Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 44 (1969)

Artikel: Finslersche Zahlen.

Autor: Mazzola, Guerino

DOl: https://doi.org/10.5169/seals-33794

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 07.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-33794
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

495

Finslersche Zahlen

von GUERINO MAZZOLA (Ziirich)

Die von Finsler in [1] betrachteten totalendlichen Mengen bilden einen interessan-
ten Bereich & von endlichen Mengen, der die ,,natiirlichen Zahlen* 9, {0}, {{0}},...
enthélt: Die gewdhnliche, fiir natiirliche Zahlen definierte Addition und Multi-
plikation kann auf ganz % x% ausgedehnt werden; & ist nicht-kommutative
reguldre Halbgruppe mit Neutralelement bei beiden Operationen, welche u.a. durch
ein Linksdistributivgesetz verkniipft sind.

Zu den Elementen einer ,,Zahlentheorie* in # gehoren Sdtze iiber die Zerfill-
barkeit von Zahlen aus & in Produkte und Summen von multiplikativ resp. additiv
unzerlegbaren Zahlen. Unsere wichtigsten Ergebnisse in dieser Richtung finden sich
in den Sdtzen 11, 18, 20, 23 und 25 weiter unten.

Der Bequemlichkeit halber sind die meisten der in [1] aufgestellten Sédtze hier
nochmals kurz bewiesen worden.

I. Definitionen

Die Wendung ,,dann und nur dann‘“ kiirzen wir im folgenden mit ,,falls* ab.
Unter (Ja verstehen wir wie iiblich die Menge {x l ex. y mit xeyea}. Oft schreiben
wir statt |_Ja auch | x, ,. Die Menge der natiirlichen Zahlen kiirzen wir mit w ab.

Sei a eine Menge.

DEFINITION I: Sei new. Wir definieren die n-te Vereinigung | J’a rekursiv
durch (i) |J%a:=a. (i) U"" a:=U (U"a).

DEFINITION II: ¢ heisst totalendlich (oder Finslerzahl), falls ein n, existiert,
sodass | J™a=0.

DEFINITION III: Das kleinste n, mit | J"a=0 heisst die Stufe von a. Bezeich-
nung: ny = :|al.

LEMMA 1: Seia,:={{J" *x/xea} n=1. Dann ist \ J"a=Ja,.

Beweis: Induktion nach . (i) n=1. Dann ist Ua=J {{J°x/xea} =\ {x/xea}.
(i) n=m*. U a=UJ(U"a)=UU{U" 'x/xea}. Zu zeigen ist fi={Jx
X {Ux} rea=U U {U™ ' x},.. Wir beachten, dass yef, falls ye|J"x, fiir ein
¥o€a. Ferner ist |J™x,=J (U™ ! x,). Also ist ye f, falls yeze | ™ xo. Das heisst
aber VA U {Um—lx}xem somit JE U (U {Um_l'x}xea) QED
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LEMMA 2: Sei a totalendlich und |a|=ny>0. Dann gilt fiir jedes xea |x|<ny—1,
und es existiert ein x, mit |xo|=no—1. (Also ist jedes x in einer totalendlichen Menge
wieder totalendlich.)

Beweis: | J™a=0. Also wegen Lemma 1 | Ja, =0. Daher ist | J™ ' x=0 fiir alle
xea. Also haben wir |x|<n,—1 fiir alle xea. Da ferner | ™ 'a#9, folgt: (i) Wenn
no—1=0, dann ist a nicht @, sondern {@}. Also ist || =0=n,— 1. (ii) Sei n,—1>0.
Dann existiert ein x,ea mit ("™ ?x,%0. Also ergibt sich |x,| >#n,—2. QED.

LEMMA 3: Es existieren nur endlich viele a zu fester Stufe n,.

Beweis: Fiir ny=0 ist es klar. Sei n,>0. Dann ist |x|<n,—1 fiir alle xea. Also
existieren nach Induktionsvoraussetzung nur endlich viele solcher x. Es folgt die Be-
hauptung. QED.

