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Zur Berechnung endlicher euklidischer Defekte in quadratischen

Riumen

PauL HAFNER (Ziirich)

Einleitung

Als zentraler Begriff fiir die Theorie quadratischer Rdume erweist sich in [4] der
euklidische Defekt. Die vorliegende Arbeit schliesst sich an Satz IV.1. von [4] an:
wir fiihren einen Teil der dort angedeuteten Erweiterungsmoglichkeiten des Iso-
morphiesatzes durch (Satz 5). Damit erhalten wir eine Klassifikation von Rdumen
endlichen Defekts iiber speziellen Korpern (Korollar 5). Diese Resultate erlauben
dann die Berechnung endlicher Defekte von Rdumen iiber beliebigen Korpern (Satz
7). Schliesslich beweisen wir in leichter Verallgemeinerung von Satz 5 einen Iso-
morphiesatz fiir Unterrdume endlicher Codimension in euklidischen Rdumen iiber
speziellen Korpern (Satz 9).

Herrn Professor Dr. H. Gross danke ich fiir viele anregende Diskussionen.

I. Bezeichnungen und Resultate

Wir betrachten Vektorriume iiber einem kommutativen Korper k, chark#2.
Unter einem quadratischen Raum iiber k verstehen wir ein Paar (E, @), wobei E ein
k-Vektorraum und & eine symmetrische Bilinearform &: E x E—~k ist. Die Bezeich-
nungen unserer Arbeit sind die allgemein gebrduchlichen (man siehe z.B. Gross [4]).
Ist U ein Unterraum, so bezeichnen wir Un Ut =rad U als das Radikal von U. Ein
Teilraum ¥V eines quadratischen Raumes E heisst dicht (in E), falls V*+=FE ist;
W< E heisst (orthogonal) abgeschlossen, falls W*+= W gilt. Halbeinfache Rdume
(E, &), die eine beziiglich @ orthogonale Basis besitzen, werden euklidische Rdume
genannt. Der euklidische Defekt d(E) eines halbeinfachen Raumes E ist das Minimum
von dim E/F, wo F simtliche euklidischen Unterrdiume von E durchlduft. Folgende
Sitze werden wir immer wieder beniitzen:

1. R4dume abzihlbarer Dimension besitzen eine Orthogonalbasis.

2. ([4], Satz I11.2.) Ist (E, ®) halbeinfach und F eine euklidische Hyperebene in
E, so sind folgende Aussagen dquivalent:

(i) F besitzt eine Orthogonalbasis (f,)..; und ein algebraisches Komplement / in
E derart, dass &(f,, I)#0 ist fiir iiberabzihlbar viele tel.

(i) Fiir jede Orthogonalbasis (f,),.; von F und jedes Komplement / von F gilt
P (f,, )#0 fiir iiberabzihlbar viele €.

(iii) d(E)+0.
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Wir werden in Satz 1 sehen, dass card {t | #(f,, /)#0} eine Invariante von F ist.

3. ([4], Satz II1.4.) Sei (F, ®) halbeinfach und von endlichem Defekt. Ist ¥ ein
euklidischer Teilraum der Codimension d(F), so ist ¥'*+=(0).

4. ([4], Satz111.12.) E= @, E, sei die (dussere) orthogonale Summe einer hochstens
abzidhlbaren Familie von Rdumen (E;, ®;) vom Defekt 1. Es ist d(E)=card 1.

5. ([4], Korollar IIL.1.) (E, ®) sei euklidisch; F sei ein Teilraum mit dim [ E/(F+
+F+)] <N, und F besitze eine fiir @ orthogonale Basis. Jeder Teilraum V von E,
der F+F* umfasst, besitzt eine fiir @ orthogonale Basis; V ist also euklidisch genau
dann, wenn ¥V halbeinfach ist.

6. Sehr niitzlich ist folgender Satz von E. Ogg: (E, @) sei euklidisch. Jeder ortho-
gonal abgeschlossene Teilraum Fc E lédsst ebenfalls eine fiir @ orthogonale Basis zu.

7. ([5], Satz 7.13.) (E, &) sei halbeinfach und von abzihlbarer Dimension, V ein
halbeinfacher Unterraum mit der Orthogonalbasis (v;);cy. V ist genau dann dicht,
wenn es zu jedem x¢J eine unendliche Menge I, =N gibt, sodass ®(x, v;)#0 fiir
alle iel.,.

Besonders einfache Verhiltnisse findet man bei unendlich dimensionalen Rdumen
dann vor, wenn der Grundkorper k folgende Eigenschaft besitzt:

chark#2, und es gibt eine nur von k abhingige natiirliche Zahl » mit der
(S) Eigenschaft, dass jede quadratische Form in n+1 Variabeln iiber k die Null
nicht trivial darstellt.
Wir werden der Kiirze halber von S-Koérpern sprechen. Halbeinfache Ridume von
abzdhlbar unendlicher Dimension iiber S-Korpern besitzen immer eine orthonor-
mierte Basis. Dies ist gleichbedeutend damit, dass ein solcher Raum orthogonale
Summe von hyperbolischen Ebenen ist (s. [6]); es gibt also ,,viele* isotrope Vektoren
in diesen Rdumen.

8. ([1], Satz 1) Uber S-Korpern gilt der folgende Isomorphiesatz: Seien (E, ),
(E, ) halbeinfach und von abzihlbarer Dimension; sind V< E, V< E dichte Unter-
rdume gleicher Codimension, so gibt es eine orthogonale Abbildung ¢:E—E, die
V in V iiberfiihrt. Ist die Codimension von ¥ endlich, so gibt es sogar zu jeder Iso-
metrie ¢’: G—G (G, G beliebige isometrische Komplemente von V bzw. V) eine Fort-
setzung ¢: E— E mit dieser Eigenschaft.

