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Pin Cobordism and Related Topics

D. W. Anderson, E. H. Brown, Jr., and F. P. Peterson

1. Introduction

In [1], we largely determined the structure of £|pin, the Spin cobordism ring. In
this paper we show how thèse results may be applied to study Qs^in(K), the Spin
bordism groups, in certain cases. One case of particular importance is K=RPQ0
because of well-known isomorphism ^f?\n(jRP°°)«O£in, where Pin is a group with
two components whose component of the identity is Spin (see [2]). Our results

include a détermination of (2*m in terms of our results on O*pin. We also study
the problem of determining the image of one bordism group in another, e.g.

Our method is to study the Adams spectral séquence for n*(Ka M Spin). In order

to do this, we must détermine the ^-module structure of H*(K)®H*(MSpin).
The following is our main algebraic resuit which together with the results of [1],
enables us to détermine this structure. The ^-module structure of H*(K)®(<stf®N)
dépends only on the ^-module structure of H*(K), where & is a Hopf subalgebra of
se and N is a fixed ^-module.

2. Statements of Main Geometrical Theorems

Let K be a CW-complex. The G-bordism groups of K, Q%(K\ are the homology

groups of K with coefficients in the Thom spectrum MG, that is, Q%{K) H*(K\
MG) n*(K+ aMG) (see [7]). In [1], we proved that MSpin was of the same mod

two homotopy type as a wedge of three types of spectra: K(Z2, n), B0<8«>, and

B0<8w + 2>. Thus, to détermine &*in, we need to compute 7i*(RP™ K(Z2, «)),

7C* (RP™ a BO <8n», and n* (RP™ BO <8« + 2». This is done explicitly in theorem 5.1;

we only state the following corollary hère. This corollary contradicts a proposition
ofC.T.C.Wall[6].

COROLLARY 2.1. The exponent of Qfin is 2 if /=0, 1, 3, 4, 5, 7, (8) (except in

some low dimensions where it is 1), 24*+3 if i 8fc+2, k^O, and 24k+4 if i=

The methods we use to compute £!pin(#) when K^RP00 work equally well when

K=BSO (see §6).
Our other geometrical results concern the image of one bordism group in another.

In § 6, we give some gênerai considérations which hâve the following corollaries.
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COROLLARY 2.2. Im(Qpin-+^*) all cobordism classes ail of whose Stiefel-

Whitney numbers involving W2(v) vanish.

COROLLARY 2.3. (lm(Qitt(K)-+Jrilt(K))) all bordism classes (M,/) ail of
whose Stiefel-Whitney numbers of the map involving Wt vanish, ifand only ifH+ (K; Z)
has no 4-torsion.

COROLLARY 2.4. There is a PL-manifold M such that £L*L
and ail mod2 characteristic numbers of M involving Wx vanish.

COROLLARY 2.5. lm{QYlTi(BSO)-^Jr^{BSO)) 2A\ bordism classes (MJ) ail
of whose Stiefel-Whitney numbers of the map involving Wl and W2 vanish.

3. Modules over a Hopf Algebra

In this section we state and prove some results about the structures of tensor
products of modules over a Hopf algebra which may be of independent interest.
In the following sections we use thèse results to prove our géométrie theorems.

In the following, ail the objects are graded vector spaces over Z2 of finite type and
zéro in négative dimensions. Let A be a connected, coassociative, cocommutative
associative, locally finite Hopf algebra. We will consider the category of left modules
over A tensor product over Z2 in this category is defined using the Hopf algebra
structure of A. If M is a left ^-module, set Û M as a graded vector space, but
with the trivial ,4-structure, that is l(m) m9 a(m) 0 if aeÂ. The following theorem
is well-known, but we include it for completeness.

THEOREM 3.1. Define l:Û®A-+M®A by l(m®l) m®l and extend to an
A-map. Then l is an isomorphism.

Proof. We first show /is anexpimorphism. Assumem®a$Iml, withdim a minimal
with this property. Then, in M®A,

a (m ® 1) m ® a + Y, a' (m) ® a" '
dim a" < dim a

ail terms but m®a$Iml, hence m®aelm/. Since M®A and M®A hâve the same
rank as graded vector spaces, / is an isomorphism.

