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Finslersche Zahlen

von Guerino Mazzola (Zurich)

Die von Finsler in [1] betrachteten totalendlichen Mengen bilden einen interessan-

ten Bereich &> von endlichen Mengen, der die ,,natùrlichen Zahlen" 0, {0}, {{0}},...
enthàlt: Die gewôhnliche, fur natùrliche Zahlen definierte Addition und Multi-
plikation kann auf ganz #"x^~ ausgedehnt werden; IF ist nicht-kommutative
regulâre Halbgruppe mit Neutralelement bei beiden Operationen, welche u.a. durch
ein Linksdistributivgesetz verknûpft sind.

Zu den Elementen einer ,,Zahlentheorie" in tF gehôren Sâtze ûber die Zerfâll-
barkeit von Zahlen aus !F in Produkte und Summen von multiplikativ resp. additiv
unzerlegbaren Zahlen. Unsere wichtigsten Ergebnisse in dieser Richtung finden sich
in den Sâtzen 11, 18, 20, 23 und 25 weiter unten.

Der Bequemlichkeit halber sind die meisten der in [1] aufgestellten Sâtze hier
nochmals kurz bewiesen worden.

I. Definitionen

Die Wendung ,,dann und nur dann" kiirzen wir im folgenden mit ,,falls" ab.
Unter \Ja verstehen wir wie ûblich die Menge {x | ex. y mit xeyea}. Oft schreiben
wir statt \^ja auch [Jxxea. Die Menge der natûrlichen Zahlen kûrzen wir mit co ab.

Sei a eine Menge.

DEFINITION I: Sei neœ. Wir definieren die «-te Vereinigung [Jna rekursiv
durch (i) \J°a:=a. (ii) U"+«:

DEFINITION II : a heisst totalendlich (oder Finslerzahl), falls ein n0 existiert,
sodass (JMoa 0.

DEFINITION III: Das kleinste n0 mit {Jn°a <D heisst die Stufe von a. Bezeich-
: no=:\a\.

LEMMA 1: Sei aH: {\Jm'"1xlxea} n>\. Dann ist \J*a=\JaH.
Beweis: Induktion nach n. (i) n=\. Dann ist {Ja^^j {\J°xjxeà) \J {xjxea}.

(ii) n=m+. Um^=U(Um^)=UU{Um"^M' Zu zeiêen ist /: U><

x{Um46û=UU{Um"146^ wir beachten, dass yef, falls yeUm*o fur ein
a. Ferner ist Um^o U(Um"1^o)- Also ist yef, falls yeze [Jm~lxo- Das heisst

1^^ somit ^eU(U {U""1^}^)
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LEMMA 2: Sei a totalendlich und \a\=no>§. Danngiltfur jedesxea\x\^no — \9

und es existiert ein x0 mit \xo\ n0 — 1. (Also ist jedes x in einer totalendlichen Menge
wieder totalendlich.)

Beweis: [Jnoa 0. Also wegen Lemma 1 (Jano=0. Daher ist U"o"1x 0 fur aile

xea. Also haben wir |x|<n0 —1 fur aile xea. Da ferner [Jno~1a^Q9 folgt: (i) Wenn

n0 —1=0, dann ist a nicht 0, sondern {0}. Also ist |0|=O=«O— 1. (ii) Sei «0 —1>0.
Dann existiert ein xoea mit (J"°~2jco#0. Also ergibt sich \x0\>n0-2. QED.

LEMMA 3: Es existieren nur endlich viele a infester Stufe n0.
Beweis: Fur no=0 ist es klar. Sei «0>0. Dann ist \x\ ^n0— 1 fur aile xea. Also

existieren nach Induktionsvoraussetzung nur endlich viele solcher x. Es folgt die Be-

hauptung. QED.
Zu zwei totalendlichen Mengen werden nun rekursiv nach der Stufe dritte total-

endliche Mengen definiert:
(i) Die ,,Summe" kann nach Finsler folgendermassen definiert werden:

(ii) Das ,,Produkt" durch: 0b: =0. ab: \Ja
Dazu zwei Bemerkungen: Man sieht sofort, dass 0 + è è Z> + 0 und bQ <D=b®

richtigist. Wir schreiben somit, wie gewôhnlich, ,,0" fur ,,0". Âhnlich gilt {0}a a a {0}.
Daher schreiben wir auch wieder ,,1" fur ,,{0}".

