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On Parametric Representation for Quasisymmetric Functions

by STEPHEN AGARD and JOoHN KELINGOs1)

In 1956, A. Beurling and L. Ahlfors [4] gave a necessary and sufficient condition
for a homeomorphism of the real line onto itself to be the boundary correspondence
of a quasiconformal mapping of the upper half plane. If the boundary function is
denoted by u=f(x), the condition is simply that for some k=1,

[ (x3) = f (x2) |
f(xz)“f(xl)ék’ M

for all x; <x,<Xx3, with (x3—x,)/(x,—x;)=1. A function satisfying property (1) is
called k-quasisymmetric. The infimum of the numbers k& for which (1) is satisfied
is denoted by k[f]. The importance of quasisymmetric functions to the theory of
quasiconformal mappings cannot be overstated.

Qualitatively, the properties of quasisymmetric functions parallel rather closely
those of quasiconformal mappings [8]. Quantitatively, however, they have some
shortcomings not shared by quasiconformal mappings. For example, the inverse of a
k-quasisymmetric function, although quasisymmetric, need not be k-quasisymmetric;
the composition of a k,-quasisymmetric function with a k,-quasisymmetric function
need not be k, k,-quasisymmetric.

Itis our intention to introduce a new dilatation X[ f | for quasisymmetric functions.
Superficial advantages will include the relations K[f]=K[f"'] and K[ fjof2]=
< K[ fi] K[ f3]. Further, if f is the boundary correspondence of a K-quasiconformal
mapping, then K[ f]< K. However, our primary purpose is to build sufficient quan-
titative precision into the definition to enable us to characterize the infinitesimal
generators for the class of quasisymmetric functions.

1k <

1. A Sufficient Condition for the Generation of Quasisymmetric Functions

It is instructive at this time to state and prove a simple theorem on parametric
representation for quasisymmetric functions. The theorem will simultaneously serve
to illustrate the type of problem we are interested in, to expose the difficulties connected
with the definition of k[ f], and to indicate the direction one might take in redefining
the maximal dilatation.

Suppose {(u, t) is continuously differentiable for all real u and 0<¢<T. For each

1) Work done with partial support of National Science Foundation Grant GP 7041 X.
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fixed x, — o0 <x< + 00, let u=f,(x) denote the solution to the initial value problem

dujdt = C(u, 1);u(0) = x. Q)

THEOREM. Let {(u, t) satisfy the global condition
{ (u3, t) — {(uy 1) _ {(uzs 1) — (uy, 1) <M

Uz — U Uy — Uy

_M< 3)

for some M >0, all u; <u, <us, and all t. Then for each t, u= f,(x) is e™'-quasisymmetric.

Proof. Fix x; <x,<x3, and let u;(¢t)=f,(x,), i=1, 2, 3, be the solution to (2) with
x=x;. The existence of the solutions for all ¢ is proved in the more general setting
of Theorem 1 in Section 2. From (3),

G0 - () w0 — ()
us(t) —uy () uy () —uq(t) =M

Integrating from 0 to ¢ and then exponentiating, we find

o Mt (X3 - xz) < us (t) — uy (1) < M <x3 - xz). 4)

Xy — %) uy(t) —uy,(8) " Xy — X

The result follows if we take x; —x,=x, —x;.

From the symmetry of (4) we observe that for fixed #, the inverse of the function
f:(x) is also eM’-quasisymmetric. Hence it is impossible to prove a converse to the
above theorem. Specifically, there exists an eM’-quasisymmetric function ¢(x) for
which it is impossible to find a family f,(x) as above, such that ¢ (x)=fr(x).

Furthermore our hypothesis that (3) hold for all real u is too liberal in that we
only use those values of u along the solution curves u;(¢). Nevertheless it seems very
difficult to prove the theorem under weaker conditions on (.

Finally, the form of (4) indicates that the difficulty with definition (1) is the require-
ment that (x;—x,)/(x,—x,)=1. The observation that ratios of this type are certain
cross ratios leads us to a new definition of quasisymmetry, motivated by results of
Teichmiiller [11].

