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Differential Structures on a Product of Spheres

R. DE SaAriO

1. Introduction

In this paper we give a classification under the relation of orientation preserving
difffomorphism, of all differential structures on a simply connected product of
spheres S* x S? of dimension greater than five. In particular, we prove the following
theorem.

THEOREM 1. Let M" be a differential n-manifold of dimension greater than five that
is homeomorphic to a product of spheres S* x S?, where 2<k<p. Then there are homo-
topy spheres AP and V™" such that M" is diffeomorphic to (S*x AP)+ V™. Furthermore,
we have the following conclusions.

(a) If B? and U" are homotopy spheres such that M" is also diffeomorphic to
(S*x BP)+U", then S*x A” and S*x B® are diffeomorphic. If, in addition, either
k=2,4,5,6 (mod 8) or k=p—3, then V" and U" are diffeomorphic.

(b) If either k=p—3 or p=4,5, 6,7, then there is one and only one homotopy n-
sphere V" such that M" is diffeomorphic to (S*x SP)+ V™.

Here S" denotes the unit n-sphere with its usual differential structure in euclidean
(n+1)-space R"*! and + denotes the connected sum operation. Now let @, denote
the group of homotopy n-spheres and let ®4*' denote the subgroup of @, consisting
of these homotopy p-spheres that embed in RP***! with a trivial normal bundle.
Let H, ; denote the subset of @, consisting of those homotopy p-spheres A? such
that $*x 4? is diffeomorphic to S*x SP. It is known that if k>2, then H, ,=®4*".
In the next section we prove the following.

THEOREM 2. Let AP and BP be homotopy p-spheres such that p>4 and let k be an
integer greater than one. Then S*x A? and S*x B? are diffeomorphic if and only if
AP= + B* mod H,,;.

This theorem follows from Lemmas 4, 5, and 6 of the next section. Theorems 1
and 2 combine to give a classification of differential structures on S* x S? in the case
where either k=2, 4, 5, 6 (mod 8) or k>p—3. In fact, let C,.« be the set obtained
from the quotient group @ o/ H, i by identifying xe © /H, ; with its inverse —x. Then
Theorem 1 has the following corollary.

COROLLARY 1.1. The diffeomorphism classes of n-manifolds (n>6) that are homeo-
morphic to S* x SP (k < p) are in a one-to-one correspondence with the product C, , x 0,
provided that either k=2, 4, 5, 6 (mod 8) or k=p—3.
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This one-to-one correspondence is given by Theorem 1. In particular, conclusion
(a) of Theorem 1 asserts that the group @,,, acts nontrivially via connected sum on
the differential structure of M", provided that either k=2, 4, 5, 6 (mod 8) or k>p—3.
This is not always true in the remaining case where k<p—3 and £=0, 1, 3, 7 (mod 8),
although we do show here that ., acts nontrivially on S$* x S in all cases (Lemma 2
below). In a subsequent paper we shall prove the following result.

THEOREM. Let
Tp,k:0p® TCk(SO(p - 1)) - 0p+k

denote the pairing of Milnor-Munkres-Novikov and let A® and VP** be homotopy
spheres. Then (S* x AP)+ V?** is diffeomorphic to S*x AP if and only if there exists
aem, (SO(p—1)) such that V?** =1,  (4"®u). In particular, if k>p—3, then t, ,=0.

Thus the differential structures on S*x.S” can be classified in terms of ©,/H, ,
and the pairing 7, ;. We remark that the pairing 7, ; corresponds to composition in
the stable homotopy groups of spheres and is sometimes nontrivial. Therefore the
complete classification in the case where k<p—3 and k=0, 1, 3, 7 (mod 8) is more
complicated than that given by Corollary 1.1.

We can make some remarks that relate to the structure of the groups H, . Let
bP,,, denote the subgroup of @, consisting of those homotopy p-spheres that bound
parallelizable manifolds. It is known that P, ., =®2 and hence, since &*'=H, ,
for k=2, it follows that bP,,; < H, ,<H, . ;, provided that kK >2. Theorem 1 asserts
that H, ,=0, if k>p—3, although this is not true for k<p—3. In fact, if Z'° re-
presents the nonzero element in @, ¢~ Z,, then according to [5, Corollary 1.5] §'% x 3¢
is not diffeomorphic to $*2 x $*¢; that is, H,¢ ,,=0. Finally, it can be shown that
H, /bP,,, is isomorphic to the cokernel of the Hopf-Whitehead homomorphism
J:m,(SO(k+1))-7, 4441 (S¥* 1), provided that2k >p—1andp #2°—2(c.f.[5, Th.1.7]).
This isomorphism is induced by the Pontrjagin-Thom construction and is of interest
here since the groups bP,,; have been determined in many cases.

