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Multiplizitâtenvergleich unter Verwendung von Testkurven1)

Von Gunter Scheja

Einleitung

D. Mumford hat mittels Modifikationen gezeigt: Von Parametersystemen erzeugte
Idéale a und b im Potenzreihenring P=k\x, y\ in den Unbestimmten x, y ùber dem

Kôrper k der Charakteristik 0 haben gleiche Multiplizitât, wenn sie auf allen singula-
ritâtenfreien Kurven ,,gleich" sind, nâmlich wenn fur jeden Homomorphismus cp von
P in den Potenzreihenring T=k\tJ in einer Unbestimmten t gilt: q>{a)T=cp{b)T.
Dièses Kriterium wurde verwendet, um Multiplizitâten von Idealen zu vergleichen,
die von partiellen Ableitungen gewisser Funktionen erzeugt werden und bei der

Untersuchung lokaler Kâhlerscher Differentialmoduln von Kurven im k2 anfallen

(UnverôrTentlichtes Manuskript).
In der vorliegenden Arbeit wird gezeigt, daB mit Mitteln der lokalen Algebra ein

Kriterium der angegebenen Art fur offene Idéale in lokalen Macaulayringen erhalten

werden kann, wenn auf die Singularitâtenfreiheit der Testkurven verzichtet wird. Bei

analytischen Algebren mit algebraisch-abgeschlossenem Grundkorper ist dies freilich
keine Einschrânkung.

Als Anwendung ergibt sich eine einfache Aussage ùber algebraische Abhângig-
keiten zwischen analytischen Funktionen und ihren partiellen Ableitungen, mit der

eine Frage von E. Brieskorn beantwortet werden kann - auf die hin die vorliegende
Arbeit entstanden ist; die Kenntnis des Manuskriptes von Mumford verdanke ich

ebenfalls Herrn Brieskorn. In einem Anhang wird ein andersartiger, direkter Beweis

der gerade erwâhnten Anwendung beschrieben, der von E. Bôger gegeben wurde.

Herrn Brieskorn, Herrn Mumford und Herrn Bôger danke ich herzlich fur ihre

Anregungen und ihre Hilfe.

1. Vorbereitungen

Im folgenden sei mit R stets ein lokaler Ring bezeichnet und mit m sein maximales

Idéal. Wir setzen generell vorans, dafi der Restklassenkôrper R/m unendlich ist.

Ist q irgendein Idéal in R, dann sei mit A(q) die Lange des i?-Moduls R/q
bezeichnet.

Ist q ein offenes Idéal in R - worunter wir ein in m enthaltenes, rrt-primâres Idéal

x) Die Anfertigung dieser Arbeit wurde gefôrdert durch den Schweizerischen Nationalfonds,
Vertrag Nr. 5123.2.
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verstehen wollen -, dann ist die Multiplizitât e(q) eine wohldefinierte naturliche Zahl

([9; VIII], [5; III]).
Wir benôtigen den Begriff der Ganz-Abhângigkeit von Idealen, der von H. Prûfer,

O. Zariski, P. Samuel, D. G. Northcott, D. Rees, M. Nagata u.a. entwickelt worden
ist: Siehe [9; App. 4], [6] und [4], sowie die dort angegebenen Quellen.

Ein Elément xeR heiBt ganz iiber dem Idéal a^R (auch: ganz-abhângig von a),

wenn es eine Ganzheitsgleichung

xn + a1xn~1 +•••+£!„ 0, ajEaJ fur l^j^n,
gibt; eine Teilmenge von R heiBt ganz ûber a, wenn jedes Elément der Menge ganz
ûber a ist. Die Menge aller ùber a ganzen Elemente von iÊmacht ein a urnfassendes

Idéal a' aus, genannt die (ganz-abgeschlossene) Hiille von a in R; es ist (a')' û'. Zwei
Idéale a und b in R heifîen âquivalent, wenn sie gleiche Hûllen haben. Offenbar gilt:

(1.1) Zwei Idéale a und b in R sind genau dann âquivalent, wenn a + b ganz Uber a
und iiber b ist.

Ein Idéal b heiBt Reduktion des Ideals a in R9 wenn b sa ist und es eine naturliche
Zahl r gibt, so daB bar ar+1 ist. Es gilt ([5; S. 34]):

(1.2) Idéale b^a in R sind genau dann âquivalent, wenn b Reduktion von a ist.

Ist b Reduktion von a, dann ist natiirlich auch jedes zwischen b und a liegende
Idéal Reduktion von a. Umgekehrt gilt:

(1.3) Sind b^a Idéale in R und ist b + ma Reduktion von a, dann ist auch b
Reduktion von a.