9. Allgemeiner gilt fiir S-Koérper der folgende Satz: ([2], Scholion): E sei ein-
halbeinfacher Raum abzihlbarer Dimension iiber einem S-Kérper, V, V isome-
trische Unterrdume, fiir die folgende Bedinigungen erfiillt sind:

D Vizvd,
(i) dim[(rad V)'*/rad V]=dim [(rad V)*!/rad V],
(C) (ii) dim[rad(V*)/(rad V)**]=dim [rad (P *)/(rad V)*],
(iv) dim[V*/(V+rad(VY))]=dim [P/(V +rad (V1)],
) dim[(rad (V1)) /(V* +V*H)]=dim [(rad (PH))/(V* + V)]
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Dann gibt es eine Isometrie ¢: E~E, die V in V iiberfiihrt.

Dieser Satz ldsst sich iibertragen auf den Fall, dass E euklidisch und von beliebiger
iiberabzidhlbarer Dimension ist, sofern man fiir die Teilrdume V, ¥ mit den Eigen-
schaften (C) hochstens abzihlbar unendliche Dimension beibehilt. Dem Beweis
schicken wir folgendes Lemma voraus:

LEMMA. B=A®C sei ein Unterraum eines euklidischen Raumes E und A sei
orthogonal abgeschlossen. Dann gilt

dim (4*/B*) = dim B/A.

KOROLLAR 1. Unter den Voraussetzungen des Lemmas gilt
dim(B**/B) < dimB/A.

KOROLLAR 2. Fiir Unterrdume B von euklidischen Rdumen gilt
dim B** = dim B.

Beweis des Lemmas. Bt=A*nC*; da wir in einem euklidischen Raum E sind,
gilt codim;C*+=dimC, also A*=B*®D mit dimD<dimC. Damit haben wir das
Teilresultat: ist A< B< E und E euklidisch, so gilt

dim(A4*/B*) < dimB/A.
Auf 4* und B* treffen diese Voraussetzungen aber auch zu; also
dim(B**/4**) < dim(4*'/B*) < dim B/A.

(V+vhtt
yit V+vt
V+rad(V4) B
V+(rad V)t rad(V+)
14 (rad V)*t

radV
(0)
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Setzt man nun voraus, A sei orthogonal abgeschlossen, so sieht man
dim (4*/B*) = dim (B/A).

Nun betrachten wir den Verband von V (erzeugt von V unter den Operationen
1, nund + in E; vgl. [2]) (s. Diagramm auf Seite 137).

Nach Korollar 1 (¥*+¥V** und V* anstelle von B bzw. 4) ist dim [(rad V'*)/
[(VE+ViD]<dim Vit =dim V<R, Ausserdem gilt codimg(rad V1)t<N,; das
bedeutet, dass ein Komplement Y von ¥V +V*! in E hochstens abzihlbare Dimen-
sion hat. Wir zerlegen: E=V''@V'®Y, wo ¥V’ ein Komplement von rad ¥+ in V'*
ist. Vg seieinabzihlbar dimensionaler Unterraumvon V’. Dannistdim (V@ Vi@ Y)=
=N,. Das gleiche tut man mit ¥: es wird dim (V@ V{® ¥)=¥N,, und wir finden
einen halbeinfachen, abzdhlbar dimensionalen Unterraum U von E mit

() E=UaU+,
G) VH+Veg+Y+PH+V5+ Y U.

In U kann man den Satz fiir abzdhlbar dimensionale Rdume anwenden, und wegen
(j) liefert das auch einen orthogonalen Automorphismus von E.

II. Riume mit dichten euklidischen Unterriumen endlicher Codimension

1. Vorbereitungen
(E, @) sei ein halbeinfacher Raum vom Defekt 1, F eine euklidische Hyperebene,
E=F®k(e), B=(f,).; eine Orthogonalbasis von F. Wir definieren:

DEFINITION 1.

T(B)={f.| ®(f. e)=0}.

SATZ 1. card S(B) ist eine Invariante von F, also unabhdngig von der Wahl der Ortho-
gonalbasis B und der Wahl des Komplementes e.

Beweis. Aufgrund von I.2. ist jedenfalls card S (B)>N,. Beim Ubergang zu einem
andern Komplement e'=)" 4, f, +pe ergeben sich daher keine Anderungen. Sei B'=
=(f):e1 eine andere Orthogonalbasis von.F und

f t’ = Z atxf K2
f ¢ = z Ba’uf p: .
Die Matrizen (a,,) und (f,,) sind beide zeilenfinit.

Nun ist @(f;, f;)=0, [l foll =B, | f7 |, und wegen | £, #0#] f/|| sicht man, dass
der Ubergang von B zu B’ durch eine zeilen- und spaltenfinite Matrix vermittelt wird.
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Das ergibt die Abschéitzung
card S(B’) < ¥, card S(B) = card S(B),

und die Argumentation ist symmetrisch in B und B’. Also
card S(B) = card S(B’).

Eine analoge Invariante ldsst sich auch fiir den Fall d(E)=0 und F*=(0) defi-
nieren. Wir behaupten ndmlich, dass dann card S(B)=1¥N,. Dies folgt aus 1.7. und
dem folgenden

LEMMA. Sei dimE>N,, FcE eine euklidische Hyperebene mit F*=(0), E=
=F@®k(e). Dann gibt es eine orthogonale Zerlegung F=F,®"*F, mit dimF, =N, und
F{=F,. Ist d(E)=1, so gilt dabei stets Fy =F,; ist d(E)=0, so hat man F;<F,@
@k (e) und es gibt eine Zerlegung mit Fy =F, @k (e).