A acts on M®A on the right by (m®a)â=m®aâ. A acts on the right of Û by

fna=x(a)m where meM and x is the antiautomorphism of A. Define a right action
of A on M®A via /, that is, (m®a)â=ri (l(m®a)â) in M®A. By standard Hopf
algebra identities one vérifies.
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LEMMA 3.2. This right action of A on AÏ®A is given by {m®a)â=YJ(m)àf®aâ".
As a corollary of Lemma 3.2, we hâve the fact that the ^-structure of the tensor

product of two ^4-modules dépends only on the ^-structure of one of them in certain
cases.

THEOREM 3.3. Let BczA be a Hopf subalgebra. Let M be an A-module and let

N be a fixed B-module. Let A®BN be a left A-module by â{a®n) âa®n. Then

M®(A®BN) dépends, as an A-module, only on the B-structure of M. In particular,
iff:Ml-*M2 is an isomorphism of B-modules, the following composition is an iso-

morphism ofA-modules:

(Û2®A)®BN

Proof If/is a J5-map, then/® 1 ® 1 is an A-map by lemma 3.2. The unnamed maps
are associativity isomorphisms.

In the next theorem we analize (tiï®A)®BN.

THEOREM 3.4. IfM is an A-module and N is a B-module, then (M®A)®BN&
&A®B(M®N) as left A-modules, where the A action is on thefirstfactors.

Proof Define the map (Û®A)®BN-+A®B(M®N) by m®a®n->a®m®n. We

first show it is well defined.

(m ® a)b ® n £ (m)b' ® ab" ®n-*ab" ®x(V) (m) ® n

Ifl ® (67 X {b') (m) ® (by (n) £ a ® (bj x ((*')") (m) ® b" (n)

a®m®b(n),

while m®a®b(ri)-*a®m®b(ri). Next we show it is an A-m&p â(m®a®n)
=m®aa®n->âa®m®n=â(a®m®ri). The map is clearly a vector space
isomorphism.

Hence, Theorem 3.3 can be restated.

COROLLARY 3.5. M® (A®BN)nA®B(M®N) as ^-modules, the right hand

side depending only on the ^-structure of M.
Finally, we hâve the following corollary, which is what we need for the

applications.

COROLLARY 3.6. If M is an ^[-module and Md-oM[i1d#"1]d... is a

filtration by ^-module, where BcA, then A®B(M®N) 3 • • • A®B (Min®N) => • • • pro-



Pin Cobordism and Related Topics 465

vides on ^-module filtration of M® (A®BN) with quotients A®B(Mll'1/Mil~1]®TV).

4. Tensor Products of ^/-modules

We apply the results of the preceding section to some particular cases. Let A —$4,

B—séx, where j/t îs the subalgebra generated by Sq1 and Sq2.

THEOREM4.1. Let M be an se-module. Assume M->Y,j ^i/^i(Jj) as an
sé^-module, where JjœJ&1. Then M®sé\stfs3x =YéJ s/(s/(Jj) as an s^-module.

Proof. This follows immediately from corollary 3.5, by taking N=Z2, the trivial
séx -module.

THEOREM 4.2. Let M be an se-module. Assume M&Y*j ^i/^i(Jj) as an
se\-module, where JJczs/1. Assume now stfx (Jj), in lowest terms, is s/1 (Sq2, Sq2Sq1),

s/t (Sq3, Sq2Sq1), séx (Sq2Sq1), ^ (Sq2Sq1, Sq5 + Sq^q1), séx (Sq3SqS Sq5 + Sq4

Sq1), or ^1(Sq5 + Sq4Sq1). Then M®j//j/(Sq3)« sum of cychc sJ-modules, as an
stf-module.

Proof. Apply corollary 3.5 with N=s/1/s/1(Sq3). For each type of 3} one must
show that stfl/s4?l (JJ)®s^1/s^l (Sq3) is a cychc ^-module. We forego giving a table
of answers as we need only a few of them in the application.

A more interesting example for M is H^iRP"0). Let i? ^] i?1 be the se'-module
defined by R^H'+^RP™). Let i?[l] be the ^-submodule of R generated by R\
j^i. The structure of R as an ^-module is given by the following proposition,
whose proof is straightforward and left to the reader.

