Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 45 (1970)

Artikel: Integral Domains with Noetherian Subrings.
Autor: Gilmer, Robert

DOl: https://doi.org/10.5169/seals-34647

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 17.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-34647
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

129

Integral Domains with Noetherian Subrings

ROBERT GILMER1)

Let D be an integral domain with identity having quotient field K and prime
subring II. The purpose of this paper is to determine necessary and sufficient con-
ditions in order that each subring of D with identity be Noetherian. Such conditions
are given in the following theorem.

THEOREM. If I[I=Z, the ring of integers, then each subring of D with identity
is Noetherian if and only if [ K: Q] < oo, where Q denotes the field of rational numbers.
If I=GF(p), then each subring of D with identity is Noetherian if and only if either
(1) K/11 is algebraic, or (2) K is a finite algebraic extension of a purely transcendental
extension of II of transcendence degree 1.

In order to avoid unnecessary duplication in the cases when IT=Z and when
I1=GF(p), we proceed through a series of general results which will prove to be
pertinent to both of the above cases. As a case in point, both Z and GF(p) [X] are
Dedekind domains in which each nonzero ideal has finite index, so that a theorem
proved about such Dedekind domains will apply to both Z and GF(p) [X]. Each
ring considered in this paper is assumed to be commutative.

THEOREM 1. Suppose that R is a commutative ring with identity which is not its
own total quotient ring, and that X is an indeterminate over R. There is a non-Noetherian
subring of R[X] with identity.

Proof. Let e be the identity element of R. There is a regular element ¢ of R which
is not a unit of R. Thus if 4=(t), then A <R and the only element x of R such that
Ix=tis x=e, so that 4 is a ring without identity. By [5], 4[ X'] is not Noetherian, and
by [6, p. 184], the subring of R[X] generated by 4[X] and e is also non-Noetherian.

COROLLARY 1. If D is an integral domain with identity and if X and Y are
indeterminates over D, then D[X, Y] contains a non-Noetherian subring with identity;
if D is not a field, D[ X] contains a non-Noetherian subring with identity.

COROLLARY 2. Suppose that D is an integral domain with identity having quo-
tient field K and prime subring I, and suppose that each subring of D with identity is
Noetherian. If I1=Z, then K is algebraic over Q. If Il =GF(p), then tr.d. K/II<1.

.1) The author received partial support from National Science Foundation Grant GP-8424
during the writing of this paper.
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Proof. This is immediate from Corollary 1 and from the fact that D contains a
transcendence basis for K over the quotient field of IT [16, p. 99].

LEMMA 1. Suppose that J is an integral domain with identity which is algebraic
over Jo, a subring of J. If J' is the integral closure of J, in J, then J and J' have the
same quotient field.

Proof. 1t suffices to observe that J is contained in the quotient field of J'. Thus is
xeJ, then x is algebraic over J,, so that dx is integral over J, for some nonzero element
dof J,=J' [8, p. 78]. Therefore, x=dx/d belongs to the quotient field of J'.

Our next result will be obtained as a corollary to a theorem due to Arnold and
Gilmer [1, p. 142], and will use the following notation: Let D, be a Dedekind domain
with quotient field K, let L be an infinite-dimensional separable algebraic extension
field of K, which is expressed as the union of a net {K,},. , of finite algebraic extension
fields of K, (here net means that for any a, fe 4, there exists de 4 such that K, and
K, are contained in K;), let D be the integral closure of D, in L, and for each « in 4,
let D, be the integral closure of D, in K,. The theorem of Arnold and Gilmer referred
to states that D is a Dedekind domain if and only if for each prime ideal P, of D,,
there is an element a(P,) in A such that each prime ideal of D, 4, lying over P, in
D, is inertial with respect to D. The corollary to this theorem which we need is

COROLLARY 3. If D is a Dedekind domain, then D is the only ideal of D having
finite index in D.

Proof. It suffices to show that D/M is infinite for each maximal ideal M of D.
Thus, let Po=M n D, and choose « in 4 such that each prime ideal of D, lying over
P, in D, is inertial with respect to D. Set P=M n D,. For any f in 4 such that D, < Dp,
PD; is the unique maximal ideal of Dj lying over P in D,. Since PDgc M N Dy Dy
for each such B, it then follows that M n Dy=PD, for each such f. Now fix a positive
integer N. We show that |D/M|> N by showing that [D/M: D,/P], the dimension of
D/M as a vector space over D,/P, is greater than N. Since [L:K,]=oc0 and since
[K,:K]< o, there exists fe4 such that K,=K, and such that [K,:K,]> N. Since
K,/K, is separable, a well-known theorem due to Roquette [15] and to Cohen and
Zariski [4] then implies that [Dy/PD,:D,/P]1=[K,:K,]>N. However, D,/P<
S Dy/PDy< DIM, so that [D/M:D,/P]> N also.

