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An Application of Simplicial Profinite Groups

by Daniel G. Quillen1)

In this paper we use simplicial pro-/?-groups to give quite différent proofs of the

convergence theorems for the lower central séries and /?-lower central séries spectral

séquences of a simplicial group (Curtis [2], Rector [7]). The proofs are, we believe,

more conceptual than the délicate calculations with generators in free groups used in
[2]. In addition m the case of the/?-lower central séries spectral séquence we obtain

convergence for certain non-connected simplicial groups, in particular those corre-
spondmg to connected //-spaces with finitely generated homology in each dimension.

The idea of the proof îs as follows If G îs a free simplicial group with finitely
many generators m each dimension, then because inverse hmits are exact for profinite
groups the /?-lower central séries spectral séquence of G converges strongly to n (ô),
where a dénotes p-completion So the weak convergence of the spectral séquence to
n (G) follows from the formula (nG)A r^7i(G), and our main theorem gives conditions
under which this holds. The main theorem îs proved by a modification of a method
of Artin and Mazur, who prove an analogous theorem for pro-p homotopy objects

in their work on étale homotopy theory (to appear).
The paper îs in three sections In the first we give the statement of the main

theorem and deduce the convergence theorems from ît. Section 2 îs devoted to
generahzing to simplicial profinite groups standard properties of the cohomology of
simplicial groups such as the Serre spectral séquence and the Whitehead theorems.
In the third section we use thèse results to study the p-completion functor from
simplicial groups to simplicial pro-p groups. Using Zeeman's companson theorem
in the way indicated by Artin and Mazur we prove a resuit on the compatibility
of completion and fibrations (Th. 3.6) from which the main theorem follows easily

This paper resulted from putting ideas of Ed Curtis and Mike Artin and Barry
Mazur together. I wish to acknowledge the benefit of numerous conversations

§ 1. Statement and Application of the Main Theorem

We assume famihanty with basic facts about profinite groups (Serre [8]) and

(semi-)simphcial groups (Kan [4]). A fundamental property of profinite groups îs

that the inverse limit functor îs exact for filtered inverse Systems. Consequently

(1.1)

This work was supportée by NSF GP-6959
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if Gf iel is an inverse System of simplicial profinite groups indexée by a direct set /.
If G is a simplicial group and M is a 7c0 G module, then M defines a local coefficient

System on the "classifying space" simplicial set ffîG, and we define the homology

Hq(G, M) and the cohomology Hq(G, M) of G with values in M to be the homology
and cohomology of this local coefficient System. We shall identify a group n with the

constant simplicial group which is % in each dimension and has ail face and de-

generacy operators the identity, in which case Hq(n, M) and Hq(n, M) as just defined

are the ordinary Eilenberg-MacLane homology and cohomology.
By a module M over a profinite group n we shall always mean one which is a

topological n module when endowed with the discrète topology. If G is a simplicial
profinite group and M is a tt0G module, we define the cohomology of G with values

in M to be

Hq (G, M) lim Hq (G/U, Mno u) (1.2)

where U runs over the directed set of open normal simplicial subgroups of G. When
G is constant we obtain the définition of cohomology given in Serre [8].

Let p be a prime number. If n is a group, let û be its p-completion, i.e. limn/n'

where n' runs over the set of normal subgroups of index a power of p. If M is a %

module which is also an abelianp-group, then the following conditions are équivalent:
(i) M cornes from a A module under the map n-*û, (ii) M has a composition séries

with quotients of the form Zjp (integers mod p) with trivial n action, (iii) the sub-

group of n consisting of the éléments acting trivially on M is of index a power of p.
If thèse conditions hold, we say that n acts unipotently on M.

Let G-*ô be the dimension-wise extension of a to a functor from the category
of simplicial groups to the category of simplicial pro-/? groups. The normalized
subgroups NqG and the Moore homotopy groups nqG of a simplicial pro-/? group G

are pro-/? groups, hence the map nqG-+nqô extends uniquely to a canonical map

(nqG)*-+nq6. (1.3)

If M is a ti0 G module, then there is also a canonical map

Hq (6, M) -? Hq (G, M) (1.4)

and we say that G is p-good if this map is an isomorphism for q and for ail M which
are abelian /?-groups. (It suffices by the five lemma and (ii) above that 1.4 be an
isomorphism for M=Z/p and ail q). This définition in the case of a constant G is an
obvious extension of the one given in Serre [8], p. 1-16. In Section 3 we shall shown
that if each Gn is/?-good so is G, and that free groups and finitely generated nilpotent
groups are />-good.