Beweis. Aus ar+1 (b + ma) ar bar + ma1*+* folgt ar+1 bar nach Krulls Lemma.
Eine Reduktion b des Ideals a in R heiBt minimal, wenn b keine weiteren Reduk-

tionen von a echt umfaBt. Man kann zeigen, daB jede Reduktion von a eine minimale
Reduktion enthâlt ([6]).

Sei s: dim R. Elemente {fl9..., fs} aus m bilden ein Parametersystem in R, wenn
sie ein offenes Idéal in R erzeugen. Von Parametersystemen erzeugte Idéale sollen hier
Parameterideale genannt werden. Mit Hilfe der in [9 ; VIII] angegebenen Mittel beweist

man sehr leicht:

(1.4) Ist a offenes Idéal in R und ist R ein Macaulayring, dann ist e (a)=min {X (q): q
Parameterideal in R, q^a}.

Aus einer einfachen Abschâtzung der Werte der betreffenden Hilbert-Samuel-
Polynome ergibt sich ([6]):

(1.5) Ist b Reduktion des offenen Ideals a, dann ist e(b)=e(a).
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Tiefliegend ist hingegend die folgende Umkehrung:

(1.6) Satz von Rees: Sind h^a offerte Idéale in R mit e(b) e(a) und ist R quasi-

ungemischt, dann ist b Reduktion von a.

Dabei heifit R quasi-ungemischt, wenn aile minimalen Primideale der Komplet-
tierung von R dieselbe Dimension haben. Jeder lokale Macaulayring ist quasi-ungemischt.

Beweis von (1.6): Siehe Rees [7]. Ein neuer, einfacher Beweis wurde von E. Bôger
gegeben (Dissertation Munster 1967; verôffentlicht in [2] und [3]).

2. Multiplizitâtenvergleich mittels Kurven

Es sei wieder R ein lokaler Ring mit maximalem Idéal m und unendlichem Rest-

klassenkôrper Rjm.

DEFINITION. Offene Idéale a und b in R heiBen kurvenâquivalent, wenn fur
jedes Primideal p der Dimension 1 in R gilt: e(ct+p/p)=e(

SATZ 1. Àquivalente offene Idéale sind kurvenâquivalent.
Beweis direkt mit (1.1), (1.2) und (1.5), da Reduktionen unter Homomorphismen

erhalten bleiben. -
Man kann Satz 1 vor allem verwenden, um auszuschlieBen, daB konkret gegebene

Idéale équivalent sind. Beispiel: Seien R:=k\x, y\9 je, y Unbestimmte uber dem

Kôrper k. Die Idéale (x, y2) und (x2, y) sind offenbar nicht kurvenâquivalent, also

auch nicht âquivalent. - Dièse Idéale haben gleiche Multiplizitât; sie gehen sogar
durch einen Automorphismus von R ineinander uber. Offene Idéale derselben

Multiplizitât brauchen also nicht âquivalent zu sein. -
Die nachfolgenden Sâtze 2 und 3 geben Umkehrungen von Satz 1 unter gewissen

Voraussetzungen an.

SATZ 2. Ist R Macaulayring, dann sind kurvenàquivalente offene Idéale b^&in R

âquivalent.
Beweis. Die offenen Idéale b^ct seien kurvenâquivalent. Da aile (endlich vielen)

Idéale zwischen b und a ebenfalls kurvenâquivalent sind, kônnen wir annehmen, daB

A(b)-A(a)<l ist. Wegen (1.6) ist zu zeigen: e(b) e(a). Sei ,s: diml*. Der Fall

,s=Oist trivial.
Wir fûhren nun zuerst den Fall s>2 auf den eindimensionalen Fall zuriick. Nach

(1.4) gibt es ein Parameterideal q in R mit q ç a und X (q)=e (a). Wegen A (b)— A (a) < 1

gibt es ein Erzeugendensystem {/l5..., fs} von q, so daB t: Rf1 + ~-+Rfs-i^b *st-

Unter Benutzung von (1.4) ergibt sich e(a)=e(a/c), da R/t ein Macaulayring ist.
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Ferner ist e(b)<e(b/c); siehe [5; S. 78]. b/c£ct/c sind erst recht kurvenâquivalent.
Hat man e(b/c) e(ct/c) zur Verfûgung, dann ergibt sich sofort e(b)<e(a) und hier-
aus e(b)=e(ct), da wegen bsct trivialerweise e(b)^e(à) ist.

