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Imbeddings of Simplicial Complexes

BRANKO GRUNBAUMI)

1. Introduction

The main aim of the present note is to show that certain n-dimensional simplicial
complexes which are not imbeddable into the (2x)-dimensional Euclidean space E2"
are minimal with respect to that property, in the following strong sense: Every proper
subcomplex of one of those complexes is even geometrically imbeddable in E?". (A
simplicial complex is geometrically imbedded in E* provided each of its simplices is
a geometric, rectilinear simplex.) This result adds credibility to the following con-
jecture, established for n=1 by Wagner [14] (see also Fary [4] and Stojakovié
[13]):

Conjecture. If an n-dimensional simplicial complex is topologically imbeddable
in E?" then it is even geometrically imbeddable in E2",

It has recently been established by Weber [15] that the weaker conjecture dealing
with piecewise-linear (instead of geometric) imbeddings is true.

We shall start (in Section 2) by extending the class of known examples of n-com-
plexes (that is finite, n-dimensional, simplicial complexes) not imbeddable in E*".
The only examples of such complexes we found in the literature (van Kampen [8],
Flores [5, 6], Rosen [11], Wu [16]) are:

(i) The complete n-complex ¥" (k) with k vertices, where k>2n+3; clearly, only
the case k=2n+13 is interesting.

(ii) The join €°(3)v€°(3)v---v€°(3) of n+1 triplets of points.

For n=1 those examples reduce to the well-known graphs of Kuratowski [10],
which may be used to characterize non-planar graphs.

In Section 3 we shall show that each subcomplex of each of the n-complexes con-
structed in Section 2 is geometrically imbeddable in E". This generalizes recent
results of Zaks [17], who has established for some of the complexes of Section 2 the
possibility of geometrically imbedding each of their subcomplexes in E>", while estab-
lishing for the other cases only the possibility of a piecewise-linear imbedding (see
the more detailed comments in Section 4).

The last Section is devoted to some additional remarks and problems.

I am indebted to the referee for a number of helpful remarks and references.

1) Research supported in part by Office of Naval Research contract N00014-67-A -0103-0003.
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2. Some n-Complexes Not Imbeddable in E2"

We shall denote finite simplicial complexes by script capitals €, ¢, etc.; their
faces (simplices) will be indicated by capitals F, V, etc., and also by enumerating the
vertices; for example, F?=(V,, V;, V,, V3). Superscripts will denote dimension; S”
is the n-sphere (the unit sphere in E**! if metric considerations are involved), and
T" indicates the n-simplex. For a complex K imbedded in some Euclidean space we
denote by set K the set of points underlying the complex. (We find this symbol more
convenient and more indicative than the more usual ““absolute value” notation.)

If F'=(Vy,..., V,) and F"=(W,,..., W,,) are disjoint (abstract) simplices, we shall
denote their joinl) by F'VvF"=(V,,..., V,, Wy, ..., W,,). For disjoint (abstract) sim-
plicial complexes "' and X" the join X' v A" is defined by A" v A "={F' v F" |
| F'eX”, F"e A™"}. Note that this coincides with the usual definition, since we in-
clude the empty set @ as face in each complex.

If & and " are topological simplicial complexes contained in skew affine sub-
spaces of a Euclidean space, their join ¢ v " is also a topological simplicial com-
plex. Its faces F’'v F” may be represented by

FvF ={x+(1-2)x"|xeF,x"eF,0<A<1}.

If 47 and A" are geometric simplicial complexes in skew affine subspaces of a
Euclidean space, then £ v ™" is also a geometric complex, and the above represen-
tation simplifies to F'v F"=conv(F'UF"), where convA4 denotes the convex hull
of the set 4. (As is well known, the assumption that J#” and %™ are contained in
skew affine spaces is not essential; the only condition required is that the convex
combinations used do not introduce any unwanted intersections, or degenerate sim-
plices. We shall assume this condition fulfilled whenever we use the symbol v.)

If A" and A" are topological spaces, the join A’ v A" is the space obtained from
the Cartesian product A4’ x 4” x [0, 1] by identifying (a’, A", 0) with a’ for each a’'e 4’,
and similarly identifying (4, a”, 1) with a” for each a"eA”". If j:4'xA"x [0, 1]—
—~A'v A" is the identification map, then A4’ v A” may be topologized by defining
N<A4'v A" open if and only if j~*(N) is open in 4’ x A" x [0, 1].

