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Multiplizititenvergleich unter Verwendung von Testkurven?)

Von GUNTER SCHEJA

Einleitung

D. Mumford hat mittels Modifikationen gezeigt: Von Parametersystemen erzeugte
Ideale a und b im Potenzreihenring P=k[x, y] in den Unbestimmten x, y iiber dem
Korper k der Charakteristik 0 haben gleiche Multiplizitdt, wenn sie auf allen singula-
ritdtenfreien Kurven ,,gleich* sind, ndmlich wenn fiir jeden Homomorphismus ¢ von
P in den Potenzreihenring T=k[t] in einer Unbestimmten ¢ gilt: ¢ (a) T=¢(b) T.
Dieses Kriterium wurde verwendet, um Multiplizitdten von Idealen zu vergleichen,
die von partiellen Ableitungen gewisser Funktionen erzeugt werden und bei der
Untersuchung lokaler Kéhlerscher Differentialmoduln von Kurven im k? anfallen
(Unveroffentlichtes Manuskript).

In der vorliegenden Arbeit wird gezeigt, daB mit Mitteln der lokalen Algebra ein
Kriterium der angegebenen Art fiir offene Ideale in lokalen Macaulayringen erhalten
werden kann, wenn auf die Singularititenfreiheit der Testkurven verzichtet wird. Bei
analytischen Algebren mit algebraisch-abgeschlossenem Grundkdrper ist dies freilich
keine Einschriankung.

Als Anwendung ergibt sich eine einfache Aussage iiber algebraische Abhingig-
keiten zwischen analytischen Funktionen und ihren partiellen Ableitungen, mit der
eine Frage von E. Brieskorn beantwortet werden kann — auf die hin die vorliegende
Arbeit entstanden ist; die Kenntnis des Manuskriptes von Mumford verdanke ich
ebenfalls Herrn Brieskorn. In einem Anhang wird ein andersartiger, direkter Beweis
der gerade erwdahnten Anwendung beschrieben, der von E. Boger gegeben wurde.

Herrn Brieskorn, Herrn Mumford und Herrn Boger danke ich herzlich fiir ihre
Anregungen und ihre Hilfe.

1. Vorbereitungen

Im folgenden sei mit R stets ein lokaler Ring bezeichnet und mit m sein maximales
Ideal. Wir setzen generell voraus, daf der Restklassenkdrper R/m unendlich ist.

Ist q irgendein Ideal in R, dann sei mit A(q) die Linge des R-Moduls R/q be-
zeichnet.

Ist q ein offenes Ideal in R — worunter wir ein in m enthaltenes, m-priméres Ideal

1) Die Anfertigung dieser Arbeit wurde gefordert durch den Schweizerischen Nationalfonds,
Vertrag Nr. 5123.2.
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verstehen wollen —, dann ist die Multiplizitit e (q) eine wohldefinierte natiirliche Zahl
(19; VIII], [S; II1]).

Wir benétigen den Begriff der Ganz-Abhdngigkeit von Idealen, der von H. Priifer,
O. Zariski, P. Samuel, D. G. Northcott, D. Rees, M. Nagata u.a. entwickelt worden
ist: Siehe [9; App. 4], [6] und [4], sowie die dort angegebenen Quellen.

Ein Element xe R heil}t ganz iiber dem Ideal a< R (auch: ganz-abhingig von a),
wenn es eine Ganzheitsgleichung

X"+ax"'+-+a,=0, a,-eaj fir 1<j<n

gibt; eine Teilmenge von R hei3t ganz iiber a, wenn jedes Element der Menge ganz
iiber a ist. Die Menge aller iiber a ganzen Elemente von R'macht ein a umfassendes
Ideal a’ aus, genannt die (ganz-abgeschlossene) Hiille von a in R;es ist (a')' =a’. Zwei
Ideale a und b in R heiflen dquivalent, wenn sie gleiche Hiillen haben. Offenbar gilt:

(1.1) Zwei Ideale a und b in R sind genau dann dquivalent, wenn a+b ganz iiber a
und iiber b ist.

Ein Ideal b hei3t Reduktion des Ideals a in R, wenn b Sa ist und es eine natiirliche
Zahl r gibt, so daB ba"=a"*’ ist. Es gilt ([5; S. 34]):

(1.2) Ideale b<a in R sind genau dann dquivalent, wenn b Reduktion von a ist.
Ist b Reduktion von a, dann ist natiirlich auch jedes zwischen b und a liegende
Ideal Reduktion von a. Umgekehrt gilt:

(1.3) Sind bca Ideale in R und ist b+ma Reduktion von a, dann ist auch b Re-
duktion von q.

