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Contributions a la théorie du type simple d’homotopie

par SERGE MAUMARY!)

Ce travail comporte une partie algébrique, et une partie géométrique. La premiére
a été suggérée par certaines applications de la «torsion de Whitehead », conduisant
considérer des complexes de modules basiques munis d’une filtration. Le probléme
se pose alors de calculer, lorsqu’elle est définie, la torsion de tels complexes a I’aide
de la filtration. Un cas particulier de ce probléme est d’ailleurs traité dans [1]. Nous
en avons fait ici une théorie trés générale, a 1’aide de suites spectrales de couples
exacts. La seconde partie donne une description précise des équivalences homotopi-
ques simples (cf [3]). Bien que, d’une fagon indépendante, on retrouve le résultat de
Wall (cf [7]), on précise ici non seulement la dimension mais aussi I’ordre des opéra-
tions formelles qui décomposent une équivalence homotopique simple. Pour cela,
il a fallu considérer des CW-complexes relatifs (X, 4), 4 et X étant 1-connexes, munis
d’une action cellulaire d’un groupe I', admettant un systéme fondamental fini de
cellules. Cela généralise aussi la situation classique ou X est le revétement universel
d’un CW-complexe fini.

Qu’il me soit permis d’exprimer 4 M. le Prof. G. de Rham ma profonde recon-
naissance pour ses encouragements constants. Je remercie aussi vivement M. le Prof.
V. Poenaru qui s’est intéressé & mon travail et m’a conseillé dans la présentation de
celui-ci. ‘

I. Torsion de Whitehead et suites spectrales

1. Introduction
Nous commencerons par élargir considérablement la notion de modules quasi-

basiques introduite dans [1]. Ensuite, pour tout complexe fini C, dont les modules C;
et les modules d’homologie H,(C) sont quasi-basiques, la K!-torsion 7(C) sera définie
dans le groupe abélien multiplicatif K*(4) (cf [1]). Par ailleurs, pour tout complexe
fini filtré C, les termes E" de la suite spectrale associée peuvent &tre considérés canoni-
quement comme des complexes (monogradués). S’ils sont formés de modules quasi-
basiques, indépendants de r pour r assez grand, alors 7(E")eK'(4) est déterminée
pour tout r, et devient égale 4 1 pour r assez grand. Dans ce cas, les modules C; et
H, (C) sont canoniquement quasi-basiques, et on aura le

THEOREME (4.4): Si la suite spectrale (E") d’un A-complexe fini filtré C est

1) Ce travail a été soutenu en partie par le Fonds National Suisse de la Recherche Scientifique
(crédit n° 4241).
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formée de modules quasi-basiques, indépendants de r pour r assez grand, alors t(C)=
= [1, = (E") dans K* (A).

Nous nous bornerons a examiner deux cas particuliers de ce théoréme (3.8).

a) Sila suite spectrale est dégénérée, c’est-a-dire si E pzq =0 pour ¢>0, alors 7(C)=
=1(E"). On retrouve ainsi une version un peu plus générale du résultat obtenu dans
[1].

b) Si la suite spectrale est de type sphérique, c’est-a-dire s’il existe un entier s> 1
tel que E, ,=0 pour g#0 ou s, alors 7(C)=1(E") 1(G), ou ® est la suite exacte
graduée canonique

'—’Hk(C)_"EI?,O—)Elf—s—l,s'—)Hk—l (C)“’

dite «de Gysin».
Applications

PROPOSITION (4.1): Soit X un CW-complexe fini, Y un sous-complexe rétract
par déformationde X, et Y = X, < X, = --- < X, = X une suite croissante de sous-complexes,
tels que H,,,(X,+1, X,)=0 pour q#0. Alors la torsion de Whitehead ©(X, Y) est
égale a celle du complexe quasi-basique (acyclique) canonique

— H (}?"“’ X“)—'Hk—l (Xk’ X, ) R

ou X, est le revétement de X, induit par le revétement universel de X.

Soit X un CW-complexe fini muni d’une action cellulaire libre d’un groupe I', et 6
un homomorphisme de I" dans un anneau 4, tel que les A-modules H,(X), déduits de
H,(X) par extension des scalaires soient quasi-basiques. Soit encore S" la sphére
standard de dimension n>1.

PROPOSITION (4.2): Pour toute action cellulaire de I' sur X x S", de la forme
Y(x, »)=(yx, y"), avec yeI', xeX, yeS", on a 14(X x ") =1,(X)**".

Par exemple, si I" est un groupe cyclique fini agissant librement sur $2"**, alors
le I'-complexe $2"*! x §2"*! muni de l’action y(x, y)=(yx, yy), yeI, a une f-torsion
égale a 1.

Nous utiliserons [1] et [2] comme références de base pour ce texte. On y trouve en
particulier les définitions et propriétés du foncteur K*, de la K'-torsion d’une matrice
réguliére et d’une suite exacte graduée de modules basiques, et enfin de la K'-torsion
d’une équivalence homotopique de complexes basiques.