The connection between the two notions of join is given by the easily established
fact:

For topological simplicial complexes ¢ and 2", there is a natural homeomor-
phism between set (¢ v ™) and (set #”) v (set £™").

If B={b} is a one-pointed set, then 4 v B is for obvious reasons called the pyramid
over 4 with apex b; we shall denote it by A™ (), or simply A" if no confusion is

') Because of lattice-theoretic connotations we prefer to indicate the join-operation by the
symbol V instead of the frequently used *.
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likely to arise. (4% () is frequently called the “cone” over 4 with vertex b; we avoid
this term since it is used with a different meaning in other fields.)

We note the well known and easily established facts:

(1) T"v T™ is homeomorphic to T"*™*1,

(2) $"v S™ is homeomorphic to S"*™*1,

A selthomeomorphism 7 of a topological space A4 is called antipodal provided =
is an involution (that is, n% (a)=a for each ae4) and has no fixed points. The unit
n-sphere S” has a natural antipodality n defined by n(a)= —a. If A’ and A" are topo-
logical subspaces of a Euclidean space, with antipodalities ' and =", then there is a
natural antipodality n=7"v " on 4" v A” defined by

n(da’ +(1=2A)a")=in"(a)+ (1 — ) n"(a").

The homeomorphism mentioned in (2) above may be chosen in such a manner
as to preserve the natural antipodalities of the spheres involved. Indeed, let

S"={x = (x1,..-, xn+m+2)EEn+m+2 I x| =1, Xp42 == Xp1m+2 = 0}
and
Sm = {x = (xla sevy xn+m+2)eEn+m+2 l ”x” = 15 Xy = =Xpp1 = O};

then the mapping which sends the point Ax+ (1 —21) y of $"v S™ (where xeS", yeS™,
0<1<1) onto the point 1'/2x+4(1—1)/2 y of S"*™*! has this property.

Let now 2 be a topological simplicial n-complex, and let £ *=3 (") be a com-
plex isomorphic to ¢ under an isomorphism & such that ¢ and J™* are contained
in skew affine spaces. We define a simplicial (2n+ 1)-complex ¢ as the subcomplex
of A" v A * consisting of all simplices Fv F* (where Fe X", F¥*e #'*,and Fn 3~ (F*)
=@) and their faces. If K=setJf', we shall use the notation K =set(#""). The set
K" has a natural antipodality = defined by

n(Ax; + (1= 2) 8(x2)) =1 — A) x2 + 49(x,),

where x; belongs to an n-simplex F; of #" and F; n F,=0.

We have the following lemma:

(3) If X', is a simplicial ni-complex,i=1,---,p, then there is a natural homeomorphisn
@, which preserves the natural antipodalities, between (A (v A yv v X ,)" and
Ky vKy v--vK).

Proof. It is clearly enough to consider the case p=2. Then a typical point 0.
(A v ,)Y is of the form

x=A(wxy+(1—p)xy)+(1—-2)3(Wx] + (1 —p")x3),

where 0<A, ¢, p"<1, xjeF/, x;eF/, F/, F/'eX;, and (F{v F;)n(F;{ Vv F;)=0, th%i
is, F{F/ =0 and F; nF}=0. On the other hand, the typical point of K,’ vK;
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given by
y=Pp(y; +(1 =) 8(¥7)) + (1 = B) (2292 + (1 — 23) 8(¥2))

where 0<a,, a,, <1, yieF/,y/'eF,, F/,F'eX’,, and F;nF'=0 for i=1,2. As-
suming without loss of generality that 3 is affine, x may be made to correspond to y
by taking x;=y;, x;{ =y;, and

B=iu +(1- ),
A 3 A(1 =)
oy = ’ ” %y = ’ "
M +(1-An AQ=-p)+ (1 =11 -u)

The continuity of the mapping and the preservation of antipodality by it are easily
checked, and the proof of lemma (3) is completed.

As a corollary of (3) and (2) we have:

(4) If X, is a complex such that K;" is homeomorphic to the n,-sphere S™, then
(A vHyv--vH )" is homeomorphic to the (p—1+Y 7, n)-sphere S" v S™v

v §"?. Moreover, the homeomorphism may be assumed to preserve antipodes.