SATZ4: \a+b\ \a\ + \b\.
Beweis: Wir induzieren nach \a\. (i) |a|=0. Klar. (ii) \a\ n + Es existiert ein a0

mit |ao|=«. Also ist |ao|H-|&| |ao + 6| maximal unter den |a + 6|,aea, also ist

)+ \a+b\ n+ + \b\ \a\ + \b\. QED.

SATZ5: |^| |a||^|.
Beweis: Induktion nach \a\. (i) |fl|=0. Klar. (ii) \a\=n*. Also existiert ein ocoea

mit |ao|=w. Also hat b + aQb maximale Stufe unter den xc ab, mithin gilt \b-\-(xob\

| |ao| + \b\~\a\-\b\. QED.

SATZ6: (a+è)+c=a-h(£+c). (Assoziativgesetz.)
Beweis: Induktion nach \a\. (i) (0 + b) + c b + c 0 + (b + c). (ii) (a+b) + c=

}aea. QED.

SATZ7: (a+b)c=ac + bc. (Links Distributivgesetz.)
Beweis: Induktion nach \a\. (i) (0+é) c=bc=0c+bc. (ii) (a+b) c= \Jôea+bc+

c/(y, a)ec x a} {y + olc4-èc}7>a {e+bc/eeac} ac + bc. QED.

SATZ8: (ab)c=a(bc). (Assoziativgesetz.)
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Beweis: Stufeninduktion. (ab) c= \JàG

{(y + Pc) + «(bc)}a)fity a(bc). QED.
Fur die natûrliche Interprétation der totalendlichen Mengen und der erklâren

Opération mit Hilfe von ,,Verzweigsfiguren" siehe [1].

IL Zerlegungssâtze

Es folgen jetzt die wichtigen Sâtze 9 und 11 liber das Abspalten von Zahlen.

(Satz 9 ist das additive Analogon zu Satz 11 und findet sich schon in [1 ]). Im Anschluss
werden einige Folgerungen bewiesen.

SATZ 9: a+b c + d und \a\ \c\, faits a c undb d.

Beweis: Die Inklusion von rechts nach links ist klar. Die andere ergibt sich durch
Induktion nach \a\ \c\.

(i) Aus |fl| 0 |c| folgt tf c O und b d.

(ii) Sei {a + b}aea a+b c + d={y + d}yec. Also existiert fur jedes ocea ein yec
mit oc + b y + d. Somit ist nach Voraussetzung oc y und b d. Daher ist aczc.
Genauso wird ccza, mithin a c. QED.

LEMMA 10: Wenn a + b c + d, dann ist b x+d oder y+b d.

Beweis: Seien a und c nicht 0, da es sonst klar ist. Dann gibt es fur jedes ocea ein

y aus c, sodass ot + b=y + d. Nach Induktionsannahme folgt das Lemma. QED.

SATZ 11: Es ist ab cd^0 und \a\ \c\9 faits a
Beweis: Wir fiihren Induktion nach |a| |c|.
(i) \a\ 1. Dann ist a=c= 1 und daher b d. Die Behauptung sei bewiesen fur aile

Stufen |fl| |c|</i + l.
(ii) Sei \a\ n + +. Wir haben ab={f} + a6}a>p {ô + yd}7tô. Zu a0, Po mit maximalen

