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Zur Berechnung endlicher euklidischer Defekte in quadratischen

Râumen

Paul Hafner (Zurich)

Einleitung

Als zentraler Begriff fur die Théorie quadratischer Râume erweist sich in [4] der
euklidische Defekt. Die vorliegende Arbeit schliesst sich an Satz IV. 1. von [4] an:
wir fiihren einen Teil der dort angedeuteten Erweiterungsmôglichkeiten des Iso-
morphiesatzes durch (Satz 5). Damit erhalten wir eine Klassifikation von Râumen
endlichen Defekts iiber speziellen Kôrpern (Korollar 5). Dièse Resultate erlauben
dann die Berechnung endlicher Defekte von Râumen iiber beliebigen Kôrpern (Satz
7). Schliesshch beweisen wir in leichter Verallgemeinerung von Satz 5 einen Iso-
morphiesatz fiir Unterrâume endlicher Codimension in euklidischen Râumen iiber
speziellen Kôrpern (Satz 9).

Herrn Professor Dr. H. Gross danke ich fiir viele anregende Diskussionen.

I. Bezeichnungen und Resultate

Wir betrachten Vektorrâume iiber einem kommutativen Kôrper k, charfc^2.
Unter einem quadratischen Raum iiber k verstehen wir ein Paar (E9 #), wobei E ein
fc-Vektorraum und # eine symmetrische Bilinearform <P:ExE->k ist. Die Bezeichnungen

unserer Arbeit sind die allgemein gebrâuchlichen (man siehe z.B. Gross [4]).
Ist U ein Unterraum, so bezeichnen wir Un C/X rad U als das Radikal von U. Ein
Teilraum V eines quadratischen Raumes E heisst dicht (in E), falls V1A- E ist;
W<=:E heisst (orthogonal) abgeschlossen, falls WLL= W gilt. Halbeinfache Râume
(E, #), die eine beziiglich # orthogonale Basis besitzen, werden euklidische Râume
genannt. Der euklidische Defekt d(E) eines halbeinfachen Raumes E ist das Minimum
von dimE/F, wo F sâmtliche euklidischen Unterrâume von E durchlâuft. Folgende
Sâtze werden wir immer wieder benûtzen:

1. Râume abzâhlbarer Dimension besitzen eine Orthogonalbasis.
2. ([4], Satz III.2.) Ist (E9 $) halbeinfach und F eine euklidische Hyperebene in

E, so sind folgende Aussagen âquivalent:
(i) Fbesitzt eine Orthogonalbasis (/T)T6j und ein algebraisches Komplement / in

E derart, dass #(/T, /)#0 ist fiir iiberabzâhlbar viele tel.
(ii) Fiir jede Orthogonalbasis (ft)xeI von F und jedes Komplement / von F gilt
/t, 0^0 fur iiberabzâhlbar viele zeL
(iii)
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Wir werden in Satz 1 sehen, dass card{r | $(fx, 0^0} eine Invariante von
3. ([4], Satz III.4.) Sei (F, <£>) halbeinfach und von endlichem Defekt. Ist F ein

euklidischer Teilraum der Codimension d(F)9 so ist Fx (0).
4. ([4], Satz III. 12.) E— ®jEt sei die (âussere) orthogonale Summe einer hôchstens

abzâhlbaren Familie von Râumen (Ei9 &t) vom Defekt 1. Es ist d(E) ca.râL
5. ([4], Korollar III. 1.) (E9 0) sei euklidisch; F sei ein Teilraum mit dim[£/(F+

+F-L)]^K0 und F besitze eine fur <P orthogonale Basis. Jeder Teilraum F von E,
der F+F1 umfasst, besitzt eine fur # orthogonale Basis; F ist also euklidisch genau
dann, wenn F halbeinfach ist.

6. Sehr niitzlich ist folgender Satz von E. Ogg: (E, 0) sei euklidisch. Jeder orthogonal

abgeschlossene Teilraum FcE lâsst ebenfalls eine fur <P orthogonale Basis zu.
7. ([5], Satz 7.13.) (E, $>) sei halbeinfach und von abzâhlbarer Dimension, F ein

halbeinfacher Unterraum mit der Orthogonalbasis (Vi)ieN. V ist genau dann dicht,
wenn es zu jedem x$V eine unendliche Menge J*cN gibt, sodass &(x, vt)^0 fiïr
aile ielx.

Besonders einfache Verhâltnisse findet man bei unendlich dimensionalen Râumen
dann vor, wenn der Grundkôrper k folgende Eigenschaft besitzt:

chark # 2, und es gibt eine nur von k abhângige natiirliche Zahl n mit der

(S) Eigenschaft, dass jede quadratische Form in n +1 Variabeln iiber k die Null
nicht trivial darstellt.

Wir werden der Kùrze halber von S-Kôrpern sprechen. Halbeinfache Râume von
abzâhlbar unendlicher Dimension ûber 5-Kôrpern besitzen immer eine orthonor-
mierte Basis. Dies ist gleichbedeutend damit, dass ein solcher Raum orthogonale
Summe von hyperbolischen Ebenen ist (s. [6]); es gibt also ,,viele" isotrope Vektoren
in diesen Râumen.

