Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 44 (1969)

Artikel: Ein Konvergenzsatz fur Folgen quasikonformer Abbildungen.
Autor: Strebel, Kurt

DOl: https://doi.org/10.5169/seals-33790

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 07.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-33790
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

469

Ein Konvergenzsatz fiir Folgen quasikonformer Abbildungen

KURT STREBEL (Ziirich)

Der Limes f einer Folge ( f,) von K-quasikonformen Abbildungen eines Gebietes
G der z-Ebene, welche lokal gleichméssig konvergiert, ist entweder eine Konstante
oder selber eine K-quasikonforme Abbildung. Wir betrachten den letzteren Fall.
Man kann nun bekanntlich nicht schliessen, dass die komplexen Dilatationen «, der
Abbildungen f, gegen die komplexe Dilatation x des Limes f konvergieren. Selbst
unter der zusitzlichen Voraussetzung, dass die Folge der Betrdge |x,| fast iiberall
konvergiert, geht dieser Schluss nicht: Es kann lim,,_, , |k,| > |x| sein (fiir ein Beispiel,
in dem das f.ii. der Fall ist, sieche [1] pg. 195).

In dieser Arbeit soll gezeigt werden, dass es andererseits keine Menge E von po-
sitivem Mass geben kann, auf der die Ungleichung lim, ., , |k, (2)| <|x(z)| erfiillt ist,
und dass die Gleichheit lim,, , |«,(z)| =|x(z)| die Existenz einer Teilfolge (n,) nach
sich zieht, fiir die lim,., ., (z)=«(z) f.i. auf E gilt. Wir wollen aber die Existenz

des lim,, , |x, ()| nicht voraussetzen. Die Aussage gilt dann fiir den lim, ., , |k, (z)I.
Dass ndmlich andererseits lim,_, , |x,(z)| <|x(z)] f. ii. sein kann, zeigt das folgende
Beispiel: o

Wir unterteilen das Quadrat R: 0<x<1, 0<y<1 durch die vertikalen Strecken
Xm=m[2", 0<y<]1, m=1,...,2" n=1,2,.... Die Abbildung w=/f,,,(z) ist ein K-
quasikonformer und eckpunkttreuer Homdomorphismus von R auf das Rechteck R;:
O<u<K(1-27")+27" 0<v<l1, K>1, der folgendermassen festgelegt wird: Das
Rechteck R,,: (m—1)27"<x<m27", 0<y<1 wird horizontal auf ein kongruentes
Teilrechteck R,,, von R, verschoben. Die iibrigen Teilrechtecke von R werden hori-
zontal mit dem Faktor K gestreckt und natiirlich entsprechend verschoben, sodass
Jwn auf den Geraden x,,=m2™" stetig wird. Offenbar konvergiert die Folge (f,..),
m=1,...,2" n=1, 2,... gleichmissig gegen die Horizontalstreckung w=f (z)=Kx+iy,
wohingegen der Limes inferior der Folge der Betrige der komplexen Dilatationen f. ii.
gleich null ist.

SATZ: Sei f ein K-quasikonformer Homdomorphismus eines Gebietes G der z-Ebene
in die Ebene und lokal gleichmdssiger Limes einer Folge ( f,) ebensolcher Abbildungen.

Dann ist lim, ,  |x, (2)| = |k (2)| f. ii. Gilt auf einer Menge E von positivem Mass Gleich-
heit, so gibt es eine Teilfolge (n,), sodass lim,_, ., (z)=x(2) f. ii. auf E.

Beweis: 1) Wir betrachten zunichst einen reguldren Punkt z, von f, in dem also f
ein totales Differential dw=p(z,) dz+q(z,) dZ besitzt und ausserdem die Funktional-
determinante J(zy)=|p(z,)|*> —19(2,)>>0 ist. Wir nehmen ferner an, dass x(z,)=
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q(20)/p(20)#0 sei. Es gibt dann im Punkte z, fiir die differentielle Abbildung dw=
p(20) dz+q(z,) dzZ eine bis auf n eindeutig bestimmte Richtung grosster Streckung:
Es ist die Richtung 9=(f—a)/2=7/2, mit den Bezeichnungen p(z,)=|p(z,)| €,
q(z0)=19(2o)l €*, (20) =k (20)| €”. Sie wird iibergefiihrt in die Richtung 9* = (x + B)/2.