2. Modules quasi-basiques

2.1. DEFINITION: On dira qu'un A-module M est quasi-libre (abrégé q-1) s'il
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admet une résolution finie libre (L, €), c’est-a-dire une suite exacte
0—-L,—»L, ——Ly->M—0,

ot les modules L, sont libres, de type fini.

Notons que, si 4 est un anneau principal ou local régulier, tout 4-module de type
fini est q-1. Par ailleurs, un 4-module projectif P est g-1, si et seulement si il existe un
isomorphisme de la forme P@ A"~ 4°. En effet, une résolution libre finie (L, &) de
P est scindée, donc il existe un isomorphisme P®, L,, .~ @, L,;. On retrouve ainsi
les modules g-1 au sens de [1].

2.2. THEOREME: Si, dans une suite exacte de A-modules 0—~M'—M— M"—0,
deux d’entre eux sont g-1, alors le troisiéme l’est aussi.
La démonstration sera éclaircie par le lemme suivant et ses corollaires.

2.3. LEMME: Soient C et C’ deux complexes, formés de modules libres de type
fini en degré k pour 0<k<n, et nuls pour k<0 ou k>n.

Soit encore f:C—C' une équivalence homotopique. Alors il existe des complexes
acycliques T et T', formés de modules libres de type fini, ainsi qu'un isomorphisme
g:COT~C'@®T' homotope a p'ofoi,oti:C->CPDTetp :C'®T'—C’ sont les équiva-
lences homotopiques canoniques.

Preuve: Supposons, par induction sur k<n, qu’il existe des complexes T et 7',
libres de type fini et nuls en degrés >n, ainsi qu'une équivalence homotopique
g:COAT-C'@T’, formée d’isomorphismes en degrés <k, et homotope a p’ofoi.
Pour k=0, il suffit de prendre T=T"=0 et g=f. Notons D=(D;, d;) le complexe
C@T et posons B;=Imd;, Z} =Cokerd;,, H;=H;(D). Avec des notations analogues
pour C'@®T’, on a le diagramme commutatif

¥ di

O—)Hk'—') Zj ->Bk__1—->0
8ka 1 lgk‘ lgk—i
0-—+H,2——>Z;*33B,:_1——>0

ou g, et g,_, sont des isomorphismes par hypothése d’induction. Donc gy est un
isomorphisme. Considérons maintenant le diagramme commutatif

dk+1l LN t .
Dyyy 25 D= ZF ——0

gk+1 J 8kl 8x* T

’ d'k+1 ’ n’ %
Dy —5 Dy >Zy >0

ou 7 et n’ sont les projections canoniques. Comme D, est libre pour k<n, il existe
k
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un homomorphisme g;: D;—D,, tel que nog;=(gx) 'on’. Alors n’o(1—g;.8x)=0,
donc de nouveau parce que D; est libre, il existe un homomorphisme #n;: D;— Dy, 4,
tel que 1 —gio8;=dy+ oM}

Soient E et E’ les complexes 0—D, 2% D, —0 et 0—Dj,22%1, D! 50 respective-
ment, ou 'indice k+1 a I'identité signifie qu’elle est la différentielle en degré k+1.
Le diagramme commutatif

dic+2 ¢ die+ 1 @id. 5 di
Dyy,————Dyyy ® D——— D, @ D, »Dy 4 >
di+1 id.
Bk+2 8k +1 -’k gk 4% -1
"'k di+1°1'k
v . wL L d ®id VJ Sle v
' k+2 ' ‘k+1@id. ' d'y '
U e li e R PRl N Badlakicte Y >
Dk+2 Dk+1 @ Dk Dk @ Dk M E-1

définit un morphisme de complexes h:D@E'—»D®E, tel que h;=g; pour j<k, et
M= (8 + div10mi) @ (id. — g3) = ((id. + g) @ id.) o (id. © (id. — g))-

Ces deux derniers facteurs étant des isomorphismes, 4, en est aussi un. De plus, si
i:D>D®E' et p':D'@E—-D' sont les équivalences homotopiques canoniques, on a
p'ohoi=g, donc h est une équivalence homotopique. En remplagant T par T®E' et
T’ par T'@E, on achéve le pas d’induction. Dés lors, on peut supposer que g est un
isomorphisme en degrés <n—1. Dans le diagramme commutatif

0—H,—D, B, ,—0

Enx l 8n lgn~l l

0—)H,',—)D;‘-i-">B",_1 —0
8n, €t g, sont des isomorphismes, donc g, en est aussi un. cqfd.

2.4, COROLLAIRE: Soit M un A-module q-1, et (K, n) une résolution de M, de
longueur n, libre de type fini en degré <n. Alors il existe un entier s tel que K,®A* soit
g-l.