Beweis. 1) d(E)=1; (f.).cs sei eine Orthogonalbasis von F. Nach I.2. gibt es
I,cl,cIcard I, > card I, =R, mit @ (f,, e)#0 fiir te L,. Nun setzt man F; =k (f,).c;,»
Fy=k(f). el-1Iy*

Ist eine Zerlegung F=F,®F, mit dimF, =¥, und F; =F, gegeben, so erhilt
man eine Orthogonalbasis von F als Vereinigung einer Orthogonalbasis von F; und
einer von F,. Aufgrund von 1.2. folgt nun, dass Fy =F,.

2) d(E)=0; (f.).er sei eine Orthogonalbasis von F. Die Menge I; aller T mit
@ (f, €)#0 ist hochstens abzihlbar. Wir bezeichnen mit I, eine abzihlbare Teilmenge
von I, welche I, enthdlt. Nun setzen wir F; =k(f.).c1,» Fa=k(f.):c1-1,- Dann ergibt
sich

Fi =F}' n F, + F{' n (F, ® k(e)),

Fy =F, @ k(e),

F'=F} n F;,

und dies letztere ist genau dann Null, wenn Fi n {F, +k(e)}=(0).

Wir fassen zusammen:

DEFINITION 2. F sei eine euklidische Hyperebene von (E, @), F*=(0), B eine
Orthogonalbasis von F. Die Invariante

card S(B) = card {f, | f.€B, ®(f,,x} #0,E=F @ k(x)}

werden wir mit S(F, E) bezeichnen.
Esist S(F, E)=N, genau dann wenn E euklidisch, S(F, E)> N, genau dann wenn
d (E)=1 ist. Wie wir sehen werden, bestimmt S(F, E) die ,,Lage* von F in E bis auf

tinen metrischen Automorphismus von E eindeutig, wenn wir uns auf S-Korper
beschrinken.
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Verhalten von card T (B)

1) Ist S(F, E)<dimE, so ist natiirlich card7(B)=dimE fiir alle Orthogonal-
basen von F.

2) Sei also S(F, E)=dimE; B sei eine feste Orthogonalbasis von F. Wir werden
zeigen, dass man zu jeder unendlichen Kardinalzahl a mit card 7(B)<a<dimE eine
Orthogonalbasis B’ mit card T(B")=a angeben kann.

Beweis. Sei B=S(B)UT(B), S(B)=(f)ier,, T(B)=(f)ier,, cardl;=dimE,
@ (f,, e)=1 fiir tel;; ferner sei j'< I;, cardj’=a. Wir bilden Mengen 9t von Paaren
(t, 7")ej’ xj' mit T#7', (1, T') " (u, p')=0 fiir je zwei Paare aus einer Menge I, und
| £l +1l fll #0. Nach dem Lemma von Zorn gibt es eine maximale solche Menge
I, und man verifiziert, dass fiir M, gilt:

card {C; (pr; M, L pr, M)} < 2.

Setzen wir j=pr, M, v pr, My, so ist also cardj=a und wir haben eine Bijektion
a:pry Mo—-pr, M, vermdge 1, wenn (1, 7)€ M. Die Paare (f,, f, () spannen
Ebenen E,(tepr; M,) auf. Nun bezeichnen wir

Bl = {ft - fa(r) | ‘L'Epl'lmo},
B2 = {ht | h,_L(f;. — fa(r))a h‘EEET’ ’L'Epl'l gRO} ’

B3 = {fr ! T¢]}
Dann ist B'=T(B)u B, U B, U B; wieder eine Orthogonalbasis von F und
T(B) v Bl (e T(B,) (e T(B) U Bl |V Bz, B3 mN T(B,) - 0.

Hieraus folgt die Behauptung.

card T(B) ldsst sich aber nicht nur willkiirlich vergrossern sondern auch verklei-
nern. Wir zeigen hier nur die Konstruktion einer Basis B’ mit 7(B')=0; das all-
gemeine Prinzip wird dadurch véllig klar. B sei eine Orthogonalbasis, S(B)=(f):er.-
T(B)=(e,);c1,, j< I, cardj=card L, a:j—I, eine Bijektion. Wir definieren

B1={fz|7611’t¢j}9 BZ={ft+ﬁrea(r)lTEj}’
B3 = {ft - "ft" €a(r) I TE]},

ﬂ‘t ”ea(t) "

wobei B, so gewihlt wird, dass B,#0 und || £, + B2 |le, Il #0 ist. So ein B, findet man
aber fiir jedes 7, ausser wenn der Korper k nur 3 Elemente hat. Ist aber k = F3, dann
kénnen wir B orthonormiert voraussetzen und f,=1 nehmen. Nun ist B, uB,UB;
= B’ eine Orthogonalbasis von F mit card T(B’)=0.
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2. Der Fall codimgF=1

SATZ 2. E, E seien halbeinfache Rdume gleicher iiberabzdihlbarer Dimension iiber
einem S-Kérper; F< E, Fc E seien euklidische Hyperebenen mit F*=(0), F*=(0) und
S(F, E)=S(F, E); dann gibt es eine orthogonale Abbildung ¢:E—E mit ¢(F)=F,
o (e)=é, wobei E=F®k (e), E=F®k(é) und || =|é||.

Beweis. 1) Sei S(F, E)=dimE. Wir konnen also eine Orthogonalbasis B=
=(f.):er VO F so wihlen, dass 7'(B)=0 wird. Jede Partition I=|_) I, mit card [, =N,
gibt Anlass zu einer Zerlegung F=®"F, mit F,=k(f.),.;, und dim F,=¥,. Dabei ist
Ffn {F,®k(e)}=(0). In gleicher Weise bilde man F,cF mit der entsprechenden
Eigenschaft. Nun kann man nach 1.8. Isometrien ¢,:F,®k (e)— F,®k () finden mit
¢,(F,)=F, und ¢,(e)=e. Diese ¢, setzt man zusammen zu ¢.