Sei Q,(z,) das Quadrat mit dem Mittelpunkt z, und der Seitenldnge a, dessen eine
Seite die Richtung 3 hat. Es wird durch die lineare Approximation von f abgebildet
auf das Rechteck R mit dem Mittelpunkt w, = f (z,) und den Seitenldngen a(| p(z,)| +
+19(2o)|) in der Richtung 9*, a(|p(zo)| — ¢ (2o)l) in der Richtung 9*+ /2. Zu einem
beliebig gegebenen ¢>0 gibt es nun ein d=0(g, z5) >0 sodass fiir alle a<d und
z=z5+dzeQ,(z,) gilt: |f(2) — f(zo) — dw| < ac.

Fiir jedes feste a<¢ gibt es dann ausserdem ein n,, sodass fiir alle n>n,, ze Q,(z,)
auch | f,(z) — f(zo) — dw| < ac ist.

Wir fithren in Q,(z,) {=¢&+in=e""*(z—z,) als seitenparallele Koordinaten ein,
wobei also die £-Achse aus der x-Achse durch Drehung um den Winkel 3 hervorgeht.
Die Richtung n=konst. ist somit die Richtung grosster Streckung der linearen Ap-
proximation. Wir betrachten die f,-Bilder der Strecken n=konst. in Q,(z,) fiir n>n,.
Bezeichnen wir das totale Differential von f, in einem beliebigen Punkte z mit dw,=
P, (2) dz+q,(z) dZ, so gilt fiir dz=¢€"* d¢

dw, = p,(z) €°* d¢ + q,(z) e ™ dE.

Fiir die Lingen dieser f,-Bilder erhalten wir somit

al2

allp(eo)l +1aGl = 20) < [ 1pa(20) + an(z(@) €71 dg
—af2

und durch Integration iiber n

al2 a/2

a*(1p(z0)| + 1q(2o)] — 2¢) < f f 124 (2 (0)) + 44 (2(0)) €7 d¢ dn
—-al2 —-af2

= [[ 1n)+ au@ 701 dxay.

Qa(zo0)

Eine Anwendung der Schwarzschen Ungleichung ergibt

a*(1p(zo)| + lg(z0)| — 2¢)°

< f f (15 @)1 = 14, (D)) dx dy f J IPa(2) + (@) e 0 gy
)

1P, (2)I1> — |4, (2)1?
Qa(zo) Qa(zo
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< a?(Ip(zo)l + 19 (zo)l + 2¢) (Ip(20)| — 14 (20)! + 2¢)
1L+ x,(z) e "2
X
1- |Kn(z)|2
Qa(zo)
Mit Hilfe der Identitét
11 + x,(z) e~ V(z0))2 B Ik, (2)]* + 2 Rex,,(z)-e’”‘“’

dxdy.

1—1Ik,(2)I* 1= [, (2)]?
— 7) — !Kn(Z)I — Re K,,(Z) e—iy(zo)
=D,(z) -2 L

wo D,(z)=(1+|x,(2)])/(1—|k,(z)]) =1 die Dilatation von f, im Punkte z ist, erhalten
wir schliesslich fiir jedes a<d und n>n, die Ungleichung

(1p(z0)1 + 14 (z0) — 2 VI
(9ol + 14(zo)l + 22) (p (o)l ~ la o +28) 2 20+ )
2 dU)D,,(z)dx dy——2a_2 0
|ka(2)| — Rex,(z) e "¢ 2
X j [ ir.(2) dxdy <a jj D,(z)dx dy,
Qa(z0) Qa(z0)

wobei (&) eine mit ¢ gegen null gehende Grosse bezeichnet.

2) Das Lemma von Fatou ([3], pg. 29), angewendet auf die Folge der Funktionen
K—D,>01in Q,(z,), ergibt

lim ff (K = D,(2))dx dy > ff lim (K — D,(z)) dx dy

"7 Dalzo) Qa(z0) "
und daher
lim ff D,(z)dx dy < ff lim D,(z) dx dy.
e Qa(z0) Qa(zo) e
Wir erhalten somit aus (1) die Ungleichung
D(zy) + (e) < f f lim D,(z) dx dy (2)
Qa(zo0) e

in jedem regularen Punkt z, von £, in dem x(z,)#0 ist, fiir alle <4 (s, zo).