Let (j the kernel of the augmentation G-+n0G be the 'universal covering' of
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G. If M is a n0 G module, then Go acts by conjugation on the pair (S, M), hence on
Hq(G, M) and this action induces an action of n0G on Hq(G, M).

We can now state our main resuit which will be proved in § 3.

Theorem 1.5: Let G be a simplicial group satisfying the following conditions:

(i) G is p-good
(ii) 7i0 G U p-good
(iii) Hq(G, Z) isfinitely generatedfor ail q

(iv) n0G acts unipotently on Hq(G, Zip) for ail q.
Then the canonical map (1.3) is an isomorphism for ail q,

Our first application of this theorem is to deduce Curtis' connectivity theorem
for simplicial groups [2] from the simpler one for simplicial Lie algebras [1], Let
f{q) be any function of q (e.g. 2q) such that nq(LrX) 0 if r^f(q) and X is any
connected free simplicial abelian group. Let Frn be the lower central séries of a group
n. and let gr7c= © rrn/rr+ln be the associated graded Lie algebra.

Corollary 1.6: IfG is a free simplicial group such that noG 0, then nqFrG 0

forr>f(q).
Proof: We first reduce to the case where G is finitely generated in each dimension.

As G is connected we may by the simplicial analogue of cell-attaching construct a
weak équivalence F-*G, where F is free with ail generators of dimension >0. As
G is free it is homotopy équivalent to F, so we may assume Go 1. But then G is the
îiltered inductive limit of those simplicial subgroups whose set of non-degenerate
generators is a finite subset of the set of non-degenerate generators of G. Each of
thèse subgroups is connected since G0 l, and since tt* and Fr commute with filtered
inductive limits we may assume G has finitely many non-degenerate cells and that
C0 l.

Consider the diagram
{nqGY -+\imnq{GIFrGy

I V | (1.7)

nqÔnq

The vertical arrows are isomorphisms by the main theorem. In effect Hq(G, Z)
nq-i(ë>TiG) is finitely generated, ttoG=0, and free simplicial groups are good, so
the main theorem applies to G. Also grrG Lr(gr1G) is finitely generated in each
dimension, so by induction on r and the homotopy long exact séquence associated to
]-*grrG->G/rr+1G^G/rrG-+l one sees that nq(G/FrG) is finitely generated. But
G/FrG is trivial in dimension 0 hence is connected, so by Serre Hq(G/FrG, Z) is
finitely generated. Also G/FrG is good because it's a finitely generated nilpotent
group in each dimension. Thus the main theorem applies to G/FrG.
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Now if U runs over the normal subgroups of index a power ofp in any group G

we hâve

lim(G/rrG)A =limlim(G/(7)/rr(G/(7)

lim lim(G/l/)/rr (G/17) lim G/U Ô ¦ (L8)

where we hâve used the fact that p groups are nilpotent. Consequently by 1.1 the
bottom row of 1.7 is an isomorphism, and hence ail maps in 1.7 are isomorphisms.

By Curtis' connectivity theorem for simplicial Lie algebras nq (grr G) nq (Lr (grx G))
0 for r^f(q). Hence the inverse System nq(G/rrG) stabilizes for r>f(q) and we

see that nq(G)A-+nq(GirrG)A is an isomorphism for r>f(q). But this is true when

a is the /?-completion for any prime p, hence as both groups are finitely generated
abelian groups nqG^7tq(G/FrG) for r>f(q) and the corollary follows.

Our second application of the main theorem is to generalize Rector's resuit [7]
to a class of non-connected simplicial groups. If n is a group let Fpn r^l be its

/7-lower central séries and let grpn=®FPn/FP+i7t be the associated graded p-LÏQ

algebra over Z/p. If II V=®LP Fis the freep-Lie algebra generated by a Z/p module
V, then the canonical map

)-+gr*7r (1.9)

of /?-Lie algebras which extends the identity in degree 1 is always surjective and is

an isomorphism when n is free. If G is a free simplicial group, then the decreasing
filtration F? G gives rise to the p-lower central séries spectral séquence

En1m ^l4grïG dr:Ernm-+Ern-Um+r (1.10)

Proposition 1.11: IfG is afree simplicial group such that Hq(G, Z/p) nq_1(grp1G)
is finite for ail q, then the spectral séquence 1.10 converges strongly to nnô.