PROPOSITION 4.3. As an s/rmodules, ^^^/^'"^«^/^(Sq1),
R[21/Riol^s^l/s^1 (Sq1), and i?[0]« s/J^ (Sq2). Furthermore, the extension is deter-

minedby Sq1(r4l+2) (Sq5 + Sq4Sq1) (r4l_2)

THEOREM 4.4. 1) Thereis an se-modulefiltration, R®stf\sesix=> -.z>F(4l"2)3

and Fi0)&s?//sz?(Sq2). 2) There is an stf-module filtration, R®s//stf(Sq3)
GU)z> with GUl+1)/Gi4l)*stf,
G(4I+4)/G(4l+3)^ ^/^(sqi) and /iqq)

Proof. Apply corollary 3.6 with N=Z2 or s/1/s/l(Sq3). In the latter case, one
must note that

x (Sq1) ® s^1js^l (Sq3) » stfx © s/Js/1 (Sq1) 0 s/
with generators of dimension 0, 2, and 3 respectively, while

(3 1 with generators of dimension 0 and 1 respectively.
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5. Pin Cobordism

By our remarks at the start of section 2, in order to compute Q^in, we compute
n*(RP«AK(Z29n))9

n^RP00 AB0<8n»,
and

We note that

a B0<8n» « #
a BO<8n + 2» «

and

H*(jRP°° a K(Z2, n)) « //*(#P°°)® j*.
In the previous section, we hâve computed the ^-module structure of thèse tensor

products. We now compute Ext^ and apply the Adams spectral séquence.

THEOREM 5.1. 1) The contribution to Q*m of terms n+(RP°° aK(Z2, n)) is a

direct summand of Z2 in each dimension ^n. 2) The contribution to Q**in of terms

n* (HP00 a BO <8/z» is asfollows: Z2 in dim 8« + /, ï s 0, 1 (8) ; 0 in dim Sn + /, /=3, 4, 5,

7(8); Z24fc+3 in dimSn + %k + 2, k>0; and Z24fc+4 in dimSn + 8k + 6, k^O. 3) The

contribution to £*in of terms n*(RP°° aBO<8« + 2» w asfollows Z2 in dimSn + 2 + iy

/si, 2, 5, 7(8); Z20Z2 i/i dimSn + 2 + i, is=6(8); O i/t dif/ii8/i + 2 + ï 3(8); Z24fc+1

i/i dimSn + 2 + $k9 k>0; andZ24k+2 in dimSn + 2 + Sk + 4, k>0.
Proof Since È®stf&R®jtf is a free ^-module, it contributes a Z2 in £2'f,

t^n dim of the generator of j/. This proves part 1). By a theorem of Liulevicius [4],

Exttaf(F(0),Z2)«Ext<ari(j/1/«^1(Sq2), Z2) and the latter can be computed directly.
Extsi(F(0), Z2)*Ex?+1't+2(j*/j*iïl9 Z2), j, />0: and ExtJ*^/^^, Z2)

Z2 [Ao, Al5 f, w]/{Mi» *ï» ^2 + *oW, V}> where Ao^Ext1*1, A^Ext1'2, reExt3'7, and

weExt4*12. Note Ext^(j//j/(Sq1), Z2) {As0}, ^^0, t=s. We now calculate

Extj, (Rig)^//si/Jtfu Z2) by induction on the filtration. This is the same as taking

2Extjr(F(4l+2)//îl(4<"2),Z2)eExtjr(F(0)Z2) and introducing a ^lExf-'-^Exf+1'f
in this direct sum. Note H(R®s/lsfc:s/l9 Q0) H(R, Q0)<g)H<s//<%?ttf1=Q as H(R,
Ôo)=0. Hence, be a theorem ofAdams ]T Extjé{R®^j^^u Z2) has no éléments of

infinité height. This détermines our dx. Let xt "generate" F(^i+2)/Fi4i'2\ Then

dt(tf0 wit)=hk0+4î+3x2i+u i^Q and d1(hk0wi+1) hk0+4i+4x2i+2,i^0 is the only possi-

bility. (The éléments hkowi+ï etc. dénote éléments in Ext^ (Fi0\ Z2) corresponding
to the named élément under the isomorphism Ext^(F(0), Z2)«E
Z2).) By direct computation, we note also that hi(wi+1h1l)^0in
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Z2). Thus, for algebraic reasons, it is trivial to check that E2 Ea0. Reading off the

homotopy gives part 2) of theorem 5.1. The calculation needed to prove part 3) is

similar to that for part 2). Hère we need that Ext5' ' (G(o), Z2) Ext^"1 ' ' " 6
(<stf/<sf<stf1,Z2)

s^l, t^6, and Ext^°(G(0), Z2) Z2. The calculation then proceeds as above and
will be omitted.