Nehmen wir nun an, es gelte auf einer Menge von positivem Mass lim,_, , D, (2)<
<D(z). Dann gibt es eine Menge E, |E|>0 und eine positive Zahl d, sodass auf E

lim,,, D,(z)<D(z)—d ist. In E ist D(z)>1+d, und es gibt einen reguldren Punkt
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zo von fin E, der Dichtepunkt der Menge E ist, und in dem lim,_,oa™? {40 D (2) X
x dx dy=D(z,) gilt; die letzte Beziehung gilt ndmlich fiir beliebige Quadrate Q,(z,)
f. ii. in G. Wir haben somit fiir alle a<$é

D(zo) + () <a™? ff (D(z) —d)dx dy + a™*K ff dx dy

Qa(z0)nE Qa(zo)-E (3)
<a? ff (D(z) —d)dx dy + a *K ff dxdy.
Qa(z0) Qa(z0)—E

Fiir a—0 erhalten wir zunichst D(z,)+ (¢)<D(zo)—d und daraus fiir e-0 D(z,)<
< D(zy)—d, was einen Widerspruch bedeutet. Das beweist den ersten Teil des Satzes.

3) Es gelte nun auf einer Menge E von positivem Mass Gleichheit: lim,_, , D, (2)=
D(z), ze E. Wir zeigen zunichst, dass es dann eine Teilfolge (n,) gibt, fiir welche
lim,., . D, (z)=D(z) f. ii. auf E ist.

In denjenigen Punkten von E, in denen D(z)=1 (d.h. x(z)=0) ist, gilt D, (z)—D(z)
und damit auch «,, (z)—« (z) schon fiir die urspriingliche Folge und umsomehr fiir jede
Teilfolge. Wir diirfen daher annehmen, dass auf E D(z)>1 sei. Wir betrachten
E,=En{z||z| <r}. In fast allen Punkten z,eE, gilt

lima~2 ff lim D,(z) dx dy = lima™? ff lim D, (z) dx dy
BRI ¥ M 0 Q" 4)
= lima™? ff D(z)dx dy = lima™? ff D(z)dx dy = D(z,)
=0 Qa(zo)nE 0 Qa(zo)

Es gibt nun wegen (1) und (4) zu gegebenem &> 0 fiir jedes z, € E, mit Ausnahme einer
Nullmenge ein d=40(g, z,)>0 sodass fiir a<¢

D(zy) —e<a ? lim Jf D,(z) dx dy < lim a™2 ff D,(z) dx dy

Qa(zo0) e Qa(zo0) (5)
<a™? ff lim D,(z) dx dy < D(zo) + &
Qa(zo0) e ’

ist. Die abgeschlossenen Quadrate Q,(z), ze E,, a<d (¢, z), iiberdecken die Menge E,
im Sinne von Vitali ([3], pg 109), und es gibt daher eine hochstens abzdhlbare Menge
von nicht-iiberlappenden Quadraten Q, (z,), v=1,2,... sodass |E,—A|=0 ist, wo
A=Y, 0, (z,)bedeutet. Die Quadrate Q, (z,)sind nicht-iiberlappend, und sie kénnen
zudem von Anfang an so gewihlt werden, dass sie in einer gegebenen offenen Menge
0 liegen, die E, enthilt. Man kann daher annehmen, dass |4 —E,|<|0—E,| <eg ist.
Schreiben wir nun die Ungleichungen (5) fiir jedes z, an, multiplizieren sie mit ¢ und
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summieren iiber alle v, so erhalten wir (mit 0,=Q, (z,))

;D(zv)af—alAl <Zn}g’; ff D,(z)dx dy < Z lim ffD,,(z)dxdy

v n— a0

(6)

0,
<Y JJ ﬁan(z) dxdy <. D(z,) a2 +¢|A|.
v Qv v

Fiir eine beliebige natiirliche Zahl N ist

N N
3 1im”D,,<11m Z”Dnsum”D
=lnow noow V=1 n—o

V Qv A

v=1
. ® . N -]
hmff1)=1im}jffpn=1im(szp,,+ Y ffD,,)
n— o n—w v=1 n—>w \v=1 v=N+1
Q QV QV
hmffD,,+fﬁﬁ ” zﬁﬁffbﬁﬁ'ﬁ{ ”
v=1n—-o n—ow v=N+1 v=1n—o 4 n-w v=N+1

Da der letzte Summand wegen der gleichgradigen Konvergenz (beziiglich »n) der
Summe Y, {{o, D, fiir N—co beliebig klein wird, haben wir schliesslich