We include here a result on the action of @, , on the total space E of a differential
k-sphere bundle over a homotopy p-sphere. Precisely, n: E— A? is a k-sphere bundle
over A? with the special orthogonal group SO(k+1) as structural group such that
the homeomorphisms which specify the local product structure are diffeomorphisms,
and where the fibre is S*.

PROPOSITION 1. Each element of ©,. ,acts nontrivially on the differential structure
of the total space E of a differential k-sphere bundle over a homotopy p-sphere A?,
provided that k<p—1 and k=2, 4, 5, 6 (mod 8).

The proof of Theorem 1 is given in Section 3; following the proof there are some
remarks on the case where k=1 or n<6. The results on the action of @, are proved
in the next section. All manifolds are assumed to be smooth of class C*, and oriented ;
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difftomorphisms are assumed to be orientation preserving and of class C*. Finally,
D" denotes the unit n-disc with the standard differential structure in euclidean n-space
R".

2. Products of Homotopy Spheres

We begin with the lemmas that are needed in proving the theorems.

LEMMA 1. If AP is a homotopy p-sphere, then AP x D* is diffeomorphic to SP x D,
provided that p#3 and k=p—2.

REMARK. If k=p+22>7, then this is a result of Mazur.

Proof. If p=1, 2, then this is a classical result; if p=4, then this is a result of
HirscH [4, Theorem 6]. Since A? and SP are diffeomorphic for p=35, 6 we can assume
that p>7. It follows from the theorems of HAEFLIGER [3] that A may be differentiably
embedded in RP*¥, provided that k> p —2. Furthermore, it follows from [5, Th. 1.10]
that the normal tube of this embedding is diffeomorphic to 4? x D*. But it is known
that the normal tube of an embedded homotopy p-sphere in R?** is diffeomorphic
to S? x D¥, provided that k>3, and the lemma is proved.

LEMMA 2. Let AP and BP be homotopy p-spheres and let V°** be a homotopy
(p+k)-sphere, wherep+k>6. If k<p—3andk=0,1, 3,7 (mod 8), then assume that
S*x B is diffeomorphic to S* x SP. Then, if (S* x AP)+ V?** is diffeomorphic to S* x B,
then V?** js diffeomorphic to the standard (p+k)-sphere SP** (and hence S*x A® and
S*x BP are diffeomorphic).

This lemma is also true for p+k=5 since @ 5=0.

Proof. In the first place if p=k>3, then the lemma follows from [1, Th. B]. If
k=p—3, then Lemma 1 above implies that S“x A? and S*x B? are both diffeo-
morphic to S* x S?, provided that p # 3. Thus if k=p—1, then Lemma 2 follows from
[2, Lem. 1]. Therefore we can assume that k <p— 1, which implies that p>4. If p=4,
then k=2 and there is nothing to prove since @¢=0. Therefore assume that p>4.

Let

h:(S* x AP) + VP** 5 S x BP

be a diffeomorphism. It is known that there is a diffeomorphism f: $?~!—$?~! such
that 4? is diffeomorphic to D? U s D3, the disjoint union of two copies D, Dj of the
p-disc D? indentified along the boundaries via the diffecomorphism f (that is, xedD} is
identified with f(x)edD? and D? U 7 D5 is given the orientation of D3). Similarly, B®
is diffeomorphic to D? v, D3, where g: S?~'—S?7 ! is a diffeomorphism. Thus we can
write §* x AP as a disjoint union of two copies of S* x D?, in the form

S* x A7 = (S* x D}) U« (S* x DY), (1)
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with points identified along S* x S?~! via the diffeomorphism i x f, where i: S*—S*
is the identity map. Similarly,

S* x B? = (S* x D) U;x, (S* x DY). #)