Es geniigt also zu zeigen : Kurvenâquivalente offene Idéale in einem eindimensi-
onalen lokalen Ring R haben dieselbe Multiplizitât. Das folgt aber unmittelbar aus
dem bekannten Satz [5; (23.5)] von Serre-Nagata : Ist M die Menge der minimalen

- also hier: eindimensionalen-Primideale von R9 dann gilt fur jedes offene Idéal q
in R

I (q

wobei LRV die Lange der Lokalisierung Rp bezeichnet. Satz 2 ist bewiesen. -
Die Voraussetzung b^a in Satz 2 ist bei ,,wirklich lokalen" Ringen iiberflussig:

SATZ 3. Ist R ein henselscher Macaulayring, dann sind kurvenâquivalente offene
Idéale in R schlechtweg âquivalent.

Beweis. Es seien a, b offene kurvenâquivalente Idéale in R. Nach (1.1) und Satz 2

bleibt zu zeigen, daB a + b kurvenâquivalent zu a und zu b ist. Es geniigt also, die
eindimensionalen Restklassenringe von jR nach Primidealen zu betrachten. Wir kôn-
nen daher o.B.d.A. annehmen, daB R ein eindimensionaler Integritâtsring ist. Man
hat e(a) e(b). Zu zeigen ist: e(a) e(a + b) e(b).

Sei K der Kôrper der Bruche von R. Die gewôhnliche ganz-abgeschlossene Huile
von R in K sei mit R' bezeichnet. Nach dem bekannten Krullschen Satz ist R!

noethersch und dimR' ^ 1. Daher ist JR' ein normaler noetherscher Ring der Dimension

1. Da R' ganz ûber dem henselschen lokalen Ring R ist, ist R' lokal ([5; (30.5)]).
Daher ist R' sogar ein diskreter Bewertungsring. Die Erweiterungsideale aRf und bR'
stehen also in einer Enthaltenseins-Relation; sei etwa bR'^aR'.

Es gibt endlich viele Elemente al9...9 ar von R'9 so daB bereits im Ring R":
R ÏPu..., tfr] gilt: bR"^aR". Dabei ist R" ein endlicher R-Modul. Jeder Ring zwischen
R und ,R' hat nur ein einziges maximales Idéal. Daher ist der Ring R" lokal; sein

maximales Idéal sei mit m" bezeichnet.
Ist q irgendein offenes Idéal in R9 dann gilt nach der Erweiterungsformel [9; VIII,

§ 10] - die sich anwenden lâBt, da R" endlich ûber R ist: e(q) [(R"lm"):CR/m)]-
•e(qR"). Offene Idéale in R sind also genau dann multiplizitâtengleich, wenn ihre
Erweiterungsideale in R" multiplizitâtengleich sind. Nun ist aber (a+b) R"=aR" +
+ biT=aJr, so daB e(a+b)=e(a) folgt, was zu zeigen war. -

Aile kompletten lokalen Ringe sind henselsch [5; (30.3)].

DEFINITION. Als analytische h-Algebra wird jeder nichttriviale Restklassenring
eines formalen oder konvergenten Potenzreihenringes in endlich vielen Unbestimmten
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iiber einem Kôrper k9 bzw. iiber einem nichtdiskret bewerteten Kôrper k bezeichnet.

Auch die analytischen Algebren sind henselsch; siehe [1; (20.6)] oder [5; (45.5)].
Fur analytische Algebren iiber algebraisch-abgeschlossenem Grundkôrper lâBt sich

das Kriterium der vorstehenden Sâtzein eine geschlossene Form bringen:

SATZ 4. Es seien R eine analytische k-Algebra und T:=k^ty der Potenzreihenring
in einer Unbestimmten iiber k (deràelben Kategorie wie R); R sei ein Macaulayring,
k sei algebraisch-abgeschlossen. Dann hat mon :

Offene Idéale a und b in R sind genau dann àquivalent, wenn fur jeden k-Algebra-
homomorphismus <p:R-+Tgilt: (p(à) T=<p{b) T.

Beweis. Es geniigt wegen der vorhergehenden Sâtze zu zeigen, daB a und b genau
dann kurvenâquivalent sind, wenn die Bedingung von Satz 4 erfullt ist.