~-M<

2. A New Definition of Quasisymmetry

Denote by C(0, 1, o) the extended z-plane minus the three points 0, 1, co. Let
Z=z(w) denote the familiar elliptic modular function [9], which maps the upper half
Plane Im(w)>0 onto C(0, 1, ). The hyperbolic density ¢(z) in C(0, 1, ) is in-
variantly defined by the relation

e(2) |dz| = |dw|/Im (w). &)
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The hyperbolic distance in C(0, 1, o) is then defined as

o (21, 2) = inf f 0(2) |dz] ®)

7
7
where the infimum is taken over all arcs y joining z; and z, in C(0, 1, o) for which
the integral has meaning.
Suppose now that u=f(x) is a sense preserving self homeomorphism of the real
line. Let x; <x, <x; and let u;=f(x;), i=1, 2, 3. Set

a= (oo, X1s X25 x3) =—(x3 — xz)/(xz ~ X;)
) (3)
a’ = (00, Uy, Uy, u3) = — (3 — uy)/(u; —uy).
Given K=1, we say that K is admissible for f if
-—10gK§fg(x)dx§logK, 9)

a

for all x; <x, <x;. The maximal dilatation of f(x), denoted now by K[ f], is the
infimum of all K which are admissible for f.

Since a and &’ are negative, and since the negative real axis is a geodesic for the
hyperbolic density in C(0, 1, o), condition (9) is equivalent to

o(a,a’) < 1logK. (10)

It is easy to show [2] that

o(a,a’) = |log—~ : (11

where u(r), 0<r<1, denotes as usual the conformal modulus of the unit disk slit
along the real axis from O to r. u is a continuous, strictly decreasing function with
limits oo and 0 at 0 and 1 respectively. Consequently, condition (9) is simply the familia:
quadrilateral condition 1/K < (mod Q")/(mod Q) < K, where Q is the quadrilateral whos:
interior is the upper half plane, and whose vertices are x;, x,, x3,and co. An immediat”
result of this form of the definition is that for the boundary correspondence of °
K-quasiconformal self mapping of the upper half plane, K is admissible. Henc

K[ f]1=K, and the bound is best possible in the class of K-quasiconformal mapping®
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It is a trivial consequence of the definition that K[ f]=K[ f~'] and that K[ f;./,]
<K[ fi] K[ f2]. Furthermore, the crucial fact that the total collection of quasi-
symmetric functions remains the same under either definition (1) or (9) follows from
the observation that K[ f]< oo if and only if k[ f] < c0.

Indeed, suppose first that K[ f]=K< 0. Let x; <x, <x;, and using (10) and (11)
to solve for —a’, we get

1 1—<_U3""u2 o 1 _1.

) )

From the functional relation [7], u(r) u (\/ 1—r?)=mn?/4, it follows that the upper and
lower bounds are reciprocals when a= — 1, and consequently,

KA1 S (" (Kn(1/yD) 72 = 1 = A(K). (12)

Using a well known result of Teichmiiller [11], it can be shown that this bound is
best possible.

Conversely, suppose k[ f]=k < 0. Then the Beurling-Ahlfors extension [4] of f
is a k*>-quasiconformal mapping, and it follows that K[ f]<k>.

We make two additional observations concerning this new definition. The first
concerns the role played by oo in (8) and therefore (9). If instead of using only cross
ratios of the form a=(c0, x;, x,, x3), We use cross ratios a=(xy, X,, X3, X4) for all
quadruples x; <x,<x3<x,, then a and the corresponding image cross ratios are
negative and hence condition (9) still makes sense. For a given K= 1, there are of
course fewer functions satisfying the more stringent requirement, although as above
the total collection of such functions as K ranges over all values is the same as the
collection of all functions which satisfy (1) for some k= 1. The advantage of general-
izing in this way is that now condition (9) remains invariant with respect to linear
fractional transformations of the extended real line. Thus, for example, the function
JS(x)=1/x would have K[ f]=1. But because of the simpler form our main result
takes in section 3 when the point at co is singled out, we prefer not to generalize (9)
to the fullest extent, although a corresponding theorem can be proved in this more
general setting.

Finally, although the definition is admittedly an adaptation of properties inherited
from quasiconformal mappings,} it is reasonable to consider its formal application
to self homeomorphisms of the finite plane. This leads to a coefficient of quasicon-
formality R, the infimum of numbers K1 for which (10) holds. Again, K [¢]< o0
if and only if the mapping ¢ is quasiconformal. It is an open question how large the
ordinary dilatation D of a mapping ¢ subject to the inequality R[$]<K can be.