Stufen existieren ein y0 und ein Ôo mit maximalen Stufen, sodass ^0 + a0ft ^o + 7o^-
Also folgt ao yo und b d, denn es ist \po\ \ôo\ \b\-l \d\-l. Somit haben a
und c die gleichen maximalen Elemente. Wenn einzusehen ist, dass

^Uy^max.^+y^ ist, dann folgt zunâchst einmal a': {a/|a|^maximal}
^ maximal} =:c\ und damit a c. Die geforderte Gleichung gilt, wenn fur aile

Kl maximal und fur aile |ao|^maximal 0= [b + oc^n [b + <xob] ist, und ebenso
Wr ly^maximal und fur aile |yol^maximal 9=[d+y1d]n[d+yod] ist. (Wenn
es keine nicht maximale a0 und y0 gibt, sind wir fertig.) Wir beweisen indirekt
etwa die erste Gleichung. Wâre dieser Durchschnitt nicht 0, so existierten
P>P'eb, sodass p+aib p' + ot0b. Nun ist \<x1b\>\<xob\. Dann wâre nach Lemma
10 a16=x+a06. Jetzt vergleichen wir die Stufen auf beiden Seiten der Gleichung.
Links: MH^IH*!. Rechts: |x| + |ao| \b\<\ab\-k\b\mitk>\. Also ist 0<~k'\b\
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mit k'^0. Das ist ein Widerspruch. Genauso geht der andere Beweis. Also kônnen
wir die maximalen Elemente wegtrennen. QED.

SATZ 12: ImProdukt ab={J(xeab + oib ist die Vereinigung uber die ocea disjunkt:

Beweis: Sei |a'| |a| undaVa. Daim ist wegen Satz 9 und 11

Sei |a'|>|a|. Wenn wir einen nichtleeren Schnitt haben, ist a'b x + (xb, also |x|^|6|.
Das ist ein Widerspruch. QED.

KOROLLAR 13: Es ist carà (ab) card (a) card(6).
Nun einige Bemerkungen zum Begriff der natiirlichen Zahlen. Offensichtlich sind

die endlichen Ordinalzahlen 0, {0}, {0, {0}},... totalendlich. Mithin ist fur dièse Pro-

dukt und Summe definiert. Man sieht aber ohne Mtihe, dass sich die Finslerschen

Operationen auf a>={0, {0}, {0, {0}},...} von den in der ordinalen Arithmetik
ûblichen arithmetischen Operationen unterscheiden. Hingegen gibt es unter den total-
endlichen Mengen eine Teilfamilie, die bezûglich Addition und Multiplikation iso-

morph zu a> ist. Dièse besteht aus den Mengen: 0, 1, {1}, {{1}},. Sie... spielt daher

die Rolle der natûrlichen Zahlen unter den Finslerzahlen. Wir bezeichnen sie mit co*.

Es ist etwa die «-fâche Summe a+a-\ \-a=na, wo «eco*.

SATZ 14: Es ist a+b b + a, falls a mc und b nc, wo m, neco*.
Beweis: Induktion nach (a, b): Max. (\a\, \b\). Sei \a\ ^ \b\, sonst ist es klar wegen

Satz 9.

(i) (a, 2>) 0. Klar. (ii) (a, b)>0. Wegen Lemma 10 ist entweder b x + a oder

a=y + b. Sei etwa tf=j+ &. Dannist a + b=y + b + b b+y + b. Also ist wegen Satz 9

y + b b+y. Ferner gilt (y, b)< {a, b)9 da |&|<|a| und |j|<|^|. Also ist y m' -c und

b ne. Hiermit ist a (m' + ri)c me. QED.

