de X sur une sous-variété analytique fermée de C*"*1. Le
but de cet article est de démontrer le résultat plus précis suivant: Si n>2, il existe
un plongement X—C?", et si n>6, il existe méme un plongement X—C?"" % ou
k=[(n—2)/3]. Nous démontrerons également une généralisation d’un théoréme de
Gunning-Narasimhan [8]: Toute variété de Stein de dimension n peut étre immergée
holomorphiquement dans C?"~!, (Pour n>6, ce résultat est déjd contenu dans le
théoréme sur les plongements.)

Je tiens a remercier M. A. Haefliger de sa contribution essentielle a ce travail.
Je lui dois I'idée qui m’a permis d’améliorer et de généraliser aux plongements une
méthode que j’avais pour les immersions. Je remercie également MM. R. Narasimhan,
J. Mather et F. Ronga des discussions utiles relatives a cet article.

Notations et conventions générales

Si X est un espace analytique complexe, on notera 0y son faisceau structural. Un
sous-ensemble analytique de X est fermé par définition. Si 4 est un sous-ensemble
analytique d’un ouvert U de X, nous dirons que A4 est localement analytique dans X.
Toute variété analytique complexe aura au plus un nombre dénombrable de com-
posantes connexes, qui seront toutes de méme dimension. Si X et ¥ sont deux variétés
analytiques complexes, une immersion (resp. submersion) f: X— Y sera une appli-
cation holomorphe telle que, pour tout xeX, I’application tangente df (x): T, (X)—
— Ty (Y) soit injective (resp. surjective). Un plongement est une immersion injective
propre. Alors f induit une application biholomorphe de X sur une sous-variété ana-
lytique (fermée) de Y.

1. Singularités des applications X—CV

1.1. Soient X une variété analytique complexe et f=(f;, ..., fy): X—C" une appli-
cation holomorphe. Pour xeX, désignons par a,(f) I'ideal de Oy , engendré par les
germes des fonctions f; —f; (%), ..., fy—fv(x). On voit facilement que les assertions
suivantes sont équivalentes:
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(i) Ox x/a.(f) est un espace vectoriel de dimension finie sur C.

(ii) Il existe keN tel que mica,(f), ot m, est Iidéal maximal de Ox, .
(iii) x est un point isolé de la fibre f ! (f (x)).
Soit ¢, (f)=dim¢ (O ,/a,(f)); trivialement ¢, (f)>1. On a ¢, (f)=1 si et seulement
si a, (f)=m,. Ceci signifie que le rang de df au point x est égale 4 la dimension de X,
c’est-a-dire que f est une immersion au voisinage de x. Si ¢, (f) <k, alors m¥ca, (f).
Pour voir cela, on considére la chaine

0X,xDmx=ax(f)+mx3ax(f)+m32c D"'Dax(f)+ml;c+1’

et I'affirmation se déduit du lemme de Nakayama.

Pour étudier le comportement de ¢, (/) par rapport a x et 4 f, considérons 1’espace
J*(X, C") des jets d’ordre k d’applications holomorphes de X dans C". J*(X, C")
est un fibré vectoriel analytique sur X et la fibre en xe X s’identifie & (O, ,/m%* 1)V,
Désignons par n:J*(X, CY)— X la projection.

Si f: U-CV est une application holomorphe d’un voisinage U de x dans C", nous
désignerons par j%(f) son jet d’ordre k, c’est-a-dire la classe d’équivalence de f dans
(Ox,o/mE* YV, La décomposition canonique Oy ,=C@m, donne naissance & une

décomposition
J*(Xx,CM =" x JE(x,CY),

la fibre de J% (X, C") en x étant (m,/m:" )N,

Soit teJ* (X, CV) et n(1)=x, c’est-d-dire 1=(y,..., Ty)€(Ox, /mET )Y, et soit a(7)
I'idéal de 'anneau Oy ,/m%™" engendré par 7, —7,(X),..., Ty —Ty(x). Désignons par
¢(7) la codimension de a(r) considéré comme sous-espace vectoriel complexe de
Ox /mi*1, Si f:U—>CN est une application holomorphe dans un voisinage U de x,

alors a(j*(f))=a,(f) modm***. Trivialement ¢(j%(f))<c,(f), et si c(j¥(f)) <k,
on a méme égalité: c(jX(f))=c,(f). (On applique de nouveau le lemme de Naka-
yama.)

