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Représentative Functions on Topological Groups

ANTOINE DERIGHETTI

1. Introduction

In this paper we shall study the relations existing between the topological proper-
ties of a completely regular topological group G and the algebraic properties of the
space of all representative functions R(G) over G.

In the first part we give some results which generalize those of S. Kakutani ([4]
pp. 430-431) concerning compactifications of locally compact abelian groups.

For a compact group G the Tannaka duality theorem shows that the algebraic
properties of R(G) characterize completely those of G. Using [2], we find algebraic
characterizations of the connectedness, local connectedness and arcwise connectedness
of G. Similarly, we attempt to generalize, in a certain sense, the well-known result
of Pontrjagin ([10] p. 32) about the covering dimension of a compact abelian group.
Using these results we obtain some applications to more general topological groups.

I want to express my warmest thanks to Professor K. Chandrasekharan for his
guidance in the preparation of this paper, to Professor R. Sridharan for many
informative conversations and to Professor G. Hochschild for suggestions and
corrections. Finally I want to acknowledge the generous support of the Forschungs-
institut fiir Mathematik without which it would have been impossible to carry out
this work.

2, Compactifications and related questions

Let y be the map of R(G) into R(G)®¢R(G) induced by the product in G.
Following ([6]), one can say that, with the coproduct y and the pointwise product,
R(G) is a Hopf algebra. We consider, as in [2], only Hopf subalgebras of R(G) which
are stable under complex conjugation.

Let 5 be a Hopf subalgebra of R(G). We denote by S(#) the set of all
C-algebra homomorphisms of 5 onto C which commute with complex conjugation.
With the finite open topology S(5¢) is a compact space ([6] p. 28). Let I' be a non
empty subset of R(G); we denote by 5 (I') the least Hopf subalgebra containing I .
It follows from ([6] p. 29-30) that S(s#(I')) is a compact group and the evaluation
map ¢ of G into S(5#(I')) is a continuous homomorphism.

PROPOSITION 1. The group ¢ (G) is dense in S((I')) for every I = R(G).
Proof. Consider f eR(S(s#(IN)) with f=0 on ¢ (G). By the Tannaka duality
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theorem ([6] p. 30) there exists ke (') such that s(h)=f(s) for every seS (s (I)).
In particular ¢, (x)(h)=h(x)=0 for every x €G. Thisimplies that #=0 and therefore

f=0. Using ([7] Lemma 5.2.) we obtain ¢ (G)=S(5#(I)).
COROLLARY‘I. Let 5 be any Hopf subalgebra of R(G). Let t be any element

of S(2), let f1,..., f, be a finite subset of # and let ¢ be any positive number. Then
there is a point x € G such that |t(f))—f;(x)| <e (1 <j<n).

Proof. By definition of the topology of S(#) the set {t' e S(5#) | I’ (f;)—t(f))l <e
1<j<n} is an open neighborhood U of 1. From prop. 1 the existence of xeG then
follows with the required properties.

Remark. This result is proved for characters over a topological group in ([5]).
At the end of the same paper, the authors indicate the possibility of generalization.

COROLLARY 2. Let G be an infinite maximally almost periodic group and
let fi, ..., f,€R(G) and &¢>0. Then there is an element xeG such that x#e and
|f;(x)=f;(@ <e (1<j<n).

The proof is analogous (using prop. 1) to that in the locally compact abelian
case ([4] p. 431).

PROPOSITION 2. Let G be a topological group. Let H be a compact group.
Then the following assertions are equivalent :

(1) There is a continuous homomorphism ¢ of G into H such that (—;(—6) =H.
(ii) H is isomorphic to the compact group S(I') for some Hopf subalgebra I of
R(G).

(iii) There is a Hopf algebra monomorphism Y of R(H) into R(G).

Proof. 1t is clear that (i) implies (iii) and that (ii) implies (i). Suppose that (iii)
holds. The map y* of S(R(G)) into S(R(H)) defined by yr*(s)=so ¥ is a continuous
group homomorphism. There exists a continuous group homomorphism ' of G
into H defined by the commutativity of

S(R(G) > S(R(H))
PR(G) T v T PR(H) .
G —_ H

The relation y’(G)+ H implies the existence of feR(H) with f#0 and f(J’(x))=0
for any x eG. This contradicts the equality fo Y’ =y (f). Therefore (iii) implies (i).
It remains to prove that (i) implies (ii). Consider the Hopf algebra monomorphism
®* of R(H) into R(G) defined by ¢*(f)=f-¢ and set I'=¢*(R(H)). To every
feR(H) there corresponds a function on S(I') defined by s(p*(f)) for every
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s€S(I'). This map is a Hopf algebra isomorphism of R(H) onto R(S(I')) and there-
fore H and S(I') are isomorphic.