2) Ist S(F, E)<dimE und B eine Orthogonalbasis von F, so gibt es eine Zer-
legung

1
E={F®k(e}®F", 0y
wobei F’ von S(B) erzeugt wird, F” von T(B). Ebenso:

1
E={Fok@EoF. 2
Auf die ersten Summanden der orthogonalen Summe in (1) und (2) treffen die
Voraussetzungen von 1) zu. F” und F"” sind von gleicher unendlicher Dimension und
orthonormiert (S-Korper!), also isometrisch.
Es ergibt sich sogleich das folgende

KOROLLAR 1. Zwei halbeinfache Riume E, E iiber einem S-Korper mit d(E)<1,
d(E)<1 sind isometrisch genau dann, wenn es euklidische Hyperebenen V<E, V< E
gibt mit V*+=(0), V+=(0), S(V, E)=S(V, E) und dim E=dim E.

Definiert man fiir Riume E mit d(E)<1 eine Invariante m(E) als minS(V, E),
wo V alle euklidischen Hyperebenen durchléduft, so sagt das Korollar offenbar, dass
solche Rdume E durch dim E und m(E) bis auf Isomorphie eindeutig festgelegt sind.

Als Erginzung zu Satz 2 kann man noch zu gegebenen Paaren S(F, E)<dimE
Standardrdume angeben. Sei card I, = S(F, E), I, =0 wenn S(F, E)=dimE, card I, =
=dimE sonst. F werde aufgespannt von einer orthonormierten Basis (f,);er,01,
E=F®k (e), wobei ®(f,, e)=1 fiir tel,, ¢(f,, €)=0 fiir rel, und |e| =« (beliebig).

DEFINITION 3. Den soeben definierten Raum E bezeichnen wir als ,,a-nor-
mierten Standardraum zu den Invarianten codimF=1, S(F, E), dimE*.

3. Der Fall codimgF=n< oo

DEFINITION 4. Sei E halbeinfach, F ein euklidischer Unterraum von E mit
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F+=(0), u¢ F. Wir fiihren folgende Bezeichnungen ein:

S(F,u):=S(F, F®k(u)) m(F):= n;igS(F, u) M(F): = m¢a;<S(F, u)
m(F) und M (F) sind offensichtlich Invarianten von F.

SATZ 3. E und F seien wie in der Definition 4, ferner sei codimgF=n. Dann gibt
es hochstens n verschiedene Werte fiir S(F, u).

Beweis. Angenommen es gibe u,...,u,.¢F mit S(F, u)<S(F, u,)<-<
<S(F, u,+,)- Dann ist

Upt1 =f+'zn‘, Mu; (f€F).

Hieraus folgt der Widerspruch S(F, u,.,)<S(F, u,4,). Diese hochstens n Werte
ordnen wir der Grosse nach und bezeichnen sie mit m(F)=m, (F)<m,(F)<---<
<m,(F)=M(F) (r<n). Man iiberlegt sich auch sofort, dass in jedem algebraischen
Komplement von F Vektoren x; liegen mit S(F, x;)=m,(F) fiir alle i<r.

DEFINITION 5. E und F seien wie in Satz 3.

K,(F):={x|x€E, x¢F, S(F, x) < m;(F)}
6,(F): =n — codimgE,
i—1
8;(F): =n—codimgE; — ) 6,
v=1
Dabei verstehen wir unter E; die lineare Hiille von FuU K;(F).

Dieser Aufwand an Definitionen erlaubt uns eine gewisse Normalisierung eines
Komplements von F: unter einer normalisierten Basis eines algebraischen Komple-
ments G von F in E verstehen wir eine Basis xy,..., X5,,..., X5, 45,5 --.» X, VO G mit
Xiyeees X5, €K (F), X5, 415> X5,+5,E Ky (F)— K, (F) etc. Man verifiziert nun ohne
Miihe, dass S(F, x)=m;(F) fir alle Xe FOk (X5, +...+5,_ 41> ---> Xu)s X¢F.

Beispiel. Sei F=k(f,), wo 7 alle Elemente (d.h. alle kleineren Ordnungszahlen)
der Ordnungszahl w, durchlduft, v>1 fest, (f,) eine orthonormierte Basis, E=F@®

Dk (x, »),
D(fox)=P(f,y)=1 fir 7> 0w,
D(f,x)=0 fir rTew,
@(f,y)=1 fiir tew,
Dann ist S(F, x)=S(F, y)=dimE. {x, y} ist aber keine normalisierte Basis eines

Komplementes von F, denn m(F)=S(F, x—y)==¥,; {x—y, y} ist eine normalisierte
Basis.
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SATZ 4. Seien E, E halbeinfache Riume iiber einem S-Korper, dim E=dim E>N,),
FcE, Fc E euklidische dichte Unterrdume gleicher Codimension n, m(F)=M (F)=
m(F)=M (F). Dann gibt es eine orthogonale Abbildung ¢:E—E mit ¢ (F)=F. Dabei
kann man ein beliebiges Komplement von F in ein dazu isometrisches Komplement von
F iiberfiihren.

Beweis. Aufgrund inzwischen bekannter Argumente (s. den Beweis zu Satz 2)
konnen wir uns auf den Fall dim E=m(F) beschrinken; fiir dimE=%¥, steht der
Satz bei Gross [1], also setzen wir m(F)=dim E>¥, voraus. Der Beweis verlduft
dann wortlich wie bei Gross [4], Satz IV.1. Sei (f;)..; eine Orthogonalbasis von F,
Xy,..., X, Basis eines Komplementes von F in E. Wir werden zeigen, dass es eine
Partition I= I, gibt mit

(1) card I, =¥,,
(i) Fyn{F,®k(x(,..., x,)}=(0), F,=k(f.).cr1.-

Fiir n=1 steht das im Beweis von Satz 2. Sei die Behauptung also richtig fiir codim F=
=n—1; d.h. es gibt eine Partition (I,) von I mit den Eigenschaften

(i) cardl,=N,,
(i) Frn{F,®k(x;,..., X,—1)}=(0), F,=k(f):er,-

Als Indices der Partition (I,) nehmen wir alle Ordnungszahlen des Abschnittes [0, «f,
« eine Anfangszahl (also carda=m(F)). Die zu konstruierende Partition (I,) indi-
zieren wir ebenfalls mit Ordnungszahlen aus besagtem Abschnitt. Wir setzen

D, = Fy o {F, @ k(x1, ... Xn)}3

wegen (ii)’ gilt also dimD, < 1.