1.2. Pour tout p>1, soit
M, = {teJ*(X, C¥):c(x) = p}.

Evidemment M, = J* (X, C¥). Si p<k+1, les raisonnements précédents montrent que
(f) > p=ji(f)eM,.

En considérant la décomposition J*(X, CY)=C" x JX (X, C") on voit aussitdt que

les ensembles M, sont de la forme M,=C" xM,", ou M, =J% (X, C").

PROPOSITION 1. M, est un sous-ensemble analytique de J*(X, C").
Démonstration. Le probléeme étant local, on peut supposer que X=C". La trans-
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lation x+> x—a dans C" induit un isomorphisme canonique Ocn ,= Oc¢n o. Ceci nous
permet d’identifier J*(X, C¥) a C"x 4", ou

A= 0Ocn o/m§T = Clzy, ..y 2,215 s 2) T

Soit MY I’ensemble des T=(1,,..., y)e 4" tels que dim¢(4/a(r))>p, a(t) étant I'idéal
engendré par 7, — 17, (0), ..., y—71y(0). Alors on a M,=C"xM,.

Soit Z,,eA la classe de z, modulo(zy,..., z,)*"!, 1<m<n. Les mondmes Z'=
=Z3..Zy, i=(iy,..., i,)eN", |i|=i; + -+ +i, <k, forment une base de ’espace vecto-
riel complexe 4. Soit

=Y a,Z', (v=1,..,N).

li| <k

Alors a(t) est engendré comme sous-espace vectoriel de A par les éléments

1= 3  auZ'™, v=1,.,N; jeN.|ji<k
o<li+j|<k
La condition dim(4/a(t))>p revient & dire que le rang d’une certaine matrice, dont
les coefficients sont des a,; et des zéros, soit inférieur ou égal a dim¢(A4)—p. Ceci
prouve que M g est un sous-ensemble analytique de A", ce qui achéve la démon-
stration.

PROPOSITION 2. Soient X une variété analytique complexe de dimension n, g=>0
et N=n+q. Alors pour 1<p<4 et k=p—1, la codimension de M,=J*(X, C") est
supérieur ou égale a (p—1) (qg+1).

Démonstration. a) Soit £ I’ensemble des jets te J*(X, CV) tels que corang(t)>1,
c’est-a-dire que rang(df;(x), ..., dfy(x))<n—i pour t=j5(f,,..., fy). Z* est un sous-
ensemble analytique de J*(X, CY) de codimension i(g+i) et Z'=2"\Z'"" est une
sous-variété (sans singularité) localement analytique (cf. [3]). On a M,=2%", d’ou
notre assertion pour p=2. (Le cas p=1 est trivial.)

b) Considérons maintenant I’ensemble M 5. Il suffit de montrer que la codimension
de M, en chaque point t°€Z! A\M;=M;\Z? est >2(g+1). Soit t°=j, (f{s-.s/N)-
Sans restreindre la généralité on peut supposer que £ =2y, ..., fa 1 =Zn—1, OU Zy, 05 Zy
est un systéme de coordonnées locales centré en x. Soit E; = J*(X, C") I’ensemble des
jets au dessus de x de la forme t=j;(z, ..., Zy—1, f3---» fo+4)- POUr que 7 appartienne
a 21 AM,, il faut et il suffit que

afn( )_—."=afn+q( ) 0 fn( )___ —_ fn+q( ) 0

Donc codim,o(E; nM3, E)=2(g+1), d’ott codim, (M) >2(q+1).
¢) Pour évaluer la codimension de M, considérons d’abord un point t:°e 2 "My =
=M,\Z2. En conservant les notations et conventions de b), on voit qu'un jet7=
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=j%(215 s Zu—1>Ju» -+ fu+4) appartient 3 ' "M, si et seulement si

6f,,( y=-= f"+‘1

Donc codim,o (E; "My, E;)=3(g+1) et codim,o(M,)>3(q+1).