In [1] the bound D=1 (,/K) (cf. equation (12)) is established.

lIA
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3. Parametric Representation

We consider families f,(x) with the property that for each ¢, f, is a sense-preserving
homeomorphism of the real line onto itself. Denoting the inverse function by x= £, (u),
we require further that £,(x), f,” ' (u), and df,(x)/0t be continuous in both variables.
Finally, if M (¢) is a non-negative integrable function, we will say that f; is of exponential
type-M (t) if for ty<1t,,

K[fiofs '] exp{f M(7) d‘t}. (14)

Suppose next that { (, ¢) is a continuous function defined forall real uand 0<¢<T.
Suppose in addition there exists a non-negative continuous function M (¢) such that
for all 0=<¢t<7, and every triple v, <u, <uj,

- M) <us, ) —C(ua 1) L(uz, 1) = L(us 1) _ M(t)

lal ¢(a) B Uz — Uy U — Uy = lal Q(a)’

{*}

where as usual a=(o0, u;, u,, u3) and g(a) is the hyperbolic density in C(0, 1, )
defined by (5).

THEOREM 1. The solution u= f,(x) to the initial value problem
duldt=((u,t); u(@@)=x )
is of exponential type-M (t) if and only if {(u, t) satisfies {*}.

Proof. We remark first that the continuity of {(u, t) together with condition {*}
imply that the solutions f,(x) are unique and exist for all 0<¢<7. To see this, we
need the asymptotic behavior of g(a) [10, page 246].

log1/]al — log log1/|a| + ¥ (a)

15
— log|a| — log log|a| + ¥, (a) =

ne)-

where y, and ¥, are continuous at a=0 and oo respectively. Now condition {*}
implies
1€ (us, t) — C(“zsz)_l < M(t) + € (uzy t) — L (uy, 1)
U —u —lalg(a) U — Uy
Consequently, if we fix a point (¢,, #,) in the right half (¢, u)-plane, and a value u; <

then in a sufficiently small rectangle about (¢,, u,) it follows from (15) and the con-
tinuity of { (i, t) and M (¢) that |[{ (us, 1) —{ (uy, t)| < A |u3—u,| log1/|us —u,| for some
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constant A. Hence the solution through the point (7, %) is unique by Theorem 2.1,
page 48 of [5].

Similarly, if values for #;, and u, are fixed and ¢ varies in a finite interval 0t <7,
then for sufficiently large values of u, |{(u, t)| < B|u| log|u|. Hence the solutions are
of order exp {eB‘}, and therefore must exist for all 0<<T.

Now suppose {(u, t) satisfies {*}. We first show that the solutions f;(x) are quasi-
symmetric. For this purpose fix x; <x, <x; and let the corresponding solutions to (2)
be denoted by u;(t)=f,(x;), i=1, 2, 3. Denote by a, the cross ratio
a,= (00, uy (t), uy(2), u3(t)). Note that ay= (00, X, X,, Xx3)=a. From {*} we have

dus () _duy (i) duy (1) _duy (9

—M(1) < dt dt dt dr M(t)
lagl 0 (ar) = uz(t) — uy (1) up () —uy (1)~ lagl o(ay)
Equivalently
“,M(t;) édloglailé fVI(t)’ ,
|a,| Q(at) dt |a] Q(at)
or
— M(1) < o(a) dlajl/dt < M(1).
Integrating from O to ¢, making the substitution s=a;, and noting that |a;|= —a;,

we arrive at

U e(s)ds

It follows from (9) that K[ f,]<exp [, M (z) dr.
To show that the family f, is of exponential type-M(t), fix t,=0 and set
&= fig+1ofi; . Then

dg,/dt = C(gt: to + t) = é(gn t)’

and g, (x) =1, ofis 1 (x)=x, so g, is the solution to the initial value problem du/dt=
=&(u, t); u(0)=x, and £(u, t) has property {*} with M(¢) replaced by M (t,+1).
Therefore

ng(r)dr.

t1—to t1

K[fiofio'1=K[g,-1,] < exp f M(ty + 1) dt = expf M(t) dt,
0 to

which completes the proof of the first half of the theorem.
For the converse we assume f,(x) is a family of exponential type-M(¢). If we
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define the velocity profile
_3f()

6t x:f—lt(u)

C(u, t)

then certainly f,(x) is the solution to the initial value problem (2). That { (u, t) satisfies
{*} is shown simply by reversing the steps above. The details are omitted.