Preuve: Soit (L, &) une résolution finie libre de M et (L™, ¢) 1a résolution tronquée,
de longueur n, obtenue en remplagant L, par Z,_, =Ker(L,_;—L,_,). Il existe une
¢quivalence homotopique f': K— L™ relevant I'identité de M (cf [4]). Donc, d’aprés le
lemme, il existe un isomorphisme de la forme Z,_, ®A"~K,®A*. Comme Z,_, est
q-l, Z,_, @ A" est évidemment aussi. cqfd.
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2.5. COROLLAIRE: Soit 0-M'->M—>M"—0 une suite exacte de modules, M
étant de type fini et M" q-l. Alors M’ est de type fini.

Preuve: Etant donné un homomorphisme surjectif ¢: A™— M on en déduit le dia-
gramme commutatif

0—- K—-A"->M"—0

1 l dl

0O-MEHMSHSM -0

ou K=Ker(v.€). On voit que ¢’ est surjectif, et il résulte du corollaire 2.4 que K est de
type fini. cqfd.

2.6. Preuve du théoréme 2.2. Dans un premier cas, supposons que M’ et M” sont
g-1, et prenons-en des résolutions finies libres (L, ") et (L', &”), respectivement. D’apreés
[4], il existe une résolution (K, 1) de M et une suite exacte de complexes 0—L — K—
— L’ -0 relevant la suite exacte donnée. Comme L est libre, on a K~ L, @ L;, donc
K, est libre de type fini, pour tout k.

Dans un deuxiéme cas, supposons que M et M" sont q-1. Voyons d’abord que,
pour tout entier >0, il existe une résolution (K’, n") de M’, de longueur n, libre de
type fini en degrés <n. Pour n=1, cela signifie que M’ est de type fini, ce qui résulte
du corollaire 2.5. Supposons par induction que (K’, ') existe pour un entier n. 1l
suffit alors de montrer que K, est de type fini. Soit (L', ") une résolution finie libre
de M", et ('™, ¢") 1a résolution tronquée, de longueur n. D’aprés [4], il existe une
résolution (K, ) de M et une suite exacte de complexes 0— K'— K—L' W0, relevant
la suite exacte donnée. Dans 0—-K,—K,—Z,_,—-0, Z,_, est g-1, et K, est de type fini
en vertu du corollaire 2.4. Donc K, est de type fini, d’apreés le corollaire 2.5, ce qui
achéve le pas d’induction. Choisissons alors n égal a la longueur de L. Il vient Z,_; =0,
donc K, ~K,. D’aprés le corollaire 2.4, il existe un entier s, tel que K,®A° soit g-1.

En ajoutant 3 K’ le complexe 0-—>Asid—'3>As-—>O, on obtient une résolution de M’, de
longueur n+ 1, libre de type fini en degrés <n, et égale a K, A° en degré n. En la
composant avec une résolution finie libre de K, @ A4°, on obtient une résolution finie
libre de M'. '

Dans le dernier cas, on suppose que M’ et M sont g-1. Voyons d’abord que, pour
tout entier n>0, il existe une résolution (K", ") de M”, de longueur n, et libre de type
fini en degrés <n. Pour n=1, cela signifie que M" est de type fini, ce qui est évidem-
ment vrai. Supposons, par induction, que (K”, n") existe pour un entier ». Il suffit
alors de montrer que K. est de type fini. Soit (L, ") une résolution finie libre de M’,
et (L™, ¢') la résolution tronquée, de longueur n. Comme précédemment, il existe
une résolution (K, ) de M et une suite exacte de complexes 0—L ™ — K—K"—0.
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Dans 0»Z,_,~»K,—K, -0, K, est de type fini en vertu du corollaire 2.4, donc K.
est aussi de type fini, ce qui acheve le pas d’induction. Choisissons alors # égal 4 la
longueur de L. 1l vient Z,_, =0, donc K,~K, . D’aprés le corollaire 2.4, il existe s
tel que K,/ @ A4° soit g-1, ce qui entraine comme ci-dessus que M” est g-1. cqfd.

2.7. COROLLAIRE: Soit C un complexe fini de modules q-1, qui est acyclique
excepté en un degré A. Alors H,(C) est un module g-l.

Preuve: En appliquant le théoréme aux suites exactes 0—Z,— C,— B, _;—0, pour
des valeurs décroissantes de k, jusqu'a k=4+1, on voit que B, est g-1. De méme,
avec des valeurs croissantes de k jusqu’a k=4, on voit que Z, est g-1. Une nouvelle
application du théoreme a la suite exacte 0—B,— Z,— H,—0 montre que H, est g-1.
cqfd.

2.8. Rappelons (cf [1] ou [2]) qu’étant donné un anneau A ayant la propriété:
A"~ A®=r =s, on dit qu’un 4-module M est basique, s’il est muni d’une famille de
bases finies se déduisant les unes des autres par des matrices de K!-torsion 1.