Il reste & montrer que codim (2% nM,)>3(q+1). Puisque codim2®*>3(g+1), il
suffit d’évaluer la codimension en un point t'eX*nM,. Soit = (f1,...,fy).
Comme avant, on peut supposer que fi' =zi, ..., f—=2Z,_, Ol Z;, ..., Z, €st un systéme
de coordonnées locales en x. Soit E, =J*(X, C") I’ensemble des jets de la forme

T =:ji(zla"'ﬁZn—2>f;—1aj;’""j;+q)'

Pour que © appartienne & 2> nM,, il faut et il suffit que

o, 5fv
aZn 1 )

() 0, i=1,23.

oz, () =0 v=n—1l..n+q,

et que le rang de la (¢+2, 3)-matrice
i o’f, 2f v
(623—1 () 02,10z, & ) ( ))

soit <2. Comme la codimension de I’ensemble des (g+2, 3)-matrices de rang <2
dans ’espace des (g+ 2, 3)-matrices est égale a g, il s’ensuit que

n—1<v<n+tgq

codim,: (E,n2* " M,, E;)=2(q +2)+ q =3q + 4.

Par conséquent codim,: (2> "M,)>3q+4>3(q+1), ce qui achéve la démonstration
de la proposition 2.

1.3. Pour r>1, considérons le produit cartésien J*(X, C¥) de r exemplaires de
J¥(X,C"), qui est un fibré vectoriel sur X*. Pour toute application holomorphe
J[:X-CY et (xy,..., x,)€X" posons

J () = (5, (), s S5, (f)) (X, €)'

Soit X, X" I’ensemble des (xy,..., x,)e X" tels que x;#x; pour i#j. Désignons par
J*(X, C"), 1a partie de J* (X, CM) qui se projette sur X,. Si ¥ est un ensemble d’appli-
cations f: X—C¥, on a une application

JnV x X, - J*(X, CY),,
définie par (fs x15--05 X,) l—-)jil, enr (F):

LEMME 1. Soient g, ..., 8, des fonctions holomorphes sur une variété analytique
complexe X telles que I'application (gy,..., 8x): X—>C™ soit une immersion injective.
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Soit V un espace vectoriel d’applications holomorphes X—C~ de dimension finie qui
contient toutes les f=(f1, ..., fy) dont les composantes f, sont des polynémeseng,, ..., g,
de degré <(k+1)r. Alors I'application

JeV x X, - J5(X, CY),

est une submersion surjective.

Démonstration. Puisque j, est un morphisme de fibrés vectoriels analytiques sur
X,, il suffit de montrer que j, est surjective. Or, ceci est une conséquence immédiate
d’un simple probléme d’interpolation sur X.

Remarque. Sur une variété de Stein X il existe toujours des fonctions gy, ..., g,
satisfaisant aux conditions du lemme. C’est la partie facile du théoréme de plonge-
ment de Remmert-Narasimhan-Bishop.

Par des raisonnements standards de transversalité (cf. [1], [3], [17]) on déduit du

lemme 1

LEMME 2. Sous les hypothéses du lemme 1 soit M un sous-ensemble analytique
(resp. localement analytique sans singularité) de codimension s dans J*(X, C"),. Alors
il existe un ensemble maigre TV tel que pour tout fe V\T,

Y ={(x1,.... x)eX,: j5, . .. (f)eM}

soit un ensemble analytique (resp. localement analytique sans singularité) de codimen-
sion s dans X,. En particulier, si s>dim X,, on aura Y=0.

1.4. Soit X un espace de Stein de dimension n. Nous dirons qu’un ensemble
ouvert relativement compact P X est un poly¢dre analytique spécial, s’il existe des
fonctions holomorphes F,..., F, sur X telles que P soit réunion de composantes

connexes de ’ensemble
{xeX:|Fi(x)I<1l,i=1,...,n}.

D’aprés Bishop [2], il existe une suite Py, P,,... de polyédres analytiques spéciaux
avec |JP;=X et P,cP;,; pour tout j>1. Une application f=(f,,..., fy): X—C" est
propre si et seulement si la suite des nombres a;=inf | f (P;+,\P;)| tend vers I'infini
pour j—oo. (Ici | f (x)|=max {| f; (X)I, ..., | fw (*)|}.) On a le théoréme d’existence sui-

vant (Bishop [2], voir aussi [10], p. 124):
Soit ¥y, 3, ... une suite de nombres réels arbitraire. Si N>n+1, il existe une appli-

cation holomorphe f: X—C" avec
inf|f (P;+,\P;)l =7v; pourtout j > 1.

On peut déduire de ce théoréme le lemme suivant:



Plongements des variétés de Stein 175

LEMME 3. Soient X un espace de Stein de dimension n et V un espace vectoriel
d’applications holomorphes X—C" de dimension finie. Si N>n+1, il existe un espace
vectoriel de dimension finie V'>V d’applications holomorphes X—CN et un sous-
ensemble ouvert et dense U< V' tel que chaque ge U soit une application propre.