8. ([1], Satz 1) Ober S-Kôrpern gilt der folgende Isomorphiesatz: Seien (E, <P),

(É, W) halbeinfach und von abzâhlbarer Dimension; sind VcE, VcE dichte Unter-
râume gleicher Codimension, so gibt es eine orthogonale Abbildung cp:E-+Ë, die

F in F ûberfiihrt. Ist die Codimension von F endlich, so gibt es sogar zu jeder Iso-

metrie q>':G^>G (G, G beliebige isometrische Komplemente von Fbzw. F) eine Fort-

setzung (p:E->E mit dieser Eigenschaft.
9. Allgemeiner gilt fiir S-Kôrper der folgende Satz: ([2], Scholion): E sei ein-

halbeinfacher Raum abzâhlbarer Dimension iiber einem S-Kôrper, F, V
isometrische Unterrâume, fiir die folgende Bediilgungen erfiillt sind:

(i) V^?\
(ii) dim [(rad F)1J-/rad F] dim [(rad F)xl/rad V],

(C) (iii) dim [rad Fx)/(rad F)11]=dim [rad ?^/(rad F)11],
(iv) dim [F1J7(F+rad(Fx))] dim [f11/(f+rad (F1))],
(v) dim[(radCF1))1/^1 + F11)] dim[(radCF1))1/^1 + ?1X)].
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Dann gibt es eine Isometrie cp:E-+E, die Fin Pûberfuhrt.
Dieser Satz lâsst sich ùbertragen auf den Fall, dass E euklidisch und von beliebiger

iiberabzâhlbarer Dimension ist, sofern man fiir die Teilràume F, V mit den Eigen-
schaften (C) hôchstens abzâhlbar unendliche Dimension beibehâlt. Dem Beweis
schicken wir folgendes Lemma voraus :

LEMMA. B=A®C sei ein Unterraum eines euklidischen Raumes E und A sei

orthogonal abgeschlossen. Dann gilt

KOROLLAR 1. Unter den Voraussetzungen des Lemmas gilt

KOROLLAR 2. Fur Unterrâume B von euklidischen Râumen gilt

Beweis des Lemmas. B1 A1nC±; da wir in einem euklidischen Raum E sind,
gilt codim£C1 dimC, also AL BL@D mit dimD^dimC. Damit haben wir das

Teilresultat : ist AcBcE und E euklidisch, so gilt

Auf A1 und B1 treffen dièse Voraussetzungen aber auch zu; also

1111 1^1) < dim£/,4.
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Setzt man nun voraus, A sei orthogonal abgeschlossen, so sieht man

Nun betrachten wir den Verband von F (erzeugt von F unter den Operationen
1, n und + in E; vgl. [2]) (s. Diagramm auf Seite 137).

Nach Korollar 1 (F1 + F11 und F1 anstelle von B bzw. A) ist dim [(rad F1)1/
/(F1 + F11)]<dimF11 dimF^K0. Ausserdem gilt codim^radF1)1^; das

bedeutet, dass ein Komplement Y von F14- F11 in E hôchstens abzàhlbare Dimension

hat. Wir zerlegen: E= F11© F'® 7, wo F' ein Komplement von rad F1 in F1
ist. Fq sei ein abzàhlbardimensionalerUnterraum von F/.Dannistdim(F11©Fo© F)

K0. Das gleiche tut man mit F: es wird dim(F1J-©Fo©F) Ko, und wir finden
einen halbeinfachen, abzâhlbar dimensionalen Unterraum U von E mit

(j) E=
(jj) v^

In U kann man den Satz fur abzâhlbar dimensionale Râume anwenden, und wegen

(j) liefert das auch einen orthogonalen Automorphismus von E.

II. Râume mit dichten euklidischen Unterrâumen endlicher Codimension

1. Vorbereitungen

(E, <P) sei ein halbeinfacher Raum vom Defekt 1, Feine euklidische Hyperebene,

E=F®k(e)9 B=(fx)teI eine Orthogonalbasis von F. Wir definieren:

DEFINITION 1.

SATZ 1. cardS(i?) ist eine Invariante von F, also unabhângig von der Wahl der
Orthogonalbasis B und der Wahl des Komplementes e,

Beweis. Aufgrund von 1.2. ist jedenfalls card£(2?)>X0. Beim Ubergang zu einem

andern Komplement e'=£ Àtfx+fie ergeben sich daher keine Ânderungen. Sei B'

=(/T/)reJ eine andere Orthogonalbasis von jpund

Die Matrizen (atK) und (Pfffi) sind beide zeilenfinit.
Nun ist #(/;,/ff)=atJ|/ff||=iSfft||/;il, und wegen ||/J|#0#||/;|| sieht man, dass

der Obergang von BzuB' durch eine zeilen- und spaltenfinite Matrix vermittelt wird.
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Das ergibt die Abschàtzung

card S (£') < Ko card S (B) card S (B),

und die Argumentation ist symmetrisch in B und B'. Also

Eine analoge Invariante lâsst sich auch fur den Fall d(E) 0 und Fx (0) defi-
nieren. Wir behaupten nâmlich, dass dann cardS(i?) X0. Dies folgt aus 1.7. und
dem folgenden

LEMMA. Sei dim£>K0, FczE eine euklidische Hyperebene mit F1 (0), E=
F®k(e). Dann gibt es eine orthogonale Zerlegung F=F1®1F2 mit âimFl K0 und

Ft F2. Ist d(E)=l, so gilt dabei stets F2=FX; ist d(E) Q9 so hat man F1^©
®k(e) und es gibt eine Zerlegung mit F2=F1®k{é).