Let " be a topological simplicial n-complex ; we construct a new set K as follows.
K is a subset of K* x K*, and consists of those pairs (a, b) of points of K* which
satisfy:

(i) at least one of a, b belongs to K;

(ii) there exist disjoint #-simplices F, and F, of such that aeF,’, beF, .

K is clearly a compact metric space; it has a natural antipodality making points
(a, b) and (b, a) correspond to each other. One of the properties of K which is of
special interest to us is:

(5) For each n-complex ¢, the set K is homeomorphic to the set K* by a homeo-
morphism ¢ which preserves antipodality.

Indeed, denoting by v the apex of K*, each point of K is uniquely expressible in
the form (Aa+(1—4) v, b+ (1—p) v), where a and b belong to disjoint n-simplices
of #°,0< 4, p<1, and max {1, u} =1. We define

(1 —4p) a + $ud(b)ek” if A=1
Yia+ (1 —3)3(b)eK” if pu=1.
It is trivial to check that ¢ has all the desired properties.

We need one more definition. Let " be a topological simplicial complex and let
K=setx". A mapping f of K+ shall be called a K-homeomorphism provided the re-
striction of fto K is a homeomorphism (between K and f (K)). We shall say that "
IS n-entangled (or absolutely knotted in E™) if and only if

FK)n f(KHN\K) #0

for every K-homeomorphism f of K* into E™.

<P(/1a+(1——l)v,ub+(1—u)v)={
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If K is homeomorphic to a subset of E"~! then ¢ is clearly not n-entangled (since
in this case K* is homeomorphic to a subset of E”). Hence, if we succeed in proving
that some complex is n-entangled, then this complex is certainly not imbeddable
in E*"1,

Let now 2¢ be an n-complex and let f be a K-homeomorphism of K* into E2"*1,
Then we define a mapping f of K into E2"*! by setting, for (a, b)eK,

f(a,b)=71(a)~ £ (b).

Clearly, f'is continuous and f(a, b)= —f(b, a).

We shall prove:

(6) If 0ef(K) for every K-homeomorphism f of K * into E2**1, then " is (2n+1)-
entangled (and therefore not homeomorphic to any subset of E2").

Indeed, if " is not (2n+1)-entangled there exists a K-homeomorphism f of K*
into E2"*! such that f (K)nf (K*\K)=0. From 0ef (K) it follows that for suitable
(a, b)eR we have 0= (a, b)=f (a)—f (b), that is, f (@)=f (b). Since K contains at
least one of a, b, and since f is a K-homeomorphism, it follows that a=b, contra-
dicting condition (ii) of the definition of K.

Combining lemma (6) with the above remark f(a, b))= —f (b, a) we obtain at
once:

(7) If for every K-homeomorphism f of K+ into E2"*! some pair of antipodal
points of K is mapped by f onto the same point of E2"*1, then K is (2n+ 1)-entangled.

In the cases we shall discuss we shall find the following situation: K is homeo-
morphic to KV, and K" is homeomorphic to S2**!, both homeomorphisms pre-
serving antipodality. By the Borsuk-Ulam theorem (see Borsuk [1]), every mapping
of §2"*1into E?"*! maps some pair of antipodal points of $2**! onto the same point
of E?"*!; because of the antipodality-preserving homeomorphism between K and
S2n*+1 the same conclusion is valid for K. Hence, by lemma (7), the complex ¢ is
(2n+ 1)-entangled and thus not imbeddable in E3".

Now we are ready for

THEOREM 1. Let n, p, ny, ..., n, be non-negative integers such that n=n; +n;+
+---+n,+p—1. Then the n-complex

¢"(2n; +3) v € (2n, +3) v v €7(2n, + 3)

is not imbeddable in. E*". .

Proof. In view of the above remark and previous lemmas, it is obviously enough
to show that

(8) For each positive integer k, the set (¢*(2k+3)) ¥ is homeomorphic to S* i
under a mapping that preserves antipodes.
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Let €*(2k +3) be represented by the k-skeleton ¢~ of a (2k +2)- sxmplex T2+2=
=conv {Xo, ..., Xsx+2} = R**2 such that

2k+2

T %=0, ' *)

but each proper subset of the x;’s is linearly independent. Then ‘K ¥ .may be obtained
by taking ()= —"={—F| Fex'}; hence K" is the union of all sets of the form
conv (F;u(—F,)), where F; and F; are disjoint members of £".