}jnm”DnsanDnsﬁniffDnsz 1?5”1)
V iS5 w y g ) n-—* oo P v=1n—-w o

© — - (7)
<) ff limD,,=ff lim D,.
v=1 o n-»oo g n— oo
Aus (7) folgt mit Hilfe von (6)
OsffllmD — Iim ij,,<2|A|e<2(]E,l+s)e. )
n— o n— o P

Wegen A5 E, (bis auf eine Nullmenge) und |4 —E,| <e¢ gilt weiter

0< f hmD—ffhmD,,—ff lim D, < )
hmffD—-hmff ]Tn;ffDnSKs. (10)
n— a0 n—w n— oo A_Er

Beriicksichtigen wir noch die Voraussetzung lim,_, , D, (z)=D (z) auf E,, so erhalten

un
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wir aus (8), (9) und (10) die Gleichung

ffD—limfth=Eff(D—D")=0 (11)

n-* a0

und daraus hm f f |D — D,| = (12)

Die letzte Beziehung folgt so: Es gilt |D—D,|=(D—-D,)—2(D—D,)"=D—D,+
+2|(D—D,)”| und daher

i JJ1o-pi<im [[@-p)c2im [0
-Zlan:ff'“’ o< [ 0 o1-0

da der Integrand f. ii. verschwindet. Die Beziehung lim,,, {{z, [D— D,|=0 bedeutet
nun, dass die L'-Norm | D— D, ||g,—0 geht fiir n— o0, und daraus ergibt sich bekannt-
lich die Existenz einer Teilfolge (n,), sodass D(z)— D, (z)—O0 fiir f. a. z aus E,. Lassen
wir r die natiirlichen Zahlen durchlaufen und wihlen wir die Teilfolge fiir E, ., aus
derjenigen fiir E,, so erhalten wir in der Diagonalfolge die gesuchte Teilfolge, die f. ii.
auf E gegen D konvergiert.

4) Fiir das Folgende diirfen wir zum vorneherein annehmen, dass auf der Menge
E von positivem Mass lim,_, , D,(z)=D(z) f. ii. gelte, und dass ausserdem D(z)>1
sei. Damit dquivalent ist: lim,_, , |x, ()| =|x(z)| >0 f. i. auf E. Aus der Ungleichung
(1) folgt fiir fast jedes zoe E

> J n(2)] = Rey (2)-e7720 )

1- lxn (Z)I2
Qa(z0) (13)
<a’? JJ D,(z) dx dy — D(z,) + (¢).
Qa(z0)
Lisst man nun zunédchst n— oo und dann a—0 gehen, so folgt
- —R —iy(zo)
lima2 fim J (@)l = Rer(2) e T2 gy — 0 (14)
a—0 n—a 1 - IKn(Z)I
Qa(z0)
und daher umsomehr
lima~? lim ff (Ixa(2)] — Rexk,(z) e ") dx dy = 0. (15)
a-0 n—w

Qa(zo)
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Nun gilt bekanntlich (fiir den Beweis des eindimensionalen Analogons siehe z.B. [2]
pg 228) fiir f. a. zye E

hm - Jj le™ @ _ e=0E gy gy =, (16)
P a Qa(zo)nE
Aus

lim ff (Ix,(2)] — Rek,(z) e ") dx dy
e Qa(zo)nE

< 11? ff (Ix,(2)] — Rex,(z) e™ 7)) dx dy 17)

Qa(zo)
ff Ie—iv(Z) — e—iv(m)l dx dy
Qa(z0)nE

folgt daher: Fiir f. a. zye E gibt es zu jedem >0 ein §=0((g, z,) sodass fiir a <4 gilt

a”? lim ff (Ix,(z)] — Rex,(z) e @) dx dy <. (18)

n— oo
Qa(zo)nE

Nun betrachten wir wieder zuniichst E, und erhalten mittels einer Uberdeckung von
E, im Sinne von Vitali wie oben

lim ff (I, (z)| — Rex,(z) e ") dx dy =0. (19)
Daraus ergibt sich zuerst die Existenz einer Teilfolge (,) fiir die |x, (z)| —Rek,, (z) x
x e~ 50 geht f. ii. auf E,. Durch das Cantorsche Diagonalverfahren erhalten wir
schliesslich eine Teilfolge, fiir die die obige Beziehung f. ii. auf E gilt.

Sei nun zeE ein solcher Punkt. Dann gilt also |k, (z) e”?®|—|k(z)| und
Rek, (z) e™"® |k (z)|. Daraus folgt offenbar «, (z) e —|x(z)| und somit

K, (2) = |k (2)| €7 =k (2), q.e.d.
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