SATZ 15: Wenn mb==na^0, wo m, neœ*, dann ist a k'c undb k"c undmb==kc,

wodaskgY(k\k")kteilt.
Beweis: Wir nehmen wegen Satz 11 |ûr|#|è|, etwa |£|>|a| an. na a+(n— l)a=

b + (m-l)b. Also ist (n—\)a ô + (m-l) b, somit b a + ô. Anderseits ist auch

(n — \)a-\-a={m — l)b + b, also b y + a, wo |y| |5|. Das ergibt:

(a + ô) + (a + ô) + ••• + (a + <5) (y + a) + (y + a) + — + (y + a),
und

ô + (a + ô) + ••• +(a + S) y + a + (y + a) + ••• +y
was y ô zeigt. Deshalb ist nach Satz 14 a k'c und S m'e, somit wird b (k' + m) c ~

k"c, und mb mk". c=na=nk'c, das heisst mk"=nk'; und daraus folgt mit

k:=mk\ dass das kgV(k', k") k teile. QED.
Endlich noch ein einfaches Korollar zum Links-Distributivgesetz.
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KOROLLAR 16: a0al...an {an + ci

Wir fragen nun:
Wie zerfàllt eine totalendliche Menge additiv und multiplikativ? Dazu zwei

Definitionen:

DEFINITION
IV) a heisst mono, falls aus a a1 + a2 folgt at 0 oder a2 0 (also 0 ist Monozahl)
V) a heisst prim, falls aus a a1a2 folgt a1 l oder a2 l (also 0 ist keine

Primzahl, aber 1 ist Primzahl)

SATZ 17: Fur jedes totalendliche a^O existiert genau eine additive Zerlegung in
Monozahlen #0.

Beweis: Sei a a±+a2H \-an b1 + b2-\ \-bm, wo die ahbk Monozahlen ^0
sind. an und bm sind stufengleich, also gleich, wegen Lemma 10 und Satz 9, usw.
induktiv. QED.

SATZ 18 : Zujeder geordneten Faktorzerlegung der Stufe einer Fins1erzahl existiert
hôchstens eine Faktorzerlegung der letzteren, sodass sich die Faktorstufen wie in der

Stufenzerlegung folgen.
Beweis: Die Eindeutigkeit im obigen Sinne ergibt sich durch Satz 11 und

Induktion sofort. QED.
Nun môchten wir schliessen: ab^O ist unzerlegbar in Monozahlen^0, falls a und

b nicht additiv zerlegbar sind.
Dazu den

SATZ 19:

Beweis: Induktion nach |a|. (i) \a\ l. Dann kommen wir mit x=b durch.
(ii) a(b + c)= {fi + c + a(b + c)}atp Gesucht wird x. Fur a 0 nehmen wir aile fïeb
in x auf ; wenn a # 0 ist, dann gilt nach Voraussetzung a (b + c) <f (a) + c ; also nehmen
wir noch aile jS + c + ^(a) in x auf. Dièses x genùgt unseren Wunschen. QED.

Zusammen mit dem Links-Distributivgesetz hat man also: Wenn ab^O unzerlegbar

ist, dann sind a und b unzerlegbar.
Und die Umkehrung:

SATZ 20: Wenn ab^O additiv zerlegbar ist, dann ist a oder b zerlegbar.
Beweis: Induktion nach \àb\.

Seiab=k+lo {K + lo}Kekund l0 nicht zerlegbar. Ferner ist ab={p + ctb}Pt(X. Es

gibt fur aile aea und fieb genau ein *c(a, jS) mit p + ab K(<x, j3) + /0.

Wir unterscheiden zwei Fâlle:
(i) Es gibt ein p0 mit |j80l \k(<*o, 0o)I- Also ist ao£ /o> also sind a0, b unzerlegbar.
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(iO) Es gebe kein a mit |a|>|ao|. Jedes a gleicher Stufe wie a0 ist diesem gleich,
was man durch Einsetzen sieht. Ferner existieren keine a mit |a|<|ao|, wenn /0 nicht
zerlegbar ist. Also ist a 1 + a0 {a0}.

(il) Es existiere ein oct mit |at| > |ao|. Sei p + oi1b K(P, xJ + Iq. Also ist atb v + /0,

mit v#0; also ist nach Induktionsvoraussetzung olx — xx + âl9 wo at nicht zerlegbar ist.
Daher wird <x1b â1b + 5i1b v + aiob, dh. 5X =a0. Somit ist a x+ a0, mithin zerlegbar.