Proof: Define the /?-lower central séries for a pro-p group n by FP n=lim FP(n/n')

where nf runs over the open normal subgroups of n. As inverse limits are exact for
profinite groups grp7c=lim grp (n/nr), and moreover

n lim n/n' lim hm(ic/jc')/r?(it/ic')

lim lim(*/«')//*(w/w') \imnlFPn. ' (U2)

If V is a profinite Z/p module, define the /?-Lie algebra it générâtes by FV=lim

'), so that by passage to the inverse limit in 1.9 one obtained a canonical map

r)->grpîc. (1.13)
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Lemma 1.14: The map 1.13 w a« isomorphism iffn is afree pro-p group.
A free pro-p group F is by définition (Serre [8], p. 1-5) the completion of the

free group FS generated by a set S with respect to the family of normal subgroups
which are of index a power of p and which contain almost ail members of S. In
other words F lim lim FS'/F? FS', where S" runs over the finite subsets of S and

S' r
the map FS^FS^ when S^S[ is the identity on S2 and sends S[ — S2 to zéro.

Taking into account the définition of 1.13, one sees that it is an isomorphism for
F, since 1.9 is an isomorphism for FS' and hence an isomorphism in degrees <r
for n FS'/FPFS'. Conversely if 1.13 is an isomorphism, then choosing a map
w:F-nt where F is free such that grf u is an isomorphism (Serre [8], p. 1-36, prop.
24), we hâve that grpw and hence u is an isomorphism. This proves the lemma.

The map G->ô carries FprG into FPG9 hence induces a map of spectral séquences

7i*(grpG)-+n*(grpÔ). (1.14)

grf G is a simplicial Z/p module hence is homotopy équivalent to the simplicial Z/p
module N=® K(nqgrpG, q) which is finite in each dimension by hypothesis. So

q

grf ô (grf G)A is homotopy équivalent to N and hence grpê, which equals Lp(grf G)

by the lemma and the fact that the completion of a free group is free (Serre [8],
p. 1-6, Remarque), is homotopy équivalent to Iffiï. But N=f} so U fit LPN, which
is homotopy équivalent to grpG. Thus 1.14 is an isomorphism of spectral séquences.
But the second spectral séquence converges strongly to nnô by 1.1 and 1.12, so the

proof of the proposition is complète.
Combining the main theorem and this proposition we obtain

Theorem 1.15: Let G be afree simplicial group such that
(i) Hq(G, Z) isfinitely generatedfor ail q
(ii) Hq(G, Z/p) is finite for ail q

(iii) 7i0G is p-good
(iv) 7i0G acts unipotently on Hq(G, Z/p) for ail q.

Then the p-lower central séries spectral séquence 1.10 converges weakly to %nG in the

sensé that thefollowing hold:
(a) EZ limE^

(b) the topology on %nG given by the filtration Ker {nnG-*7in(G/rpmG)} is the

P-topology.

Corollary 1.16: Let G be afree simplicial group which is an "H-space" object
°f the homotopy category of simplicial groups. If Hq (G, Z) is finitely generated for
aïï q, then the p-lower central séries spectral séquence of G converges weakly to nnG.

Proof: In this case n0G is abelian and acts trivially on H*((j, Z). So n0G
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Ht (G, Z) is finitely generated and hence/7-good. Moreover by a well-known argument
of Serre [9] applied to the homology spectral séquence of the fibration G-*G->n0G
one finds that Hq (G, Z/p) is finitely generated for ail q. So the corollary follows from
1.15.

Example: Let G be a simplicial group corresponding under Kan's theory [4] to
real projective space RPk. If p 2 then the hypothèses of 1.15 are satisfied, but if
p is odd, then n1RPk Z/2 acts unipotently (trivially in this case) on H*(Sk, Z/p)
exactly when k is odd. If A: is even then the map *->RP* is a Z/p homology isomorph-
ism, so the séquence can't converge or else 0 nn(RPk)A =nn(Sk)A («>l), which is

non-sense.

§ 2. Cohomology of simplicial profinite groups

We shall need the following properties of the cohomology of simplicial groups.
A map of simplicial sets or groups is called a weak équivalence if it induces isomorph-
isms on homotopy groups.

Proposition 2.1 : Let G, H be simplicial groups and let M be an0G module.

(a) Iff:H-+G is a weak équivalence, then H*(f M):H*(G, M)->H*(H, M) is an

isomorphism.
(b) Iffandg are homotopic maps ofsimplicialgroupsfrom H to G, then H* (f M)
(g,Af).
(c) There is a canonical spectral séquence

Ep2q np3fq(G, M)=>/F+«(G, M).

where Jfq(G9 M) is the cosimplicial abelian group n\-^Hq(Gn, M) and np is its "co-
homotopy", i.e. homology with respect to the differential Ô=Z( — Ï)1 Ôt.

(à) There are canonical isomorphisms

H0(G,M) MnoG

H1 (G, M) Homto) (n0 G, M), if n0 G acts trivially on M.