Beweis. Ausa"*!=(b+ma)a"=ba"+ma "' folgt a"* ' =ba’ nach Krulls Lemma.

Eine Reduktion b des Ideals a in R heiBt minimal, wenn b keine weiteren Reduk-
tionen von a echt umfaBt. Man kann zeigen, daB jede Reduktion von a eine minimale
Reduktion enthilt ([6]).

Sei s:=dim R. Elemente {f,..., f;} aus m bilden ein Parametersystem in R, wenn
sie ein offenes Ideal in R erzeugen. Von Parametersystemen erzeugte Ideale sollen hier
Parameterideale genannt werden. Mit Hilfe der in [9; VIII] angegebenen Mittel beweist
man sehr leicht:

(1.4) Ist a offenes Ideal in R und ist R ein Macaulayring, dann ist e(a)=min {A(q):q
Parameterideal in R, q<a}.

Aus. einer einfachen Abschitzung der Werte der betreffenden Hilbert-Samuel-
Polynome ergibt sich ([6]) |

(1.5) Ist b Reduktion des offenen Ideals a, dann ist e(b) e(a)
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Tiefliegend ist hingegend die folgende Umkehrung:

(1.6) Satz von Rees: Sind b<a offene Ideale in R mit e(b)=e(a) und ist R quasi-
ungemischt, dann ist b Reduktion von a.

Dabei heiBt R quasi-ungemischt, wenn alle minimalen Primideale der Komplet-
tierung von R dieselbe Dimension haben. Jeder lokale Macaulayring ist quasi-unge-
mischt.

Beweis von (1.6): Siehe Rees [7]. Ein neuer, einfacher Beweis wurde von E. Boger
gegeben (Dissertation Miinster 1967; verdffentlicht in [2] und [3]).

2. Multiplizitiitenvergleich mittels Kurven

Es sei wieder R ein lokaler Ring mit maximalem Ideal m und unendlichem Rest-
klassenkorper R/m.

DEFINITION. Offene Ideale a und b in R heien kurvendquivalent, wenn fiir
jedes Primideal p der Dimension 1 in R gilt: e(a+p/p)=e(b+p/p).

SATZ 1. Aquivalente offene Ideale sind kurvendquivalent.

Beweis direkt mit (1.1), (1.2) und (1.5), da Reduktionen unter Homomorphismen
erhalten bleiben. -

Man kann Satz 1 vor allem verwenden, um auszuschlieBen, daB konkret gegebene
Ideale dquivalent sind. Beispiel: Seien R:=k[x, y], x, » Unbestimmte iiber dem
Koérper k. Die Ideale (x, y*) und (x?, y) sind offenbar nicht kurvenéquivalent, also
auch nicht dquivalent. — Diese Ideale haben gleiche Multiplizitit; sie gehen sogar
durch einen Automorphismus von R ineinander iiber. Offene Ideale derselben Multi-
plizitdt brauchen also nicht dquivalent zu sein. —

Die nachfolgenden Sitze 2 und 3 geben Umkehrungen von Satz 1 unter gewissen
Voraussetzungen an.

SATZ 2. Ist R Macaulayring, dann sind kurvendquivalente offene Ideale b<a in R
dquivalent.

Beweis. Die offenen Ideale b<a seien kurveniquivalent. Da alle (endlich vielen)
Ideale zwischen b und a ebenfalls kurvendquivalent sind, kénnen wir annehmen, daB
A(b)—A(a)<1 ist. Wegen (1.6) ist zu zeigen: e(b)=e(a). Sei s:=dim R. Der Fall
s=0 ist trivial.

Wir fiihren nun zuerst den Fall s>2 auf den eindimensionalen Fall zuriick. Nach
(1.4) gibt es ein Parameterideal q in R mit g<a und A(q)=e(a). Wegen A(b)—4(a)<1
gibt es ein Erzeugendensystem { f1, ..., £} von g, so daB c:=Rf; +---+ Rf,- b ist.
Unter Benutzung von (1.4) ergibt sich e(a)=e(a/c), da R/c ein Macaulayring ist.
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Ferner ist e(b)<e(b/c); siehe [5; S. 78]. b/c=a/c sind erst recht kurveniquivalent.
Hat man e(b/c)=e(a/c) zur Verfiigung, dann ergibt sich sofort e(b)<e(a) und hier-
aus e(b)=e(a), da wegen b<a trivialerweise e(b)>e(a) ist.