(ii) Es gibt kein /?0 mit |/?0| |K;(a0, /?0)|. Also ist fur aile fïeb (und ocea) \p\<
<\k(P, a)|. \P\>\k(P, a)| ist ausgeschlossen, denn l0 wâre dann zerlegbar. Somit gilt
fur aile ccea eine Zerlegung aè v + /0, v^O. Dh. aile eue a sind zerlegbar oder b ist es.

Sei b nicht zerlegbar. Also sind aile aea zerlegbar: a A(a)+^(a), wo //(a) nicht
zerlegbar und nicht 0 ist. Hiermit haben wir aZ>=A(a)è+//(a)&==v(a) + /0. Da aber

l0 und fi(at) b nicht zerlegbar sind, ist lo=ju((x) b, also //(a) const. fur aile aea. Also

ista={A(a)}a+/*. QED.
Damit haben wir den folgenden Satz gewonnen:

SATZ 21 : ab^O ist zerlegbar, fails a oder b zerlegbar ist.

KOROLLAR 22: Ein Produkt a0al...an^=0 ist zerlegbar, falls mindestens ein at

zerlegbar ist.
Aus dem Vorangehenden wollen wir zwei wichtige Folgerungen ziehen.

(I) Jede Finslerzahl ausser 0 und 1 ist Summe von Produkten von primen Mono-
zahlen. Um dies einzusehen, beachten wir erstens, dass jede Finslerzahl Summe von
Monozahlen ist und zweitens, dass jede Monozahl Produkt von primen Monozahlen
ist.

(II) Der grosse FERMATsche Satz ist fur Finslerzahlen gûltig, falls er in co* gilt.
Denn wenn er fur Finslerzahlen stimmt, dann auch fur ihre Stufen, also in co*. Nehmen

wir ein Tripel a, b9 c von totalendlichen Mengen. Es ist an + bn cn wegen Satz 21 nur
fur zerlegbare c. Um ein Gegenbeispiel zu finden, muss also die Zerlegbarkeit von c

wesentlich verwendet werden.

Wir interessieren uns wegen der Folgerung (I) fur Produkte von primen
Monozahlen. Dazu den

SATZ 23: Sei ac=bd^0 mit c und d mono, prim und +\. Dann ist c d (und

wegen Satz 11 a — b).
Beweis: Induktion nach (a, b) (=Max(|a|, |6Q)

(i) {a, ft)=l. Also a=b l und c=d.
(ii) (a, 6)>1. Das heisst \a\ oder |é|>l. Behauptung: \a\ und |fc|>l. Beweis:

Wâre a= 1 und \b\ > 1, dann wâre c=bd9 aber dann kônnte c nicht prim sein, denn b

undrfsindgrôsseralsl.Seienaoea, fioeb, yeoc9 <50erfalle maximal (also a0 und Pq^®)
mit yo + (xQc=zÔQ+pod. Sei weiter ao=ao + ao, wo «o#0 und mono, J8O=/?()+#)> wo
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/% ^ 0 und mono. Dann ist 0 # ol'qC p'^d, da c und d mono sind. Also ist c d. QED.

KOROLLAR 24: jRfl Produkt vonprimen Monozahlen ^ 1 ist eindeutig, dh., wenn

aoa1...an bob1...bm ist, wo die at und die bkprim, mono und ^1 sind, dann ist n — m
und a^bifur aile i.

Beweis: aoal...an (aoal...)an (bobl...)bm. Also ist an — bm. Usf. Somit ergibt
sich der wichtige

SATZ 25: (Zerlegungssatz) Jede totalendliche Menge #0 làsst sich als eindeutige
Summe von eindeutigen Produkten von primen Monozahlen schreiben.

Beweis: Satz 9 und Korollar 24.
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