Falls Dy=(0), definieren wir I,=1,; andernfalls ist Dy=k(x), und es gibt immer
noch m(F) Vektoren f, ausserhalb von F,, welche auf x nicht senkrecht stehen. Einer
davon liege in I,; dann definieren wir I,=1I,u I,. Nun sei I, schon erklért (als Vereini-
gung von héchstens 2 Elementen der Partition (I,)) fiir alle 1<k. Dabei sei v* die
grosste Zahl mit

I,e\JI firalle v<v*<a.

1<K

Ist v*=q, so sind wir fertig. Ist v*<a, so ist card{J, <, I,<2cardJ, I, <N,
cardv* <m. Ist D,.=(0), so setzen wir I, =I,.. Andernfalls ist D ,.=k(y), und es gibt
unter den f,¢ @, <, F, immer noch m(F), welche nicht senkrecht auf y stehen. Eines
davon sei in 7,; dann setzen wir I,=1I,.u L. Diese rekursive Definition beendigt den
Schluss von n— 1 auf n. Um hieraus schliesslich Satz 4 zu folgern, wendet man analog
Wwie im Beweis von Satz 2 den ,,Wittschen Satz* im abzihlbaren Falle (I.8.) auf die
Rdume F,@k(x,,..., x,) an, wobei man die Isometrie auf k(x,,...,x,) fest vor-
schreiben kann.
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DEFINITION 6. Unter dem (o, ..., a,)-normierten Standardraum S zu den In-
varianten codimF=n, m(F)=M(F), dimS verstehen wir die orthogonale Summe
S=®;-1S;, wo §; fiir i<n ein a-normierter Standardraum zu den Invarianten
codimF’'=1, S(F', E)=m(F), dim E=m(F) ist und S, ein a,-normierter Standard-
raum zu den Invarianten codimF’'=1, S(F’, E)=m(F), dim E=dim S.

KOROLLAR 2. Jeder halbeinfache Raum E iiber einem S-Korper, der einen eukli-
dischen dichten Teilraum F mit m(F)= M (F) und von endlicher Codimension n enthdlt,
ist zu jedem (ay, ..., &,)-normierten Standardraum zu den Invarianten n, m, dimE iso-
metrisch. Umgekehrt gibt es zu jedem Tripel (n, m, d) mit den Restriktionen n<¥,<
<m<d einen halbeinfachen Raum S, der einen dichten euklidischen Unterraum F der
Codimension n enthdlt mit m(F)=M (F)=m.

Beweis. Klar.

SATZ 5. Seien E, E halbeinfache Rdume iiber einem S-Korper, dim E=dimE,
FcE, FcE euklidische Unterriume gleicher endlicher Codimension n, F*=(0),
F*=(0), my(F)=my (F), .., m,(F)=m,(F), 8, (F) =8, (F), .., 8,(F)=5,(F), (¥, 6,=n).
Dann gibt es einen orthogonalen Isomorphismus ¢:E—E mit ¢ (F)=F. Man kann
tiberdies ¢ auf einem Komplement G von F so vorschreiben, dass eine normalisierte
Basis von G in eine normalisierte Basis eines isometrischen Komplementes G von F
iibergeht.

Beweis. Wieder beschrinken wir uns auf den Fall dimE=m,(F). Der Beweis
erfolgt durch Induktion nach r. Fiir r=1 haben wir Satz 4. Um den Gedankengang klar
werden zu lassen, beweisen wir auf der Grundlage von Satz 4 unseren Satz zunichst
nur fiir #=2. In F haben wir eine Orthogonalbasis (f,);cz, k(%15 .-e» X5,5 V1s---» V53)
sei ein Komplement von F mit S(F, x,)=--=S(F, x;,)=my, S(F, y;)=---=S(F, s,)
=m, (F), ferner seien die y, paarweise orthogonal (0.B.d.A.). Wir werden zeigen, dass
F=F,®'F,, wobei F, = ®'F,, mit

(i) dimF, =m, (F), also dim F,=m, (F),
(i) F Lk(x,..., Xs,),
(i) dimF,,=¥,,
(IV) FiLvn {Flv@k'(xl’ sees xéu Viseeos y&z)} =(O)

Bezeichnen wir mit F; zunéichst den Raum, der von allen £, aufgespannt wird, die
auf einem der Vektoren x, ..., x;, nicht senkrecht stehen, mit F, den von den rest-
lichen f, aufgespannten Raum. Dann haben wir (i) und (ii) und vermége Satz 4 (an-
gewandt auf F;®k (x,, ..., x;,)) eine Zerlegung F{=@"F{, mit