2.9. DEFINITION: Une résolution finie libre (L,¢) d'un A-module M sera dite
basique, si les modules L, sont basiques, pour tout k. De plus, deux telles résolutions
(L, e) et (L, &) du méme module M seront dites équivalentes, si les équivalences homoto-
piques . L— L relevant l'identité de M sont simples (on sait que ces f sont toutes homo-
topes entre elles, donc ont toutes la méme torsion).

2.10. Pour tout A-module g-1 M, désignons par K'(M) I’ensemble des classes
d’équivalence de résolutions basiques de M. Le groupe K'(4) agit sur K (M) comme
suit: étant donné une matrice réguliére P et une résolution basique (L, ) de M dont
on peut supposer que le rang de L, est égal a celui de P, quitte & ajouter & L un com-

plexe de 1a forme 0— A" 4”0 et remplacer P par (1(; (1)>, on effectue le changement

de base de matrice P dans L,. La classe d’équivalence de cette derniére résolution
basique ne dépend que de celle de (L, ¢), et de la K*-torsion de P.

2.11. PROPOSITION: L’action canonique de K'(A) sur K*(M) est simplement
Iransitive. .

Preuve: Soient (L, ¢) et (L, ¢') deux résolutions basiques de M, et f:L—L une
¢quivalence homotopique, relevant ’identité de M. On peut supposer que la B
torsion z(f) est égale a celle d’une matrice réguliére P, de rang celui de L,. En effec-
tuant le changement de base de matrice P.dans L,, f devient simple. Autrement dit,
P transforme la classe d’équivalence de (L, &) dans celle de (L, &'). cqfd.
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2.12. DEFINITION: Un A-module q-1 M sera dit quasi-basique (abrégé g-b) s’il
est muni d’une classe d’équivalence de résolutions basiques. Les résolutions de cette classe
seront dites distinguées.

Par convention, le module nul sera considéré comme g-b, la résolution nulle étant
distinguée.

2.13. Etant donné un isomorphisme de A-modules q-b u: M ~ M’, on peut relever
u en une équivalence homotopique f: L— L de résolutions distinguées de M et M’
respectivement. Ce relévement f est unique 3 homotopie pres, donc la K'-torsion
7(f)eK'(A) ne dépend que de u. Aussi, on posera 7(u)=1(f), et on appellera (1)
la K'-torsion de u.

2.14. Pour toute suite exacte 0->M'— M—M"—0 de A-modules g-b, il existe des
résolutions distinguées (L, &), (L, €), (L, ¢") de M', M" respectivement, ainsi qu’une
suite exacte de complexes 0—L —L—L'—0 relevant la suite exacte donnée. On le
voit en prenant (L, &) et (L', ¢") arbitrairement, et en posant L=L@L, e=¢ +¢’,
quitte a ajouter 2 L' un complexe de la forme 0—A™% 4750 pour que L devienne
distinguée (prop. 2.11). En désignant par A, la K'-torsion de la suite exacte de modules
basiques 0— L, — L,— L, —0, le produit [ ], 4*, ot e(k)=(—1)*, ne dépend pas des
choix précédents. En effet, si 0—» K'—K— K”—0 est une autre suite exacte de résolu-
tions distinguées relevant la suite exacte donnée, il existe des équivalences homotopi-
ques f':L'->K', f:L-K, f":L"— K" relevant I'identité de M’, M, M" respectivement,
et formant un diagramme commutatif

0L —>L->L—>0

o] o] ]

0K —-K—-K"—0

(cf [4]). En passant aux complexes «cOnes» de ces équivalences homotopiques, on a
un isomorphisme canonique C(f)~C(f)®C(f") dont la K'-torsion en degré k est
Aty -1, OU g, désigne le K'-torsion de la suite exacte 0—K; - K;— K,/ —0. Comme f”,
fetf” sont simples, on a [, (Agtt— )™ =1, c’est-a-dire [ [t A4;® =] [1p5*. Cet élément
sera appelé la K'-torsion de la suite exacte donnée. Lorsqu’elle vaut 1, on dira
que la suite est simple. Si I’on fait agir un élément ceK*(4) sur (L, &) ou (L', &),
alors A, devient ol,, et A, reste inchangé pour £>0. Donc le produit ]—[k).,i(")
est une fonction homogene de degré 1 sur K'(M’) et K*(M"). On voit de méme que
c’est une fonction homogene de degré —1 sur K'(M). Par conséquent, si dans une
suite exacte de modules 0—»M'— M—M"—0 deux d’entre eux sont g-b, la condition
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que cette suite soit simple détermine le troisiétme module comme g-b, de maniére
unique.

2.15. DEFINITION: On appellera complexe quasi-basique un complexe dont les
modules non nuls sont en nombre fini et sont g-b.

