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Uber die Eindeutigkeit des reellen Abschlusses eines

angeordneten Korpers

von H. Gross und P. HAFNER

Es sei K ein angeordneter Korper und 4, ein reeller Abschluss von K (d.h. 4, ist
ein maximaler formal reeller, algebraischer Uberkdrper von K, dessen einzige An-
ordnung diejenige von K fortsetzt). Nach Artin und Schreier [1] ist ein solcher K6rper
4, durch K ,eindeutig* bestimmt: ist 4, ein weiterer reeller Abschluss von K, dann
gibt es einen ordnungstreuen Kdrperisomorphismus zwischen 4, and 4,, der auf K
die Identitit ist. Im Beweise von Artin und Schreier wird von dem bekannten Sturm-
schen Satze Gebrauch gemacht, wonach sich bereits in K bestimmen ldsst, wieviele
Nullstellen o ein Polynom f(x)e K[ x] in einem reellen Abschluss 4 besitzt, « zwischen
vorgeschriebenen Grenzen a und b aus K.

Ein Beweis fiir diese Eindeutigkeit von 4, ohne Verwendung des Sturmschen
Theorems ist uns bisher nicht bekannt. Bourbaki [2] verweist auf van der Waerden [5],
der den urspriinglichen Beweis von Artin und Schreier bringt. Denselben Beweis findet
man bei Jacobson [3] dargestellt. Serge Lang versucht in seiner Algebra [4] den
Gebrauch des Sturmschen Theorems durch eine Verwendung des Zwischenwertsatzes
zu umgehen. Der Beweis versagt, da er zur Voraussetzung macht, dass der Korper X,
bei der iiblichen Betragstopologie, in 4, dicht liege; dazu gibt es aber Gegenbeispiele,
und in der zweiten Auflage von [4] steht dann auch wieder der alte Beweis. Wie uns
Herr van der Waerden berichtet, hatten er, Artin und Schreier versucht, ohne den
Sturmschen Satz auszukommen.

Im folgenden beweisen wir nun durch Induktion nach dem Grad eines Polynoms
f(x)eK[x], dass f(x) eine Nullstelle in 4, besitzt, falls es eine Nullstelle in 4, be-
sitzt. Die im Beweis stillschweigend verwendeten Sétze, nimlich der WeierstraBsche

Nullstellensatz und der Satz von Rolle, folgen aus der Tatsache, dass 4 1(\/ jjl) und

4, (\/ :i) algebraisch abgeschlossen sind, d.h. ohne jede Verwendung des Sturmschen
Satzes. Aus diesem Resultat ergibt sich dann die Eindeutigkeit von 4 wie iiblich mit
Hilfe des Zornschen Lemmas.

SATZ: o:K,—K, sei ein ordnungstreuer Isomorphismus irgendwelcher angeordneter
Korper K, und K,, A, seien reelle Abschliisse von K, (i=1, 2), f (x)eK, [x] besitze eine
Nullstelle in A,. Dann gilt:

(1) f°(x)eK,[x] hat eine Nullstelle in A,. Ist f (x) zudem noch irreduzibel, so gilt
ferner:

(i) es gibt Wurzeln acA,, fe A, von f(x) bzw.f?(x), derart, dass der Isomorphismus
?: K ()= K, (B) mit ¢(a)=p und @|x,=0 ordnungstreu ist.
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Bemerkung: es ist klar, dass (ii) auch fiir reduzible f gilt (Folgerung (a) enthilt
diese Uberlegung). Die Voraussetzung der Irreduzibilitit erspart uns eine Fallunter-
scheidung im Beweis.

Beweis: durch Induktion nach dem Grad von f(x).

1) Fiir lineare Polynome ist nichts zu beweisen.

2) Induktionsvoraussetzung: der Satz sei richtig fiir Polynome vom Grad <n-—1;
f(x)eK, [x] sei ein Polynom vom Grad » mit héchstem Koeffizienten 1 (0.B.d.A.)
und mit einer Nullstelle in 4;.

Folgerungen: (a) Ist h(x)eK,[x] ein Polynom vom Grad <n—1 und sind
0y, ..., d, alle verschiedenen Nullstellen von A(x) in 4,, sind ferner f,,..., B, alle ver-
schiedenen Nullstellen von A°(x) in 4,, so gilt:

(i) r=s,
(ii) es gibt einen Isomorphismus K, (2, ..., @,) = K, (B4, .--,8,)

der ordnungstreu ist und o fortsetzt.
Das folgt sofort aus der Induktionsvoraussetzung (die Rolle der K; kann auch von

endlichen ordnungsisomorphen algebraischen Erweiterungen K;, K;= K;< 4, gespielt
werden. Die dabei festgehaltenen Korper 4; sind je auch reelle Abschliisse der K;).

(b) Seien «;(1<<i<r) nun insbesondere alle Nullstellen der Ableitung f'(x) in 4,,
B; alle Nullstellen von f*(x)=f(x) in 4,, K;=K,(%y,..., ), K,=K,(By, ..., By
Nach (a) gibt es einen ordnungstreuen Isomorphismus

K, ~2K,,

der o fortsetzt.