(e) If 1-+R-+G-+H-+1 is an exact séquence of simplicial groups, then there is a
Serre spectral séquence

Ep2q HP(H, Hq(R, M))=>Hp+q(G, M).

(/) H* (G, M) is a cohomological functor ofM.
Proof: Ail of thèse except (c) follow from the properties of the classifying space
functor ffî. Thus (e) is the Serre spectral séquence for the fibration ffîR-+ ffîG-* WE
(see [3], Appendix II), and the second half of (d) follows from Poincare's theorem
and the universal coefficient theorem. (b) is trivial because ffîf and Wg are homo-
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topic, and (a) follows from the fact that Wf is a weak équivalence and hence a

homotopy équivalence since ffîG and WH satisfy the extension condition.
To prove (c) let iT{G) be the bisimplicial group given by W(G)pq W(Gp)q,

where W{n) is the classifying simplicial set of a group n. As W{n) has trivial homotopy,

if (G) has trivial vertical homotopy, so by the spectral séquence of a bisimplicial

group [6], AW(G) has trivial homotopy, where \_AW\G)~\n W\G)nn. Now n is

contained in W(n) as a simplicial subgroup, so G is contained in AW(G) as a

simplicial subgroup. Therefore AW(G) is a principal contractible simplicial G set and
hence is homotopy équivalent as a simplicial G set to W(G). Thus

M) nn MapG(W(G), M) Hn(G, M),

where MapG dénotes the set of morphisms in the category of G sets. One of the

spectral séquences of the bi-cosimplicial abelian group MapG(#"(G), M)pq
MapGp(W(Gp)q9M)is

MapG(>T(G), M)=>np+q{A MapG(^(G), M))

which one easily sees is the desired spectral séquence (c). This complètes the proof
of the proposition.

Remark: Corresponding properties for homology were derived in [5], Ch. II, § 6

as conséquences of Kunneth spectral séquences pertaining to the derived tensor
L

product X®RY of a left simplicial module X and a right simplicial module Y over a

simplicial ring R. In an analogous way one may dérive the above properties of co-
homology from gênerai spectral séquences pertaining to a derived Hom functor
R HomR (X, Y) where X is a left simplicial module and F is a left cosimplicial module
over the simplicial ring R.

Proposition 2.2: Let G, H be simplicial profinite groups and let M be a n0G
module.

(b) Iff and g are homotopic maps of simplicial profinite groups from HtoG then

H*(f,M) n*(giM).
(c) There is a canonical spectral séquence

Ep2q np3fq(G, M)=>Hp+q(G9 M).

(d) There are canonical isomorphisms

H1 (G, M) Homcont(7c0 G, M)

tf ^o G acts trivially on M, where Homcont is the set of homomorphisms which are
continuous for the topology on n0G and the discrète topology on M.
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(e) If 1-»R-*G->H-»1 is an exact séquence of simplicial profinite groups then

there is a Serre spectral séquence

E\q HP(H, Hq(R, M))=>Hp+q(G, M).

(f) Hq(G, M) is a cohomological functor of M.
Proof: (b). Let Gh-»GJ(1) be the path functor on the category of simplicial profinite

groups so that JfW (H, G^(1)) 3tf#m (H, G)A(1\ where JfW is the function complex
of maps for the category of simplicial profinite groups ([5], Ch. II, 1.3). Thus the

homotopy from/to g is représentée by a map /z:H-+GJ(1). The object GJ(1) exists

and is the usual function complex of maps from A (1) to G in the category of simplicial
sets endowed with the structure of a profinite simplicial group induced from that of
G (see [5], II, § 1, prop. 2 and cor.). Consequently if G is a simplicial finite group so is
GA(1\ If V is an open normal simplicial subgroup of G, this means that h~1(Ker
GJ(1)-»(G/V)J(1)) is an open normal simplicial subgroup of H. Hence if U is a smaller

open normal simplicial subgroup of H, the maps/uv and guv from H/U to G/V
induced by/and g are homotopic, so i/*(/u>v, M1t°y) H*(gVty9 Mn°y). Taking the

direct limit as U and V run over ail such open normal simplicial subgroups we see

that H*(f, M) H*(g, M), which proves (b).

Lemma 2.3: If G is a simplicial profinite group, then for each n, Gn lim(G/U)n

where U runs over the directed set of open normal simplicial subgroups of G.

Given V open and normal in Gn, set Ufe= n^*)"1 V where cp runs over the finite
set of monotone maps from [ri] to [&]. Clearly U is an open normal simplicial
subgroup of G with UflcV, so the lemma follows.

(c) follows by passage to the inductive limit in the spectral séquences 2.1 (c) for
the simplicial groups G/U using 2.3.