Démonstration. Soit f;:X—CY, i=1,..., k, une base de I’espace vectoriel ¥ et
P,, P,,... une suite de polyédres analytiques comme ci-dessus. Soit

B; = max suplfi(Pj+1\Pj)l .

1<i<k
Alors pour chaque fe V il existe une constante ¢>0 telle que
sup|f (P;+1\P)| < cB; pour tout j.
Posons y;=(f;+1) . I existe une application holomorphe f;: X—C" avec
inf|fo (Pj+:\P)l =79; pour j=1,2,....

Soit V'=V+Cf,. L’ensemble U=V + C*f, est ouvert et dense dans V'. Soit geU,
g=f+f, feV, 1#0. Alors
o; = inf|g (P4, \Py)| =
> |A] inf| fo (Pj+ 1\Pj)| —sup|f (Pj+ 1\Pj)| =
=My, —cB; = 1A j+ (14 j—c) B;-

On voit que a;— oo pour j— 00, donc g est une application propre, c.q.f.d.

1.5. Soient X une variété de Stein et f: X—C¥ une application holomorphe propre.
Comme tout sous-ensemble analytique compact d’un espace holomorphiquement
séparable est fini, les fibres de f sont finies. Pour xe X posons

d.(f) =Y {e.(f): zef T (f (M)},
ol c,(f) a été défini dans 1.1. On peut interpréter les nombres d,(f) a 'aide du
faisceau image & =f£,0,. & est un faisceau analytique cohérent sur C" (voir par
exemple [14]). Si x,,..., x, sont les points de la fibre f (), y=f(x), on peut iden-
tifier #, 4 Oy , ®-- @Oy ,,. Soit m, I'idéal maximal de Ocw,,. Alors on a

m,F, = Ay, (f)GB"'@axr(f)-

Il en résulte que d, (f)=dim¢(F,/m,Z,).

THEOREME 1. Soit X une variété de Stein de dimension n. Soient ¢>max {1,
(n—~2)/3} et N=n-+q. Alors il existe une application holomorphe propre f: X—~C telle
que pour tout p > 1

4,={xeX: d.(f) = p}
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soit un ensemble analytique de dimension <n—(p—1)q et
A,=A,n{xeX:rang df (x) < n}

soit de dimension <n—(p—1) q—1.

Remarque. Si A, =0, ’application f est un plongement; si 4, =0, f'est une immer-
sion. Donc, en posant g=n+ 1 resp. g=n, le théoréme contient comme cas particuliers
Pexistence d’un plongement X—C?*"*! et d’'une immersion propre X—C>",

Démonstration. Montrons d’abord que pour toute application holomorphe propre
f:X—CY, ’ensemble A p est analytique. En effet, comme # =f, 0y est cohérent,
I’ensemble

P {yecN: dim(#,/m,#,) > p}

est analytique, donc également 4,=f"1(B,).
Fixons k> 3. D’apres les lemmes 1 et 3, il existe un espace vectoriel V d’applica-
tions holomorphes X —C" de dimension finie tel que pour chaque r=1,..., n+2

iV x X, JH(X, CY),

soit une submersion surjective et que chaque élément d’un certain sous-ensemble
ouvert et dense U< V soit une application propre.
Pour chaque r-uple d’entiers (py,...,p,), 1<p,<4, 1<r<n+2, désignons par

M,, , l'ensemble des multi-jets (zy,..., 7,)eJ*(X, CV), jouissant des propriétés sui-
vantes:
@) 7, (xl)‘: =T, (xr) ou xo=7t(10)

(i) c(t)=p, pourg=1,...,r.
(Les notations sont celles de 1.1.) Rappelons qu’on a une décomposition J*(X, CY)=
=C" x J% (X, C"), qui induit une décomposition

J (X, CY = (CY x J% (x, CVY.

Soient 4 ={(y1, ey yr)e(CN)r:yl —_. =y’} et
Mp‘:...p,. =4 X Mp‘: X X Mp.:- et Jk(X’ CN)'.