Now let 0 D} denote the center of the p-disc D{. The k-sphere S*x 0 is embedded in
S*x AP and in S*x BP. We can assume that the connected sum (S*x A7)+ V?** is
made far away from the sphere S* x 0 and hence S* x 0 is also embedded in (S* x 47)
+ VP** The next step is to show that we can assume that the diffeomorphism # is
the identity on the k-sphere $* x 0. In fact, since k <p—1 h maps the homotopy class
of $¥x0 in (S* x 4?)+ V?** onto either the homotopy class of $*x 0 in S*x B? or
the negative of the homotopy class of $*x0 in S*x B?. In the latter case we can
compose h with the (orientation preserving) diffeomorphism g x i: $* x B?— S§* x (— B?),
where ¢: S*— S* is a diffeomorphism of degree —1 and i: B?>— — B? is the identity map
(— B? is the manifold B? with the orientation reversed), to obtain a diffeomorphism
(o xi)oh:(S*x A7)+ VP**—S* x (— BP) that maps the homotopy class of S$*x 0 in
(S*x AP)+ V?** into the homotopy class of S¥*x0 in S*x(—B?). Thus we can
assume that the restriction 4| S* x 0 is homotopic to the inclusion S*x0<S* x B
It follows from the theorems of HAEFLIGER [3] that /| S*x 0 is diffeotopic to the
inclusion S*x0cS*x B?, and hence by application of the diffeotopy extension
theorem we can assume that 4 (u, 0)=(u, 0) for each (4, 0)eS*x0. By the tubular
neighborhood theorem we may further suppose that #(S* x D?)=S* x D? such that
for each (u, v)e S* x D%, h(u, v)=(u, v- o (u)), where a: $*— SO (p) is a differentiable map
and v-a(u) denotes the action of a(u)eS0(p) on veDf. Now perform the spherical
modification on (S*x A?)+ V?** that removes the k-sphere S*x0 with product
structure S* x D?. The following proposition implies that the result of this modifica-
tion is V?*k,

PROPOSITION 2. Let A?=D%} U D} be a homotopy p-sphere and let ¢:8*x D} c
S* x AP be the inclusion. Then, the result of the spherical modification on S* x AP based
on ¢ is always S**?,

Proof. The result of the modification is

(D% x 8771 Ui s (8" x DY), 3)
which is clearly diffeomorphic to
SPH* = (D**1 x SP™1) U, (S* x D) 4

(where i:S*x SP~15S8*x S?7! is the identity) by virtue of the map that sends
(u, v)eS* x D” into (u, v)eS* x D§ and (v, v)e D**' x SP~ 1 into (u, f(v))e D**! x §P~!
(this diffeomorphism goes from (4) to (3)). Q.E.D.

Returning to the lemma we perform the corresponding modification (under )
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on S¥x BP to remove the k-sphere S*x0 with product structure h(S" x DY) in
S*¥x BP. From the latter modification we obtain the manifold

(D" x SP7N u, (S* x DY), (5)

where y=(h"1 | S*x S?71)o(ix g) (see (2)), which is clearly diffeomorphic to V?**
because of the way that this modification was defined (using #). We complete the
proof of Lemma 2 by showing that (5) is diffeomorphic to S?*¥. This is done by
constructing a diffecomorphism from (5) to (4) as follows, recalling that k<p—1. If
k<p—3 and k=2,4,5,6 (mod 8), then 7, (SO (p))=0 and hence we can apply
Proposition 2 to conclude that (5) is diffeomorphic to S?**. If k=p—3 or p—2 then
by Lemma 1 we can assume that g is the identity; if k <p—3 and k=0, 1, 3, 7 (mod 8),
then by hypothesis S* x B? is diffeomorphic to $* x S? and we can again assume that
g is the identity. Thus in these cases y=h"!| S*x SP~1 and we have the diffeo-
morphism that sends

(u,v)eD**' x SP”'  into  (u,v)eD**! x P71

and (u, v)e S* x Dj into
h(u, v) = (u, v-a(u))eS* x DP.

The proof of Proposition 1 is similar to the preceding and is left to the reader.
The following lemma is a weakened form of Lemma 2 but removes the special
assumption which was made there in the case where k <p—3 and k=0, 1, 3, 7 (mod 8).