(d) follows from 2.1 (d) by passage to the limit.

Lemma 2.4: Let Gt iel be an inverse System of simplicial groups and let Mt iel
be a directed System of abelian groups indexed by the same directed set L Suppose each

Mi has the structure of a 7r0Gf module such that for i^j the map M^Mj is a homo-

morphism ofn0Gj modules. Then

lim Hq (Gi9 Mt) ^ Hq (lim Gh lim Mf).

This may be reduced to the case of constant simplicial groups by 2.2 (c) where it
is easy.

(e) As U runs over the directed set of open normal simplicial subgroups of G,

Un runs over a neighborhood basis of e in Gn by the lemma. Hence if i and/are the

maps R->G and G-»H, i~1\]n and/ Un form a basis for e in Rn and Hn respectively.
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Thus R=lim R/i~lU and H=lim H//U, so using 2.4 we may obtain (e) by passing

to the limit in the spectral séquences 2.1 (e) associated to the exact séquences 1-»

R//""1U->G/U-*H//U->1 and the module Mn° where U runs over the open normal
simplicial subgroups of G. This concludes the proof of 2.2.

By the method of Serre [9] we may now use the Serre spectral séquence to prove

Whitehead theorem 2.5 : Letf: G-*H be a map ofsimplicial profinite groups and

let n be^l. Thefollowing conditions are équivalent:

(i) nqfis an isomorphism for q<n and a surjection for q n.

(ii) nofis an isomorphism andfor every n0H module M Hq (f M) is an isomorphism
for q^n and an injection for q n + \.

(ii)' same as (ii) but where M is any irreducible n0 H module (such an M is neces-

sarily finite dimesional over Z/p for some prime p).

Corollary 2.6: Let R be a simplicial profinite group and let n^l. Then 7r^R 0

for q<n ijfnoR 0 and Hq(R, Z//?) 0 for 0<q<n and ail primes p.
Proof: Equivalence of (ii) and (ii)': (ii)=>(ii)' is trivial. Assume (ii)'. By the rive

lemma, the family ^ of tt0H modules M for which Hq(f M) is an isomorphism for
q^n and a surjection for q n+l has the property that if 0->M'-+M-yM"-*Q is

an exact séquence, then M\ M"e^=>Me^ and M, M"e^=>Mfe^. Also V is closed
under filtered inductive limits. Any finite ;r0H module has a composition séries hence
is in ^, so any torsion n0H module is in <€. If M is a vector space over Q, then
MeC because then Hq(G, M) 0 for q<0, as one sees by using the spectral séquence
(2.2c) to reduce to the case of a single profinite group. If M is torsion-free there is an
exact séquence 0-»M-»M®Q-»M® (Q/Z)-»0 where the second two belong to #,
hence Afe^. Finally if Mt is the torsion subgroup of M, the exact séquence 0-»
Mt->M-+M/Mt-+0 together with what has been proved shows that Me^, so (ii) is

proved.
Réduction of the theorem to the corollary: Factor the map fin the standard way

' p
G-»GxHHJ(1)-+H dual to the mapping cylinder construction. / is a homotopy
équivalence so induces an isomorphism on n* and H* (2.2(b)), while p is surjective
since it's a fibration and 7io/is surjective. Thus we may assume/is surjective.

Let R=Ker/and consider the Serre spectral séquence

Ep2q HP(H, Hq(R, M))=>Hp+q(G, M). (2.7)

If (i) holds, then nqR=0 for q<n. If we take M to be an irreducible n0H module,
then M~{Zjp)k as tt0R modules for some k, so by the corollary Hq(R, M)=M for
#=0 and 0 for 0<q<n; thus the spectral séquence 2.7 yields (ii)'.

Now suppose (ii) holds and let s be the greatest integer 0 < s < n such that Hq (R, A)
=0 for 0<<7<,y and ail finite abelian groups A. Then from 2.7 we obtain an exact
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séquence

Hs(H, M) ^ HS(G, M) - H°(H, HS(R, M)) - iT+1 (H, M) -> Hs+ x (G, M)

which shows that #°(H, #S(R, Af)) 0 for ail n0U modules M. Given an abelian

group A, let M be the tt0H module induced from A regarded as a module over the

identity subgroup. Thus M=lim {set maps: 7i0H/U-+A} where n0H acts on n0H/Un

u
by right translation, so

H° (H, ffs(R, M)) lim H° (H, {set maps : n0 H/U -> HS(R,
u

lim {/ : tt0 H/U -» H° (R, A) | / set map such that
u

?"1/W} for ail yen0U}

HS(R,A)

Hence Hq(R, A)~0 for 0<gO and ail abelian groups A, which shows that 5 «.