Zu zwei totalendlichen Mengen werden nun rekursiv nach der Stufe dritte total-
endliche Mengen definiert:

(i) Die,,Summe* kann nach Finsler folgendermassen definiert werden: @+ b:=b.
a+b:={a+bfaeca}.

(ii) Das ,,Produkt® durch: 0b:=0. ab:=),.,b+ab.

Dazu zwei Bemerkungen: Man sieht sofort, dass 0+b=b=5b+0 und bQ=0=>50
richtigist. Wirschreibensomit, wie gewdhnlich, ,,0¢ fiir,,0*‘. Ahnlich gilt {0}a=a=a {0}.
Dabher schreiben wir auch wieder ,,1° fiir ,, {0}

SATZ 4: |a+b|=|a|+ |b|.

Beweis: Wir induzieren nach |a|. (i) |a|=0. Klar. (ii) |a|=n". Es existiert ein «,
mit || =n. Also ist |og|+|b|=]|otg+b] maximal unter den |a+b|, aca, also ist
(lxol +18])* =la+b|=n" +|b|=|a| +|b]. QED.

SATZ 5: |abl=|a] |b|.

Beweis: Induktion nach |a|. (i) |a|=0. Klar. (ii) |[a|=n". Also existiert ein ay€d
mit |ag| =n. Also hat b+oyb maximale Stufe unter den x < ab, mithin gilt |b+ oob| =
= |abl =1b| +|ao| |b]=l0o| " . |b|=lal-|b]. QED.

SATZ 6: (a+b)+c=a+(b+c). (Assoziativgesetz.)
Beweis: Induktion nach |a]. (i) (0+b)+c=b+c=0+(b+c). (i) (a+b)+c=
={at+blecatc={(a+0)+ luea={2+(b+)}sca QED.

SATZ 7: (a+b) c=ac+ be. (Links Distributivgesetz.)
Beweis: Induktion nach |a|. (i) (0+5) c=bc=0c+bc. (i) (a+b) c=Useca+pct
+dc={y+(a+b) c/(y, )ec x a}={y+ac+bc},, ,={e+bclecac} =ac+bc. QED.

SATZ 8: (ab) c=a(bc). (Assoziativgesetz.)
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Beweis: Stufeninduktion. (ab) c=J;scmpc+0c={y+dc}, ;={y+(B+ab) c},4,=
={(y+Bc)+a(bc)},, 5,,=a(bc). QED.

Fiir die natiirliche Interpretation der totalendlichen Mengen und der erkldren
Operation mit Hilfe von ,,Verzweigsfiguren* siche [1].

II. Zerlegungssiitze

Es folgen jetzt die wichtigen Sdtze 9 und 11 iiber das Abspalten von Zahlen.
(Satz9ist das additive Analogon zu Satz 11 und findet sich schon in [1]). Im Anschluss
werden einige Folgerungen bewiesen.

SATZ9: a+b=c+d und |a|=|c|, falls a=c und b=d.

Beweis: Die Inklusion von rechts nach links ist klar. Die andere ergibt sich durch
Induktion nach |a| =|c]|.

(1) Aus |a|=0=]|c| folgt a=c=0 und b=d.

(i) Sei {a+b},co=a+b=c+d={y+d},.. Also existiert fiir jedes aea ein yec
mit a+b=y+d. Somit ist nach Voraussetzung a=y und b=d. Daher ist acc.
Genauso wird cca, mithin a=c. QED.

LEMMA 10: Wenn a+b=c+d, dann ist b=x+d oder y+b=d.
Beweis: Seien a und ¢ nicht 0, da es sonst klar ist. Dann gibt es fiir jedes a€a ein
Y aus ¢, sodass o+ b=y+d. Nach Induktionsannahme folgt das Lemma. QED.

SATZ 11: Es ist ab=cd+#0 und |a|=|c|, falls a=c#0 und b=d+0.

Beweis: Wir fiihren Induktion nach |a|=|c].

(i) |a|=1. Dannist a=c=1 und daher b=d. Die Behauptung sei bewiesen fiir alle
Stufen |a| =|c|<n+1.

