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On the Gauss Mapping for Hypersurfaces of Constant Mean
Curvature in the Sphere *

By KATtsumi Nomizu and BRIAN SMYTH

The proof of the Bernstein conjecture on minimal hypersurfaces in Euclidean
space — for those dimensions in which it is known (see [1], [2], [4]) - raises the fol-
lowing interesting speculation on the geometry of minimal hypersurfaces in the
Euclidean spheres:

If the Gauss image of a compact minimal hypersurface M" in the Euclidean sphere
S"*1 lies in a closed hemisphere of S"*1, then M" must be a great hypersphere in S"*1,

E. de Giorgi [2] and J. Simons [4] have shown that the Gauss image of a minimal
hypersurface other than a great hypersphere cannot lie in an open hemisphere. We
prove here that the above speculation is indeed true and generalizes to hypersurfaces
of constant mean curvature (Theorem 2).

To prove this result we first obtain a characterization of the hyperspheres (great
or small) of $"*! among all complete hypersurfaces of S"*! in terms of their Gauss
images (Theorem 1). With this preparation the main theorem follows more or less
directly on using the standard integral formulas for hypersurfaces in the sphere.

We follow here the terminology and notations of Chapter VII, Volume II, of
Kobayashi—-Nomizu [3].

We should like to acknowledge conversations with W. Fleming which gave the
motivation for this work.

§ 1. The Gauss Mapping

In the sequel M will be a complete orientable Riemannian manifold of dimension
n and f: M—S"*1 is an isometric immersion of M into the unit sphere S"*! in the
Euclidean space E"*2 with centre at the origin. By a hypersphere 2" in S"*1 we will
mean the intersection of S"* ! with a hyperplane in E"* 2, X" is called a great (equatorial)
or small (non-equatorial) hypersphere according as the hyperplane passes through
the origin of E"*2 or not. It may of course degenerate into a single point.

Since M is orientable we may choose a global field of unit vectors £, normal to
M in S"*! with respect to the immersion f. For vector fields X and Y on M the Rie-

mannian connections V and V of $**! and M, respectively, are related by

€XY= VXY+ g(AX, Y) st

* This work was supported by National Science Foundation Grants GP-7610, GP-7403.
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where g is the metric on M and A4 is the symmetric tensor field of type (1.1) on M
defined by

Vyé =— AX.
The Gauss mapping
¢:M"—S"*1

is defined by ¢(p)=¢,,,€S"*! for each pe M. ¢ (M) is called the Gauss image of M.
Depending, as it does, on the choice of £, the Gauss image is only determined to
within the antipodal mapping of S"*!. Thus the statement that the Gauss image of M
is contained in a closed hemisphere (or in a hypersphere) of S"*! is independent
of the Gauss mapping selected. We remark that ¢ (Z") is a point (resp. a small hyper-
sphere) of S"*! if X" is a great (resp. small) hypersphere of S"*!.

THEOREM 1. Let M be a complete orientable Riemannian manifold of dimension
n>2 isometrically immersed in S"** and let ¢ be the associated Gauss mapping.

i) If ¢(M) is contained in a great hypersphere of S"*' then M is imbedded as a
great hypersphere and so ¢ (M) is a single point.

ii) If ¢ (M) is contained in a small hypersphere of S"*! but is not a single point,
then M is imbedded as a small hypersphere and ¢(M) is a full small hypersphere.

Proof. We first observe that either of the above conditions on the Gauss image
gives rise to a unit vector @ in E"*?2 for which (¢, a@) is a constant on M — a say —
with 0<a<1. Here ¢, ) denotes the Euclidean metric on E"*2, With the usual
identification of tangent spaces under the immersion f of M into S"*! we define a
vector field Z on M by

Zy=a—&spy @ $pipy — {Xpipys @ Xp(py s (D)
Where x ., is the position vector of f (p)eS"*! in E**2. Denoting the connection on
E"*2 by D and differentiating the equation <¢, a) =a on M, we obtain, for XeT(M):

0 = <DX€5 a>

= (Ve = (X, &) x, a)

= (- 4X, a>
since Vyé=— AX and (X, £>=0. In other words g(4X, Z)=0 for all XeT(M), so
that

ZeKer A " 2
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by the symmetry of 4. Moreover
VyZ = VyZ — g(AX, Z) &
= 6XZ by (2),
=D,Z+g(X,Z)x
=—(&ay Dy —<(X,ay x —<{x,a) X + g(X,Z)x by(l),
=& a)AX —<{x,a) X
=(@d-pIX,

(3)

where 1 is the identity transformation and the function f on M is given by (p)=
={Xs(p) @). By reason of Codazzi’s equation and (2) we have

