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Ein Konvergenzsatz fur Folgen quasikonformer Abbildungen

Kurt Strebel (Zurich)

Der Limes/einer Folge (/„) von £-quasikonformen Abbildungen eines Gebietes
G der z-Ebene, welche lokal gleichmàssig konvergiert, ist entweder eine Konstante
oder selber eine j^-quasikonforme Abbildung. Wir betrachten den letzteren Fall.
Man kann nun bekanntlich nicht schliessen, dass die komplexen Dilatationen Kn der

Abbildungen fn gegen die komplexe Dilatation k des Limes / konvergieren. Selbst

unter der zusâtzlichen Voraussetzung, dass die Folge der Betrâge |fcn| fast ûberall
konvergiert, geht dieser Schluss nicht: Es kann limn_00 \Kn\ > \k\ sein (fur ein Beispiel,
in dem das f.iï. der Fall ist, siehe [1] pg. 195).

In dieser Arbeit soll gezeigt werden, dass es andererseits keine Menge E von po-
sitivem Mass geben kann, auf der die Ungleichung limn_00|?cll(z)|<|K;(z)| erfiïllt ist,
und dass die Gleichheit limn_>oo|/cn(z)| |fc(z)| die Existenz einer Teilfolge (nv) nach
sich zieht, fur die \imv-+o0kHv(z) k(z) f.ù. auf E gilt. Wir wollen aber die Existenz

des lim^^l^fz)! nicht voraussetzen. Die Aussage gilt dann fur den limw^00|K:w(z)|.
Dass nâmlich andererseits \imn^ o0\Kn(z)\<\K(z)\ f. û. sein kann, zeigt das folgende
Beispiel:

Wir unterteilen das Quadrat R: 0^x<l, 0<j<1 durch die vertikalen Strecken

xmn m/2n, 0<j<1, m=l,...,2n, «=1,2,.... Die Abbildung w=fmn(z) ist ein K-
quasikonformer und eckpunkttreuer Homôomorphismus von R auf das Rechteck Rfn :

0^u^K(l-2~n) + 2~n, 0<t;^l, K>\, der folgendermassen festgelegt wird: Das
Rechteck Rmn: (m-1) 2~n<x<m2~n, 0<>><l wird horizontal auf ein kongruentes
Teilrechteck R'mn von R'n verschoben. Die ûbrigen Teilrechtecke von R werden
horizontal mit dem Faktor K gestreckt und natûrlich entsprechend verschoben, sodass

fmn auf den Geraden xmn m2~n stetig wird. Offenbar konvergiert die Folge (/mn),
m 1,..., 2n, n 1, 2,... gleichmàssig gegen die Horizontalstreckung w —f (z) Kx + iy,
wohingegen der Limes inferior der Folge der Betrâge der komplexen Dilatationen f. iï.
gleich null ist.

SATZ : Seifein K-quasikonformer Homôomorphismus eines Gebietes G der z-Ebene
in die Ebene und lokal gleichmâssiger Limes einer Folge (/„) ebensolcher Abbildungen.

Dann ist lim,,^ |Krn(z)| ^ |k(z)|/. u. Gilt auf einer Menge E vonpositivem Mass Gleichheit,

so gibt es eine Teilfolge (nv), sodass limv_ (X)Knv(z) K(z)f il. auf E.

Beweis: 1) Wir betrachten zunâchst einen regulâren Punkt z0 von/, in dem also/
ein totales Differential dw=p{z0) dz+q(z0) dz besitzt und ausserdem die Funktional-
determinante /(zo) |/?(zo)|2-|#(zo)|2>0 ist. Wir nehmen ferner an, dass k(zo)
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q(zo)lp(zo)^0 sei. Es gibt dann im Punkte z0 fur die différentielle Abbildung dw

p(zo)dz + q(zo)dz eine bis auf n eindeutig bestimmte Richtung grôsster Streckung:
Es ist die Richtung 3 (£-a)/2 y/2, mit den Bezeichnungen p(zo) \p(zo)\ em,

q(zo) \q(zo)\ Jp> ic(^0) l^(^o)l eiy- SiewirdûbergefûhrtindieRichtung5* (a + jS)/2.