OnaM, ,=M :,...p,ﬁ-fk (X, C"),, qui est un ensemble analytique. La proposition 2
entraine que

codimM,, , =codimM,) ,>N(r—1)+ 3 (p,—1)(q +1).
e=1

D’aprés le lemme 2 il existe un ensemble maigre 7’ V tel que pour tout fe V\T et
tout (py, ..., p,) ’ensemble analytique

Yp;...p,. = {(xl, sy xr)EXr: jl;l...x,(f)EMpl...p,-}
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soit de méme codimension que M, . Donc, avec p=p, ++--+p,, on a

(*)dimY,, , <nr—N(@r-1)—3(p,—1)(q+1)=
=n—q(r—1)—(p-r) g+1)=
=n—(p-1)q—(p—7).

Si on choisit fe U\T, f est propre et ’ensemble analytique A, est la réunion des en-
sembles pr, (Y, ,)pour1<r<n+1,1<p,<3etp,+---+p,=p;icipr,: X,» X dénote
la projection sur le premier facteur. En effet, en vertu de (*), les ensembles Y;; ;<
cX,,, et Y, X sont vides, c’est-a-dire que chaque fibre de f'a au plus n+1 points
et c.(f) <3 pour chaque xeX. Donc, si x appartient & 4,, il existe des points x; =x,
Xy .o Xpy (1<r<n+1), dans f~1(f(x)) et des entiers py,..., p, avec 1<p,<3 et
pi+-++p.=p, tels que ¢, (f)>p, Par définition on a alors (xy,..., X,)€Y,, , et
xepr,(Y,,. ). Puisque dimY, , <n—(p—1)g, il s’ensuit que dim4,<n—(p—1)q.
Pareillement on démontre que 4, est la réunion des ensembles pr,(Y,, ,) pour
1<r<n+1,1<p,<3, py+ -+ +p,=p, p; 22. Alors p—r>z1 et dimY, ,<n-—
—(p—1)g—1, donc dimA4,<n—(p—1) g—1.

2. Plongements et immersions

2.1. Soient X une variété de Stein et f: X—CY une application holomorphe propre.
Considérons le faisceau image & =f,0x qui est un faisceau cohérent de modules
sur Ocv. Nous identifierons les sections de & au dessus d’un ouvert UcCV a
I'(f~Y(U), 0y), ’anneau des fonctions holomorphes sur £ ~*(U). I'(f ~1(U), 0x)
est une algebre sur I' (U, Oc~) moyennant I’homomorphisme

[T (U, Ocx) > T (f 71 (U), Oy)

induit par f. Donc & =f,0y peut &tre considéré comme faisceau d’algebres sur Oca.

LEMME 4. Soient X une variété de Stein, f=(f1,..., fv): X—C~ une application
holomorphe propre, F =f,0x et yef (X). Soient g, ..., g, des fonctions holomorphes
sur X qui engendrent la fibre %, comme algébre sur Ocn ,. Alors 'application

Q= (fl, voes JN> 81 ooes Gm)t X 5 CNtm

sépare les points de la fibre f ~* () et ¢ est une immersion au voisinage de chaque point
de f~1 ( y)_

Démonstration. Soientx;, ..., x,les pointsdela fibre f "' (y). Ona F,=0x , ®...
@0y . . Si on avait g,(x;)=g,(x;) pour u=1,...,m, on aurait de méme g(x;)=
=g(x;) pour chaque élément g de la sous-algébre G= @ Oy, x, engendrée par gy, ..., g
sur Ocn ,. Mais G= @ Oy, par hypothese, donc les fonctions g,, ..., g,, séparent les
points de la fibre  ~* (y).
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Pour voir que ¢ soit une immersion au voisinage de chaque point xef ~* (), il
suffit de montrer que ’homomorphisme induit @}:Ocv+m ,—0x ,, Ol z=0(x)=
(», g(x))eCN*™, soit surjectif. Or, I'image de ¢* contient d’une part les germes des
fonctions g, ..., g, et d’autre part 'image de ’homomorphisme Oc~ ,— Oy . induit
par f. L’hypotheése du lemme entraine alors que Im} =0y ., c.q.f.d.

COROLLAIRE. Soient X une variété de Stein, f: X—CV une application holo-
morphe propre et g=(g,,..., &) un systéme de fonctions holomorphes sur X qui en-
gendre 'algébre I' (X, Ox)=T(C", f,Ox) sur I'(C", Ocx). Alors 'application (f, g):
X—CN*™ est un plongement.