In order to show that K" is homeomorphic to S***1 it is obviously enough to
show that for each unit vector » in E**2, the ray L= {Au | 1>0} intersects K" in
precisely one point, different from the origin.

We first establish LN K" #0. Let Au=Y7%¢% ayx;, with 1>0, a;>0, Y, o;=1.
Without loss of generality we may assume that oy <o, <+ <o, 4,. Then, using (¥),

we have ‘
2k+2 2k+2

0#Au=2u—a, 0= 3 (—os)X;= 2, Bxi.
i=0 i=0

where f,<0 for 0<i<k, B,+,=0, 8,20 for k+2<i<2k+2, and not all g; are 0.

Let f'=—Yi-0 Bis B'=YiZi+2 Bi and f=p'+p"; then
2k+2
La U =" Z(———)(— )+— ﬂ'xieKV
B B’
i=k+2

as claimed. (If f’=0 or B”=0, the corresponding sum should be omitted.)
On the other hand we shall show that if ye K" for y#0, and if Aye K" for iA>0,
then A= 1. Indeed, assuming without loss of generality that y=3 X3 ? a;x;, where

<0 for 0Ki<k, 2k+2
=0 for i=k+1, Y ol =1, **
;>0 for k+2<i<2k+2, =0 . -

and Ay=Y2*2 p.x. where

Y. 1Bl =1, at most k + 1 of the B;’s are negative and at most (***)
i=0Q
k + 1 of the B;’s are positive.

Then
2k+2
A .
0=y—"%= z (ai"'%)xi.
i=0

By (*) it follows that a;— B4~ 1=y is a constant independent of i. In other words,
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B;=A(a;—7y). Therefore, if y=0, assumptions (**) and (***) would contradict each
other. Thus y=0, and then 1=); |B;|=); [oy|=1 Y ; |oy| =4, as claimed.

Finally, 0¢ K" follows at once from (*).

This completes the proof of lemma (8) and thus also the proof of Theorem 1.

3. Geometric Imbeddings in E*"

In the present section we shall show that every proper subcomplex of each of the
n-complexes of Theorem 1 is geometrically imbeddable in E2",

A few lemmas are needed in the proof; the first is a special case of the general
theorem.

(1) Let €§(2k+3) be a complex obtained from €*(2k + 3) by deleting one k-face.
Then €& (2k+3) is geometrically imbeddable in E*,

Proof. Let T, and T, be two k-simplices in E* such that T; N T, is a single point,
relatively interior to both T, and T,. Let T,2*=conv (T, U T,), and denote by 7, the
m-skeleton of T;2*. It is well known (see, for example, Griinbaum [7], where the terms
and facts used in the sequel may be found) that 7, contains all the geometric
k-simplices determined by the 2k +2 vertices of T;?*, except T, and T,, while 7, _,
contains all the (k—1)-simplices determined by those vertices ([7, p. 98]). Taking, if
necessary, a suitable projective image of T;2*, we may without loss of generality
assume that there exists a point Ve E** that is beyond all facets of T;?* except one.
Then {T;}uZ\_(V)uT, is isomorphic to €§(2k+3), and the proof of (1) is
completed.

Figure 1 illustrates the steps of the above proof for k=1.

We shall say that an n-complex X is nicely imbedded in E™ provided ¢ is geo-
metrically imbedded in E™ and there exists a point (say the origin 0 of E™) with the
property:

For each unit vector ue E™ except one, u,, the ray L(u)={iu|A>0} intersects
set” in at most one point, while L(u,)nset ¢ consists of two points, each in the
relative interior of an n-face of . We call u, the exceptional direction, and the two
n-faces L (u,) meet the exceptional faces of A .

{T}v 7, v 7,°(V)
T VA

Figure 1
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We need the following lemmas:
(2) €*(2k+3) is nicely imbeddable in E***1,
Proof. Let E¥ be the n-dimensional affine subspace of EZ**! defined by

E’; = {(%15 s x2k+1)EE2k+1 ! Xpp1 == Xpp =0, X304 1 = 1/ 2k + 3)}
and let
Eg = {(xl, seey ka+1)EE2k+1 l xl = ses = xk = 0’ x2k+1 = 1}.