In particular by 2.2 (d)
H1 (R, A) Homcont (tt0 R,A) 0 (2.8)

hence 7i0R=0 because 7io/is an isomorphism and so 7i0R Coker n^ is abelian.
Thus by the corollary nqR=0 for q<n and so we obtain (i).

Proof of the corollary: As 7r0R=0, there is a canonical exact séquence (see [6]
for formulas)

where ER is contractible. This gives rise to a spectral séquence

Ep2q HP(R, Hq(QR, A))=>Hp+q(l, A).

Using this, the fact that 7ro&R 7c1R is abelian, and the formula (2.8) one establishes
the corollary by induction on «.

For simplicial pro-p groups the Whitehead theorem may be strengthened as

follows:

Corollary 2.9: Let f:G->H be a map of simplicial pro-p groups and let
Thefollowing conditions are équivalent:

(i) nqfis an isomorphism for q<n and a surjection for q=n.
(ii) Hq(f Z/p) is an isomorphism for q^n and an injection for #=« + 1.

Proof: Since H1 (G, Z/p) Homcont (n0 G, Z/p) #1(7r0G, Z/p), H1 (/, Z/p) in-
jective implies that 7io/is surjective (Serre [8], p. 1-35, prop. 23), which proves the
corollary when «=0. If n^l then we can apply the Whitehead theorem once we
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know that (ii) implies that nof is an isomorphism. We know nof is surjective, so

replacing/byasurjectionasintheproofof the theorem we may assume / surjective.

If R Ker/, then there is a five term exact séquence

H1 (H, Z/p) ^ H1 (G, Zip) - H° (H, H1 (R, Zip)) -> H2 (H, Z/p) ^ H2 (G, Z/p).

so //°(H, H1 (R, Z/p)) 0. But the action of a pro-/? group on a non-zero /? primary
module has non-zero invariants, so Hl(R, Z//?) 0 and 7i0R 0. Therefore 7ro/is an

isomorphism, and the corollary follows from 2.5.

§ 3. Completion and cohomology

In this section we shall abbreviate H* (G, Z/p) to 77* (G), use "good" instead of
"/>-good", and call a subgroup of a group open if it contains a normal subgroup of
index a power of p.

Proposition 3.1 : If G is a simplicial group such that Gn is good for ail n, then G

is good.

Proof: There is a map of spectral séquences 2.1 and 2.2 (c)

l t
npjeq(G)=>Hp+q(G)

which is an isomorphism on the E2 terms, hence also on the abutment.

Proposition 3.2: If G->H is a weak équivalence ofsimplicial groups and G, H are
good, then ô-+Ê is a weak équivalence.

Proof: In the square
Hq(H)-+Hq(H)

I 1

Hq(Ô)-*Hq(G)

the horizontal arrows are isomorphisms since G and H are good, and the left vertical
arrow is an isomorphism by 2.1 (a). So the proposition follows from Whitehead
theorem 2.9.

Proposition 3.3: Let 1->R-+G-*H-+1 be an exact séquence of groups such that
(i) H and R are good

(ii) H*(R) isfinitefor ail q
(iii) H acts unipotently on H1 (R).

Then (a) l-+A^>Ô->fî-+i is exact
(b) G is good.



56 DANIEL G. QUILLEN

Proof: (b) follows from (a) since then there is a map of spectral séquences

Hp(H,Hq(Ê))=>Hp+q{G)

l l
Hp(H9Hq(R))=>Hp+q(G)

which will be an isomorphism on E2 by hypothèses (i) and (ii).
To prove (a) we must show that R^ô is injective, or equivalently that if V is

an open subgroup of R, then V=> UnR for some open subgroup U of G. As H1 (R)
Hom(grlR, Z/p) is finite, grf R is finite, hence gr£i?, which is a quotient of L^(grji?)
(1.9) is finite, so R/FPR is a /?-group. As V^>PFR for some r, we may by shrinking V

assume it is invariant under the conjugation action of G. Notice also that G acts

unipotently on grpR by hypothesis (iii) and hence acts unipotently on grpR. Conse-

quently there is a séquence of subgroups R Fo z> Fx => • • • =s Vn V normal in G such

that Vi/Vi+i^Z/p with trivial G action. We are going to construct inductively a

séquence G= l/0=> Ut =>... of open subgroups of G such that UtnR= Vt. For /= 1 the
extension

1 -> Fo/Fi -? G/Fi -> H -> 1

is classified by an élément aeH2(H). As F is good aeIm{H2(HIH1)-+H2(H)} for
some /fi open and normal in H. In other words there is a diagram

1-> Fo/n-? G/Fi-> # -*1
R 1*4

1-» Z/p -> g -+H/H1->1

where the square * is cartesian. Hence over H1 there is a section homomorphism s

of G\VX-+H, so sH1czG/V1 is an open subgroup with ^//1n(F0/F1) l. If I7t is the
inverse image of 5^ under the map G-^G/V^^, then l^ is open in G and UlnR=Vi.
This takes care of the case 1 1. Having found Ut one applies the same argument to the
extension l
which is possible since U^V^H is an open subgroup, hence good by

Lemma 3.4: An open subgroup of a good group is good.