4. A Class of Functions with Property {*}

The following question quite naturally arises as a consequence of Theorem 1.
For a given quasisymmetric function f (x) how does one find a family £, (x) of exponen-
tial type which includes f(x)? (See [6], where this question is considered and solved
for quasiconformal mappings of the disk.) In this section we solve this problem for
quasisymmetric functions which are already the boundary correspondences of a
certain class of quasiconformal mappings of the upper half plane.

We begin by finding an explicit class of functions {(u, #) with property {*}.

THEOREM 2. Let b,(&), t =0, be bounded and measurable in the complex &-plane.
If b, is symmetric (b,(&)=b,(£)), then

e BE=1) J be(¢) doy 16

‘== Jl EE-DE-w o
is real if u is real, and satisfies {*} with

M(1) = 2sup1b, (0). (17)

Proof. Fix u; <u,<us; and t=0. Set

- C(u3’ t) - C(uZ’ t) _ C(“Za t) - C(ul’ t)'

Uz — U Uy — Uy

Q (18)

One shows routinely from (16) that

_-t (&) (us —u)) doy
T gﬂw(é—ui)(é—uz)@—ua)' "

Let us make the change in variable n=(&—u,) (v, —u3)/(& —u3) (u, —u,), and
compute the expressions a=(u,—u3)/(uy—uy), a—1=u; —us)/(u—uy), n—1=
=(&—up) (y —u3)/(E—u3) (uy—uy), n—a=(us—uy) (uy—u3)/(E—us) (u,—wy),
lu, — u3|2 lu; — “3‘2

: _
[€ — us|™ |lu, — u1lz

dn?
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so that

Ia—l)do El — u3| do,
il — 1 1n—al 1€ =yl 1E = uyl [ —usl

Consequently, from (19),

—ulldaé
<~ b,
01 5 - svpl (’:):U lé—ulllc—uzl & — uyl
= M(t)- ?Mm—llﬂ‘ }
la| | 2 Inlln—llln—al

n-plane

But in [1], page 7, it is shown that the quantity in braces is exactly 1/¢(a), which
completes the proof of the theorem.

For the moment let us relax the requirements of regularity on the family f,(x)
which we imposed in Section 3. Suppose w=g(z) is a normalized (g(0)=0, g()=1)
K-quasiconformal mapping from Im(z)=0 onto Im(w)=>0 with boundary corre-
spondence u= f(x), and complex dilatation u(z), ess sup |p(2)|=k<1, K=(1+k)/
(1—=k). By reflection in the real axes we can assume g is quasiconformal in the entire
plane and that g(Z)=g(z), u(2)=u(z). Define u,(z)=tu(z), 0<t<1, and let g,(z) be
the normalized quasiconformal mapping of the plane with dilatation u,(z) [3]. By
the symmetry of u,, g, maps the real axis onto itself and induces a boundary corre-
spondence u= f,(x) with K[ £,]<(1+tk)/(1 —tk), f,(x)=x, and f; (x) =1 (x).

It is well known that g, -g,. " is a K(#,, t,)-quasiconformal mapping, where

1 k) (1 — t,k 1+ t,k 1+ 1,k
1+ tllf) ( OA) exp Jlog—1* + ~ log OA}
(1 — t,k) (1 + 15k) 1 -tk 1 — tok

ty

2k dt
= €X i
P 1 — t?k?

to

K(tls tO) =

and therefore the family f,(x) is of exponential type-2k/(1—¢2k?), 0<r<1. Because
a quasisymmetric function with k [ ] =k admits a k*-quasiconformal extension, we
have thus proved that a k-quasisymmetric function according to definition (1) is reached
at time t=1 in a family of exponential type — M(t), with

M) - 2(k* — 1)
(1 — ) (k* + 1) + 42k>

Returning to the family g,, it is of interest to note that the associated function
{(u, 1) is of the type constructed in Theorem 2 provided y is sufficiently smooth.
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Indeed, Lemmas 19 and 21 of [3] would then ensure that g,(z) is differentiable in ¢
and in fact