LEMMA 3. Let AP and BP be homotopy p-spheres such that for some integer k, A x S*
and B? x S* are diffeomorphic up to a point. Then A? x S™ and B” x S™ are diffeom-
orphic for all m>max(k, 2).

Proof. If k>=p—3, then the lemma is a trivial consequence of Lemma 1. Thus we
can assume that k<p—3. If h: 4? x S*—» B x S* is a diffecomorphism up to a point,
then we can compose # with the inclusion B? x S¥cB? x D™*! and we obtain a
differentiable embedding 47— B? x D™*! with a trivial normal bundle. We show that
the embedding 47— BP x D™*! is also a homotopy equivalence, by an elementary
argument. In fact, let ye A and ze BP such that the k-spheres y x S* and z x §* do
not contain the singularity of #. Now k<p—3 and hence by standard arguments
(theorems of HAEFLIGER and diffeotopy extension) we can assume that & maps y x S*
diﬁ"eomorphically onto z x S*. It follows that the induced homomorphism

hy:m, (A7 x §*) = n,(A") + n,(S*) > n, (B x S*) = n,(B?) + =,(S¥)

maps 7, (S*) isomorphically onto 7, (S¥) and hence &, maps the generator of m,(4?)
Into a generator of n,(B?) plus an element of =, (S*). Consequently the composition
APx S*>BPx S¥c BPx D™*! maps the generator of m,(AP) into a generator of
T,(BPx D"*1) and it follows that the embedding 4”—B?x D™*! is a homotopy
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equivalence with a trivial normal bundle. We can apply [7, Th. 4.1] to conclude that
AP x D™*1 is diffeomorphic to B? x D™*!, provided that m>max (k, 2).

The remainder of the present section is devoted to the study of the diffeomorphism
classes of manifolds of the form S* x 47, where A4” is an arbitrary homotopy p-sphere.
Let p>4 and k>2 be a given pair of integers. Then two homotopy p-spheres 4? and
B? are called k-equivalent if and only if S* x 47 and S* x B? are diffeomorphic. Thus
the group @, is divided into k-equivalence classes. It is clear that the k-equivalence
class of an element A’ @, contains its inverse — A” in the group @,. Lemma 4 below
asserts that the k-equivalence class of S? is a subgroup of @,. This subgroup is
denoted by H, ;.

LeEMMA 4. The set H, , of those homotopy p-spheres AP such that S*x AP is diffeo-
morphic to S*x S? forms a subgroup of © p» provided that p#3 and k> 2.

This lemma follows from the next lemma. Lemma 5 implies that any k-equivalenc
class is the union of cosets of the subgroup H, ; of the group @,.

LEMMA 5. Let AP and B? be homotopy p-spheres such that AYeH,,. Then
S* x (4P + BP) is diffeomorphic to S* x BP.

Proof. Since A’eH, ,; it follows that 47 may be embedded in the interior of a
(p+k+1)-disc in D¥*! x B? with a trivial normal bundle. But B? is embedded in
D**1 x B? in the obvious way with a trivial normal bundle, and hence we can form
the connected sum AP+ BP in D**' x BP so that A7+ BP has a trivial normal bundle.
Furthermore, the resulting embedding 47+ B?— D**! x BP is a homotopy equivalence
and hence by [7, Th. 4.1] D**! x(A?+ BP) is diffeomorphic to D**! x B?, provided
that k>2. Q.E.D.

In general it does not seem likely that each k-equivalence class contains exactly
one coset of H), ;. If this is the case, then the k-equivalence classes are in a one-to-one
correspondence with the quotient group @ ,/H, ;; in particular, this would imply that
©,/H, , consists entirely of elements of order two. The next lemma is the best that
we can do in this direction.

LEMMA 6. If AP and BP are homotopy p-spheres such that S* x A? and S* x BP are
diffeomorphic, then either S*x(A?+BP) or S*x(A?+(—BP)) is diffeomorphic to
S* x SP, provided that k> 2.