Sei Qa(z0) das Quadrat mit dem Mittelpunkt z0 und der Seitenlânge a, dessen eine

Seite die Richtung 5 hat. Es wird durch die lineare Approximation von / abgebildet
auf das Rechteck R mit dem Mittelpunkt w0 =/(z0) und den Seitenlângen a(\p(zo)\ +
+ \q(zo)\) in der Richtung 5*, a(\p(zo)\-\q(zo)\) in der Richtung #* + 7r/2. Zu einem

beliebig gegebenen e>0 gibt es nun ein <5 <5(e, zo)>0 sodass fur aile a<è und

z zo + dzeQa(zo) gilt: |/(z) -/(z0) - dw\ < as.
Fur jedes feste a<ô gibt es dann ausserdem ein na, sodass fur aile n>na, zeQa(z0)
auch \fn(z) — /(z0) — dw\ < as ist.

Wir fuhren in Qa(z0)C ^ + iri e~iâ(z—z0) als seitenparallele Koordinaten ein,

wobei also die £-Achse aus der x-Achse durch Drehung um den Winkel & hervorgeht.
Die Richtung rç konst. ist somit die Richtung grôsster Streckung der linearen
Approximation. Wir betrachten die/n-Bilder der Strecken rç konst. in Qa(z0) fur n>na.
Bezeichnen wir das totale Differential von/w in einem beliebigen Punkte z mit dwn

pn(z) dz+qn(z) dz, so gilt fur dz e™ d^

Fur die Lângen dieser/w-Bilder erhalten wir somit

a/2

J
-a/2

und durch Intégration ûber rj

a/2 a/2

J J
-a/2 -al2

Ga(Z0)

Eine Anwendurig der Schwarzschen Ungleichung ergibt
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a2(\p(z0)\ + \q(zo)\ + 2e) (\p(zo)\ - \q(zo)\ + 2e)
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JJ 1 - K(
-¦>Uo)|2

dx dy.

Mit Hilfe der Identitât

1 " 1 - K(Z)|2

_,
wo £»n(z)=(l + |kb(z)|)/(1 - \kk(z)\)^ 1 die Dilatation von/B im Punkte z ist, erhalten

wir schliesslich fur jedes a < ô und n > na die Ungleichung

(|p(zo)| + \q(zo)\+2e)(\p(zo)\ - \q(zo)\ +2e)'

Dn{z)dxdy-2a'2

ÇÇ \Kn(z)\-RQKn(z)e-iy(Z0) _2 CÇ
x : TW2 dxdy^a Dn(z)

JJ 1 - \Kn{z)\2 JJ
Qa(Z0) Qa(Z0)

wobei (e) eine mit s gegen null gehende Grosse bezeichnet

2) Das Lemma von Fatou ([3], pg. 29), angewendet auf die Folge der Funktionen

K-Dn^0 in Qa(zo% ergibt

lim fT (K- Dn(z)) dxdy> lim (K - Dn(z)) dx dy
n-*ao X ^ " ^ n-+oo

Qa(Zo) Qa(zo)

und daher

lim Dn(z) dx dy < lim jDb(z) dx dy.
»-*oo J J J J n-*ao

Qa(z0) Qa(z0)

Wir erhalten somit aus (1) die Ungleichung

lim Dn(z)dxdy
Qa(*0)

(2)

in jedem regulâren Punkt z0 von/, in dem k:(zo)^0 ist, fur aile a<ô(e, zo).

Nehmen wir nun an, es gelte auf einer Menge von positivem Mass limn_+ooi)rt(z)<

<£(z). Dann gibt es eine Menge E, \E\>0 und eine positive Zahl d, sodass auf Eti)-d ist. In E ist Z)(z)S*l+d, und es gibt einen regulâren Punkt
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2
z0 von/in E, der Dichtepunkt der Menge isist, und in dem lima_>oa Q()
xdxdy D(z0) gilt; die letzte Beziehung gilt nâmlich fur beliebige Quadrate Qa(z0)
f. ù. in G. Wir haben somit fur aile a<ô

a~2 (D{z)-d)dxdy + a~2K dx dy
Qa(zo)nE Qa(z0)-E

a~2 (D(z) - d) dx dy + a~2K f f dx dy.
(3)

Fur a->0 erhalten wir zunâchst D(zo) + (£)</)(zo) — d und daraus fur e->0 D(zo)<
< J9 (z0) — a7, was einen Widerspruch bedeutet. Das beweist den ersten Teil des Satzes.