2.2. Soit & un faisceau analytique cohérent sur un espace de Stein Y. Pour yeY,
posons

dy (ﬁ) = dim ("aFy/ my’gy) s

ol m, est 'idéal maximal de Oy ,. D’aprés le lemme de Nakayama, d, (%) est égal au
nombre minimal de générateurs du module &, sur Oy ,. Les ensembles

S,=8,(F)={yeY: d,(F)>p}
sont analytiques, donc des espaces de Stein. Posons
0 si S,(F)=0

b’p('gc)= p si dimSp(ﬂ)=Oou1
p+[(L+s)2] si dimS,(F)=s,>2

LEMME 5. Soit & un faisceau analytique cohérent sur un espace de Stein Y et
supposons b=sup{b,(F):p>1} <. Alors il existe b sections de F qui engendrent
le module I (Y, %) sur I' (Y, Oy).

Démonstration. D’aprés [4], Satz 4.3, il existe une famille finie f=(f,,...,f) de
sections de # qui engendre I' (Y, #) sur I'(Y, Oy). Soit 1,:I (Y, F)-F,/m,F,
’homomorphisme canonique. Désignons par 4,(f) le k-uple de vecteurs 4,(f}),---
vy A (EF,/mF . On a rang(4,(f))=d,(¥) pour tout yeY. Soit M,, I'espace
des (b, k)-matrices a coefficients complexes. Pour T=(t;;)eMy, soit TA,(f) le b-uple
¢ =(¢;) de vecteurs définies par :

k
®; = _21 tijly(fj), i=1,...,b.
i<
Soit
E={(y, T)eY x My,: rang(T4,(f)) = d,(¥)}.

Muni de la projection canonique sur ¥, E est un fibré localement trivial sur chaque
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S\Sp+1 (cf. [6], Satz 1). La fibre F, de E au dessus d’un point de S,\S, ., a le type
d’homotopie de W,,, la variété de Stiefel des p-repéres orthogonaux dans C®. Une
section holomorphe de E— Y est une (b, k)-matrice 7" holomorphe sur Y telle que Tf
soit un b-uple de sections de # engendrant I' (Y, &) sur I' (Y, 0y). D’aprés le principe
d’Oka, E—Y admet une section holomorphe s’il admet une section continue ([6],
Satz 5). Pour qu’une section continue existe, il suffit que

*) H**(S,, Sp+1; 7, (F,))=0 pourtoutg=>1,p>1.
([7], Lemma 2). Or,

7tq(Fp)=nq(vybp)=0 pourq<2(b—p)
et
H*"'(S,, S,+1;G)=0 pourg>1+dimS§,

et tout groupe de coefficients G (cf. [12] ou [15]). Lorsque dimS,=1, on a méme
H?(S,, Sp+1; G)=0. Si ¢>2(b—p), la définition de b montre que ¢g>1+dimsS,,
resp. ¢ =1 si dimS,=1. Donc la condition (*) est toujours remplie, ce qui acheve la
démonstration du lemme 5.

2.3. Nous pouvons maintenant énoncer le résultat principal.

THEOREME 2. Soit X une variété de Stein de dimension n>2. Alors il existe un
plongement (holomorphe propre) X—C?*". Si n>6, il existe méme un plongement
X—>C?% ou k=[(n—2)/3].

Démonstration. a) Posons

1 si n=2
q=32 si n=3,4,5
[n/3] si n=6.

Soit f: X—C"*? une application holomorphe propre ayant les propriétés énoncées
dans le théoréme 1. Soit F =f, Oy le faisceau image du faisceau structural, N=n+gq
et
meIn—4 si 2<n<3
T n—q—-[(n—2)/3] si n>6.

Vu le corollaire du lemme 4, notre théoréme sera démontré si nous arrivons a prouver
Pexistence de fonctions holomorphes gi,..., g, sur X qui engendrent I' (X, 0x)=
=I'(C", #) comme algebre sur I'(C", Ocn).

b) Supposons d’abord n>3. Soit ¥=%/(1) le faisceau de modules sur Oc~ qui
est le quotient par le sous-module engendré par la fonction constante 1eI' (X, Ox)=
=I'(C", #). Evidemment, si I (C", %) posséde un systéme de m générateurs comme
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module sur I'(C", Ocv), il existe m sections de & qui engendrent I' (CY, #) comme
algébre sur I'(CY, Ocx). On a

dim(%,/m,%,) = dim(# ,/m,#,) — 1 pour chaque ye f (X).

Comme S,(#)=f(4,), (avec les notations du théoréme 1 et du lemme 5), on a pour
tout p>1

dimS,(#)<n—-(p—-1)q,
donc
dimS,(9)<n-pq.