(iii) dimF}, =,
(iv) Fiy o {F,@k(xy,..., x5,)}=(0).
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F,®k(yy,..-» 5,) konnen wir uns als Standardraum @% {V;®k(y;)} vorstellen (zu
den Invarianten d,, m,, m,), wobei V;=k(v;),.; und (v;,) die in der Definition der
Standardriume auftretende orthonormierte Basis ist. Schliesslich wollen wir an-
nehmen, die Zerlegung F{=@®* F;, sei mit ve [0, af, « die Anfangszahl mit carda=
=m, (F), indiziert; j sei ebenfalls ein Anfangsabschnitt der Ordinalzahlen. Setzen
wir nun

a2
Fi=F & '_®1 k(viv)ve[o,a],

62
F,=@ k(”iv)v?as
i=1
Flv = Fl’v ® k(vlva ) v&gv)s

so verifiziert man (i), (ii), (iii) und (iv). Der Rest des Beweises fiir r=2 scheint nun
klar: Er ist ein einfaches Zusammenspiel des Wittschen Satzes im abzdhlbaren Fall
(fiir die F,, @k (x4, ..., y5,)) mit Satz 4 (fir F,®k(yy,..., ¥s,))-

Der allgemeine Schluss von r—1 auf r erfordert lediglich mehr Schreibarbeit.
Man behauptet zunichst: es gibt eine Zerlegung F=F,®*---®*F, und Zerlegungen
F,= ®"F,, mit folgenden Eigenschaften:

(i) dim Fy=m,(F),
(il) F2®"'®Frlk(x1,..., x‘sl),
F3@"-@F,.J_k(x1, crey x‘h,..., x¢51+52),

F,_Lk(xl,..., x,,1+,;2+...+5,_1),
(i) dimF,,=N,,
(IV) FiJ; N {Fiv&)k(x,,l+...+5i_l+1, ceey xn)} =(O)

Beim Induktionsschritt zum Beweis dieser Behauptungen hat man nichts anderes zu
tun als das, was im vorigen Spezialfall durchgespielt wurde. Der Beweis des Satzes
vollzieht sich dann ganz genau gleich.

DEFINITION 7. Unter dem (o, ..., &,)-normierten Standardraum zu den Inva-
rianten codim F=n, m, (F), ..., m,(F), 6, (F),..., 6,(F), dimE (). §,=n) verstehen wir
die orthogonale Summe S= @} S;, wobei S; flir i <r ein (s, 4...+5,_ +15 - Us, . +8,)"
normierter Standardraum zu den Invarianten codimF' =6, m(F')=M (F")=m;(F),
dimS;=m; ist und S, ein (g, 4..45,_ +1>---> %)-nOrmierter Standardraum zu den
Invarianten codim F’'=4,, m(F')= M (F')=m,(F), dim S,=dim S. Es sei

Vo @k(e)) ® (V@ k())& 6 (%@ k()
61 5"

ein solcher Standardraum, V,@®* V,®"*:--@*V,=F. Dann sind die m; und §, aus der
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Definition des Standardraumes genau die zu F gehorigen Invarianten; ist nimlich
x=Y Ae; und A;=0 fiir i> iy, 4,,#0, so gilt S(F, x)=S(F, ¢;,). Aufgrund von L.4. hat
ein solcher Standardraum den Defekt n, falls m; >N, andernfalls den Defekt n—4,.

KOROLLAR 3. Sei dimE>N,, FcFE ein dichter euklidischer Unterraum der
Codimension n.

() d(E)=n <m(F)>N,,

(ii) d(E)=n—p<m(F)=N, und §;(F)=p.

Beweis. Aufgrund von Satz 5 ist £ zu einem Standardraum aus Definition 7
isometrisch. Also folgt die Behauptung aus obiger Bemerkung.

KOROLLAR 4. Sei E halbeinfach, dim E>X,, F< FE ein euklidischer Unterraum
der Codimension n (also d(E)<n). Folgende Aussagen sind dquivalent:

(i) F*+=(0) und F ist maximaler euklidischer Unterraum von E,

(ii) d(E)=n.

Beweis. (ii)=>(i) ist klar aufgrund von I.3. Sei also (i) erfiillt und d(E)<n. Dann
kann man nach Satz 5 den Raum E auf einen Standardraum abbilden, wobei man
F auf den ausgezeichneten Unterraum @+ V; abbildet. Dieses Bild von Fist aber genau
dann maximal euklidisch, wenn der Defekt des betreffenden Standardraumes » 1st.
Widerspruch.

Wohl die bedeutendste Konsequenz aus Satz 5 ist die folgende Klassifikation
der Rdume von endlichem Defekt iiber einem S-Korper.

KOROLLAR 5. Jeder Raum von endlichem Defekt iiber einem S-Korper ist iso-
metrisch zu einem der Standardrdume aus Definition 1. Insbesondere ist jeder Raum E
mit d(E)=n eine orthogonale Summe von Réiumen des Defekts 1.

Beweis. Ist E halbeinfach und d(E)=n, so enthilt E einen dichten euklidischen
Unterraum F der Codimension n. Also bestimme man m;(F), 6;(F) und bilde auf den
entsprechenden Standardraum ab.

4. Anwendung auf Rdume iiber beliebigen Korpern

SATZ 6. V sei ein dichter Unterraum der Codimension n< oo des k-Raumes (E, ®),
dimE>R,, V', E', & die entsprechenden Objekte nach Erweiterung des Skalarbe-
reiches zu k' > k. Dann gilt

m (V) = m; (V') ,

Si<
s =5, f ST

Beweis. Durch Induktion nach r.
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SATZ 7. V sei ein dichter euklidischer Unterraum der endlichen Codimension n in
einem (halbeinfachen) k-Raum E (k beliebig, chark #2). Dann gilt:

() d(E)=n <m(V)>N,
(i) d(E)=n—pem((V)=R, und 6,(V)=p
(iii) V ist maximaler euklidischer Unterraum von E genau dann wenn n=d(E).