Let T} be a regular simplex of edge-length 1 in Ef, i=1, 2 having its centroid at
x;=+=x,,=0, and x,;,,=1/(2k+3) respectively x,,,,;=1. Let €*(2k +3) have as
vertices the 2k +2 vertices of T} and T, and the point V=(—1,0,...,0,—2). Then a
trivial computation shows that this €*(2k +3) is nicely imbedded in E**!, with
uy=(0,...,0, 1) as the only exceptional direction. (See Figure 2 for an illustration
of the case k=1.) This completes the proof of (2).

X, E,
A ; xz

i
|
|
{
1
|
[}
1

pd

Figure 2

(3) Let o™ and A™* be complexes nicely imbedded in spaces E*'*! and
E*2*1 and let k=k,+k,+ 1. Then A =" v A is a k-complex nicely imbeddable
in E2k+ l.

Proof. Let us imbed E?**! in E?***! by

E*l = {(X1se0s Xop41) €E*T1 l Xokg+2 =100 = X = Xgi+1 = 0},

E2k2+1 = {(X1,..., xlk'l-l)eEZk-’-1 I Xy == x2k1+1 = 0’ Xok+1 = 0}.

We denote by v the vector v=(0,0,..., 0, 1)e E****, and we consider the copy At
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of A imbedded in E?*'*1 4+, and the copy #*2 of ™ imbedded in E2***1 42y,

Defining now 4" =4"* v £, we shall show that & is nicely imbedded in E?**1,
Clearly, & is a geometric complex in E2¥*1,

Let ue E***! be a unit vector such that for some A, u with 0<A<pu we have
Aueset X" and uueset X . That is,
Mu=ay;+(1-a)z;, +2—-a)v } *)
pu =Py, +(1=p)z, +(2—p)v,

where 0<a, f<1, y;, y,esetA™ and z,, z,eset A %2,
Eliminating » from (*) and equating points in E?*'*1 E2k2*1 and multiples of
v, we obtain

pay, = ABy,
p(l=—a)z; =A(1 — p) z, *"
p(2—oa)=21(2-B).

Clearly y, =y, or z; =z, would imply A=u, contradicting the assumption. Hence
Y1#Y, and z, #z,, and thus (**) expresses the fact that

Yi=PUy Y2 = 7PalUy
z;=0;U, Z, = 0U;,

where u, and u, are the exceptional directions of 2™ and ™2, while y=1y,/y,<1
and §=90,/0,>1 are well-determined constants. Inserting those values into (**) we
obtain

6—1 6—1
o=2——— and =2y — .
20—y—1 oy + 0 — 2y
Substituting into (¥*) we see that u, A and p are uniquely determined. Hence the com-
plex J¢ is nicely imbedded in E%**1 and the proof of (3) is completed.

The last lemma we shall need is

(4) Let X and A be complexes nicely imbedded in E*'*! respectively E Tl
let F** be the exceptional face of A** nearer to 0, and let F** be the exceptional face
of A% further from 0. Then (A% v A *\(F* v F*) is a k-complex, k=k,+k,+1,
which is geometrically imbeddable in E**.

Proof. Let 2 be the complex constructed in the proof of Lemma (3). Since 4’
is nicely imbedded in E%**1, the radial projection of X"\{(v+ F*')v (20+ F**)} into
the (2n)-dimensional affine subspace {xeE**!|(x,v)=3} is clearly a geometric
imbedding. This completes the proof of (4).

Now we are ready for our main result:
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THEOREM 2. Let n, p, ny,..., n, be non-negative integers such that n=n, +---+
+n,+p—1. Then every proper subcomplex of the n-complex

H(Nys ey i) =€ (20, +3) Voo v €™ (20, + 3)

is geometrically imbeddable in E*".

Proof. 1t is clearly sufficient to prove the theorem for each complex o (ny, ..., n,)
obtained from " (ny,..., n,) by deleting one n-face F,. Each such ', (nl, 1) 18
obtained by singling out an n-face Fg' of €™ (2n;+ 3) and setting Fo=F§'v -+ v F§®.

We distinguish two cases:

(i) p=1. Then the assertion of Theorem 2 reduces to that of lemma (1) above.