Nous allons maintenant appliquer le lemme 5 pour montrer que I'(CV, %) est en-
gendré par m éléments; distinguons 4 cas:

(i) n=3, m=1. On a dim S, (9)<1, S,(¥9)=0, donc I'(C¥, ¥) est engendré par un
élément.

(i) n=4, m=2. On a dim S, (9)<2, dimS,(%)<0 et S;(¥)=0, donc I'(C", %) est
engendré par deux €éléments.

(ili) n=5, m=3. On a dim S, (9)<3, dim S, (9)<1 et S;(¥)=0, donc I'(C", ¥) est
engendré par trois éléments.

(iv) n>6. Alors g=[n/3]>2. Donc pour p>1on a

dimS,(9)<n—-pg<n—q-2(p—1)
et
p+[(1+dimS,(9)2]<p+[(n—q—2p+3)2]=[(n—q+3)2].

Il en résulte que I' (C", %) peut étre engendré par b=[(n—q+3)/2] éléments. Or
m =n— [nf3] - [(n - 23] = [(n — [n/3] + 3)/2] = b,

ce qui acheéve la démonstration du théoréme pour n> 3.

¢) Traitons maintenant le cas n=2. L’ensemble analytique

Ay = (xeX: d,(f) >3},
ol f: X—C3 est I'application définie dans a), est de dimension <0, c’est-a-dire un
ensemble discret, tandis que

Ay = A3 n {xeX:rang df (x) <2}

est vide, c’est-a-dire que f est une immersion au voisinage de tout point de 4. Il
existe une fonction holomorphe A sur X qui sépare les points de A4;. Alors pour
chaque yeBs=f(45), la fibre #, du faisceau F =f, 0y est engendré par 1, A, h?
comme module sur Ocs ,.

Soit #’' =& le sous-faisceau engendré comme module sur O¢s par les deux sec-
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tions 1, he ' (X, Ox)=T (C?, #). Chaque point ye B; posséde un voisinage V() avec
les propriétés suivantes:
@) V(»)nBs={y}

(i) £ | £~ (V(»))—C? est une immersion

(iii) & sépare f ' (z) pour tout ze V' (y).
Alors 5’ coincide avec & au dessus de ¥ (y)\{»}. En effet, pour chaque ze V' (y)\{»},
la fibre £ ~*(z) a au plus deux points. Si f ~!(z) est réduit & un point, I’assertion est
évidente & cause de (ii). Lorsque f ! (z)={x,, x,}, x;#xX,, on a F,=0x , @Oy ..,
et en vertu de (ii), les homomorphismes O¢s, ,— Oy, ., et O¢s ,—Ox .., induits par f,
sont surjectifs. L’assertion découle maintenant du fait qu’il existe des combinaisons
linéaires h;=o;+ B;h; oy, Bi€C, tels que Ay (x,)=1, hy (x,)=0 et h,(x,)=0, h,(x,)=1.

Ceci nous permet de définir un sous-faisceau /# =% comme suit:

=%l (C3\B3)=91(C3\B3),
HN\V(y)=#"|V(y), yeBs.

Par construction, la fonction 1eI' (X, @) est une section de . Soit ¥=:£/(1) le
faisceau quotient de # par le sous-faisceau de modules engendré par cette section
sur Ocs. On a alors

S1(9)=S5(F)=B,=f(4,) et S,(9)=0.

Puisque dim B, <1, I'(C?, ¥) peut étre engendré par un seul élément comme module
sur I'(C3, Ocs). Ceci entraine Iexistence d’un geI' (C?, #) tel que 1 et g engendrent
I' (C?, #) comme module sur I' (C3, O¢). Alors g engendre I' (C?, &) comme algébre
sur I' (C?, Ocs). Comme nous I’avons indiqué sous a), le théoréme est ainsi démontré.

2.4. Gunning et Narasimhan [8] ont démontré que toute variété de Stein de di-
mension 1 (c’est-a-dire toute surface de Riemann ouverte) peut étre immergée dans
C. En utilisant une méthode de Haefliger ([9], lemme 2), on peut généraliser le théo-
réme de Gunning-Narasimhan comme suit:

THEOREME 3. Soit X une variété de Stein de dimension n. Alors il existe une
immersion X—C*"~1,

Remarque. Pour les dimensions n>8, le théoréme 2 donne un résultat plus fort.