0g.(z)/ot = (Pb,) (w) — w(Pb,) (1); w=g(2), (20)
where
98:(2)
b,(w) = 1) _ai; w=gl(z 21
O e R 0
0z

and where P is the transform

(Pb) (w) = —~ ﬂ g% 22)

&-plane
We remark that (20) is true in general, but the derivative must be taken as a limit
in IP(z-plane) for some p>2. Our added hypotheses on y are merely included to
ensure that the derivative is also a pointwise limit on the x-axis. Since g and u are
symmetric, so is b,, and hence if z=x is real, we get from (20) and (22),

y __aft(x)l ="“(“—1) o bt(@ﬁé_» ’
e T T H FE—1)E—u) @)

‘ &-plane

The class of quasiconformal mappings with, say, u of class C? with compact
support, is dense with respect to uniform convergence on compact sets in the class of
all quasiconformal mappings. This smoothness of u imposes sufficient regularity on
g, and hence on b, (cf. equation (21)) to guarantee that {(u, t) (cf. equation (16)) is
continuous. Summarizing, we have proved

THEOREM 3. The class of functions generated by continuous functions {(u,t)
constructed according to Theorem 2 from functions b,(£) having continuous derivatives
and compact support is dense with respect to uniform convergence on compact sets in
the class of normalized quasisymmetric functions.

5. Quasiconformal Extensions and Examples

There remains a dearth of quasiconformal extensions for a given boundary corre-
spondence. The Beurling-Ahlfors extension has found numerous applications because
of its explicit form. In this section, we point out a way of obtaining quasiconformal
extensions for the quasisymmetric functions generated by the functions {(u, t) of
Theorem 2.
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We suppose that F(w, ), 0<¢<T, is a complex valued function of the complex
variable w, with F; bounded, and sufficient regularity to justify the following com-
putations.

Let w=f,(z) be the solution to the initial value problem

dw/dt=F(w,1); w(0)=z. (23)

By the uniqueness, for each fixed ¢, f;(z) is a homeomorphism. We determine its
complex dilatation p,(z) defined by

of,(z af.(z
gf) m(2) ‘()- (24)
Differentiating with respect to z, Z in (23) and with respect to ¢ in (24), we find
0? %) F 0 %) 0* oud 0*
P U LA AT w9
0z 0t Yoz Yoz 0zot v oz %0z’ 0toz 0t oz 0t 0z
from which it follows upon equating the mixed partials that
iaﬂt (Z)‘
G0 25)
— = = |Fy (f,(2), t)]..
1 — |y, (Z)lz '
Then setting M (¢)=2 sup,,|F5(w, t)|, and noting u,(z)=0, we find from (25)
i [ 2dwl _[° la
2
1og(__+ '“f') =J i <J i . JM(T) d. (26)
I — I#tl . 1- “’ttl A “’tt

As an application, for sufficiently regular symmetric b,, define F(w, ¢) by the right
side of (16) where u is replaced by the complex variable w. Since the expression
coincides with (Pb,) (w)—w(Pb,) (1), it follows that F5z=b,. The complex solution of
(23) is an extension of the real solution f,(x) generated by {(u, t) as defined in (16),
and from (26) we see that the dilatation does not exceed exp {5 M(7) d}, the same
bound noted for K[ f,].

In order to take advantage of these observations, it becomes essential to determine
all functions b,(w) with the property that (Pb,) (u)—u(Pb,)(1) coincides with a
prescribed function { (i, ) satisfying {*}. The existence of at least one follows from
the Beurling-Ahlfors extension. For variational purposes it becomes desirable to

describe all symmetric functions b,(w) such that (Pb,) (u) —u(Pb,) (1) vanishes for real
u.
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We conclude with two simple examples to illustrate these ideas, the second having
the variational property mentioned above.

EXAMPLE 1: F(w, t)=w log|w|. This leads to f,(z)=z|z|* ! and results from
a choice of b,(w)=w/2w.

EXAMPLE2: F(w,t)=(Ww—w)/(1—1?),0<t<1.Thisleads tof,(z) =(z +2)/(1 +1),
and results from a choice of b,(w)=1/(1 —¢2).
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