Proof. If k=p—3, then the lemma is a consequence of Lemma 1. Thus we can
assume that k <p— 3. The hypothesis implies that 4” may be embedded in D**! x B?
with a trivial normal bundle. Furthermore, it follows from an argument given in the
proof of Lemma 3 that the embedding AP— D**! x BP is a homotopy equivalence.
Let us assume that the embedding maps the orientation class of A” onto the orien-
tation class of B? in D**!x B? (otherwise we replace B? by — B?). Now — B is
embedded in D**! x B? in the obvious way with a trivial normal bundle and we can



Differential Structures on a Product of Spheres 67

assume that 4”7 and — B? are disjoint in D**1 x B?. Thus we can form the connected
sum AP +(— BP)in D**! x B?such that the resultingembedding 4” +(— B®)—»D**! x B”
has a trivial normal bundle and is homotopically trivial. Now the engulfing result of
[9, Chapter 7] applies to conclude that A”+(— B?) is embedded in the interior of a
(p+k+1)-disc in D**' x B?. But the normal tube of a homotopy p-sphere embedded
in the interior of a (p+k+ 1)-disc is diffeomorphic to D¥*! x §?, provided that k>2
and p# 3, 4, and hence it follows that D** ! x (4”7 + (— BP))is diffeomorphic to D***! x S?
(if p=3 or 4, then apply [4, Th. 6]).

Lemma 6 implies that the k-equivalence class of an element A7 @, is exactly the
union of the cosets A+ H, , and —A”+H,,. That is, each k-equivalence class
consists of at most two cosets. Furthermore, a k-equivalence class consists of exactly
one coset if and only if it contains an element A? such that 4”4+ H, , is of order
two in the group @ ,/H, ;. This completes the proof of Theorem 2.

3. Classification

Proof of Theorem 1. Since M" is homeomorphic to S*x SP, where n>6 and
p=k>2, it follows that M" is simply connected and H;(M"; Z) has no 2-torsion.
Therefore the “Hauptvermutung” of D. SULLIVAN [8] implies that there is a combi-

natorial equivalence hiM"— S x S?, (5)

where the combinatorial structures are compatible with the differential structures
and S*x S” has the usual combinatorial structure. We now apply the obstruction
theory of MUNKRES [6]. The application is particularly simple since we are dealing
with a product of spheres. We note that the combinatorial equivalence 4 is a diffeo-
morphism mod the n—1 skeleton L,_, of M"; suppose that 4 is a diffeomorphism
mod the n—q skeleton L, _, of M", where 1 <g<k~—1. The obstruction to an approxi-
mation g: M"— S? x S* of h such that g is a diffeomorphism mod the n—g—1 skeleton
L,_,-1, is a simplicial (n—g)-cycle 4, of L,_, with coefficients in the group I'?
(see [6, § 3]; g is called a smoothing of /), where I'™ is the group of diffeomorphisms
of S~ modulo those diffeomorphisms that are extendable to diffeomorphisms of
D" If An—oh=0, then the smoothing g exists according to [6, § 4]. Since I'' =0 it
follows that the smoothing g does exist if g=1. Furthermore, if An-4-18 ishomologous
to zero in H,_,_(L,- @ r*1), then it follows from [6, § 5] that there is a smoothing
S of h such that 4, , ,f=0. But H,_,_;(L,-p; ["")~H,_,_,(M"; ["*!)=0 for
I<g<k—1 and hence by induction there exists a map g:M"—S*x S? that is a
diﬂ‘eomorphism mod the n— k skeleton of M". Thus the first obstruction to deforming
hinto a diffeomorphism is a well defined homology class y4 (called the obstruction
class)in H,(M"; I'*). We first consider the case where k<p; then H,(M"; I*)~I*
and hence we can consider the obstruction class vh to be an element of I'*. Let
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@:8*"1>8%"1 be a diffeomorphism that represents yh and let N(yh) denote the
homotopy k-sphere D u,D. There is the combinatorial equivalence j:S*—N(yh)
of degree +1, defined by writing S*=D* U, D% and letting j be the identity on D!
and the radial extension of ¢ ~* on D%, and hence we have a combinatorial equivalence
Jxi:8%x SP— N (yh) x S?, where i is the identity. It follows from [6, Def. 3.4] that
the first obstruction y(j x i) to deforming j x i to a diffeomorphism is —y#h. Further-
more, by [6, 3.8] the first obstruction to deforming the composition (j X i)oh: M"—
N(yh)x S? into a diffeomorphism is