2.16. Etant donné un complexe q-b C=(C,, d;) dont les modules d’homologie
H, sont tous g-b, on voit en appliquant le théoréme 2.2 alternativement aux suites
exactes canoniques 0— B,—Z,—» H;—0,0->Z,—»C,— B, _;—0, ou B,=Imd, ., Z,=
=Kerd,, que B, et Z, sont g-1, pour tout k. En les considérant arbitrairement comme
g-b, on obtient des K!-torsions a, et B, respectivement pour les suites exactes ci-
dessus. Le produit [, (.8:)°** ) ne dépend pas des choix faits, car o, est une fonction
homogene de degré 1 sur K (B,), de degré — 1 sur K'(Z,), et B, une fonction homogene
de degré 1 sur K'(B,-,) et K'(Z,). Aussi on posera t(C)=]T; (B **" et on
appellera ©(C) la K!-torsion de C. C’est une fonction homogéne de degré (—1)¥*?
sur K'(H,), de degré (—1)* sur K1(C)).

2.17. LEMME: Soit
0 0 0

oL

0->M, ,—> M, —M, ,—0

Lo

0"M1,2’—’M1,1“"M1,0""0

L

0“*1\40,2_’Mo, 1‘_’M0,0—’0

v

0 0 0

un diagramme commutatif de suites exactes de modules g-b. Désignons par t; et T
les R'-torsions des suites exactes

O*Mz,i‘*Ml,i“’Mo,i—’O
et

0> M, ;> M, — M, o—0
respectivement. Alors

! =1 -
ToTy ‘1, = 147 115.



418 SERGE MAUMARY

Preuve: Si les modules sont tous basiques, le diagramme se scinde et la formule
est évidente. Sinon, on peut trouver une résolution distinguée (L; ;, &; ;) de M, ;, ainsi
qu’un diagramme commutatif entre les L; ; qui reléve le diagramme ci-dessus (cf [4]).
11 suffit alors d’appliquer la formule en chaque degré de ce diagramme. cqfd.

2.18. Comme application de ce lemme, on voit que la définition de la K!-torsion
7(C) d’un complexe gq-b C, d’homologie également g-b, est autoduale: si o et 7
désignent les K!-torsions des suites exactes canoniques 0—H,—ZJ—B,_,—0 et
0- B,— Cy— Z,* -0 respectivement, alors t(C) =[] (e B¢)*** V. Il résulte en effet du
lemme 2.17, appliqué au diagramme

!

0— Zk_)

0—-——>I}k—+ Zy—B,_,—0

Lol

0 0 0

que o " B = ()" B

2.19. Considérons une suite exacte 0—C’'—C— C”"—0 de complexes g-b, dont les
modules d’homologie respectifs H;, H, et H; sont aussi tous q-b. Graduons la suite
exacte d’homologie associée §), en posant $3,=H,, Hix+1=H Dar+2=H;. Alors
() est déterminée. C’est une fonction homogeéne de degré (—1)* sur K' (Hy) et
K1(H), et de degré (—1)**! sur K* (H,).

2.20. THEOREME: Si 0— C'%C-5C"—0 est une suite exacte comme ci-dessus,
de R*-torsion o, en degré k, alors 1(C)=1(C") ©(C") 1(D) [« oi.

Preuve: En utilisant 'homogénéité des K!-torsions précédentes, on se raméne au
cas o1 7(C)=1(C")=1(C") =0, = 1. Considérons d’abord les diagrammes commutatifs
de suites exactes canoniques suivantes:
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0 0 0 0 0 0
0— Ky —— By—2— Bj——0 0——Z4—%>7,—% [,——0
ll v v v ¥ l
0— 72, —2,—/— 7;,—0 0—C,—C,——C;—>0
| T
0"“""—)Mk }I}k u‘;&k )O O—Aé;_l‘—y—‘;Bk_l_—’Pk_l'—"—‘)O
o 0 0 0 0 0
0 0

ou
K, = Ker(B,-> By), Lk=Im(Zk—”—>Z;§ 5
M, =Im(H;*>Hy), N,=Im(H>H),
P, = Coker(B;B,), Q,=Im(H;>H,_)),
0 €tant ’'homomorphisme de connexion dans $. En vertu du théoréme 2.2, tous les

modules ci-dessus sont g-1. Les modules C;, C,, C;, H,, H,, H, étant déja g-b, con-
sidérons les autres modules arbitrairement comme g-b et posons:

7 = K'-torsion de 0— K, — Z, — M, —0

My = » » 0—B;, —»L,—N,—0
V= » » 02, —-Z,—L, —0
X = » » 0—M,— H,—N,—0
Xi = » » 0— N, —» H/—Q, —0

Les autres suites exactes peuvent d’emblée étre supposées simples. En appliquant
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alors le lemme 2.17 aux diagrammes ci-dessus, on trouve =i Ve > Ve=1, X =l
Envisageons un moment le cas particulier ou C est acyclique, et ou C” n’a qu’un
module non nul Cj. On a alors le diagramme commutatif

0—B; y—Z, —H,_;—0

A

id.
Z;-1

lid. 0 N

0—B) ~B, ;—P,_,—C;=H;—0

Les deux suites exactes horizontales sont simples, et 'isomorphisme u:Z;_,—Z,_,
est aussi simple. Donc 7(d)=1 d’aprés le lemme 2.17. Comme $) se réduit a I'isomor-
phisme 0, on a 7($)=1. La formule est ainsi vérifiée dans ce cas. Elle I’est aussi dans
le cas dual, ou C est acyclique et C' n’a qu’un module non nul, en utilisant les suites
exactes duales des précédentes, ainsi que la définition duale de la K!-torsion d’un
complexe g-b.