(ii) Seila|=n*"*. Wir habenab= {f+ab}, = {5+yd}, 5. Zu ay, Bo mit maximalen
Stufen existieren ein y, und ein 8, mit maximalen Stufen, sodass Bo+0gh=3,+ 7yod.
Also folgt ay=y, und b=d, denn es ist |B,|=|5,|=|b] —1=]|d|—1. Somit haben a
und ¢ die gleichen maximalen Elemente. Wenn einzusehen ist, dass | ,«max. &2 +0b=
=\U,#max.d+7d ist, dann folgt zunichst einmal a':={a/|«|# maximal}={y/|y|#
#maximal}=:c’, und damit a=c. Die geforderte Gleichung gilt, wenn fiir alle
|| =maximal und fiir alle |o|5 maximal @=[b+a,b]n [b+aeb] ist, und ebenso
fir |y,]=maximal und fiir alle lyol #maximal Q= [d+7y,d]n[d+7,d] ist. (Wenn
es keine nicht maximale o, und y, gibt, sind wir fertig.) Wir beweisen indirekt
¢twa die erste Gleichung. Wire dieser Durchschnitt nicht @, so existierten
B, B'eb, sodass B +o,b=pB +ayh. Nun ist |a;b]>|ayb|. Dann wéire nach Lemma
10 ¢;b=x+ aob. Jetzt vergleichen wir die Stufen auf beiden Seiten der Gleichung.
Links: layb| =|ab| — |b|. Rechts: |x|+ |oo| |b] < |ab| —k|b| mit k>1. Also ist 0 < —Kk’|b]
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mit k' >0. Das ist ein Widerspruch. Genauso geht der andere Beweis. Also kénnen
wir die maximalen Flemente wegtrennen. QED.

SATZ 12: Im Produkt ab=\_),.,b+ ab ist die Vereinigung iiber die anca disjunkt:
ab=\); b+ ab.

Beweis: Sei|a'|=|a| und &’ #a. Dannist wegen Satz9und 11 [b+ab] N [b+a'b]=0.
Sei |o'| >|a|. Wenn wir einen nichtleeren Schnitt haben, ist o'b=x+ ab, also |x|>|b|.
Das ist ein Widerspruch. QED.

KOROLLAR 13: Es ist card (ab)=card (a) card (b).

Nun einige Bemerkungen zum Begriff der natiirlichen Zahlen. Offensichtlich sind
die endlichen Ordinalzahlen 0, {0}, {0, {0}},... totalendlich. Mithin ist fiir diese Pro-
dukt und Summe definiert. Man sieht aber ohne Miihe, dass sich die Finslerschen
Operationen auf w={0, {0}, {0, {0}},...} von den in der ordinalen Arithmetik
iiblichen arithmetischen Operationen unterscheiden. Hingegen gibt es unter den total-
endlichen Mengen eine Teilfamilie, die beziiglich Addition und Multiplikation iso-
morph zu w ist. Diese besteht aus den Mengen: 0, 1, {1}, {{1}},. Sie... spielt daher
die Rolle der natiirlichen Zahlen unter den Finslerzahlen. Wir bezeichnen sie mit w*.
Es ist etwa die n-fache Summe a+a+--- +a=na, wo new*.

SATZ 14: Es ist a+b=b+a, falls a=mc und b=nc, wo m, ne w*.

Beweis: Induktion nach (a, b):=Max. (|al, |b]). Sei |a] #|b|, sonst ist es klar wegen
Satz 9. .

(i) (a, b)=0. Klar. (ii) (a, b)>0. Wegen Lemma 10 ist entweder b=x-+a oder
a=y+b. Sei etwa a=y+b. Dannist a+b=y+b+b=b+y+b. Also ist wegen Satz 9
y+b=>b+y. Ferner gilt (y, b)<(a, b), da |b|<|a| und |y|<|a|. Also ist y=m"-c und
b=nc. Hiermit ist a=(m'+n) c=mc. QED.

SATZ 15: Wenn mb=na#0, wo m, new*, dann ist a=k'c und b=k"c und mb=kc,
wo das kgV (k', k") k teilt.