Sei p ein Primideal der Dimension l in R und R: R/p. Mit R' sei der ganze
AbschluB von R in seinem Kôrper der Bruche bezeichnet. Wegen der algebraischen
Abgeschlossenheit von k ist R' eine analytische &-Algebra (derselben Kategorie wie R)
und endlicher iJ-Modul (bei konvergenten analytischen Algebren entnimmt man dies

[1; (46.27)]. Im Falle kompletter fc-Algebren verwendet man zum Beweis [5; (32.1)]

(Endlichkeit iiber R) und die einfache Aussage, daB R' ein Potenzreihenring ist: [9;

VIII, § 12, S. 307]; der Cohensche Satz wird nicht dazu herangezogen). R' ist regulâr
und damit isomorph zu T. Die Komposition i?-»i£->rkanonischer Abbildungen sei

mit q> bezeichnet. q> ist ein analytischer Homomorphismus. Gilt ç (a) T— cp (b) T,

dann stimmen die Erweiterungsideale (ct + p/p) R' und (b + p/p)^' ûberein. Da R'

endlich iiber R ist, kann man die Erweiterungsformel (siehe Beweis von Satz 3) an-

wenden und erhâlt: a+p/p und b + p/p haben gleiche Multiplizitât. Ist die Bedingung
des Satzes 4 erfullt, dann sind also a und b kurvenâquivalent.

Seien umgekehrt a und b kurvenâquivalent und sei <p:R-+T ein analytischer
Homomorphismus. Es interessiert nur der Fall, daB q> nichttrivial ist, also das maximale
Idéal m von R nicht trivial abbildet. Dann ist p: Kern(p ein eindimensionales

Primideal in R; ferner ist Tjq>{m) T endlichdimensional, so daB T nach dem Serre-

schen Endlichkeitssatz ein endlicher Modul iiber der analytischen Algebra Bild ç R/p
ist. Wieder lâBt sich die Erweiterungsformel anwenden (in einer allgemeineren
Situation; denn Bild cp und Tbrauchen ja nicht denselben Kôrper der Briiche zu haben):

(p(a) Tund ç(b) T haben, da nach Voraussetzung e(a+p/p)=^e(b + p/p) ist, dieselbe

Multiplizitât. In Tbedeutet das natiirlich (p(a) T=cp(b) T.

3. Analytisch-abhângige Idéale in Potenzreihenringen

Es seiPein Potenzreihenring in den Unbestimmten xl9...,xn iiber dem Kôrper k.

Mit dj sei die partielle Differentiation in<P nach Xj bezeichnet, Kj<«. Es seien a, b

echte Idéale in P.
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DEFINITION, a heiBt analytisch-abhângig von b, wenn es Elemente/1,...,/r6a
gibt, so daB gilt:

2. djfieb + a fur aile f=l,..., r9j=l9...9n.
Der Beweis des folgenden Satzes beruht auf einem Kunstgriff, den D. Mumford

in einer âhnlichen Situation benutzt hat (Vgl. die Einleitung).

SATZ 5. Es seiP ein Potenzreihenring in den Unbestimmten xu...,xn Uber einem

Kôrper k der Charakteristik 0. Es seien et, b Idéale in P; a sei analytisch-abhângig von
b und offen. Dann ist a ganz-abhàngig von b.

Beweis. Wir kônnen annehmen: b£Ct. Wegen (1.3) kônnen wir auBerdem b als

offen voraussetzen.
Ùbergang zur Komplettierung von P und dann lîbergang zum formalen

Potenzreihenring ûber einem Erweiterungskôrper von k ist ein exakter, lângentreuer Funktor.
b ist also genau dann Reduktion von b + a, wenn dièse Beziehung fur die Erweitèrungs-
ideale bei den Ûbergângen gilt. Ferner bleibt die analytische Abhângigkeit bei den

Ubergângen erhalten. Wir dùrfen deshalb annehmen : P=k \xx,..., xJ mit Unbestimmten

xl9...,xn ûber k, charfc 0, k algebraisch-abgeschlossen. Sei T:=k{t} mit der
Unbestimmten t ûber k; das maximale Idéal von Tsei mit n bezeichnet.

Wir verwenden Satz 4. Sei (p:P->Tein analytischer Homomorphismus. Wir haben
zu zeigen: cp(a) T=cp(b) T.

Betrachten wir irgendein/ea mit djfea fur alley=l,..., n. Die Ableitung eines

geJnach t werde mit gr bezeichnet. Die Kettenregel besagt nun:

(p ist lokal, so daB <p(/)en. Wegen char A: 0 gibt es eine Einheit e in T, so daB

ist. Somit ist

Vif) et t jj)()
Daraus folgt nach der Voraussetzung ûber a sofort: cp(b) T=(p(a) T. -

Die Umkehrung von Satz 5 gilt nicht. Beispiel: P=k{x9y]9 b:=Px2+Py2, a:
b+Pxy. b ist Reduktion von a; denn es ist (xy)2-x2y2 0. a ist nicht analytisch-
abhângig von b, wie man leicht verifiziert.