Beweis. 1) d(E)=l; (/T)T6/ sei eine Orthogonalbasis von F. Nach 1.2. gibt es

card/1 K0, mit#(/T, e)^0fùrTe/2.Nun setzt

Ist eine Zerlegung F=F1@F2 mit dimF1 K0 und F11 F2 gegeben, so erhâlt
man eine Orthogonalbasis von F als Vereinigung einer Orthogonalbasis von Fx und
einer von F2. Aufgrund von 1.2. folgt nun, dass F^F^

2) d(E) 0; (fx)rei sei eine Orthogonalbasis von F. Die Menge /3 aller t mit
0(/T, e)^0 ist hôchstens abzâhlbar. Wir bezeichnen mit /4 eine abzâhlbare Teilmenge
von /, welche 73 enthàlt. Nun setzen wir F1=k(fx)xel4, F2 k(fx)reI_l4. Dann ergibt
sich

F,1 F,1 nF2 + Fi1 n (Ft 0 k(e)),

und dies letztere ist genau dann Null, wenn Fin{Fx +k(e)} (0).
Wir fassen zusammen :

DEFINITION 2. F sei eine euklidische Hyperebene von (E9 4>), Fx (0), B eine

Orthogonalbasis von F. Die Invariante

cardS(B) card {/T | fxeBf <P(ft, x}*0,E F® k(x)}

werden wir mit S (F, E) bezeichnen.
Es ist S (F, 2s)=N0 genau dann wenn E euklidisch, S (F, F)>K0 genau dann wenn

d(E)= 1 ist. Wie wir sehen werden, bestimmt S (F, E) die ,,Lage" von F in F bis auf
einen metrischen Automorphismus von E eindeutig, wenn wir uns auf S-Kôrper
beschrânken.
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Verhalten von cardr(2?)
1) Ist S(F9 E)<dimE, so ist natiirlich cardT(B) àimE fiir aile Orthogonal-

basen von F.

2) Sei also S (F, E) dimE; B sei eine feste Orthogonalbasis von F. Wir werden

zeigen, dass man zu jeder unendlichen Kardinalzahl a mit cardT(i?)<a<dimis eine

Orthogonalbasis B' mit caxdT(B') a angeben kann.
Beweis. Sei B=S(B)uT(B% S(B)=(fx)xeh, T(B) (fx)xel2, card/^dimi*,

#(/t, e)= 1 fur te Jx ; ferner seiy'c: Jl5 card/" a. Wir bilden Mengen SDÎ von Paaren

(t, t')g/' xj' mit t^t', (t, r^n^, /i') 0 fiir je zwei Paare aus einer Menge 9ft, und

ll/tll +ll/t'll #0. Nach dem Lemma von Zorn gibt es eine maximale solche Menge
SDt0 und man verifiziert, dass fur SDÎ0 gilt:

card {Cr (prt mo u pr2 JDl0)} < 2.

Setzen wiry=pr1SDîoupr2$0lo? so ist also card/=a und wir haben eine Bijektion
0L:ptiyR0^>pr23R0 vermôge tw', wenn (t, t')g2R0- ^ie Paare (/T,/a(t)) spannen
Ebenen ^(xep^SDÎo) au^- Nun bezeichnen wir

B2 {hr | fct±(/t - /a(t)), hreEx,

Dann ist B' r(5) vBtuB2vB3 wieder eine Orthogonalbasis von F und

T(B) u^c T(B') cz T(jB) u5tu 52, B3 n 7(5') 0.

Hieraus folgt die Behauptung.
cardT(i?) lâsst sich aber nicht nur willkiirlich vergrôssern sondera auch verklei-

nern. Wir zeigen hier nur die Konstruktion einer Basis B' mit T(B') 0; das all-

gemeine Prinzip wird dadurch vôllig klar. B sei eine Orthogonalbasis, S(B) (ft)xeir
T(B)=(ex)xeÏ2, jczlu cardj card/2, a'J-*I2 eine Bijektion. Wir definieren

{ft | x€ll9 rtj}9 B2 {/T + pxea(x)

e«<T)ll

wobei j5t so gewâhlt wird, dass ft#0 und ||/J +j8T2 ||ea(t)|| ^0 ist. So ein px findet man

aber fiir jedes t, ausser wenn der Kôrper k nur 3 Elemente hat. Ist aber ^ F3, dann

kônnen wir B orthonormiert voraussetzen und /?t=l nehmen. Nun ist BtuB2uB3
=2?' eine Orthogonalbasis von F mit card!F(2r)=0.
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2. Der Fall codim£F= 1

SATZ 2. E, Ë seien halbeinfache Râume gleicher ùberabzâhlbarer Dimension iiber

einem S-Kôrper; FczE, Fa Ë seien euklidische Hyperebenen mit jP1 (O), F1 (0) und

S (F, E) S(F, Ë); dann gibt es eine orthogonale Abbildung (p:E—>Ë mit (p(F) — F,

<p(e) ë, wobei E=F®k(e), Ë=F®k(ë) und \\e\\ ||ê||.

Beweis. 1) Sei S (F, E) dimE. Wir kônnen also eine Orthogonalbasis B=
(fx)xeivon ^S0 wâhlen, dass T(B) (fr wird. Jede Partition /= \J la mit card 4 K0

gibt Anlasszueiner Zerlegung F=@1F(T mit F(T /:(/T)T6/<TunddimF(T K0. Dabeiist
F^n{Fa®k(e)} (0). In gleicher Weise bilde man FffczF mit der entsprechenden

Eigenschaft. Nun kann man nach 1.8. Isometrien (pa\Fa®k{e)-+Fa®k{ë) finden mit
ipa(Fa)=F(J und <p(r(e) ê. Dièse cpa setzt man zusammen zu (p.