(c) Wir setzen zusitzlich voraus, f (x) sei irreduzibel und f?(x) besitze eine Null-
stelle in 4,. aed, bzw. fed, sei die grosste Nullstelle von f(x) bzw. f£°(x). Ist K;
Teilmenge von 4,, so definieren « bzw. § je einen Schnitt K;=U,u O; (disjunkt),
wobei U; = {x | xeK,, x<a}, O;={x | xeK,, x>a}, analog U, und O,. Es seien nun
R; Unterkorper von 4,, welche K, umfassen und fiir die eine ordnungstreue Fort-
setzung

k:R, 2K,

von t (und damit von o) existiert. (Zu jedem K, mit [K,:K,J<n—1 gibt es K, s0
dass diese Bedingung erfiillt ist).
Behauptung:

k(0 =0, «(U)=U,.

Beweis: wir zeigen: k(0;) n U, =0; eine analoge Betrachtung ergibt
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k~1(0,) "U; =0. Daraus wird klar, dass k(0,)<=0,, k" 1(0,)<0,, also k(0,)=0,
ist. Und daraus folgt natiirlich auch x(U;)="U,.

o ist die grosste Nullstelle von f (x), also ist f({) >0 fiir alle {e O, (denn 1 ist der
hochste Koeffizient in f). Falls f'°(x) in U, eine Wurzel hat, bezeichnen wir die
grosste Wurzel <f8 von f"?(x) mit y; andernfalls sei y ein beliebiges Element aus U,.
Wegen der Irreduzibilitit von f° und da K, simtliche Nullstellen von f’° enthilt,
gilt £°(n) <0 fiir alle ne[y, Bl < K,. Falls es ein &€ 0, gibt mit x(£')e U,, so gibt es
auch ein £€0; mit k(&)e[y, B], ndmlich ¢ =¢ oder E=x"1(y). Also gilt

F(©>0 und fo(x(§)<0;

dies ist ein Widerspruch, da x eine ordnungstreue Fortsetzung von t und o ist.

(3) Induktionsschritt: ist der Grad von f(x) ungerade, so hat f“(x) selbstver-
stindlich eine Nullstelle in 4,. Ist der Grad von f(x) gerade, so hat f(x) in 4,
mindestens zwei (evtl. zusammenfallende) Nullstellen. Es sei 0 die grosste Nullstelle
von f”(x) in 4, zu der es eine Wurzel me 4, von f (x) mit <7 gibt; dann ist £ (6) <O0.
Nun ist 0e K, also gilt in K, entsprechend f° (¢(0))<0. Ist ° ( (6))#0, so muss man
noch den Weierstraf3’schen Nullstellensatz anwenden. Damit ist (i) bewiesen.

Fiir den Beweis von (ii) diirfen wir annehmen, dass f irreduzibel ist iiber K, (von
geradem oder ungeradem Grad). Es ist zu zeigen, dass eine Wurzel ae 4, von f(x)
existiert, so dass es einen ordnungstreuen Isomorphismus K, (¢)— 4, gibt, welcher o
fortsetzt. Sei a die grosste Wurzel von f(x) in 4,, B die grosste Wurzel von f°(x)
in 4,. Ist [K;(®):K,]<n—1, dann ist die Abbildung:

0: R ()= K,(B) mit g(a)=p und olg, =1

ein ordnungstreuer Isomorphismus. Ist [ K; («): K;]=n, dann ist f (x) auch irreduzibel
iiber K,, d.h. g ist auf alle Fille ein Isomorphismus. Wire ¢ nicht ordnungstreu, so
gébe es ein Element

1

w=§0aifx">0 in K (a) mit o(w)=Y t(a;)p <O0.

Man hitte also ein Polynom
n—1
p(x) = Z ax'e K, [x]
i=0

vom Grad <n—1 mit p(x)>0, p*(B)<O0. Es gibt einen irreduziblen Faktor p,(x) von
P(x), fir den ebenfalls gilt p,(x)>0, p5(B)<0. Sind &;,..., 5, alle Nullstellen von
Po(X) in Ay, ¢,,..., ¢ alle Nullstellen von p§(x) in 4,, K=K, (8,..., ),

K:=K,(e,..., &), so gibt es nach Folgerung (a) einen ordnungstreuen Isomorphismus

kx:R, ~R,,
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der 7 fortsetzt. Die Anzahl der Nullstellen von p,(x) in der Oberklasse O, <K,
von « ist verschieden von der Anzahl Nullstellen von pg(x) in der Oberklasse 0, <K,
von f, d.h.

x(0;) # 0,

im Widerspruch zu Folgerung (c); ist nimlich der hochste Koeffizient a, von p,
positiv, so liegen in O; eine gerade Anzahl Nullstellen von p,(x), wihrend die
Anzahl der Nullstellen von p,(x) in O, ungerade ist; analog fiir a, <0. (Will man in
dieser elementaren Beweisfiihrung auch das Zihlen von Vorzeichenwechseln bei mehr-
fachen Nullstellen zulassen — beispielsweise unter Verwendung der Taylorschen Ent-
wicklung — dann kann man sich den Ubergang von p(x) zu p,(x) natiirlich ersparen.)

KOROLLAR: Sind A, und A, reelle Abschliisse des angeordneten Korpers K, dann
existiert eine ordnungstreue Isomorphie ¢:A4,=A4, mit qo[ x=1dg.

Beweis: Mit Hilfe des Lemmas von Zorn findet man maximale Erweiterungen
K, <= 4,, K, c 4, von K, auf die sich die Identitdt von K ordnungstreu fortsetzen ldsst.
Wegen des vorangehenden Satzes konnen K, und K, aber nur maximal sein, wenn
K, =4,,K,=4, ist.

In diesem Beweis kommt man also auch ohne den Trick mit dem Hinzufiigen
von Quadratwurzeln aus.
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