Aus Satz 5 folgt insbesondere : Ist das offene Idéal a analytisch-abhângig vom
ïdeal b, dann ist auch b offen. Allgemeiner lâBt sich (ganz elementar) zeigen, daB

beliebige voneinander analytisch-abhângige Idéale dasselbe Radikal besitzen (Siehe
[8]). Ob Satz 5 auch fur Idéale beliebiger Dimension gilt, bleibt offen.2)

2) Zusatz bei der Korrektur: Satz 5 gilt allgemein; siehe [8].
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Anwendung

Es sei P der Ring der konvergenten Potenzreihen in den Unbestimmten xl9..., xn
iiber den komplexen Zahlen C. Es sei / ein Elément von P, so daB die Hyperflâche

f(xl9..., xn) 0 im Nullpunkt des Cn eine isolierte Singularitât besitzt. Dann ist

b:=Pd1f+'"+P dw/ein Parameterideal in P. Das Idéal a: b+Pf ist im Gegen-
satz zu b unabhângig von der Wahl des erzeugenden Elementes / von Pf und un-
abhângig von der Wahl der Koordinaten.

Bei ihren differential-topologischen Untersuchungen isolierter Hyperflâchensingu-
laritâten benutzen E. Brieskorn und J. Milnor die durch die Funktionen d1f,...9 dnf
bestimmte holomorphe Abbildung F:Cn-+Cn, die eine analytisch-verzweigte Ober-

lagerung in der Umgebung des Nullpunktes definiert; die Blâtterzahl b dieser Ober-

lagerung ist bekanntlich À(b) (Erweiterungsformel). Aus Uberlegungen von Milnor
folgt, da8 b von der Wahl des erzeugenden Elementes/von Pfund von der Wahl der

Koordinaten nicht abhângt. E. Brieskorn hat vorgeschlagen, dièse Invarianz von b

mit einfachen Mitteln der lokalen Algebra nachzuweisen.

Ein solcher Beweis ergibt sich nun wie folgt: Nach (1.4) ist £ A(b) e(b). a ist

analytisch-abhângig von b, so daB b und a nach Satz 5 dieselbe Multiplizitât haben.

Also ist b e(à) invariant. - Dieser Beweis benutzt nicht wirklich den Satz von Rees,

wie nach den Formulierungen von Satz 4 und Satz 5 zu erwarten wâre.

Anhang (von E. Bôger)

Ein direkter Beweis von Satz 5 wird gegeben, der die Heranziehung des nicht-
trivialen Satzes (1.6) vermeidet. Bezeichnungen wie in Satz 5 werden verwendet. Es

kann angenommen werden, daB b offen und in a enthalten ist.
Die ganz-abgeschlossene Huile b' von b ist Durchschnitt mit P von Idealen hVi9

wobei Vt eine gewisse (sogar endliche) Menge von P umfassenden diskreten Bewer-

tungsringen im Kôrper der Bruche von P durchlâuft (Siehe [4; thm. 6] und [9 ; App. 4,

thm. 3]). Es sei V ein beliebiger dieser Bewertungsringe Vt. Es genugt zu zeigen:

aF=bF. Es genugt, dies in der Komplettierung T von F nachzuweisen. Es gibt einen

(k umfassenden) Kôrper K in T9 so daB T nichts anderes als ein Potenzreihenring

K{t] ist. Man darf annehmen, daB b7¥ rist. Dann gilt auch mTV rfur das maximale

Idéal m von P, da m das Radikal von b ist. Nun ergibt sich aT^bT in genau der-

selben Weise wie im Beweis zu Satz 5 mit Hilfe der Kettenregel.
Man hat sich nur zu ûberzeugen, daB die Kettenregel wirklich gilt. Die Differenti-

ation bezuglich t auf P ergibt durch Beschrânkung eine fc-Derivation ô:P-+T. Zu

zeigen ist, daB ô mit der /:-Derivation <î*:=Xj=i S(xj)-dj, ô*:P-+T, ûbereinstimmt
Mit Hilfe der Produktregel sieht man leicht, daB S und 5* auf dem Polynomring
&IX,..., xj ûbereinstimmen. Dièse Identitât setzt sich auf P fort, da mr
und ô* in mT, also wegen mTVTin trT abgebildet wird, r^ 1 beliebig.
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