Proof: If Ht is open in H, then Ht clearly maps injectively into H. Let iiH^H
be the inclusion and let z* (Z/p) be the H module induces by the trivial Ht module
Z/p. Then (i)*(Z/p) i*(Z/p) as Ê modules so we hâve a square

4

where the first vertical arrow is an isomorphism since H is good. This proves the
lemma and complètes the proof of 3.3.
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Corollary 3.5 : Anyfinitelygeneratednilpotentgroup isgood. Anyfreegroup isgood.

Proof: Assume G finitely generated and nilpotent. grG=@rrG/rr+lG is a Lie

algebra over Z generated by g^ G which is a finitely generated abellian group. Hence

gr^Gis a finitely generated abelian group for each q, so we may refine the lower central
séries of G to a séquence of normal subgroups G G03--=>Gn l where Gf/Gf+1

is either Z or Z//, / a prime number, with trivial G action. One may then use the

proposition inductively to prove GjGt is good once one knows that A is good and

Hq(A) is finite for each q where A 7j or Z//. In the latter case W(A) is a simplicial
finite set hence Hq(A) is finite. Also A is good if l=p since A=Â, and A is good if
l^p because then Hq(A) 0 for q>0. If A Z then A is free, and free groups are

good because Hq (G) Hq (G) for q ^ 1 for any group G and because #« (G) Hq (G) 0

for q^ 2 if G is free. This complètes the proof of 3.5.

Theorem 3.6: Let 1-+R-+G-+H-+1 be an exact séquence ofgood simplicial groups.
Suppose that for each q Hq (R) is finite and that n0 H acts unipotently on it. Then

R-*Kqï{G-+H} is a weak équivalence.

Lemma 3.7: Let H be a simplicial pro-p group and let u:A^B be a map of p-
primary n0 H modules. Then

(i) H° (H, u) injective => u injective
(ii) H°(H, u) bijective and H1 (H, u) injective =>u is an isomorphism.

Proof: (i). If K is the kernel of w, then there is an exact séquence 0-+H0 (H, K)-+
H0(U9A)^H° (H, B) so H° (H, K) 0 and so K= 0 since it is /7-primary. (ii) We hâve
that u is injective by (i), so letting C=Coker w, there is an exact séquence H°(H, A)
^H°(H,B)-+H°(H, C)-*!!1 (H, A)*H1 (H, J?) whence by the same argument C=0.
This proves the lemma.

The following is the core of Zeeman's comparison theorems for spectral séquences
[10].

Lemma 3.8 : Letf: {Ev2 q=>Hp+ q)-? {El q=>Hp+ q) be a map offirst quadrant spectral
séquences of cohomological type. If Hn (/) is an isomorphism for ail n and Elq (/) is

an isomorphism for q<s, then

(a) E%s (/) is an isomorphism
(b) El (f)is injective.
Proof: Let ZPq, B?qcE%q be defined recursively by

Zprq

BpqIBPl1 Im{EP:r1 + 1>q+r-2-^->EPll} Bp2q 0

so that Erpq~Zrpq/B?q. By induction on r one simultaneously establishes that

q + r - 1 ^ s => ZPq, BPq9 EPq are isomorphisms (1)

q<s=>ZPq,EPq are surjective, (2)
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where we hâve abbreviated E%q(f) to 2sf€, etc. Using induction on r one obtains

p + q < s => ZPq, BPq, EPq are isomorphisms. (3)

Let FpHn be the filtration on the abutment, so that E™ FpHp+q/Fp+lHp+q.
Using (2) and induction on q one shows that

FpHp+q are isomorphisms for q < s and injections for q s. (4)

Ifp<r there is an exact séquence

which by descending induction on r using (1), (2) and (4) may be used to prove

If p < r, then EPq is an isomorphisms for q < s and an injection for q s. (5)

In particular taking/? l, r — 2 we hâve established part (b) of the lemma.
Note that E^s=Hs/Fx Hs is injective by (4) and surjective since Hs is an isomorphism.