THEOREM 2. Suppose that D is an integral domain with identity such that D|A
has nonzero characteristic for each nonzero ideal A of D. If each subring of D with
identity is Noetherian, then D|A is finite for each nonzero ideal A of D.

Proof. If A is a nonzero ideal of D and if e is the identity element of D, then by
hypothesis, the subring A* of D generated by 4 and e is Noetherian. Hence 4, con-
sidered as a ring, is Noetherian. A theorem due to Butts and Gilbert [2, Theorem 6]
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then implies that D is a finite A*-module, so that D/A4 is a finite 4*/4-module. Now
A*|A~IT|(I1 n A), where IT is the prime subring of D, and the hypothesis on D im-
plies that IT/(II n A) is a finite ring. Hence A*/A is finite and D/A4 is also finite.

THEOREM 3. Suppose that D is a domain with identity having quotient field K
and prime subring Z; we assume that K/Q is algebraic. If D' is the integral closure of Z
in D and if Z' is the integral closure of Z in K, then these conditions are equivalent:

1) Each subring of D with identity is Noetherian.

2) Each subring of D’ with identity is Noetherian.

3) Z' is a Dedekind domain, and each nonzero ideal of Z' has finite index in Z'.

4) [K:Q]<oo0.

5) Each subring of K with identity is Noetherian.

Proof. 1)-2): clear.

2)—3): Lemma 1 shows that D" has quotient field K, and since D’ is integral over
Z, D’ is one-dimensional. By what Nagata calls the Krull-Akizuki Theorem in [14,
p. 115] (see also [3, p. 29]), it then follows that Z’ is one-dimensional Noetherian and
that Z'/A’ is a finite D’/(A’ n D’)-module for each nonzero ideal A’ of Z’. Since Z’
is integrally closed, Z' is therefore a Dedekind domain. We observe that since D’ is
integral over Z, each nonzero ideal of D’ meets Z in a nonzero ideal of Z so that
D'/ B has finite characteristic for each nonzero ideal B of D’. By Theorem 2, each such
D'/B is finite; in particular, D'/(A’ n D’) is finite for each nonzero ideal A’ of Z’ so
that Z’/A’ is also finite.

3)>4): This is immediate from Corollary 3 once we observe that the family
{K,}sc4 Of all subfields of K which are finite-dimensional over Q form a net with
union K.

4)—-5): Apply the Krull-Akizuki Theorem.

5)—1): Clear.

If K is an algebraic extension field of GF(p), then each subring of K with identity
is a field [17, p. 12], and hence is Noetherian. Therefore in characterizing domains
of nonzero characteristic for which every subring with identity is Noetherian, we can,
by Corollary 2, reduce to the case where the transcendence degree of the quotient
field of the domain over its prime subfield is 1.

THEOREM 4. Suppose that D is a domain with identity having quotient field K
and prime subring I1 =GF(p); we assume that tr.d. K/II=1 and that X is an element
of D transcendental over I1. Let J=I1[X], let D’ be the integral closure of J in D, and
let J' be the integral closure of J in K. Then these conditions are equivalent;

1) Each subring of D with identity is Noetherian.

2) Each subring of D' with identity is Noetherian.

3) J' is a Dedekind domain, and each nonzero ideal of J' has finite index in J'.
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4) [K:II(X)]< 0.

5) Each subring of K with identity is Noetherian.

Proof. As in the proof of Theorem 3, the implications 1)—2) and 5)— 1) are clear.
The proof that 2) implies 3) is the same as that given in Theorem 3 once we observe
that J=II[X] is one-dimensional and that D’/B has characteristic p for each genuine
ideal B of D'.

3)—4): For this part of Theorem 4 we shall need the following result due to
Gilmer, Heinzer, and Kreimer [9]:

Suppose that F is a field of characteristic p>0 and that F is not separably alge-
braically closed. These conditions are equivalent.

a) F''? is a simple extension of F.

b) There are no exceptional extensions of F. That is, if K is an inseparable extension
of F, then the purely inseparable part of K over F properly contains F.

c) Each algebraic extension of F splits over F. That is, if K is an algebraic extension
field of F and if K; is the purely inseparable part of K over F, then K/K, is separable.

d) Each finite-dimensional extension of F is simple over F.