Revenons au cas général et interprétons les diagrammes commutatifs

0 0

PR

A 4

0 —Z, 4% 7,0 0—2Zz,4% 7 50

’
" 1
L 4 v . L 4

0———+Qk+1————+ ,:—“i)Mk——»() 0— M, 'd';Mk >0

A 4 1 4 v

0 0 0 0

comme des suites exactes de complexes (colonnes), entrant dans les cas particuliers
envisagés ci-dessus. Si R, désigne I’homologie de degré 1 de 0— B,—Z;— M, —0, les
isomorphismes de connexion 8: Ry~ Q, 4 et 0: O, + 1 — Ry, respectifs a ces diagrammes,
sont inverses I'un de Pautre. En appliquant la formule & chaque diagramme, on
trouve alors A, =7, ou A, =K'-torsion de 0— B;—K,— Q; .0, xr=K'-torsion de
0- 01— H,— M;—0. Un raisonnement analogue avec les diagrammes
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0 0 0 0

L 4 L 4 ~ L 4

> By, ld"Bl’c >0 0— B, — K;—> Q4+, —0

N
S D —

oll w est tel que ’homomorphisme composé Z;, 25 Q, 1> P, est induit par 9,
montre que la K'-torsion de 0—Q,,;— P,— B;—0 est A, '. Encore un raisonnement
analogue avec les diagrammes commutatifs

0 0 0 0
0 "_*Lk+1—ii*Lk+1__’0 0— Ly, ;Z;cl+1a°ﬂ”’Qk+1"‘"*0

Lo

” id. " N al id. N
0 —Ciy1—Ce1—0 0—Civ1—Ciay > l)
0

Lol

0—Q;-% B — By —0 0— B} > B}
0 0 0 0

montre que A, 1 =1. En rassemblant les relations trouvées, on obtient x;x;=x;. Mais
par définition,

1(55) — I';I X;ce(3k+3)X;(3k+2)x;£s(3k+1) — ];[ (XI’cXI: IX;:)E(IH- 1) ,

et comme chaque facteur de ce produit vaut 1, on trouve 7(§)=1. cqfd.

2.21. COROLLAIRE: Soit f:C—C'une équivalence homotopique de complexes
q-b, @ homologie aussi g-b. Alors

T(f) = 17(C')T(C)_1 I;I T(fk*)s(kﬂ), ol fk*:Hk‘i)Hl:

est l’isomorphisme induit par f en homologie.
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Preuve: Considérons la suite exacte canonique de complexes g-b 0—-C’'—>C(f)—
—-C~150, ot C(f) est le cone de f, et C~! est le complexe C avec la graduation
C; '=C,_,. En chaque degré, cette suite exacte est simple, c’est-a-dire o, =1 pour
tout k. La suite exacte d’homologie associée $ se réduit aux isomorphismes

Sin: Dakr3—2Hak+2, donc (H) = I;[ r(fk*)‘(“ 1)

11 suffit alors d’appliquer le théoréme 2.20, en tenant compte que t(C ~!)=1(C)™'.
cqfd.

3. Suites spectrales quasi-basiques

3.1. Etant donné un entier r, un A-r-complexe bigradué¢ E est une famille de
A-modules E, , pour p, geZ, et ’homomorphismes d, ,:E, ,—~E,_, ,:+,-1 tels que
dy_t, q+r—104, ,=0 pour tout p, g. Les modules d’homologie de E sont définis par
H, (E)=Z, ,(E)/B, ,(E), ouZ, ,(E)=Kerd, ,et B, ,(E)=Imd,,, ,_,+;. Oncon-
sidérera E comme un complexe ordinaire (E, d;) en posant E,=@®,,,-; E, , ¢t
=@ p4 =1 dp, 4 Siles modules E, , et H, ,(E) sont tous g-b, alors les modules E; et
Hy(E)=®p+4=k Hp, 4(E) le sont aussi canoniquement, de sorte que 7(E) est détermi-
née.