2) Ist S (F, E) <dimE und B eine Orthogonalbasis von F, so gibt es eine

Zerlegung

E {F'®k{e)}®F\ (1)

wobei F' von S(B) erzeugt wird, F" von T(B). Ebenso:

Ë={F'®k(ê)}®F". (2)

Auf die ersten Summanden der orthogonalen Summe in (1) und (2) treffen die

Voraussetzungen von 1) zu. F" und F" sind von gleicher unendlicher Dimension und
orthonormiert (S-Kôrper!), also isometrisch.

Es ergibt sich sogleich das folgende

KOROLLAR 1. Zwei halbeinfache Râume E, Ë uber einem S-Kôrper mit d(E) ^ 1,

d(Ë)^.\ sind isometrisch genau dann, wenn es euklidische Hyperebenen VczE, VcË
gibt mit V1 (0), Fx (0), S(V, E) S(V, E) und dim£=dim£

Defîniert man fur Râume E mit d(E)^l eine Invariante m(E) als minS(F, E),
wo V aile euklidischen Hyperebenen durchlâuft, so sagt das Korollar offenbar, dass

solche Râume E durch dimE und m(E) bis auf Isomorphie eindeutig festgelegt sind.
Als Ergânzung zu Satz 2 kann man noch zu gegebenen Paaren S (F, E)^dimE

Standardrâume angeben. Sei card Ix S (F, E\ I2 0 wenn S (F, E) dimE, card I2
dimE sonst. F werde aufgespannt von einer orthonormierten Basis (/T)te/lU/2,E), wobei <ï>(/T, e)= 1 fur xell9 <f>(/t, e) 0 fur rel2 und ||*|| =a (beliebig).

DEFINITION 3. Den soeben definierten Raum E bezeichnen wir als ,,a-nor-
mierten Standardraum zu den Invarianten codimF=l, S(F, E), dimE".

3. Der Fall codim£F=«<oo

DEFINITION 4. Sei E halbeinfach, F ein euklidischer Unterraum von E mit



142 PAUL HAFNER

F1 (0), u$F. Wir fùhren folgende Bezeichnungen ein:

S (F, u): S(F,F®k(u)) m(F): minS(F, u) M (F): maxS(F, u)

m (F) und M (F) sind offensichtlich Invarianten von F.

SATZ 3. E und F seien wie in der Définition 4,ferner sei codim£F=«. Dann gibt
es hôchstens n verschiedene Werte fur S (F, u).

Beweis. Angenommen es gâbe uu...,un+1$F mit S (F, ux < S (F, u2) < • • • <
<S(F, un+1). Dannist

un+l =f+ t *,«, (/6F).

Hieraus folgt der Widerspruch S(F, un+î)<S(F, ww+1). Dièse hôchstens n Werte
ordnen wir der Grosse nach und bezeichnen sie mit m(F) m1(F)<m2(F)<-<
<mr(F) M(F) (r^n). Man ùberlegt sich auch sofort, dass in jedem algebraischen
Komplement von F Vektoren xt liegen mit S (F, jc,-) /Wi(F) fiir aile i^r.

DEFINITION 5. E und F seien wie in Satz 3.

Kt(F): {x | xeE, x$F, S(F9 x) ^ mt(F)}
51(F): n — codim^Ei

i-l
ôt(F): n — codim££f — £ ôv

v=l
Dabei verstehen wir unter Et die lineare Huile von FuKt(F).

Dieser Aufwand an Definitionen erlaubt uns eine gewisse Normalisierung eines

Komplements von F: unter einer normalisierten Basis eines algebraischen Komple-
ments G von F in E verstehen wir eine Basis xi9..., xôi,..., xôl+Ô29..., xn von G mit

xl9...,xôleKl(F),xôi + u...,xôl+Ô2eK2(F)-Kl(F) etc. Man verifiziert nun ohne

Mûhe, dass S(F, x)>mt(F) fur aile xeF®k(xôl+...+ôi_l+l9...9 xn), x$F.
BeispieL Sei F=k(ft), wo t aile Elemente (d.h. aile kleineren Ordnungszahlen)

der Ordnungszahl cov durchlâuft, v^l fest, (/T) eine orthonormierte Basis, E=F®
®k{x9y)9

y)=l fur t^co0
fiir
fur o

Dann ist S (F, x)=S(F9 y)=dimE. {x,y} ist aber keine normalisierte Basis eines

Komplementes von F, denn m(F)=S(F, jc—}>)=K0; {x—y9 y} ist eine normalisierte
Basis.
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SATZ 4. Seien E, Ëhalbeinfache Ràume uber einem S-Kôrper, dimis dimË^Ko,
FczE, FczË euklidische dichte Unterràume gleicher Codimension n, m(F) M(F)=
m(F)=M(F). Dann gibt es eine orthogonale Abbildung (p:E-+Ë mit cp(F) F. Dabei
kann man ein beliebiges Komplement von F in ein dazu isometrisches Komplement von

F uberfûhren.
Beweis. Aufgrund inzwischen bekannter Argumente (s. den Beweis zu Satz 2)

kônnen wir uns auf den Fall âimE=m(F) beschrànken; fiir dimis X0 steht der
Satz bei Gross [1], also setzen wir m(F)=dim£I>K0 voraus. Der Beweis verlâuft
dann wôrtlich wie bei Gross [4], Satz IV. 1. Sei (/T)Te/ eine Orthogonalbasis von F,

xl9...,xn Basis eines Komplementes von F in E. Wir werden zeigen, dass es eine

Partition /= (J Ia gibt mit

(i) card/(T X0,

(ii) FÎn{F.®k(xu...9 *„)} ((>), Fa k{fx)teIa.