Démonstration. Nous utiliserons le lemme suivant de Gunning-Narasimhan:

LEMME. Soit Y une variété de Stein de dimension 1 et o une forme différentielle
holomorphe de degré 1 sur Y. Alors il existe des fonctions holomorphes F et g sur Y
telles que dF = e%c.

(Ce lemme est démontré dans [8] pour les formes différentielles qui ne s’annulent
pas sur Y. Mais la démonstration s’étend au cas général.)
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Considérons dans I’espace des jets J! (X, C>"~2) les ensembles X! et 2 (cf. démon-
stration de la prop. 2). On a codimX'=n—1 et codimX?=2n. D’aprés le lemme 2,
il existe une application holomorphe f: X—C?"~2 telle que I’ensemble

{xeX: ji(f)eZ?} = {xeX:rang df (x) < n — 2}
soit vide et que I’ensemble
Y={xeX:ji(f)eZ'} = {xeX:rangdf (x)=n — 1}

soit une sous-variété analytique (sans singularité¢) de dimension 1. Comme tout fibré
vectoriel analytique sur une variété de Stein de dimension 1 est trivial, le fibré normal
de Y est trivial. Il existe donc un voisinage W de Y et une application biholomorphe
@ de W sur un voisinage W’ de Yx {0} dans YxC"~' qui envoie Y sur ¥ x {0}.
Nous identifierons W et W’ a I’aide de .

Soit T* (X) le fibré cotangent de X et 7" le sous-fibré de 7*(X) | Y, engendré par
df (), ye Y. Puisque (T*(X) | Y)/T’ est un fibré de rang 1 trivial, il existe une section
holomorphe w, de T*(X) | Y telle que

rang(df (y), wo(¥)) =n pourtout yeY.
o est la restriction 3 Y d’une forme différentielle w sur W W'cYxC"" ! qui
s’écrit

019 =00)+'Y, 1) dz.

Ici o est une forme différentielle sur Y, les a; sont des fonctions holomorphes sur ¥
et z,..., Z,_, désignent les coordonnées de C*~!. D’aprés le lemme de Gunning-
Narasimhan, il existe des fonctions holomorphes F et g sur Y avec dF =efo. Définis-
sons la fonction H sur W par la formule

H(,9) =S, 20) 7+ F().
On a
dH (y, z) = Z zidy(eg(y) () + e Y o (y)dz; + e a(y)
= Z Zidy(eg(y) “i()’)) + & o(y, z),

donc dH | Y=ef(w | Y)=efw,. D’aprés le Théoréme B il existe une fonction holo-
morphe A sur X avec A= H mod.#2 sur W, ol .# est le faisceau d’idéaux défini par Y.
11 s’ensuit que dh | Y=dH l Y, donc

rang(df (y), dh(y)) =n pour tout yeY.

Il en résulte que (f, h): X—>C?"~! est une immersion.
Remarque. Si n>3, on peut toujours s’arranger que I’application f:X—-C**?%,
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qui figure dans la démonstration, soit propre. On obtient ainsi une immersion propre
de X dans C*>"~ 1.

2.5. Pour finir, donnons quelques contre-exemples.

PROPOSITION 3. Soit n un nombre naturel et N=n+[n[2]. Alors il existe une
variété de Stein X de dimension n, qui ne peut pas étre plongée dans CN ni immergée
dans CV ™1,

Démonstration. Soit

Y={(x:y:2)eP,(C): x* + y* + 2% # 0}.
Posons

X = Y" si n=2m,
T )Y"xC si n=2m+ 1.

X est une variété de Stein de dimension #. Si on considére X comme variété différen-
tiable de dimension réelle 2n, on constate que la classe de Stiefel-Whitney duale w,,, (X)
est non nulle (cf. [5], p. 715). Ceci implique qu’il n’existe aucun plongement X—C¥
et aucune immersion X—CN~! (voir par exemple [11], p. 261).

La proposition 3 montre que nos résultats sur les plongements et les immersions
des variétés de Stein de dimension 2 sont les meilleurs possibles. Pour les autres di-
mensions on peut conjecturer que toute variété de Stein de dimension n se plonge
dans CY*1 et s’immerge dans CV, ot N=n+[n/2]. Quoiqu’une étude plus détaillée
des singularités apporterait des petites améliorations a nos résultats pour » grand, la
démonstration de cette conjecture semble étre trés difficile. En effet, on ignore méme,
si le disque D={zeC:|z| <1} peut étre plongé proprement dans CZ.
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