Es geniigt also zu zeigen: Kurvendquivalente offene Ideale in einem eindimensi-
onalen lokalen Ring R haben dieselbe Multiplizitdt. Das folgt aber unmittelbar aus
dem bekannten Satz [5; (23.5)] von Serre-Nagata: Ist M die Menge der minimalen
— also hier: eindimensionalen-Primideale von R, dann gilt fiir jedes offene Ideal q
in R

e(q) = ,,ZM e(q +p/p) LR,,

wobei LR, die Linge der Lokalisierung R, bezeichnet. Satz 2 ist bewiesen. —
Die Voraussetzung b<a in Satz 2 ist bei ,,wirklich lokalen* Ringen iiberfliissig:

SATZ 3. Ist R ein henselscher Macaulayring, dann sind kurvendquivalente offene
Ideale in R schlechtweg dquivalent.

Beweis. Es seien q, b offene kurvenidquivalente Ideale in R. Nach (1.1) und Satz 2
bleibt zu zeigen, daB a+b kurvendquivalent zu a und zu b ist. Es geniigt also, die
eindimensionalen Restklassenringe von R nach Primidealen zu betrachten. Wir kon-
nen daher 0.B.d.A. annehmen, daB R ein eindimensionaler Integritdtsring ist. Man
hat e(a)=e(b). Zu zeigen ist: e(a)=e(a+Db)=e(b).

Sei K der Korper der Briiche von R. Die gewohnliche ganz-abgeschlossene Hiille
von R in K sei mit R’ bezeichnet. Nach dem bekannten Krullschen Satz ist R’
noethersch und dim R’ <1. Daher ist R’ ein normaler noetherscher Ring der Dimen-
sion 1. Da R’ ganz iiber dem henselschen lokalen Ring R ist, ist R’ lokal ([5; (30.5)]).
Daher ist R’ sogar ein diskreter Bewertungsring. Die Erweiterungsideale aR’ und bR’
stehen also in einer Enthaltenseins-Relation; sei etwa bR <aR'.

Es gibt endlich viele Elemente a,,..., @, von R’, so daB bereits im Ring R":=
Rla,,..., a] gilt: bR” <aR". Dabei ist R” ein endlicher R-Modul. Jeder Ring zwischen
R und R’ hat nur ein einziges maximales Ideal. Daher ist der Ring R" lokal; sein
maximales Ideal sei mit m” bezeichnet.

Ist q irgendein offenes Ideal in R, dann gilt nach der Erweiterungsformel [9; VIII,
§ 10] - die sich anwenden 14B8t, da R” endlich iiber R ist: e(q)=[(R"/m"):(R/m)]"
‘e(qR”). Offene Ideale in R sind also genau dann multiplizititengleich, wenn ihre
Erweiterungsideale in R” multiplizitdtengleich sind. Nun ist aber (a+b) R"=aR"+
+bR"=aR’, so daB e(a+b)=e(a) folgt, was zu zeigen war. -

Alle kompletten lokalen Ringe sind henselsch [5; (30.3)].

DEFINITION. Als analytische k-Algebra wird jeder nichttriviale Restklassenring
eines formalen oder konvergenten Potenzreihenringes in endlich vielen Unbestimmten
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iiber einem Korper k, bzw. iiber einem nichtdiskret bewerteten Korper k bezeichnet.

. Auch die analytischen Algebren sind henselsch; siehe [1; (20.6)] oder [5; (45.5)].
Fiir analytische Algebren iiber algebraisch-abgeschlossenem Grundkorper 148t sich
das Kriterium der vorstehenden Sitze in eine geschlossene Form bringen:

SATZ 4. Es seien R eine analytische k-Algebra und T:=k {t)) der Potenzreihenring
in einer Unbestimmten iiber k (derselben Kategorie wie R); R sei ein Macaulayring,
k sei algebraisch-abgeschlossen. Dann hat man:

Offene Ideale a und b in R sind genau dann dquivalent, wenn fiir jeden k-Algebra-
homomorphismus ¢:R—T gilt: ¢ (a) T=¢(b) T.

Beweis. Es geniigt wegen der vorhergehenden Séitze zu zeigen, daBl a und b genau
dann kurvenidquivalent sind, wenn die Bedingung von Satz 4 erfiillt ist.