Remark. From the approximation theorem it follows that S(R(G)) is isomorphic
to the almost periodic compactification of G ([8] p. 168).

3. Some results concerning compact groups

For a compact group G we have ¢ (G)=S(R(G)) (we set @k, =@). This equality
permits us to characterize the topological properties of G (as in the abelian case)
using the “algebraic’’ properties of R(G).

First we introduce some notations. If 5 is a Hopf subalgebra of R(G), let #*
denote the closed normal subgroup of G defined by {heG ] »f=f for every f e H#}.
Conversely, if H is a closed normal subgroup of G, let H* be the Hopf subalgebra
of R(G) defined by {f€R(G) | ,f=f for every heH}. In [2] the following result
was proved: ,

THEOREM 1. For every compact group G, Go={feR(G) ] f is an algebraic
element of the C-algebra R(G)}, where G denotes the connected component of the

identity in G.

Proof. We prove at first that the above conditions are sufficient to insure the local
connectedness of a compact group G.

THEOREM 2. A compact group G is locally connected if and only if every finite
set of representative functions on G is contained in a finitely generated Hopf subalgebra
H of R(G) such that every non constant element of R(#") is not algebraic.

Proof. We prove at first that the above conditions are sufficient to insure the local
connectedness of G. For every open neighborhood U of e in G there exists an £>0
and there exists a sequence {f;}}-;<R(G) such that the set {x eG || f;(x)—f;(e)l
<g¢ 1< j<n} is contained in U. This implies that £ (f,, ..., f,)* = U. By hypothesis
there exists a finitely generated Hopf subalgebra & of R(G) with &> (f;,..., f2)
and &* connected. Let © be the canonical map of G onto G/&*. The factor group
G/&* is a Lie group, since R(G/&*) and & are isomorphic. Let X be a fundamental
system of open connected neighborhoods of n(e) in G/&*. It is easy to demonstrate
the existence of a subset O €X with n~*(0) < U. It suffices to prove that 7~ *(0) is
connected. Suppose the contrary. There exist open subsets of G V;, V, such that
Vi, Voa#0, V, nV,=0 and V, u¥,=n""'(0). The existence of x € G with n(x) en(V})
nn(V,) contradicts the connectedness of x&*. We therefore have n(V;) nn(V,)=0
and this-implies that O is not connected.

For the second part of the proof, we suppose that R(G) does not satisfy the above
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conditions, and show that G is not locally connected. In this case there exists an
M < R(G) with |M|< oo, such that every Hopf subalgebra & of R(G) with §>M
and &* connected is not finitely generated. Let 5# be the Hopf subalgebra of R(G)
with the property that #* is the connected component of the unit element -in the
subgroup # (M)* (the connected component of a normal closed subgroup is itself
a normal subgroup). Denoting by « the canonical map of G/#* onto G/# (M)*, we
have Kera=(M)*/#*. By a generalization of a wellknown theorem of Hurewicz
([9] theorem 4), dim Kera=0 implies dimG/#*<dimG/s#(M)*, and then
dimS (O)<dimS (5 (M)). It follows that dimS(s#) is finite, because S(# (M))
is a compact Lie group. By hypothesis 5 is not finitely generated. This fact implies
that S(5£) is not locally connected, and therefore (since the natural map of G
onto G/~ is open) that G itself is not locally connected.

Remarks.

1) In this proof we have used the two following results: a) A compact group G
is a Lie group if and only if the C-algebra R(G) is finitely generated; ) Every com-
pact (or locally compact) locally connected group with a finite dimension is a Lie
group.

2) The corresponding classical result ([10] p. 33) for compact abelian groups is: G
is locally connected if and only if every finite number of continuous characters over G
is contained in a finitely generated subgroup H of G (group of all continuous charac-
ters over G) such that G/H is torsion-free.

We denote by 2(G) the set of all C-derivations of the C-algebra R(G) which
commute with complex conjugation and every left translation. Let D € 2(G). For
every feR(G) consider the finite dimensional G-module R(f)=[{ f | xeG}]. By
([7] prop. 2.5) R(f) is stable under D. This implies that } .~ D" f/n! defines an
element exp Df of R(f) and therefore of R(G). ~

PROPOSITION 3. For every De 2(G) the map t—q@ ' (p(e)exptD) is a one-
parameter subgroup of G. Conversely every one-parameter subgroup admits such a
unique representation.