D-5D
3.2. Un A4-r-couple exact fini €:}\ /; est formé par deux A-modules bigradués
E

D=(D, ,) et E=(E, ), pour p, geZ, et par trois homomorphismes bigradués
i= (ip,q:Dp,q_’DpH,q—l)’ j= (jp,q:Dp,q_"Ep-r+1,q+r*l)'
k=(kp,qg:Epg—Dp-1,,);

tels que la suite bigraduée
DLDLELD LD

soit exacte.
L’hypothése de finitude est que E, ,=D, ,=0 dans
p+q<0
chacundescas,p <0
q assez grand, et encore E, , =0 pour p assez grand. Il en résulte que
ip, 4 €St un isomorphisme pour p assez grand, puisqu’alors

Epr1,g=Epri2,q4r-2= 0.
Ainsi, en posant

Dk = lim (DP:k"P’ ip’k_p)’
—

p
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D, est canoniquement isomorphe & D, ,_, pour p assez grand. On considérera €
comme un complexe acyclique, défini par les modules

Cu= @ E,;»Cy:1=Cyy= & D,,,

pt+qg=k pt+q=k
et par les homomorphismes

ip, ® Jp, @ kp,
3k+1 T 3k T ™3k—1-

®3k+2

Il se décompose en somme directe d’un nombre fini de complexes acycliques finis $?,
et d’une infinité de complexes de la forme

0 "’Dp,q“"’:'quH,q—l >0,

p étant assez grand. Nous dirons que le couple exact € est quasi-basique si tous les
E, ,sont g-b, les D, , étant tous g-1. On considérera alors ces derniers arbitrairement
comme q-b, mais de mani¢re que les isomorphismes précédents i, , soient simples.
En particulier, cela détermine D, comme g-b. Le produit [],7($*) ne dépend que
de ce dernier choix, car D, , figure toujours en deux degrés consécutifs dans le com-
plexe €. On posera alors r((S) [Tic(9eton appellera 7(€) la K 1-torszon du couple
exact g-b €, relative aux modules g-b D,.

D-5D
3.3. Etant donné un r-couple exact €:3\ }, on sait lui associer un r+ 1-couple
D5 D E
exact €'\ ./ appelé couple dérivé de €. Pour le construire, on fait d’abord de Eun

El
r-complexe bigradué, en introduisant les homomorphismes d, ,=j,-1, 40kp, 4: Ep, o=
—E,_, t+,-1. On pose ensuvite D, ,=Imi,_; .41, E; ,=H, ,(E), et ondéfiniti’, j', k'
par les diagrammes commutatifs

’ ip—l,q+1 /
D;,,—D,,, Dyt,qe1——D,,4
i'P’q\‘ ‘/ip.q ljp—!,qﬂ 11"1:«

D
ptl,g—1
Zp-r,q+r(E) i EP r,qtr
n,
Zp,q(E)_’Ep.q
kp,q\‘ /k'p,q
’
P—l,q

ou m est la projection canonique. Notons que Dy, défini par lim D), ,_,, est égal & Dy,
puisque i, , est un isomorphisme pour p assez grand. >
D-5D
3.4. LEMME: Soit €:\ /} un couple exact fini dont les modules E, , sont tous
. E .
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g-b. Supposons que les deux couples dérivés successifs €' et €" soient g-b. Alors § est g-b,
et 1(E)=1(C) 1(C") ! relativement aux modules q-b D,.

Preuve: Considérons les diagrammes commutatifs de suites exactes

0

0

0— B, ,(E)"% B, ,(E) —0

0—Kerk, , —Z, ,(E)—Imk, ,—0

v
4
0—Kerk, , —

6

v
El

p,4q

O ¢

0 0

id.

——Imk), ,—0

:

0

0—Kerk, ,—Z, ,(E) —Imk), , ————0

id.

0 Kerk, . —E

p,q

——Im

p,q

E— (]

0—B ~r,qg+r—1 (E)E;*Bp—r,q+r—l(E)_)0

p

0—+Im}'c'

ps4q

v

0—Imk

P, q

0'—)Bp_.r’q+,._1 (E)"—) KCI‘ kp—r,q+r-—1 “"Ke

0

14
—_—
Dp

DP

6

6

Il résulte de I’hypothése et du théoréme 2.2, que tous les modules ci-dessus sont

q-1. En particulier, € est g-

b. Les modules D, ,, D, ,, D’ , sont a considérer comme
P, q b, q psq
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g-b, de la maniére indiquée plus haut. En considérant les modules restant arbitraire-
ment comme g-b, posons:

0, = K'-torsion de 0—Kerk, ,—~Z, ,(E)—Imk, , ——0
Vpg = » » 0—Kerk, ,—E, ,—Imk, , ———0
Up, g = » » 0—Kerk, ,—E, —Imk, , —————0
Ay, g = » » 0—»B,,(E)—Z,,E)—E, , —0
Po.a= » » 0—2Z, (E) »E, ;—B,_, gr-1(E)—0