Fur n 1 steht das im Beweis von Satz 2. Sei die Behauptung also richtig fiir codimF=
n — 1 ; d.h. es gibt eine Partition (Iff) von / mit den Eigenschaften

(ii)' /(T1
a

Als Indices der Partition (7ff) nehmen wir aile Ordnungszahlen des Abschnittes [0, a[,
a eine Anfangszahl (also carda m (F)). Die zu konstruierende Partition (/,) indi-
zieren wir ebenfalls mit Ordnungszahlen aus besagtem Abschnitt. Wir setzen

Da Fî n {F.®k(xl9...9xH)};

wegen (ii)' gilt also dim/)^ 1.

Falls £>0 (0), definieren wir I0 I0', andernfalls ist D0 k(x), und es gibt immer
noch m{F) Vektoren/T ausserhalb von Fo, welche auf x nicht senkrecht stehen. Einer
davon liège in 7M; dann definieren wir Jo /ou/r Nun sei ll schon erklârt (als Vereini-
gung von hôchstens 2 Elementen der Partition (/<,)) fiir aile kk. Dabei sei v* die
grôsste Zahl mit

Ivc(JJ, fur aile v<v*^a.
Kk

Ist v* a, so sind wir fertig. Ist v*<a, so ist cardUl<KIr<2card(Jv<v«/v<N0
cardv*<m. Ist Z>v* (0), so setzen wir /K /v<,. Andernfalls ist Z)v* k(y), und es gibt
unter den/T^©(T<lcF<r immer noch m(F), welche nicht senkrecht auf y stehen. Eines
davon sei in 7e; dann setzen wir JK 7v*u7e. Dièse rekursive Définition beendigt den
Schluss von n— 1 auf n. Um hieraus schliesslich Satz 4 zu folgern, wendet man analog
wie im Beweis von Satz 2 den J5Wittschen Satz" im abzâhlbaren Falle (1.8.) auf die
Ràume F<r®k(xl,...9xn) an, wobei man die Isometrie auf k(xu...,xn) fest vor-
schreiben kann.
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DEFINITION 6. Unter dem (al5..., aw)-normierten Standardraum S zu den In-
varianten codimF=«, m(F) M(F), dimS verstehen wir die orthogonale Summe

»S'=®?=1Sl-, wo St fur i<n ein arnormierter Standardraum zu den Invarianten
codimjF'=l, S(F'9E)=m(F), dimE=m(F) ist und Sn ein arnormierter Standardraum

zu den Invarianten codimF'=l, S(F\ E) m(F), dim£'=dim*Sr.

KOROLLAR 2. Jeder halbeinfache Raum E tiber einem S-Kôrper, der einen eukli-
dischen dichten Teilraum F mit m(F) M(F) und von endlicher Codimension n enthâlt,
ist zu jedem (al5..., ccn)-normierten Standardraum zu den Invarianten n, m, dimE iso-

metrisch. Umgekehrt gibt es zu jedem Tripel (n, m, d) mit den Resîriktionen n < Xo <
<m<</ einen halbeinfachen Raum S, der einen dichten euklidischen Unterraum F der

Codimension n enthâlt mit m(F) M(F) m.
Beweis. Klar.

SATZ 5. Seien E, E halbeinfache Râume uber einem S-KÔrper, dim£f=dimjSi,
FcE9 FczÊ euklidische Unterrâume gleicher endlicher Codimension n, FL (0),

_Dann gibt es einen orthogonalen Isomorphismus (p:E-*É mit cp(F) F. Man kann

ùberdies q> auf einem Komplement G von F so vorschreiben, dass eine normalisierte
Basis von G in eine normalisierte Basis eines isometrischen Komplementes G von F
ùbergeht.

Beweis, Wieder beschrânken wir uns auf den Fall dim£'=mr(F). Der Beweis

erfolgtdurchlnduktionnach r. Fiir r— 1 haben wir Satz 4. Um den Gedankengang klar
werden zu lassen, beweisen wir auf der Grundlage von Satz 4 unseren Satz zunàchst

nur fur r=2. In F haben wir eine Orthogonalbasis (/T)Te/, k(xl9...9 xôl, yi,...,yô2)
sei ein Komplement von Fmit S(F, x1)=- S(F, xôl) mu S(F, yl)='" S(F, yÔ2)

m2 (F)9 ferner seien die y{ paarweise orthogonal (o.B.d.A.). Wir werden zeigen, dass

F=Fl®1F2, wobei Ft ©xFlv mit

(i) âimFl=ml(F), also àimF2 m2(F),
(ii) F2±k(xi9...,xôl),
(iii) dimFlv K0,

(iv) Ftvn{Flv®k(x1,...,xôl,y1,...,yÔ2)} (0).

Bezeichnen wir mit F[ zunàchst den Raum, der von allen/T aufgespannt wird, die

auf einem der Vektoren xl9...9 xôl nicht senkrecht stehen, mit F2 den von den rest-

lichen/T aufgespannten Raum. Dann haben wir (i) und (ii) und vermôge Satz 4 (an-

gewandt auf F{®k(xl9...f xôl)) eine Zerlegung JFi ©XF1'V mit

(iii)' di
(iv)'
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F2®k(yl9...,yÔ2) kônnen wir uns als Standardraum ®\2{Vi®k(yi)} vorstellen (zu
den Invarianten ô2, m2, m2)9 wobei Vi k(viv)vej und (viv) die in der Définition der
Standardrâume auftretende orthonormierte Basis ist. Sçhliesslich wollen wir an-
nehmen, die Zerlegung F[ ®1F[V sei mit ve[0, a[, a die Anfangszahl mit carda

mi(F), indiziert; j sei ebenfalls ein Anfangsabschnitt der Ordinalzahlen. Setzen

wir nun
Ô2

Fi=Fi0 0 k(viv)vel0taV

i=\

so verifiziert man (i), (ii), (iii) und (iv). Der Rest des Beweises fiir r=2 scheint nun
klar: Er ist ein einfaches Zusammenspiel des Wittschen Satzes im abzâhlbaren Fall
(fur die Flv®k(xu..., yÔ2)) mit Satz 4 (fur F2®k(yu..., yÔ2));