(ii) p>1. Using lemmas (2) and (3) we find a nice imbedding of ", =%"' (2n, + 3)
in E?"*', and a nice imbedding of o', =%" (2, +3)v --- v € (2n,+3) in E?™*1,
where m=n,+---4+n,+p—2, such that Fg' is the exceptional face of £’y nearer 0
while Fy*v .-- v Fg? is the exceptional face of ", further from 0. An application of
lemma (4) to the complexes ¢, and ", completes the proof of Theorem 2.

4. Remarks

(i) The method used in the proof of Theorem 1 is an elaboration of Flores’ [6]
proof, extending the similar proofs in Rosen [11] and Griinbaum [7, p. 210]. By
avoiding the more powerful — but also more unmanageable — “imbedding classes”
of Wu [16, p. 114], it is possible to give a quite elementary proof of the non-imbed-
dability of the complexes of Theorem 1. By standard manipulations (van Kampen [8],
Chrislock [3]) it is easy to extend Theorem 1 to the following

THEOREM 3. Let n;, m;, p be non-negative integers such that n+3<m;<2n;+3
fori=1,..., p. Then the (n, + -- +n »+p—1)-complex

%"1 (ml) Voo %"ﬂ(mp)

is not imbeddable in the Euclidean (my+ -+ +m,— p—2)-space, but it is even geometri-
cally imbeddable in Euclidean (m, + -+ +m,—p~1)-space.

Theorem 3 may easily be modified to allow the inclusion of complexes €"(n;+1)
or " (n;+2). (For some special cases see Wu [16, p. 118].)

The significant difference between Theorems 1 and 3 is the observation that if
m; <2n;+3 then the complex is not minimal with respect to the property of being
non-imbeddable in the appropriate space. For example (p=1, n, =2, m, =6) the 2-
complex %2 (6) is by Theorem 3 not imbeddable in E3; however, even the complex
obtained from %2 (6) by deleting the ten 2-faces incident with one vertex is not im-
beddable in £3. Hence there is no hope that the complexes of Theorem 3 satisfy an
analogue of Theorem 2.
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(ii) Zaks [17] has established Theorem 2 if either p=1 (i.e., in the case covered
by Lemma (1) of Section 3), or else if all n;’s with at most one exception are equal
to 0. His method does not seem to extend to the general case. On the other hand,
Zaks proved: If all the proper subcomplexes of the arbitrary simplicial complex K;
are piecewise linearly imbeddable in E ki j=1, 2, then each proper subcomplex of
K, v K, is piecewise linearly imbeddable in E*1**2*2,

(iii) It is well known that a k-complex imbeddable in E™ is not necessarily geo-
metrically imbeddable in E", if n<2k (Cairns [2], van Kampen [9], Griinbaum [7,
p. 202]). However, the published examples deal only with the case n=3; it would be
of some interest to find analogous examples for all £ and n with k<n<2k—1.

Probably more interesting is the

Conjecture. Each simplicial (= triangulated) manifold imbeddable in a Euclidean
space is even geometrically imbeddable in the same space.

This conjecture is open even for triangulations of the torus (in E?), as well as for
triangulations of S* for k> 3. For triangulations of S? an affirmative answer results
from a more general theorem of Steinitz concerning convex 3-polytopes (see Steinitz-
Rademacher [12, p. 192], Griinbaum [7, p. 235]).

(iv) Considering simplicial complexes imbedded in the n-sphere S” one may dis-
tinguish (as in the case of complexes imbedded in E”) between topological and geo-
metric imbeddings. While it is easy to show that a simplicial complex geometrically
imbeddable in E" is also geometrically imbeddable in S”", the following converse
seems to be still unsettled:

Conjecture. If € is a simplicial complex geometrically imbeddable in S” and if
set€ #S", then ¥ is geometrically imbeddable in E".

(v) For n=1, the two 1-complexes (= graphs) given by Theorem 1 characterize
graphs not imbeddable in the plane as follows (Kuratowski [10]): A graph ¢ is not
imbeddable in E2 if and only if ¢ contains a subgraph homeomorphic to one of the
graphs of Theorem 1. However, the analogous statement is false for n>2. As shown
by Zaks [18], for every n=2 there exist infinitely many n-complexes, none homeo-
morphic to a subcomplex of another, with the property of not being imbeddable in
E?" though each proper subcomplex is piecewise-linearly imbeddable in E2".
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