Sei p ein Primideal der Dimension 1 in R und R:= R/p. Mit R’ sei der ganze
AbschluB von R in seinem Korper der Briiche bezeichnet. Wegen der algebraischen
Abgeschlossenheit von k ist R’ eine analytische k-Algebra (derselben Kategorie wie R)
und endlicher R-Modul (bei konvergenten analytischen Algebren entnimmt man dies
[1; (46.27)]. Im Falle kompletter k-Algebren verwendet man zum Beweis [5; (32.1)]
(Endlichkeit iiber R) und die einfache Aussage, daB R’ ein Potenzreihenring ist: [9;
VIII, § 12, S. 307]; der Cohensche Satz wird nicht dazu herangezogen). R’ ist regulir
und damit isomorph zu T. Die Komposition R— R—T kanonischer Abbildungen sei
mit ¢ bezeichnet. ¢ ist ein analytischer Homomorphismus. Gilt ¢(a) T=¢(b) T,
dann stimmen die Erweiterungsideale (a+p/p) R’ und (b+p/p) R’ iiberein. Da R’
endlich iiber R ist, kann man die Erweiterungsformel (siche Beweis von Satz 3) an-
wenden und erhilt: a+ p/p und b+ p/p haben gleiche Multiplizitit. Ist die Bedingung
des Satzes 4 erfiillt, dann sind also a und b kurvenédquivalent.

Seien umgekehrt a und b kurvendquivalent und sei ¢ : R— T ein analytischer Ho-
momorphismus. Es interessiert nur der Fall, daB ¢ nichttrivial ist, also das maximale
Ideal m von R nicht trivial abbildet. Dann ist p:=Kern¢ ein eindimensionales
Primideal in R; ferner.ist T/¢o (m) T endlichdimensional, so daB T nach dem Serre-
schen Endlichkeitssatz ein endlicher Modul iiber der analytischen Algebra Bild ¢ = R/p
ist. Wieder 148t sich die Erweiterungsformel anwenden (in einer allgemeineren Situ-
ation; denn Bild ¢ und T brauchen ja nicht denselben K&érper der Briiche zu haben):
¢ (a) T und ¢ (b) T haben, da nach Voraussetzung e(a+p/p)=e(b+p/p) ist, dieselbe
Multiplizitit. In 7 bedeutet das natiirlich ¢ (a) T=¢(b) T.

3. Analytisch-abhiingige Ideale in Potenzreihenringen

Es sei P ein Potenzreihenring in den Unbestimmten x,, ..., x, iiber dem Kérper k.
Mit &, sei die partielle Differentiation in.P nach x; bezeichnet, 1< j<n. Es seien a, b
echte Ideale in P.
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DEFINITION. a heiBt analytisch-abhdingig von b, wenn es Elemente f,..., f,€a
gibt, so daB} gilt:
1. b+a=b+Pfi+---+Pf.
2. 0;fieb+afirallei=1,...,r, j=1,.

Der Beweis des folgenden Satzes beruht auf einem Kunstgriff, den D. Mumford
in einer dhnlichen Sltuatlon benutzt hat (Vgl. die Elnleltung)

SATZ 5. Es sei P ein Potenzreihenring in den Unbestimmten x,, ..., X, iiber einem
Korper k der Charakteristik 0. Es seien a, b Ideale in P; a sei analytisch-abhdngig von
b und offen. Dann ist a ganz-abhdngig von b.

Beweis. Wir konnen annehmen: b<a. Wegen (1.3) kénnen wir auBBerdem b als
offen voraussetzen.

Ubergang zur Komplettierung von P und dann Ubergang zum formalen Potenz-
rethenring iiber einem Erweiterungskorper von k ist ein exakter, ldngentreuer Funktor.
b ist also genau dann Reduktion von b+ a, wenn diese Beziehung fiir die Erweiterungs-
ideale bei den Ubergingen gilt. Ferner bleibt die analytische Abhingigkeit bei den
Ubergiingen erhalten. Wir diirfen deshalb annehmen: P=k x4 ..., x,] mit Unbestimm-
ten xi,..., x, iiber k, chark=0, k algebraisch-abgeschlossen. Sei T:=k[¢] mit der
Unbestimmten ¢ iiber k; das maximale Ideal von T sei mit n bezeichnet.

Wir verwenden Satz 4. Sei ¢:P—T ein analytischer Homomorphismus. Wir haben
zu zeigen: @(a) T=¢(b) T. _

Betrachten wir irgendein fea mit 0, fea fiir alle j=1,..., n. Die Ableitung eines
geT nach ¢ werde mit g’ bezeichnet. Die Kettenregel besagt nun:

o) = 3 0@ o).

¢ ist lokal, so daB ¢(f)en. Wegen chark=0 gibt es eine Einheit ¢ in T, so daB
eto(f) =@ (f) ist. Somit ist

o=t 3. @f) o(x) eno@T.