Beweis. (i) ist klar, (iii) folgt aus (ii). Um (ii) zu beweisen, bezeichnen wir mit
7, E die Riume k@, V, k@, E, wobei kok der algebraische Abschluss von k sei
(also ein S-Korper). Ist also d(E)=n—p, so ist

d(E)=n—p—gq<n—-p und 6,(PV)=n—p—q=46,(V),

aufgrund von Satz 6 und Korollar 3; wihlen wir eine Orthogonalbasis (v,) in ¥, so
gibt es demnach linear unabhéngige Vektoren x;,..., x,_,_, ¢V, die je auf genau ab-
zdhlbar vielen v, nicht senkrecht stehen. Das liefert eine orthogonale Zerlegung

1
|4 &) k(xl, oeny x,,_p_q) = V]_ @ {VZ @ k(xl, v ay x”_p_.q)}

mit dim V, =N,. In V,®k (x4, ..., x,- ,-,) konnen wir eine Orthogonalbasis einfiihren
und sehen somit, dass d(E)<n—p—q, woraus folgt: g=0.

KOROLLAR. Endlicher Defekt ist invariant gegeniiber Erweiterungen des Grund-
korpers:

d(E)=d(k'@®E) falls d(E)< .

Die Aussage des Korollars ist falsch fiir iiberabzihlbare Defekte, wie das Beispiel
in [4] vor Satz III.14. zeigt, in dem ein iiberabzihlbarer Defekt durch K&rpererweite-
rung zu 1 wird. Das Interesse konzentriert sich daher auf Riume E mit dichten
euklidischen Unterrdumen ¥ von abzihlbarer Codimension; denn in diesem Falle
versagen die Methoden sowohl des Beispiels in [4] wie auch unserer Arbeit. Wir
stossen damit in den Bereich eines Problems, welches schon in [4] VIIL.3. formuliert
ist: gilt die Implikation ,,d(E’)=0=>d(E)=0%, wenn E’ aus E durch Erweitern des
Grundkérpers entsteht?

III. Unterriume endlicher Codimension in euklidischen Riiumen iiber S-Kérpern

1. Resultate von Gross [4]

Durch eine explizite Konstruktion (und unabhingig vom Grundkérper) zeigt
man, dass jeder Raum F von endlichem Defekt stets in einen euklidischen Raum E
eingebettet werden kann, in dem F*=(0), V! totalisotrop und dim V't =d(F) ist (V
€in maximaler euklidischer Unterraum kleinster Codimension in F), ferner E=F+ V'*,
Beschrinken wir uns auf S-Korper, dann ist der Beweis besonders einfach: wir
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konnen uns in Anbetracht der Ergebnisse des vorigen Abschnitts damit begniigen,
die Konstruktion fiir einen 0-normierten Standardraum zu den Invarianten codim V=1
und S(V, F)=dimF zu zeigen. Man setze

E=F®k(x), F=k(w)®k(y),d(v,0,)=0, P(v,y)=1.
Nun definiert man eine Fortsetzung von ¢ auf E x E durch
®(v,x)=0, &(x,x)=0, &(x,y)=1.

Dann sieht man, dass (v,—x)u(x +y)uU(x—y) eine Orthogonalbasis von E bildet und
dass E halbeinfach ist. Einbettungen von Ridumen mit beliebigen endlichem Defekt
erhdlt man als orthogonale Summen der hier beschriebenen (vgl. Korollar 3). Rdume
F von endlichem Defekt konnen nur so in euklidische Rdume E eingebettet werden,
dass codimg F>d(F) ist. Bettet man so ein, dass codimg F=d(F), so ist immer V*
totalisotrop und E=F@® V* ([4], Korollar I11.4.).

2. Einige Hilfsbetrachtungen
SATZ 8. Sei E euklidisch, F< E ein dichter Unterraum endlicher Codimension,
V < F ein maximaler euklidischer Teilraum, codimy V' < 00. Dann gilt

dim V* = dim rad V* = d(F).

Beweis. a) Sei F=V@®G, E=VOGOV®X. F*=V'nG*=(0); dacodim;G*'=
=dim G=d(F), ist dies nur moglich, wenn dim V'* <d(F).

b) F@® V! ist euklidisch, denn es enthilt ¥@® V* und ist halbeinfach (1.5.); daher
ist dim V* > d(F).

¢) Den Rest beweist die Bemerkung am Schluss von 1. Nun ist also unter den
Voraussetzungen von Satz 8: E=V@GO VDX mit F=V@G, V' totalisotrop,
dimG=dim V*. Wir sehen sofort, dass X durch V"< V*! ersetzt werden kann: es
muss ja codimg V- =dim V! gelten, aber wie man sieht ist bereits

codimp, pu { VHA(FOVY)}=dimG=dim V.

Ist der Grundkorper ein S-Korper, so kann man dariiberhinaus V"€ V** totalisotrop
und senkrecht auf G wihlen.

Vi ={V®V"}®*' V"' hat eine Orthogonalbasis (was man mit Hilfe eines Satzes
von Ogg (1.6.) oder aufgrund der Inklusion V@ V* < V*! einsieht), also ist V@ V"
euklidisch und ¥ ist dicht in V@ V". Jeder Vektor aus V" steht also auf genau No
Vektoren einer Orthogonalbasis von ¥ nicht senkrecht.

Die bisherigen Uberlegungen zeigen nebenbei, wie eine Einbettung FcE be-
schaffen ist, wenn F halbeinfach und von endlichem Defekt d(F), E euklidisch und
codimgF endlich ist: es sei F*'=F®radF*@®F", Ft=rad F*@F’, VcF ein eukli-
discher Teilraum mit codimy V'=d(F); F'* ist abgeschlossen, besitzt also nach Ogg
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eine Orthogonalbasis; demnach ist F,,=F@®F" euklidisch. Dann haben wir folgende
Zerlegung fiir E:

1
E———(Fo()("BF-L)@Z,

wobei F@®{V* N Fy}cFy, euklidisch ist (nach 1.5.). Aus Satz 8 folgt nun
dim {V't N Fyo}=d(F). Insbesondere sicht man, dass es schon einen euklidischen
Unterraum F, von E gibt (ndmlich F@® {¥V* N Fy,}), in dem F minimale Codimension
hat (ndmlich d(F)).