Beweis: Wir nehmen wegen Satz 11 |a| #|b|, etwa |b|>|a| an. na=a+ (n—1) a=
=b+(m—1)b. Also ist (n1—1)a=6+(m—1) b, somit b=a+3. Anderseits ist auch
(n—1)a+a=(m—1) b+b, also b=y+a, wo |y|=|J|. Das ergibt:

(@+d8)+@+d)++@+d)=@G+a)+@+a)+-+(+a),
und

0+(@+d8)+-+(a+d)=y+a+(@+a)+-+y,
was y =6 zeigt. Deshalb ist nach Satz 14 a=k’cund 6 =m’c, somit wird b= (k' + m’) ¢=
=k"c, und mb=mk". c=na=nk’c, das heisst mk”"=nk’; und daraus folgt mi
k:=mk", dass das kgV(k', k") k teile. QED.

Endlich noch ein einfaches Korollar zum Links-Distributivgesetz.
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KOROLLAR 16: aya...a,={0t,+ 1@, + 0, 2@, _1a,+ - +0oa,...a,} alle a;eaq;.
Wir fragen nun:
Wie zerfillt eine totalendliche Menge additiv und multiplikativ? Dazu zwei

Definitionen:

DEFINITION
IV) aheisst mono, falls aus a=a, +a, folgt a; =0 oder a, =0 (also 0 ist Monozahl)
V) a heisst prim, falls aus a=a,a, folgt a,=1 oder a,=1 (also O ist keine
Primzahl, aber 1 ist Primzahl)

SATZ 17: Fiir jedes totalendliche a#0 existiert genau eine additive Zerlegung in
Monozahlen #0.

Beweis: Sei a=a,+a,+--+a,=b;+b,+---+b,, wo die a;, b, Monozahlen#0
sind. a, und b,, sind stufengleich, also gleich, wegen Lemma 10 und Satz 9, usw.
induktiv. QED.

SATZ 18: Zu jeder geordneten Faktorzerlegung der Stufe einer Finslerzahl existiert
hochstens eine Faktorzerlegung der letzteren, sodass sich die Faktorstufen wie in der
Stufenzerlegung folgen.

Beweis: Die Eindeutigkeit im obigen Sinne ergibt sich durch Satz 11 und
Induktion sofort. QED.

Nun méchten wir schliessen: ab # 0 ist unzerlegbar in Monozahlen#0, falls @ und
b nicht additiv zerlegbar sind.

Dazu den

SATZ 19: a(b+c)=x+c fiir a, b#0.

Beweis: Induktion nach |g|. (i) |a|=1. Dann kommen wir mit x=» durch.
(ii) a(b+c)={B+c+a(b+c)}, s Gesucht wird x. Fiir «a=0 nehmen wir alle feb
in x auf; wenn a#0 ist, dann gilt nach Voraussetzung o (b +c¢)= &' («) + c; also nehmen
wir noch alle B+ c+¢' () in x auf. Dieses x geniigt unseren Wiinschen. QED.

Zusammen mit dem Links-Distributivgesetz hat man also: Wenn ab#0 unzer-
legbar ist, dann sind @ und b unzerlegbar.

Und die Umkehrung:

SATZ 20: Wenn ab+#0 additiv zerlegbar ist, dann ist a oder b zerlegbar.

Beweis: Induktion nach |ab|.

Sei ab=k+1,={K+Iy}cex und I, nicht zerlegbar. Ferner ist ab={f+ab} ,. Es
gibt fiir alle aeq und feb genau ein « («, f) mit f+ab=x(, f)+l.

Wir unterscheiden zwei Fille:

(1) Es gibt ein B, mit | B,| = |1 (o, Bo)l. Also ist agb=1,, also sind «y, b unzerlegbar.
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(i0) Es gebe kein o mit |a| > |o,|. Jedes « gleicher Stufe wie «, ist diesem gleich,
was man durch Einsetzen sieht. Ferner existieren keine o mit || <|o|, Wenn /, nicht
zerlegbar ist. Also ist a=1+oy={a,}.