Der allgemeine Schluss von r — 1 auf r erfordert lediglich mehr Schreibarbeit.
Man behauptet zunâchst: es gibt eine Zerlegung JF=F1©1---©-LFr und Zerlegungen
Ff= ®LFiy mit folgenden Eigenschaften :

(i)
(ii) F2®-~®Fr±k(xu...,xôl),

F3®'"®Frlk(xu...,xôl,...,xôl+Ô2)9

FrJ-k(x1,...,
(iii)
(iv)

Beim Induktionsschritt zum Beweis dieser Behauptungen hat man nichts anderes zu
tun als das, was im vorigen Spezialfall durchgespielt wurde. Der Beweis des Satzes

vollzieht sich dann ganz genau gleich.

DEFINITION 7. Unter dem (a1?..., an)-normierten Standardraum zu den
Invarianten codimF=«, ml(F),..., mr(F), ôl(F),..., ôr(F), dimE(^ ôt n) verstehen wir
die orthogonale Summe S= ®ri=l Si9 wobei Stfixr i<r ein (aôl + 4..+ôi_1 + u...aôl + ...+ât)-
normierter Standardraum zu den Invarianten codim.F^^f, m{Ff) M{F')^mi{F),
dimSi^nii ist und Sr ein (a<5l + ...+5r_1 + 1,..., an)-normierter Standardraum zu den
Invarianten codimF' (5r, m(F') M(F') mr{F), dimSr dimSf. Es sei

Si <*r

ein solcher Standardraum, F1©-LF2®±--©XKB=F. Dann sind die m{ und bt aus der
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Définition des Standardraumes genau die zu F gehôrigen Invarianten; ist nâmlich

*=Z Vf und Af=0 fur />i0, Alo#0, so gilt S(F, x)=S(F, eio). Aufgrund von 1.4. hat
ein solcher Standardraum den Defekt n, falls mi>tf0, andernfalls den Defekt n—ô^

KOROLLAR3. Sei dim£>K0, FczE ein dichter euklidischer Unterraum der
Codimension n.

(i) d(E) n <ww(F)>K0,
(ii) d(E)=n-pom(F)=K0 und 8l(F)=p.
Beweis. Aufgrund von Satz 5 ist E zu einem Standardraum aus Définition 7

isometrisch. Also folgt die Behauptung aus obiger Bemerkung.

KOROLLAR 4. Sei E haïbeinfach, dim£>X0, FczE ein euklidischer Unterraum
der Codimension n (also d(E)^n). Folgende Aussagen sind âquivalent:

(i) F1 (0) und F ist maximaler euklidischer Unterraum von E,

(ii) d(E) n.

Beweis. (ii)=>(i) ist klar aufgrund von 1.3. Sei also (i) erfiillt und d(É)<n. Dann
kann man nach Satz 5 den Raum E auf einen Standardraum abbilden, wobei man

Fauf den ausgezeichneten Unterraum ®1Vi abbildet. Dièses Bild von F ist aber genau
dann maximal euklidisch, wenn der Defekt des betreffenden Standardraumes n ist.

Widerspruch.
Wohl die bedeutendste Konsequenz aus Satz 5 ist die folgende Klassifikation

der Râume von endlichem Defekt ùber einem 5-Kôrper.

KOROLLAR 5. Jeder Raum von endlichem Defekt ùber einem S-Kôrper ist
isometrisch zu einem der Standardrâume aus Définition 7. Insbesondere ist jeder Raum E

mit d(E)=n eine orthogonale Summe von Râumen des Defekts 1.

Beweis. Ist E halbeinfach und d(E)=n9 so enthâlt E einen dichten euklidischen

Unterraum F der Codimension n. Also bestimme man mt(F), <5f (F) und bilde auf den

entsprechenden Standardraum ab.

4. Anwendung auf Râume ùber beliebigen Kôrpern

SATZ 6. V sei ein dichter Unterraum der Codimension n< oo des k-Raumes (E, #),

dim£>X0, V\ E\ $' die entsprechenden Objekte nach Erweiterung des Skalarbe-

reiches zu k'^>k. Dann giltt

m:(V) r

Beweis. Durch Induktion nach r.
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SATZ 7. V sei ein dichter euklidischer Unterraum der endlichen Codimension n in
einem (halbeinfacheri) k-Raum E (k beliebig, charfc#2). Dann gilt:

(i) d(E) n om(F)>K0
(ii) d(E) n-pom(V)=:K0 und ôt(V)=p
(iii) V ist maximaler euklidischer Unterraum von E genau dann wenn n d(E).

Beweis. (i) ist klar, (iii) folgt aus (ii). Um (ii) zu beweisen, bezeichnen wir mit
P, E die Râume k®kV, k®kE, wobei IczDk der algebraische Abschluss von k sei

(also ein S-Kôrper). Ist also d(E)~n—p, so ist

d{E) =n- p-q^n- p und ôl (F) n - p - q ôx (F),

aufgrund von Satz 6 und Korollar 3; wâhlen wir eine Orthogonalbasis (vt) in F, so

gibtesdemnachlinear unabhângige Vektoren xu..., xn-p-q$V, die je auf genau ab-
zâhlbar vielen vT nicht senkrecht stehen. ,Das liefert eine orthogonale Zerlegung

i
(xu..., xn_p_€) vx e {v2 e k(xu..., xn_p.q)}

mit dimF2 K0. In F2®^(x1?..., xn-p-q) kônnen wir eine Orthogonalbasis einfiihren
und sehen somit, dass d(E)^n—p — q, woraus folgt: #=0.