Proof. Let De 2(G) and teR. It is easy to prove that exp tD(fg)=exp tD(f)
expt D(g) for every f, g € R(G). It follows that expzD is a C-algebra endomorphism of
R(G). From the fact that expsD commutes with complex conjugation it follows that
®(e)expt De S(R(G)). We have therefore that #—¢ (¢ (e)exptD) is a one-para-
meter subgroup of G.

Let AeHom,,,,(R,G). For every feR(G) and teR set U, f=f,. The operator
U, is unitary under the scalar-product of R(G) defined by the normalized Haar
measure of G. We denote by U), the extension of U, to [*(G). There exists an operator
D of I?(G) with iD selfadjoint and such that lim,_||(U,f—f)t~* —Dfl|, =0 for



480 ANTOINE DERIGHETTI

every feR(G). The operator —iD has the spectral representation ([*% u dE, and
U, is equal to (X2 ¢ dE,. For every fin R(G) and 10 we have (U, f—f) ¢t 'eR(f)
and therefore Dfe R(f), i.e. D(R(G))= R(G). It is easy to verify that the restriction
of D to R(G) is contained in 2(G). As above we can define exp¢D. It is clear that
the C-algebra endomorphism expzD commutes with complex conjugation and left
translations and invoking ([7] Lemma 5.4) we obtain that expz D is a unitary operator
of R(G). Forevery f of R(G)we have lim,_,||(exptDf—f)t ™' —Df||,=0. Let U/ be
the extension of expzD to I*(G). As above there exists an operator D’ of I?(G) with
iD' self-adjoint and lim,_||(U/h—h) t~' — D'h||,=0 for every he R(G). We have
therefore D= D' and U; = U, i.e. expt Df = f (,, for every fe R(G).

COROLLARY. For a compact Lie group G, the Lie algebra g of G is isomorphic
to 2(G).

Remarks.

1) Proposition 3 gives a characterisation of the Lie algebra of a compact group.
The corollary has been already proved for more general Lie groups than compact Lie
groups ([7] Theorem 11.1).

2) For the second part of the proof of proposition 3 Professor G. Hochschild has
suggested a method which avoids the use of operator theory in I*(G). If ¥ is any
finite dimensional right-submodule of R(G) the map t+—U, (where U, f = f; ) defines
a continuous homomorphism of R into the full linear group of V. This homomorphism
is therefore of the form t+sexp¢D,, where D, is some linear endomorphism of V.
Since R(G) is the union of such ¥V’s, the D;,’s match up to give a linear endomorphism
D of R(G) with the required properties.

We set for I' < R(G) and M = 2(G):
() Ann(I)={D € 2(G) | Df =0 for every feI},
(ii) o,(I')=the least subalgebra of R(G) invariant under the left-translations and
the complex conjugation containing I'.
(iii) Ann(M)={feR(G)| Df=0 for every DeM}.
It is easy to see that Ann(I') is a Lie subalgebra of 2(G), and that Ann(M)
=4, (Ann(M)).

PROPOSITION 4. For every subset I' of R(G), we have #,(I'v)=
Ann (Ann(I')), where & is the subset of all algebraic elements of R(G).

Proof. Denote by A(D) the element of Hom_,,, (R, G) corresponding to De Z(G)-
From feA(D)(R);} 1) it follows that exptDf=f for every teR ie. feKerD an:

1) For every subset H of G, HyL denotes the set {feR(G) | fz =f for every xe H} and for any
subalgebra I' of R(G) with #¢,(I") =I" I'y! is the closed subgroup {xe€G | fz =f for every feI'}.
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conversely, we have therefore A(D)(R)}=KerD. Using the fact that every one-
parameter subgroup is contained in G, we obtain KerD>«/ and in particular
Ann(Ann(IN)> s, (I'v &). 1t is easy to verify that Ann(I')={De 2(G) | A(D)(R)
c#,(I'v H);}. Since the closed subgroup #,(I'u«/); is connected, we have
#,(F'v )={A(D)(R) | De 2(G), A(D)(R)<= #,(I'u &); }; and therefore #,(I'v )
={A(D)(R) | DeAnn(I)}; =N{KerD | D e Ann(I')} = Ann(Ann(I)).

Remarks.

1) For I'=0 we obtain &/ =Ann(2(G)) which gives another characterisation of
the set of all algebraic elements of R(G).

2) The group G is solenoidal if and only if there is DeZ(G) with KerD=C- 1.