Using the results of [1] on &*pm, one can now détermine Q*m in any given dimension.

For example

Q22 Z212 + Z28 + Z26 + Z24 + Z24 + Z22 + Z22 + Z2 + Z2

Corollary 2.1 follows immediately from theorem 5.1 as Z24fc+3c:^n+2. We also

note the following corollary of our computations.

COROLLARY 5.2. Im(^->^fin) Z2 if i= 1, 2(8)and0otherwise. Furthermore,
the élément in dim8& + 2 is divisible by 24fc+2.

6. Bordism Groups

Let i:X-+Y be a map of spectra. Assume Y is a wedge of K(Z2, «)'s. Defifie

G*c:n*(Y) by G* {g\genn(Y) and g*(Kerf*) 0e//*(5w), where f*:#*(Y)-+
-+H*(X)}. It is clear that

Im (tt* (X) -> tt* (Y) ci G, (tt, (X) -, tt* (Y)) c G,

_
DEFINITION 6.1. AspectrumXhaspwpertyPifgivenueHn(X\uï0eH*QL)l

â?H*(X), then there exists genn(X) such that g*(u)^OeHn(Sn).
The following easy theorem is the basis for our results on bordism groups.

THEOREM 6.2. Assumef*:H*(Y)^H*(X)isanepimorphism.ThenIm(n*(X)->
-> Ti* (Y)) G* //and only ifX has property P.

Proof. Let geG*-»Imf*. Then there exists we#*(Y) such that g*(u)^0 and

(fg')*(«) O for ail g'en*(X) because Y is a wedge of Eilenberg-MacLane spectra.
Since X has property P, we see that f*(u)es?H*(X), hence f*(u) âi*v) because f*
is an epimorphism. Thus w+m^eKerf* and g*(u + âv) g*(u) 0, a contradiction.
Conversely, let ueHn(X) be such that u$^H*(X). If g'*(w) 0 for ail gen*(X), let
w f*(i>), veH*(Y), then there exists gen*(Y) such that g*(i?)^0 and g*(Kerf*)=O.
Hence geG* — Imf#; a contradiction.

The following proposition follows easily from the structure of the Adams spectral
séquence.

PROPOSITION 6.2. X has property P if and only if dr=0 on E?'f in the Adams
spectral séquence for n*(X)for ail r and ail t.
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We now prove corollary 2.2. In order to apply theorem 6.1 we must note the
following fact. Let f:MPin-»M<9. Kerf* £/* (idéal over s# generated by w2). Let
gen*(MO). If g*(U- idéal generated by w2) 0, then g*(Kerf*) 0. The proof is

by induction on

dima-g*(U-a(w2yw) g*(a(U-w2-w))+ £ g*(l/-a>2)V) 0
dim a' <dim a

if dima^O. Hence (7* ail cobordism classes ail of whose Stiefel Whitney numbers
involving w2(v) vanish. To apply theorem 6.1, we need that MPin has property P.
This follows immediately from proposition 6.2 and the proof of theorem 5.1 where
it is noted that E2 Eo0.

Corollary 2.3 is proved in a similar way. In order to apply theorem 6.1, one must
show that Ka MSO has property P. It is easy to check that this is true if and only if
H* (K; Z) has no 4-torsion.

Corollary 2.4 is also proved in a similar way using the results of [3] and the fact
that #*(M SPL: Z) has 4-torsion.

A more gênerai form of corollary 2.5 is the following resuit, which follows
immediately from theorem 6.1.

COROLLARY 6.3. (Im(0|pin(^)-^^(^)) all bordism classes (M,f) ail of
whose Stiefel-Whitney numbers of the map involving wx and w2 vanish) if and only
if Ka MSpin has property P.

Thus, in order to prove corollary 2.5, we must show that E2 EO0 in the Adams
spectral séquence for n*{BSO a MSpin). Since H*(BSO)&sum of cyclic j^-modules
of type s/l9 ^i/^i (Sq3), and Z2, as an ^-module [1], we can compute E2 using
theorem 4.1 and 4.2. We then note that E2 EO0 for algebraic reasons.
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