In virtue of the exact séquences

O-xPOs y V°s dr- ptss-r+l/pr.s-r+l vH

^ by (1) a* by (1)

one sees by descending induction on r that

E®s is an isomorphism for ail r (6)

which proves part (a) and hence complètes the proof of the lemma.

Proof of 3.6: Let K Ker{6->i?}. If U is an open normal simplicial subgroup
of G, then the natural map of the exact séquence l-»iÊ-»<?-»//-»1 intol-»i£/i?n(/->
G/U-+G/RU-+1 gives rise to a corresponding map of Serre spectral séquences, and
hence on passage to the limit over U a map / of spectral séquences

Hp(Ê,Hq(K))=>Hp+q(Ô)
4 4 (1)

Hp(H,Hq(R))=>Hp+q(G).

Assume that the canonical map Hq(K)-+Hq(R) is an isomorphism for q<s. As H
is goodlsf *(/) is an isomorphism for q < s and as G is good/induces an isomorphism
on the abutment. Therefore by 3.8

H°(Ê, HS(K)) ^ H°(H, HS(R))
Hl(Ê9Hs(K))^Hl(H9Hs(R))
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Now since H is good and n0H acts unipotently on Hs(R) Hom(Hs(R, Z/p), Z/p),
H may be replaced by H in the right side of thèse maps, so by 3.7 HS(K)-*HS(R) is

an isomorphism. Thus in the triangle

Hq(K)->Hq(R)

\ S
Hq(R)

the left vertical arrow is an isomorphism by induction on q and the right one is an

isomorphism since R is good. Thus Â-+K induces an isomorphism on cohomology
so is a weak équivalence by 2.9. Q.E.D.

Proofofmain theorem 1.5: We show that nq{G)A z$nq{ô) for ail simplicial groups
G satisfying the hypothèses by induction on q. For ^ 0 it is clear since both groups
represent maps of G into a constant simplicial pro-/?-group so we assume q>0. By
3.2 we may replace G by a free simplicial group. Consider the exact séquences

{-y G -» G -» 7i0 G -» 1

i i i
1 -> (j~ -» G -* 7T0 ô -> 1

We apply 3.6 to the upper exact séquence. G is a subgroup of a free simplicial
group, hence is free; thus G, G, n0G are ail good. By hypothèses (iii) and iv) on
G, Hq(G) Hom(Hq(G, Z/p), Zjp) is finite and n0G acts unipotently on it for each

q. Thus by 3.6 (ja-><?~ is a weak équivalence.
As n0G 0 there is a surjection F-*G, where F is a free contractible simplicial

group, whose kernel R is of the weak homotopy type of QG. Consider the exact
séquences

1 -> R -> F -> G -* 1

and apply 3.6 to the upper exact séquence. This is legitimate because H*(R)
H*(QG) is finite by a well-known argument of Serre, because noG=0, and because
R, F and (rare ail free. Thus $-»K and hence jft-^K' is a weak équivalence and we
obtain the diagram

V
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But R satisfies the hypothèses of the theorem. In effect Hq(R9 Z) and Hq(R9 Z) are

finitely generated by Serre, so n0R H1(R, Z) is good, and also n0R acts trivially
on H%(R, Z). Thus by induction (nq.1R)A ^tt^jR and the theorem follows.

BIBLIOGRAPHY

[1] Curtis, E.B., Lower Central Séries ofSemisimplicial complexes, Topology 2 (1963), 159-171.
[2] Curtis, E.B., Some Relations Between Homotopy and Homology, Ann. of Math. 83 (1965),

386-413.
[3] Gabriel, P. and Zisman, M., Calculus offractions and homotopy theory (Springer, Berlin 1966).
[4] Kan, D. M., On Homotopy Theory and c.s.s. Groups, Ann. of Math. 68 (1958), 38-53.
[5] Quillen, D.G., Homotopical Algebra (Springer, 1967 [Lecture Notes in Mathematics, No. 43]).
[6] Quillen, D.G., Spectral Séquences of a Double Semi-Simplicial Group, Topology 5 (1966),

155-157.
[7] Rector, D.L., An (Instable Adams Spectral Séquence, Topology 5 (1966), 343-346.
[8] Serre, J.-P., Cohomologie Galoisienne (Springer, 1964 [Lecture Notes in Mathematics, No. 5]).
[9] Serre, J.-P., Groupes d'homotopy et classes de groupes abelians, Ann. of Math. 58 (1953), 258-294.

[10] Zeeman, E.C., A proof of the Comparison Theorem for Spectral Séquences, Proc. Camb. Phil.
Soc. 55 (1957), 57-62.

Massachusetts Institute of Technology

Received December 18, 1967


	An Application of Simplicial Profinite Groups.