3) There is a bijective map between the closed subgroups of G, and the Lie
subalgebras M of 2(G) such that M =Ann(Ann(M)). That is, to every closed sub-
group H of G, we associate M =Ann(H;). The subgroup H is normal in G if and
only if M is an ideal of 2(G).

THEOREM 3. A4 compact group G is arcwise connected if and only if for every
x€G there is an element D of 2(G) such that the following diagram commutes:

o(x)

R(G)—> C

exp D \ /' o(e)
R(G)

LEMMA. A compact group is arcwise connected if and only if it is the union of all
one-parameter subgroups.

Proof. By ([11] Theorem 1) every arc beginning at the unit element is homotopic
to the restriction to [0, 1] of a one-parameter subgroup.

Proof of theorem 3. Suppose first that G is arcwise connected. In this case for
every xeG there exists AeHom,,, (R, G) and aeR with A(a)=x. There exists
De 2(G) such that A(at)=¢ (¢ (e)expt D) and therefore ¢ (e)expD=¢(x).

Conversely suppose that for every xeG there exists De 2(G) such that ¢ (x) =
@(e)expD.If weset A(¢) = ¢~ ! (¢(e) expt D) we obtain Ae Hom_,,, (R,G) and A(1) = x.
Remarks.

1) The classical result for compact abelian groups ([3]) is: G is arcwise connected
if and only if for every x €G there exists AeHom (G, R) such that

G5 st
A\ T e2ni
R

commutes.
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2) 1t is not necessary to give conditions which imply the local arcwise connected-
ness of G because a compact connected group is locally arcwise connected if and only
if it is arcwise connected ([11]).

The dimension of a compact abelian group is equal by ([10] p. 32) to the rank of
its character group. The next theorem is to be considered as a possible generalization
to the non abelian case.

THEOREM 4. The dimension of a compact group G is equal to the dimension of
the real vector space 2 (G).

Proof. There exists an inverse system (G,,u,;) consisting of compact Lie groups
G, and continuous epimorphisms ug,:Gz—G,(x<p) such that G=1im(G,,u,s). We

denote by 7, the projection of G onto G,; by R,, the Hopf subalgebra of R(G),
(Kerm,)'; by 2, the set of all C-derivations of R, which commute with complex
conjugation and all left translations and finally by i,,; (x<p) the natural injection of
R, into R, It follows from ([2]) that R(G) and lim(R,,i,s) are isomorphic. The

restriction Ry, (x<f) of an element of %, to R, belongs to Z,. The differential ug, of
Ug, is a linear map of the Lie algebra g, of G, onto g,. It is easy to verify that the
projective systems (Z2(G),id), (Z,, Res,;) and (g, u,5) are isomorphic. From dim Z,
=dim G, (corollary of prop. 3), dimG=sup, dimG, and dim 2(G)=sup, dim Z,
the theorem follows.

4. Applications

For non-compact groups the relations between the properties of G and those of
R(G) are more complicated.

If the C-algebra R(G) of a locally compact maximally almost periodic group G is
finitely generated, then G is a Lie group. The condition is not necessary. However,
if G is a Lie group such that G/G,, is finite then R(G) is finitely generated if and only
if the factor group of G modulo the closure of the commutator of G, is compact ([7]
theorem 11.1).

PROPOSITION 5. If a topological group G is connected, then every non constant
representative function over G is non algebraib. If every representative function over a
maximally almost periodic group is algebraic then the group is totally disconnected.

Proof. The connectedness of G implies the same property for S(R(G)). From
Theorem 1 the first part of proposition 5 follows. The proof of the second part is
completely analogous. '

THEOREM 5. Every locally countably compact torsion group with a maximally
almost periodic connected component of the identity is totally disconnected.
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Proof. Suppose that G is a compact torsion group. For every fe R(G) consider
R(f) and the corresponding continuous finite dimensional representation g, ;
0, (G) is a compact torsion Lie group and therefore is a finite group. It follows
Kero,o G, i.e. fe Gs. Using theorem 1, we have that G is totally disconnected. For
the general case consider, the continuous map «,:G—G defined by «,(x)=x" for
every positive integer n. By assumption we have G=|J,~; Kera,, the category
theorem of Baire implies the existence of n, such that Kera, is open and therefore
Kera,,> G,. From this it follows that S(R(G,)) is a torsion group. Using the first
part of the proof, theorem 1 and proposition 5 we have the desired result.

Remark. This theorem generalizes a result proved by Braconnier ([1] p. 51) for
the case of a locally compact abelian group.
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