KOROLLAR. Endlicher Defekt ist invariant gegenùber Erweiterungen des Grund-
kôrpers:

d(E)=d(k'@kE) falls d(E)<oo.
Die Aussage des Korollars ist falsch fur iiberabzâhlbare Defekte, wie das Beispiel

in [4] vor Satz III. 14. zeigt, in dem ein ùberabzâhlbarer Defekt durch Kôrpererweite-
rung zu 1 wird. Das Interesse konzentriert sich daher auf Râume E mit dichten
euklidischen Unterrâumen F von abzâhlbarer Codimension; denn in diesem Falle
versagen die Methoden sowohl des Beispiels in [4] wie auch unserer Arbeit. Wir
stossen damit in den Bereich eines Problems, welches schon in [4] VIII.3. formuliert
ist: gilt die Implikation „</(£')=0 =></(£)=0", wenn E' aus E durch Erweitern des

Grundkôrpers entsteht?

III. Unterrâume endlicher Codimension in euklidischen Râumen iiber S-Korpern

1. Resultate von Gross [4]
Durch eine explizite Konstruktion (und unabhângig vom Grundkôrper) zeigt

man, dass jeder Raum F von endlichem Defekt stets in einen euklidischen Raum E
eingebettet werden kann, in dem Fx (0), F1 totalisotrop und dimV1 d(F) ist (F
ein maximaler euklidischer Unterraum kleinster Codimension in F), ferner E=F+ F1.
Beschrânken wir uns auf S-Kôrper, dann ist der Beweis besonders einfach: wir
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kônnen uns in Anbetracht der Ergebnisse des vorigen Abschnitts damit begnùgen,
die Konstruktion fiir einen O-normierten Standardraum zu den Invarianten codim V— 1

und S (F, F) dimFzu zeigen. Man setze

E F ® fc(x), F k(vx) ® k(y), 0(vx9 v9) ôxa9 $(vx9 y)=l.
Nun definiert man eine Fortsetzung von 4> auf ExE durch

*(t>T, x) 0, <f>(x, x) 0, *(x, j) 1.

Dann sieht man, dass (vx — x)v(x+y)v(x—y) eine Orthogonalbasis von E bildetund
dass E halbeinfach ist. Einbettungen von Ràumen mit beliebigen endlichem Defekt
erhâlt man als orthogonale Summen der hier beschriebenen (vgl. Korollar 3). Râume

F von endlichem Defekt kônnen nur so in euklidische Ràume E eingebettet werden,
dass codimEF^d(F) ist. Bettet man so ein, dass codimEF= d(F)9 so ist immer F1

totalisotrop und E=F®V1 ([4], Korollar III.4.).

2. Einige Hilfsbetrachtungen
SATZ 8. Sei E euklidisch, FczE ein dichter Unterraum endlicher Codimension,

Va F ein maximaler euklidischer Teilraum, codimF F< 00. Dann gilt

dim F1 dim rad V1 d(F).

Beweis. a) Sei,F= F0G,E= V®G®V1®X.F1= F1nG1 (0);dacodim£G1
âimG=d(F)9 ist dies nur môglich, wenn dim VL^d(F).
b) F®VL ist euklidisch, denn es enthâlt V® VL und ist halbeinfach (I.5.); daher

c) Den Rest beweist die Bemerkung am Schluss von 1. Nun ist also unter den

Voraussetzungen von Satz 8: E= V®G® VL®X mit F=V®G, F1 totalisotrop,
dim G dim F1. Wir sehen sofort, dass X durch V^cV11 ersetzt werden kann: es

muss ja codimE F1J- dim F1 gelten, aber wie man sieht ist bereits

codimF+v, { V1Ln(F® F1)}=dim G=dim F1.

Ist der Grundkôrper ein S-Kôrper, so kann man darûberhinaus V"e F11 totalisotrop
und senkrecht auf G wâhlen.

F1J-:={F® F"}©1 F1 hat eine Orthogonalbasis (was man mit Hilfe eines Satzes

von Ogg (1.6.) oder aufgrund der Inklusion F©F1czF-L± einsieht), also ist V®V"
euklidisch und F ist dicht in F© V". Jeder Vektor aus V" steht also auf genau Ko

Vektoren einer Orthogonalbasis von F nicht senkrecht.
Die bisherigen Ûberlegungen zeigen nebenbei, wie eine Einbettung FczE be-

schaffen ist, wenn F halbeinfach und von endlichem Defekt d(F), E euklidisch und

codimjjF endlich ist: es sei Flx=F©radF-L©F", F1 radF1ffiF/, FcFein
euklidischer Teilraum mit codimF V~d(F); Flx ist abgeschlossen, besitzt also nach Ogg



Zur Berechnung endlicher euklidischer Defekte 149

eine Orthogonalbasis; demnach ist F00 F®F" euklidisch. Dann haben wir folgende
Zerlegung fur E:

wobei F®{VLnF00}czF00 euklidisch ist (nach I.5.). Aus Satz 8 folgt nun
dim{V1nFQ0} d(F). Insbesondere sieht man, dass es schon einen euklidischen
Unterraum Fo von E gibt (nâmlich F® {V1 n Foo}), in dem F minimale Codimension
hat (nâmlich d(F)).