3) Es gelte nun auf einer Menge E von positivem Mass Gleichheit: lim^^ Dn(z)
D(z), zeE. Wir zeigen zunâchst, dass es dann eine Teilfolge (nv) gibt, fur welche

limv^« Dnv (z) D (z) f. u. auf E ist.

In denjenigen Punkten von E, in denen D(z)—\ (d.h. tc(z) O) ist, gilt Dn(z)-*D(z)
und damit auch Kn(z)-^K(z) schon fur die urspriingliche Folge und umsomehr fur jede
Teilfolge. Wir dûrfen daher annehmen, dass auf E D(z)>\ sei. Wir betrachten

Er En {z I \z\ <r}. In fast allen Punkten zoeEr gilt

lima 2

a-*0
lim Dn (z) dx dy lim a

J J n-*ao fl-»O
dxdy

lima
a-*0

Qa(z0)nE
a->0

ff limI>B(z)
%/ J n~* oo

ro)n£

jj D(z)dxdy D(z0)

Qa(zo)nE

Ôa(zo)

(4)

Es gibt nun wegen (1) und (4) zu gegebenem e>0 fur jedes zoeEr mit Ausnahme einer

Nullmenge ein ô ô(e, zo)>0 sodass fur a<ô

D(zo)-e^a 2 lim \ \ Dn(z) dx dy ^ lim a
2 \ \ Dn (z) dx dy

iTT£ J J n->oo J J
Qa(Z0)

^ a"2 f f ïïîn Dn{z) dx dy < D(z0)

Qa(Z0)

Qa(Z0)

(5)

ist. Die abgeschlossenen Quadrate £?a(z), zeEr9 a<S(s, z), ûberdecken die Menge Er

im Sinne von Vitali ([3], pg 109), und es gibt daher eine hôchstens abzâhlbare Menge

von nicht-iiberlappenden Quadraten Qav(zv), v l,2,... sodass \Er—A\=Q ist, wo

A=Yjv Qav(zv) bedeutet. Die Quadrate Qav(zv) sind nicht-iiberlappend, und sie kônnen
zudem von Anfang an so gewâhlt werden, dass sie in einer gegebenen offenen Menge
0 liegen, die Er enthâlt. Man kann daher annehmen, dass \A — Er\^\0—Er\<e ist.

Schreiben wir nun die Ungleichungen (5) fur jedes zv an, multiplizieren sie mit a2 und
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summieren ùber aile v, so erhalten wir (mit ôv ô«v(zv))

2eMK£lh» Dn(z)dxdy^YÎM f f Dn(z)dxdy
v n-xx) J J v n->oo J J

Qv Qv

Û™Dn(z) dx dy ^ Ç D(zv) a2v + e\A\.
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(6)

Fur eine beliebige naturliche Zahl N ist

und

£ ce t. £ rr rrlim j J Dn< lim Z J j D* < lim J J Dn

D« lim / I I D lim [ > I I D 4- > I I jD
« Z_j I I n \ jLj 1 t n > i^ IIn-Kx> v=l J J n-*oo \v=l J J v JV+l J J

A Qv Qv Qv
N /» /» oo /» /» oo /• /» oo /» /»

< X lim \\Dn + lim X D.^lim D.+ Iim £ D..
-y __ ^ yj ¦¦"f Qu ^ ^/ fj ¦" " 00 y ~— J_y *i X %/ ^/ V ™~" A rî '' * 00 %f %/ t% *~^ C30 v *"¦ i\ i* X ^/ ^/

Qv Qv Qv Qv

Da der letzte Summand wegen der gleichgradigen Konvergenz (bezûglich n) der
Summe £v JJQv Dn fur iV->oo beliebig klein wird, haben wir schliesslich

X lim \\ Dn ^ lim \ i Dn ^ lim \ \ Dn ^ ^ lim Dn
v n->a0 J J riT^ôô J J n-*oo J J v=l n-*oo J J

Qv A A Qv

•/•/•_ /• /• __
^ Zj I I w II n •

v=l »/ J n-*ao J J w->oo
Qv A

Aus (7) folgt mit Hilfe von (6)