To apply this theorem to our problem, we observe that [II(X)]"/?=11(X'/?)=
=I1(X) (X'/?) since II is a perfect field. Hence the result of Gilmer, Heinzer, and
Kreimer cited above shows that if K; is the purely inseparable part of K/IT(X), then
K is separable over K;. We let J; be the integral closure of J in K;. Since J’, the integral
closure of J; in K, is a Dedekind domain in which each nonzero ideal has finite index,
then J; is a Dedekind domain [10, p. 750], and since K/K; is separable, Corollary 3
implies that [ K: K;] is finite. Finally, since 4J’ nJ;= A for each ideal 4 of J; [7, p. 563],
Ji/A is isomorphic to a subring of J'/4J’, and consequently, J;/A4 is finite for each
nonzero ideal 4 of J;.. To prove that [K:IT(X)] is finite, we now need only to show
that [K;:IT1(X)] is finite; that is, we can reduce to the case when K/II(X) is purely
inseparable.

It is known (see footnote 5 of [13]) that any finite-dimensional purely inseparable
extension of IT(X) is of the form IT(X'/*°) for some positive integer e, so that
I ({X'?}2.)) is the only purely inseparable infinite-dimensional extension field of
I1(X). However, T=II[{X'/?}& ] is the integral closure of II[X] in IT({X'/*}7),
and T is not a Dedekind domain since {X'/#°} T is an idempotent maximal ideal
of T. Therefore, since J; is a Dedekind domain, [K;:IT1(X)] is finite, and 4) holds.

4)—5): Consider a subring R of K with identity, and let L be the quotient field
of R.If L/II is algebraic, we have already observed that each subring of L is Noetherian.
If L/IT is not algebraic, then L has transcendence degree 1 over IT and we can choose
Y in R such that Y is transcendental over II. Since tr.d. K/II=1, K is algebraic over
I1(Y). Therefore, [IT1 (Y, X):II(Y)] < 00, and since [K: IT (X)] < o0, [K: I (Y, X)] < ©
also. We conclude that [K:II(Y)]=[K:II(Y, X)] [l (Y, X):I1(Y)] is finite, and
since I1(Y)c L< K, [L:11(Y)] is also finite. Applying the Krull-Akizuki theorem to
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Nn[Y], R, II(Y), and L, we then conclude that R is Noetherian, and our proof that
4) implies 5) is complete.

Remark. If R is a ring with identity e and if each subring of R with identity is
Noetherian, then each subring of R is Noetherian, for if .S is any subring of R, then
S[e] is Noetherian, and as previously mentioned, this implies that S is Noetherian.

We observe that our proofs of Theorems 3 and 4 show that if each subring of a
domain D with identity is Noetherian, then each subring of D with identity has di-
mension < 1. Using the notion of valuative dimension introduced by Jaffard in [11]
(see also [12, Chap. 4] and [8, § 25]), it is easy to characterize domains D with identity
having what we shall designate here as property (d,), where z is a positive integer.

(d,): Each subring of D with identity has dimension <n.

In fact, we have

THEOREM 5. Let D be an integral domain with identity having quotient field K
and prime subring I1.

a) If I1=Z, then D has property (d,) if and only if tr.d. (K/Q)<n—1.

b) If I=GF(p), then D has property (d,) if and only if tr.d. (K/IT)<n.

Proof. If R is a commutative ring with identity and if Xi,..., X} are indeterminates
over R, then dimR[Xj,..., X;]>dim R+k, so that if D has property (d,), then tr.d.
(K/Q)<n—1 in case a) and tr.d. (K/Q)<n in case b).

To prove the converses, let J be any subring of K and let L be the quotient field
of J. To show that dimJ<n, it suffices to show that the valuative dimension of J is
at most n [8, p. 211]. Thus if ¥V is a valuation ring on L containing J, then in case a),
dim V<dim(V n Q) +tr.d.(L/Q)<dim(Vn Q) +n—1<n(see [12, p. 10] or [8, p. 239)),
the last inequality holding because any valuation ring on Q has rank at most 1. And
in case b), dim V'<dim(V n I)+tr.d.(L/Q)=tr.d.(L/Q)<n. Consequently, in case
a) or case b), the valuative dimension of J is at most n, and hence the dimension of
J is at most n.

Remark. If S is a commutative ring with identity e, if R is a subring of S, and if
R* is the subring of S generated by R and e, then it is known that dim R<dim R*<
<dim R +2. Hence if each subring of S with identity has dimension <, then each
subring of S has dimension <n.
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