3. Ein Isomorphiesatz

SATZ 9. E, Ë seien euklidische Râume gleicher uberabzâhlbarer Dimension ùber
einem S-Kôrper. Fez E, Fc: Ë seien Unterrâume mit

(i) codim^i^codim^i^oo,
(ii) F^F(Isometrie),
(iii) F1^F1 (Isometrie),
(iv) mdF1 rsLdF.

Dann gibt es eine Isometrie cp:E Ë, die F in F ùberfilhrt.
Bemerkung. Voraussetzung (iv) kann man in speziellen Fâllen (z.B. F halbeinfach,

F1 totalisotrop, F®F1 orthogonal abgeschlossen) fallen lassen; man muss dann
noch Gleichheit gewisser Invarianten von F und F fordern. Der allgemeine Fall mit
radF-^radFbereitet erhebliche Schwierigkeiten.

Beweis. a) Zunâchst betrachten wir den Kaplansky-Verband, der zu F (bzw. F)
gehôrt:

Man beachte, dass F1 und F1, also auch radF und mdF endlich-dimensional sind
(wegen (i)). Es gibt eine Witt-Zerlegung

wobei r&dF®X eine orthogonale Summe von dim radF hyperbolischen Ebenen ist;
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Eo enthâlt ein Komplement Fo von radFin Fsowie ein Komplement FA von radFin
F1. Dasselbe gilt fur Ë (mit Querstrichen). Auf die halbeinfachen Râume Fo, Fo

(statt F, F)9 Fl9 Ft (statt F1, F1) und Eo, Ëo (statt E9 Ë) treffen wieder die Voraus-

setzungen unseres Satzes zu. Die Zerlegung (*) zeigt nun, dass es geniigt, den Satz

unter der Voraussetzung
(iv)' radFx=radF=(0)

zu beweisen.

b) Wir setzen also F1 und damit auch F halbeinfach voraus. Der Kaplansky-
Verband sieht dann so aus:

F *<T ^ F1

(0)

Sofort ergibt sich eine weitere Reduktion des Problems : hat man den Satz fur dichtes

F bewiesen, so ist man fertig; denn dann hat man eine orthogonale Abbildung
(p':FL1-+F1L9 welche Fin Fiiberfûhrt. Die gesuchte Abbildung cp : E->Ë erha.lt man
also durch Zusammensetzen von q>' und einer Isometrie ol:Fl^>Fl.

c) Nun beweisen wir den Satz fiir dichtes F. Die Betrachtungen am Schluss von
2. erlauben uns eine Zerlegung

mit F= F© G, Vc F11, V®G totalisotrop, F maximal euklidisch. Analog zerlegen

wir

wobei wir fiir V das Bild von F bei einer Isometrie p:F-+F nehmen (dann stimmen

die Invarianten mf(F), m^V), ô^V), ôt(V)9 berechnet in V®G bzw. V®G ûberein).

V®G®V" und V®G®V" sind halbeinfache Râume, in denen F bzw. Fdicht liegt.

Zu der Liste von Invarianten mt(V)9 <5f(F), mt(V), ôt(V), berechnet in V®G bzw.

V®G tritt nur noch

mo(F) mo(F) Xo und ÔO(V) ÔO(V) dimF" dim V"

hinzu, wie ebenfalls die Betrachtungen unter 2. zeigen. Es ist also môglich, eine nor-

malisierte Basis von G© V und G® V" so zu wâhlen, dass darin eine Basis von V"

bzw. V enthalten ist (weil £(F,x)=m(F)=K0 ist fur aile Vektoren xeV"). Man

kann also eine Isometrie <p':V®G® V"-+ V®G® V finden mit <p'(V)= V9 q>'(G)=G9
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(pr(V)= V. G® V1 und G® V1 sind isometrisch, weil sie halbeinfach und von maxi-
malem Index sind. Also kann man q>f | G zueiner Isometrie <p":G® VL^G® V1 fort-
setzen. Nun setze man

Eine spezielle Situation von Satz 9 ist die, dass Fx (0) ist. Sie tritt insbesondere

dann auf, wenn codimEF= d(F); denn (mit den oben gebrauchten Bezeichnungen)
V1 ist dann nach [4], Korollar III.4. totalisotrop und wenn E halbeinfach ist, muss
also Fx= F1nG1=*(0) sein. Satz 9 sagt also unter dieser Voraussetzung, dass es im
wesentlichen nur eine Einbettung eines Raumes F von endlichem Defekt in einen
euklidischen Raum E gibt, bei welcher codimEF= d(F). Dies gilt jedoch unabhângig
vom Grundkôrper k, wie folgender Satz zeigt.

SATZ 10. E, Ë seien euklidische Ràume gleicher ùberabzâhlbarer Dimension; Fa £,
FczË seien halbeinfache Unterrâume mit

(i) F*F9
(ii) codimEF=codimEF=d(F) d(F)<oo.

Dann gibt es eine Isometrie (p:E-*Ë, die F in F uberfùhrt.
Beweis. Sei F= V®G, Kein euklidischer Unterraum der Codimension d(F). Auf-

grund von (i) hat man dann F= V®G, wobei die entsprechenden Râume isometrisch
sind. Ferner ist E= V®G® V1, £= V®G® V1; VL®G sowie VL®G sind beide
halbeinfach und von maximalem Index d(F), also isometrisch. Man kann nun die
Isometrie G-+G (Restriktion der durch (i) garantierten Isometrie) zu einer Isometrie

1 so fortsetzen, dass V1 in V1 iibergeht.
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