0^ ff îîm'A.-Iim Dn^2\A\s<2(\Er\+e)e.
J J n-*<X> n-* ao * *

A A

Wegen A^>Er (bis auf eine Nullmenge) und \A — Er\ <s gilt weiter

0^ M îïmDn- || ïïmDw= ïïm Dn^K-e

(7)

(8)

A-Er

und

O^lim \\Dn- lim ff/)n<lim f f £>w

(9)

(10)

Berùcksichtigen wir noch die Voraussetzung lim^^^ Z)n(z) Z)(z) auf 2?r, so erhalten
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wir aus (8), (9) und (10) die Gleichung

JJ D — lim_ JJ Dw ïlm jj(D-Dm) 0 (11)

Er n"*°° Er Er

unddaraus ÛS f f |D-D.l =0. (12)
«-?oo J J

Er

Die letzte Beziehung folgt so: Es gilt \D-Dn\={D-Dn)-2(D-Dn)~ =1)-^+
+ 2\(D-Dn)-\ unddaher

lim f f |D - DJ < lim f f(D - Dn) + 2 lira f f |(O — £>J-|
«-?oo J J n-*co J J n-*ao J J

Er Er Er

2 ÏÏm |
F \(D - Dn)~\ < 2 I ïim \(D - Dn)~\ =0,

da der Integrand f. û. verschwindet. Die Beziehung lim,,.^ jj£r|£> — DM|=0 bedeutet

nun, dass die If-Nonn ||Z) —Dn||£r^0 geht fur «-?oo, und daraus ergibt sich bekannt-
lich die Existenz einer Teilfolge (nv), sodass D{z) — Dnv(z)-»0 fur f. a. z aus Er. Lassen

wir r die naturlichen Zahlen durchlaufen und wâhlen wir die Teilfolge fur Er+1 aus

derjenigen fur En so erhalten wir in der Diagonalfolge die gesuchte Teilfolge, die f. û.

auf E gegen D konvergiert.

4) Fur das Folgende diirfen wir zum vorneherein annehmen, dass auf der Menge
E von positivem Mass \imn^00Dn(z) D(z) f. û. gelte, und dass ausserdem D(z)>\
sei. Damit âquivalent ist: lim,,.^ |?cn(z)| \k(z)\ >0 f. û. auf E. Aus der Ungleichung
(1) folgt fur fast jedes zoeE

Qa(z0)

II Dn(z)dxdy-D(z0)
(13)

Lâsst man nun zunâchst n->oo und dann a-*0 gehen, so folgt

«¦¦-S [[*¦<#-''*•<%—«O-O (»)
a-0 »-oo JJ 1 ~ \kh(z)\

Qa(Z0)

und daher umsomehr

lima"2 Îï5i f f (K(z)| - ReKB(z) e-iy(2o)) dx dy 0. (15)
a-*0 n-+ao J J
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Nun gilt bekanntlich (fur den Beweis des eindimensionalen Analogons siehe z.B. [2]

pg 228) fur f. a. zoeE

lim- e~i7(z) o)\ dxdy 0. (16)

Qa(zo)nE
Aus

lim U (\Kn(z)\-ReKH(z)e-w'>)dxdy
n->oo J J

< ÎW f f (K(z)| - ReKn{z) *-"<*»>) dx dy
n-+ao J J

Qa(Z0)

(17)

Q«(zo)n£

folgt daher: Fiir f. a. zoe£ gibt es zu jedem e>0 ein <5 <5(e, z0) sodass fiir a<ô gilt

(\Kn
J J

(18)

Nun betrachten wir wieder zunâchst Er und erhalten mittels einer tîberdeckung von
Er im Sinne von Vitali wie oben

lim f f (1^(2)1 -
n-+co J J

dxdy 0. (19)

Daraus ergibt sich zuerst die Existenz einer Teilfolge (nv) fur die \Kny(z)\ — Reicnv(z) x
xe~iy{z)-+0 geht f. û. auf Er. Durch das Cantorsche Diagonalverfahren erhalten wir
schliesslich eine Teilfolge, fiir die die obige Beziehung f. û. auf E gilt.

Sei nun zeE ein solcher Punkt. Dann gilt also \kHv(z)e~iy(z)\^\K(z)\ und
Reic»v(z) e~tyix)->\K(z)\. Daraus folgt offenbar kKv(z) e~iy(z)^\K(z)\ und somit

fcBv(z) -? |fc(z)| eiy(z) k(z), q.e.d.
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