P(( x i)oh)=y(j xi)+7yh
=—yh+7yh
=0

and hence we can assume that there is a map
h':M"-N(yh)x S?,

that is a difftfomorphism mod the k-skeleton of A". By Lemma 1 N(yh)x S? is
diffeomorphic to S*x S? since p>k (if k=3, then N(yh) is diffeomorphic to S°
since I'* =0, as is well known) and hence we have a map (also denoted by 4')#’: M"—
S*x S? that is a diffeomorphism mod the k-skeleton of M™. The first obstruction to
deforming /' into a diffeomorphismis a class yh'e H, (M"; ") ~I?. Let y:S?~1 > 577!
be a diffeomorphism that represents y /', let N(yh')= D} v, D%, and let j':S?—>N(yh')
be the combinatorial equivalence of degree +1 as defined above for N(y4'). Then
we have the combinatorial equivalence i x j':8* x SP»S*x N(yh’) and the first
obstruction to smoothing (i X j')oh': M">S*x N(yh')is y(i x j)+yh’, which is zero
sincey (i x j')= —yh’. It follows that there is a map h": M"—S*x N(y, #') that is a
diffeomorphism mod a point of M". Under these circumstances it is known that there
is a homotopy n-sphere V" such that M" is diffeomorphic to (S*x N(y, &"))+ V"

Now suppose that k=p. The first obstruction to deforming the combinatorial
equivalence (5) into a diffeomorphism is a class yheH, (M"; I*)=I*@ I'*; write
yh=y'@y?, where y!, y>el’*, and let ¢, ¢,:8* ' > S*"! be difftomorphisms that
represent y*, y*>. As before we have the homotopy spheres N(y!)=D%u,, Db,
N (y*) = D} u ,, D% and the combinatorial equivalences j,: S*>N(y!), j,:S*—>N(y?).
The first obstruction to smoothing j; X j,:8*x S*>N(p')xN(y?) is the class
Y(Jy X j2)=(—7")® (—7*) and hence the first obstruction to deforming the compo-

sition o . :
(j1 XJj2)oh:M"— N(3") x N(y?)
Y(1 xJj2)oh) =y(jy xj2) + yh=0.

It follows that there is a map A': M"—>N(y') x N(?) thatis a diffecomorphism mod a
point. Now a result of WALL applies to conclude that N(y') x N(y?) and §* x S* are

is
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diffeomorphic up to a point (in fact, see [1, Th. B]) and hence there is a homotopy
2k-sphere V" such that M™ is diffeomorphic to (S*x S*)+ V™.

The proof of Theorem 1 is now completed by applying Lemmas 1 and 2.

In this theorem it is assumed that 2<k<p and n=p+k>6. We conclude with
some remarks on the excluded cases. :

CaseE 1. k=1,n=p+k>=6. The Hauptvermutung of [8] does not apply in this
case and so consider a differential #n-manifold M" that is combinatorially equivalent
to S* x S?. We can apply the obstruction theory of [6] as was done in the proof of
Theorem 1 to conclude that M" is diffeomorphic to (S* x 47)+ V", where A” and V™"
are homotopy spheres that are combinatorially equivalent to the standard spheres.
Then by application of Lemma 2 we have the following theorem: If M" is a differential
n-manifold that is combinatorially equivalent to S* x S®, where n=p+1=6, then there
are homotopy spheres AP and V" such that M" is diffeomorphic to (S* x A?)+ V™. If
S' x A? is diffeomorphic to S* x S?, then V" is uniquely determined by M". On the
other hand, if we assume only that there is a homeomorphism # between M" and
S' x S?, then according to [8] there is an integer ¢ such that the homeomorphism
h x identity between M"x R? and S'x S?x R? is homotopic to a combinatorial
equivalence (R? is euclidean g-space). One can try to smooth the combinatorial
equivalence between M" x R? and S' x SP x R? by applying [6].

Cast 2. p+k<6. Since I'=0 for g<6, it follows from MUNKRES’ obstruction
theory that combinatorial equivalences can be smoothed to diffeomorphisms for
manifolds of dimension <6. Thus if M" is combinatorially equivalent to S$*x S?,
where p+k <6, then M" is diffeomorphic to S* x S*.
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