(VzA4) X = (VxA) Z
= Vyx(AZ) — AV4Z
=(BA —ad®) X

for each XeT(M), that is,

V,A=pBA—aAd’. (4)
In particular _

Z(TrA)=Tr(VzA) =B TrA — aTrA® (5)

where Tr denotes the trace. ‘

The zeroes of the vector field Z occur at those points p of M where a is orthogonal
to f«(T,(M)). If Z=0 on M, f (M) lies in one of the hyperspheres determined by the
system of hyperplanes in E"*? orthogonal to a, and by completeness of M, the set
f (M) is a full hypersphere in S"*!. In particular, when a=1 (i.e. {=a) we have
Z=0 and {x, a)=0, so that f (M) is a full great hypersphere.

We therefore suppose henceforth that Z#£0 on M and as remarked above we
must then have 0<a < 1. It will be shown that f (M) is then a full great hypersphere, a
separate argument being necessary for the case a=0.

By virtue of (2) and (3), V;Z=—BZ on M and therefore Z/|Z|| is a geodesic
vector field on the open submanifold

M ={peM;Z, +# 0}

of M, where || Z| denotes the length of Z. Fixing p,e M’, let y be the geodesic (para-
metrized by arc length s and extended indefinitely in both directions along M) which
emanates from p, tangent to Z, . By virtue of the above remarks, the vector field Z
is tangent to y along y. Consider the real function 4 defined on R by

h(s) =g(7(s), Zys) .
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where 7(s) is the velocity vector of y(s). Let (a, b) be the maximal interval (possibly
semi-infinite or infinite) containing 0 for which y((a, b)) lies in the connected compo-
nent of M’ containing p,. Then

fg =7(5) g (3 (5), Zys))
=g (')7 (S)’ V;('S)Z)’(S)) (6)
=g(7(s), (@4 — BD) (s)) by (3), , \
=—Boy(s), se(a,b),

since 7(s) is a multiple of Z when se(a, b) and ZeKer 4 by (2). Thus

d*h  d
a5 = s o @
= — (s, a) - K2}

=—h(s), se(a,b).
The solution of this differential equation with initial conditions dh/ds(0)= — .y(0)=
= —fBo and h(0)=/1—a® =2 is
h(s)=./1—a*cos(s + o), se(a,b), (8)

where s,€(—n/2, n/2) is determined by sins,= ﬁo/\/ 1—a?. Furthermore, it follows
from (6) that

,Bo’))(S)=\/1 —a?sin(s + so), se(a, b), ©)
and from (8) that |
Zys= \/1 — a® cos(s + 50) ¥(s), se(a, b). (10)

h(0) being positive, it follows that / is positive on (a, b) and we infer from (8) that
(a, b) is a finite interval. The maximality condition on the interval (a, b) implies that
Z 0=0 and Z,,,=0 which means, by virtue of (10) and continuity, that

cos(a + s¢) = cos(b + so) =0 (11)
Letting k(s)=(Tr 4).y(s) we may rewrite (5) as
P — dk '
\/1 — a® cos (s + o) sV 1 — o sin(s + o) k(s) — a(Tr %),
on (a, b), that is, | |

J1-a? dis (cos(s + so) k(s)) = — a(Tr 4A%),) | (12)
on (a, b).
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Consequently the function cos(s+s,) k(s) is monotone decreasing on (a, b) and
vanishes at s=a, b. Thus k=0 along (a, b) and it follows from (12) that Tr42=0
along y((a, b)), if «#0, and in particular 4=0 at p,=7(0). Assuming o0 we have
therefore proved that 4=0 on M’. However Z=0 and f?>=1—a? on the open set
M—M', so that A=((1—a?/a) I there, by virtue of (3). Since M is connected and M’
is non empty, 4=0 on M. The completeness of M now implies that £ (M) is a full
great hypersphere.

It remains to attend to the case where Z#0 and «=0. Here the equation essential
to our proof is

Z(TrA®) = TrV,4%> = 28 Tr A2, (13)

which is an easy consequence of (4). Since a =0 it is readily verified that the equations
(6)—(10) are valid for all seR. Using these equations and setting /(s)=(TrA4%).y(s),
(13) reduces to

dl
cos (s + so) e 2sin(s + so) 1(s).

Thus /(s)=c/cos?(s+s,) on —n/2<s+5,<m/2 for some constant ¢, and we have a
contradiction unless ¢ — and therefore / — is zero; thus A=0 on M’. Since =0 and
Z=0 on M—M’, we have f2=1 on M—M’; by virtue of (4), A=0 on M—M'.
It now follows as before that f (M) is a full great hypersphere.