Daraus folgt nach der Voraussetzung iiber a sofort: ¢ (b) T=¢(a) T. -

Die Umkehrung von Satz 5 gilt nicht. Beispiel: P=k[x, y], b:=Px*+Py? a:=
b+ Pxy. b ist Reduktion von a; denn es ist (xy)?—x?y*=0. a ist nicht analytisch-
abhingig von b, wie man leicht verifiziert.

Aus Satz 5 folgt insbesondere: Ist das offene Ideal a analytisch-abhéingig vom
Ideal b, dann ist auch b offen. Allgemeiner 148t sich (ganz elementar) zeigen, daB
beliebige voneinander analytisch-abhingige Ideale dasselbe Radikal besitzen (Siehe
[8]). Ob Satz 5 auch fiir Ideale beliebiger Dimension gilt, bleibt offen. 2)

%) Zusatz bei der Korrektur: Satz 5 gilt aligemein; siche [8].
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Anwendung

Es sei P der Ring der konvergenten Potenzreihen in den Unbestimmten x, ..., x,
iiber den komplexen Zahlen C. Es sei f ein Element von P, so daB die Hyperfliche
f(x1-..., x,)=0 im Nullpunkt des C" eine isolierte Singularitit besitzt. Dann ist
b:=P0d,f+---+P 0,f ein Parameterideal in P. Das Ideal a:=b+Pf ist im Gegen-
satz zu b unabhingig von der Wahl des erzeugenden Elementes f von Pf und un-
abhingig von der Wahl der Koordinaten.

Bei ihren differential-topologischen Untersuchungen isolierter Hyperflichensingu-
laritdten benutzen E. Brieskorn und J. Milnor die durch die Funktionen 9, f;..., d,f
bestimmte holomorphe Abbildung F:C"—C", die eine analytisch-verzweigte Uber-
lagerung in der Umgebung des Nullpunktes definiert; die Blitterzahl b dieser Uber-
lagerung ist bekanntlich 4(b) (Erweiterungsformel). Aus Uberlegungen von Milnor
folgt, daB b von der Wahl des erzeugenden Elementes f von Pf und von der Wahl der
Koordinaten nicht abhéngt. E. Brieskorn hat vorgeschlagen, diese Invarianz von b
mit einfachen Mitteln der lokalen Algebra nachzuweisen.

Ein solcher Beweis ergibt sich nun wie folgt: Nach (1.4) ist b=A(b)=e(b). a ist
analytisch-abhingig von b, so daB b und a nach Satz 5 dieselbe Multiplizitdt haben.
Also ist b=e(a) invariant. - Dieser Beweis benutzt nicht wirklich den Satz von Rees,
wie nach den Formulierungen von Satz 4 und Satz 5 zu erwarten wire.

Anhang (von E. Boger)

Ein direkter Beweis von Satz 5 wird gegeben, der die Heranziechung des nicht-
trivialen Satzes (1.6) vermeidet. Bezeichnungen wie in Satz 5 werden verwendet. Es
kann angenommen werden, daB b offen und in a enthalten ist.

Die ganz-abgeschlossene Hiille b’ von b ist Durchschnitt mit P von Idealen bV,
wobei V, eine gewisse (sogar endliche) Menge von P umfassenden diskreten Bewer-
tungsringen im Korper der Briiche von P durchlduft (Siehe [4; thm. 6] und [9; App. 4,
thm. 3]). Es sei V ein beliebiger dieser Bewertungsringe V;. Es geniigt zu zeigen:
aV=D>bV. Es geniigt, dies in der Komplettierung 7" von ¥ nachzuweisen. Es gibt einen
(k umfassenden) Korper K in T, so daBB T nichts anderes als ein Potenzreihenring
K[t] ist. Man darf annehmen, daB b7# T ist. Dann gilt auch m7# T fiir das maximale
Ideal m von P, da m das Radikal von b ist. Nun ergibt sich a7=bT in genau der-
selben Weise wie im Beweis zu Satz 5 mit Hilfe der Kettenregel.

Man hat sich nur zu iiberzeugen, daB die Kettenregel wirklich gilt. Die Differenti-
ation beziiglich ¢ auf P ergibt durch Beschrinkung eine k-Derivation §:P—T. Zu
zeigen ist, daB & mit der k-Derivation 6*:=)7_, 6(x;)-9;, 6*: P—T, iibereinstimmt.
Mit Hilfe der Produktregel sieht man leicht, daB é und 6* auf dem Polynomring
k[x,,..., x,] iibereinstimmen. Diese Identitiit setzt sich auf P fort, da m"*! von ¢
und 6* in m'7, also wegen m7# T in ¢'T abgebildet wird, r>1 beliebig.
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