3. FEin Isomorphiesatz

SATZ 9. E, E seien euklidische Ridume gleicher iiberabzihlbarer Dimension iiber
einem S-Korper. Fc E, Fc E seien Unterrédume mit

(i) codimgF=codimgF< 0,

(ii)y F=F (Isometrie),

(iii) Fr=F* (Isometrie),

(iv) rad Ft =rad F.
Dann gibt es eine Isometrie ¢: E E, die F in F iiberfiihrt.

Bemerkung. Voraussetzung (iv) kann man in speziellen Féllen (z.B. F halbeinfach,
F* totalisotrop, F@®F* orthogonal abgeschlossen) fallen lassen; man muss dann
noch Gleichheit gewisser Invarianten von F und F fordern. Der allgemeine Fall mit
rad F* #rad F bereitet erhebliche Schwierigkeiten.

Beweis. a) Zunichst betrachten wir den Kaplansky-Verband, der zu F (bzw. F)
gehort:

F.L.L

Man beachte, dass F* und F*, also auch rad F und rad F endlich-dimensional sind
(Wegen (i)). Es gibt eine Witt-Zerlegung

1
E=(radF® X)® E,, ™)

wobei rad F® X eine orthogonale Summe von dim rad F hyperbolischen Ebenen ist;
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E, enthilt ein Komplement F, von rad F in F sowie ein Komplement F; von rad F in
F*. Dasselbe gilt fiir £ (mit Querstrichen). Auf die halbeinfachen Riume F,, F,
(statt F, F), F,, F, (statt F*, F*) und E,, E, (statt E, E) treffen wieder die Voraus-
setzungen unseres Satzes zu. Die Zerlegung (*) zeigt nun, dass es geniigt, den Satz
unter der Voraussetzung

(iv) rad Ft=rad F=(0)
zu beweisen.

b) Wir setzen also F* und damit auch F halbeinfach voraus. Der Kaplansky-
Verband sieht dann so aus:

E=FJ"L@FJ'
F.L.L F@Fl
F Ft
(0)

Sofort ergibt sich eine weitere Reduktion des Problems: hat man den Satz fiir dichtes
F bewiesen, so ist man fertig; denn dann hat man eine orthogonale Abbildung
¢ :F++— F'*, welche Fin F iiberfiihrt. Die gesuchte Abbildung ¢: E— E erhilt man
also durch Zusammensetzen von ¢’ und einer Isometrie or: F+— F*.

c) Nun beweisen wir den Satz fiir dichtes F. Die Betrachtungen am Schluss von
2. erlauben uns eine Zerlegung

E=Ve®GapVtev”

mit F=V®G, V'V, V@G totalisotrop, ¥ maximal euklidisch. Analog zerlegen
wir

E=VaoGoViar,

wobei wir fiir 7 das Bild von V bei einer Isometrie §: F—F nehmen (dann stimmen
die Invarianten m;(V), m;(V), 8;(V), 8;(V), berechnet in V@G bzw. V@G iiberein).
VOGA®V” und POG® V" sind halbeinfache Riume, in denen ¥ bzw. ¥ dicht liegt.
Zu der Liste von Invarianten m;(V), 6;(V), m;(V), 8;(V), berechnet in V@G bzw.
V@G tritt nur noch :

mo(V)=my(V)=8, und 6,(V)=6,(V)=dimV" =dimP"

hinzu, wie ebenfalls die Betrachtungen unter 2. zeigen. Es ist also méglich, eine nor-
malisierte Basis von G@®¥” und G® P” so zu wihlen, dass darin eine Basis von ¥’
bzw. V" enthalten ist (weil S(V, x)=m(V)="N, ist fiir alle Vektoren xe¥”). Man
kann also eine Isometrie ¢’: VOGD V"— VDG P’ finden mit ¢’ (V) =V, ¢’ (G)= G,
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o' (V")=P". G®V* und G® V" sind isometrisch, weil sie halbeinfach und von maxi-
malem Index sind. Also kann man ¢’ l ¢ Zu einer Isometrie ¢”:GA V-GV fort-
setzen. Nun setze man

@ l viviie =95  Olyr=@"|y..

Eine spezielle Situation von Satz 9 ist die, dass F*=(0) ist. Sie tritt insbesondere
dann auf, wenn codimgF=d(F); denn (mit den oben gebrauchten Bezeichnungen)
V1 ist dann nach [4], Korollar IIL.4. totalisotrop und wenn E halbeinfach ist, muss
also F1=V*nG*=(0) sein. Satz 9 sagt also unter dieser Voraussetzung, dass es im
wesentlichen nur eine Einbettung eines Raumes F von endlichem Defekt in einen
euklidischen' Raum F gibt, bei welcher codimg F=d(F). Dies gilt jedoch unabhingig
vom Grundkorper k, wie folgender Satz zeigt. :

SATZ 10. E, E seien euklidische Raume gleicher iiberabzihlbarer Dimension; Fc E,
Fc E seien halbeinfache Unterrdume mit

(i) F=F,
(ii) codimzF=codimgF=d(F)=d(F)< .

Dann gibt es eine Isometrie ¢: E—E, die F in F iiberfiihrt.

Beweis. Sei F=V@®G, V ein euklidischer Unterraum der Codimension d(F). Auf-
grund von (i) hat man dann F= V@G, wobei die entsprechenden Rdume isometrisch
sind. Ferner ist E= VOGOV, E=VOGOV!; V@G sowie V@G sind beide halb-
einfach und von maximalem Index d(F), also isometrisch. Man kann nun die Iso-
metriec G—»G (Restriktion der durch (i) garantierten Isometrie) zu einer Isometrie
GOV-G@V* so fortsetzen, dass ¥+ in P+ iibergeht.
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