In every case it has been shown that f immerses M on a full hypersphere Z" in
S"*1. The completeness of M then implies that f: M"— 2" is a covering map (p. 176,
Volume I, [3]) and since Z" is simply connected if n>2, f is an imbedding if n>2.
This completes the proof of the theorem.

Remark. Theorem 1 remains valid of course if n=1, except that f is no longer
an imbedding in general.

It seems appropriate at this point to emphasise that Theorem 1 is a global result,
that is to say that there is no local analogue if the assumption of completeness is
dropped. Indeed the example which follows serves to construct a large class of hyper-
surfaces in S"*! whose Gauss images lie in a great hypersphere. There is even a large
class of minimal hypersurfaces having this property.

Example. Let  be an immersion of a connected orientable (n— 1)-dimensional
manifold N into a great hypersphere S” in $"*! With e, , denoting the unit vector
orthogonal to the hyperplane of S" in E"*? and angle 0 as coordinate on the unit circle
S?, the suspension f: N x S'—S"*! of the immersion y by geodesics from the north
and south poles of S"*! is defined as

f(p’ 0) = COSB![/(p) + Sineen+2:
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where p is any point of N. Choosing local coordinates (x!,..., x"*') on N we see that

0 0
f*(——i)=cos(9—ip~ 1<ig<n-1,
0x

ox'’

d
f*(é‘é) = Sin@lﬁ + COSB e,,+2.

Thus f/ immerses N’ = {(p, 0)e Nx S'; 0+#o0dd multiple of /2} in S"*!. We denote
by M one of the two connected components of N'.

Let 5 be a unit vector field normal to N in S” and let B be the matrix of the second
fundamental form in the coordinates (x!,..., x"*1). If £ is a unit vector field normal
to M in S"™! we observe that ¢ is orthogonal to f(p, 0), f,(6/0x") and f,(3/80) and
therefore to Y (p), e,+, and dy/ox’. Consequently, choosing the direction of & suitably
we have &, ¢ ="yp for all (p, 0)e M. In particular {¢, e,,,>=0 on M, that is, the
Gauss image of M lies in a great hypersphere of S"*!. On the other hand it is easily
seen that

>f %y
axiow ~ O axan’
o*f . Oy
an 0 o

a*f

5? =_COSB¢ ""‘Sing en+2,

from which it follows that the matrix of the second fundamental form of M in the
coordinates (x!,..., x"*1, 0) is given by

4-_L |BO]
cosf|0 O
Consequently, M is totally geodesic (minimal) if and only if N is totally geodesic
(minimal).

§ 2. The Main Theorem

On an n-dimensional orientable Riemannian manifold isometrically immersed in
S"*1, the Laplacians of the functions {x, a) and <&, a) restricted to M are easily
computed as

A<{x,a) =Tr A&, a) — n{x, a), (14)
A<E, ay = — (grad (Tr A), a) — TrA*<¢, a) + TrA<x, a), (15)
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a being any constant unit vector in E"*2. Since we will now be concerned only with
hypersurfaces of constant mean curvature (i.e. Tr 4 =constant on M), we rewrite
(15) as

AE, a) =—TrA*{E a) + TrAx, a). (16)
Combining (14) and (16) we obtain

A{nE + r1Ax,a)=—{nTrA*> — (TrA)*} (¢, a)
= Z (X’t - A.‘J)Z <£7 a> ’ (17)
i<j
where 4,,..., 4, denote the characteristic roots of A.
The following result sharpens and generalizes Theorem 5.2.1 of Simons [4].

THEOREM 2. Let M be any compact connected orientable manifold of dimension
n=2 immersed in the sphere S"*' with constant mean curvature. If the Gauss image
of M lies in a closed hemisphere of S"*', then M imbeds onto a hypersphere in S"*!.

Proof. The assumption on the Gauss image of M is equivalent to the existence
of a constant unit vector a in E"*2 for which (&, a)>>0 on M. By virtue of (17), we
have A<nf+TrAx,a><0 and E. Hopf’s lemma implies that {n¢+TrAx, a) is con-
stant on M. If M is minimal {¢&, a) is constant on M and the result follows from Theo-
rem 1. We now assume that Tr A #0. By (17) every point of W= {peM; (&, a>>0}
is an umbilic. However {(né+TrAx, a) being constant on M, it is clear that {x, a)
is constant on M — W. Therefore M — W immerses into a hypersphere of $"*! so that
M —W is also totally umbilic. Thus M immerses totally umbilically in $"*! and must
therefore be an imbedded hypersphere.
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