(i1) Es existiere ein oy mit |oty| > |otg. Sei f+o,b=x (B, o)+ o Alsoist a;b=v+1,,
mit v#0; also ist nach Induktionsvoraussetzung a, =&, +&,, wo &, nicht zerlegbar ist.
Daher wird oyb=a,b+ & b=v+ayb, dh. & =a,. Somit ist a=x+ a,, mithin zerlegbar.

(i) Es gibt kein B, mit |Bo| =]k (xt, o). Also ist fiir alle feb (und xea) |f|<
<|x(B, &)|. |Bl>]x (B, o)| ist ausgeschlossen, denn /, wire dann zerlegbar. Somit gilt
fiir alle aea eine Zerlegung ab=v+1,, v#0. Dh. alle aea sind zerlegbar oder b ist es.
Sei b nicht zerlegbar. Also sind alle aea zerlegbar: a=A(a)+x(x), wo u(a) nicht
zerlegbar und nicht 0 ist. Hiermit haben wir ab=A4(x) b+ p(a) b=v(a)+1,. Da aber
Iy und u(«) b nicht zerlegbar sind, ist /o= pu(a) b, also u(a)=const. fiir alle aca. Also
ist a={A(a)},+x. QED.

Damit haben wir den folgenden Satz gewonnen:

SATZ 21: ab+#0 ist zerlegbar, falls a oder b zerlegbar ist.

KOROLLAR 22: Ein Produkt aya,...a,#0 ist zerlegbar, falls mindestens ein a;
zerlegbar ist.

Aus dem Vorangehenden wollen wir zwei wichtige Folgerungen ziehen.

(I) Jede Finslerzahl ausser 0 und 1 ist Summe von Produkten von primen Mono-
zahlen. Um dies einzusehen, beachten wir erstens, dass jede Finslerzahl Summe von
Monozahlen ist und zweitens, dass jede Monozahl Produkt von primen Monozahlen
ist.

(II) Der grosse FERMATsche Satz ist fiir Finslerzahlen giiltig, falls er in o* gilt.
Denn wenn er fiir Finslerzahlen stimmt, dann auch fiir ihre Stufen, also in w*. Nehmen
wir ein Tripel a, b, ¢ von totalendlichen Mengen. Es ist a"+b"=c" wegen Satz 21 nur
fiir zerlegbare c. Um ein Gegenbeispiel zu finden, muss also die Zerlegbarkeit von ¢
wesentlich verwendet werden.

Wir interessieren uns wegen der Folgerung (I) fiir Produkte von primen Mono-
zahlen. Dazu den

SATZ 23: Sei ac=bd+#0 mit ¢ und d mono, prim und #1. Dann ist c=d (und
wegen Satz 11 a=b).

Beweis: Induktion nach (a, b) (=Max(|al, |]))

@) (a, b)=1. Also a=b=1 und c=d.

(ii) (@, b)>1. Das heisst |a| oder |b|>1. Behauptung: |a| und |b|>1. Beweis:
Wire a=1 und |b|>1, dann wire c=>bd, aber dann kénnte ¢ nicht prim sein, denn &
und d'sind grosser als 1. Seien apea, f,€b, y€, ¢, 6,dalle maximal (also o, und fo#0)
mit yo+0gc=0¢+ Bod. Sei weiter ay=0g+ ag, wo ag#0 und mono, B,= B+ o, WO
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o #0 und mono. Dann ist 0# agc=Bod, da ¢ und d mono sind. Also ist c=d. QED.

KOROLLAR 24: Ein Produkt von primen Monozahlen # 1 ist eindeutig, dh., wenn
aody.-.a,=boby...b,, ist, wo die a; und die b, prim, mono und #1 sind, dann ist n=m
und a;=b; fiir alle i.

Beweis: aga,...a,=(apay...) a,=(bob;...) b,. Also ist a,=b,. Usf. Somit ergibt
sich der wichtige

SATZ 25: (Zerlegungssatz) Jede totalendliche Menge #0 ldsst sich als eindeutige
Summe von eindeutigen Produkten von primen Monozahlen schreiben.
Beweis: Satz 9 und Korollar 24.
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