Les autres suites exactes peuvent étre supposées simples. Le lemme 2.17 appliqué aux
. . _ -— 1 . — 1 TR

deux premiers diagrammes, donne a, ,=6, .V, ,€t B, =M1, .0, .. En utilisant la

définition, on a

©(E) = H (CH: A
T((S) I—I 'ue(p+q+ 1) , T (G ) _ H vs(p+q+1)

et la formule annoncée résulte des relations précédentes. cqfd.
D-5D
3.5. Etant donné un 1-couple exact fini €:\ /j» on lui associe, pour tout entier
DS E
r=1,le r-couple exact €":,  /j-, obtenu par r— 1 dérivations successives. Les r-com-
Er

plexes bigradués (E', d"=j"-k") forment ce qu’on appelle la suite spectrale de .
Pour r assez grand, d"=0 puisque d" applique E,, dans E,_, ,,,_;, €t que
E,_, 4+r-1=01implique E’,_, ., ,_,=0. Alors E" ne dépend plus de r, et on I'écrit E.
Quant au complexe ¢, il devient lorsque r est assez grand somme directe de suites
exactes courtes

r
0—D ptr—2,q9- r+2""')Dp+r 1,q— r+1—)E —0.

En effet, on a

Keri" = Im(Ep+r 1 q r+2£:) p+r-2,q—r+2)’
Im] = KCI‘(E -1, q)
et

r — foi...Q
Dp—l,q _Im(Dp—r,q+r-—1 ’Dp—-l,q)’

mais E7,,_, ..., devient nul, comme précédemment, ainsi que D,_, ;4,-;- Par
deﬁn1t10n D', 1 4-r+1 €St un sousmodule de D, ,_,+1, qQui n’est autre que D,
pour r assez grand et k=p+gq. Donc D}, ,—,+; devient canoniquement un sous-
module Df de D,, tel que D{<=D?*!, ce qui détermine une filtration de D,. Les suites

exactes 0—» D! ' > D> EQ,_ p—+0 déduites de €" donnent des isomorphismes ca-
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noniques ¢, ,_,:D}/Dy~ '~E », k- p» C’est-a-dire un isomorphisme ¢ dumodule gradué

Gr D,, associé a la filtration de D,, avec E*.

3.6. DEFINITION: La suife spectrale (E") d’un I-couple exact fini € sera dite
quasi-basique, si les modules E}, , sont tous q-b, et de maniére indépendante de r, pour
r assez grand.

3.7. Cette définition a les conséquences suivantes:

1°) 7(E") est déterminé pour tout r, puisque les modules d’homologie E"*! de E"
sont g-b. De plus t(E")=1 pour r assez grand.

2°) les modules E, , sont canoniquement g-b.

3°) les couples dérivés & de € sont tous g-b. I suffit de le voir pour r assez grand,
d’aprés le lemme 3.4, autrement dit que les modules D% sont g-1, D, étant g-b. Or via
lisomorphisme ¢, GrD, est q-b. D’aprés le théoréme 2.2, si le module gradué d’un
module filtré est g-1, alors les termes de la filtration le sont aussi. En exigeant que les
suites exactes 0—D2~'—> DP?— DP/DP~' -0 soient simples, chaque module D?Z devient
canoniquement g-b. Ainsi, 7(E") est déterminée pour tout r, et 7(€")=1 pour r assez
grand.

3.7. LEMME: Si un 1-couple exact fini € a une suite spectrale g-b, alors t(C)=
=[[%1 (£

Preuve: D’aprés le lemme 3.4, on a t(E")=1(€")z(C"*")~! pour tout r, donc
t(C€)=]]2, t(E"). Mais €'=C.. cqfd.

3.8. Cas particuliers

a) Supposons que E% ?=0 pour ¢>0. Alors E}, ,=0 pour tout r>2 et ¢>0.
Comme d" applique E', , dans E',_, ,_,, d"=0 pour r >2 et alors E""'=E". Donc
E? =Ep. o Par ailleurs, E?, estisomorphe & DF/D;™ ! ol k=p+gq, ce qui montre que
DE/DP~'=0 pour p<k, Cest-a-dire D=0 pour p<k. On obtient ainsi E; ;= D;.
En supposant que les modules g-b E} , sont indépendants de r pour r =2, on aura
t(E")=1 pour r >2, donc (€)=t (E").

b) Supposons qu’il existe des entiers s et ¢, tels que 1<s<t, et E5 =0 pour g#0
ou t. Alors Ef, =0 pour tout r>s, et g#0 ou t. Comme d" applique Ej, , dans

v g+r—1,d"=0pourr =s,sauf pourr=1etr=t+1.Donc E'*! = E**! etE't2=E".

Le complexe E'*! est somme directe des suites

B 22 W ARNE a8} '
0 >E »E, " —1,0—0,

P, 0
donc Kerd'*'=E"*3, Coker d'*'=E}"}_, , et on obtient ainsi une suite exacte
L, O s+l dttl ot ]
0 "*p,0 ’Ep,O ’Ep~t—1,t"' "Ep-—t-l,x"'—"o-
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Si y, désigne sa K'-torsion, on a t(E'*")=]],y"?’ par définition de t(E'*!). Par
ailleurs, 'isomorphisme ¢:GrD~E® montre que Df=D!"' pour. p#k ou k—1,
cest-a-dire DZ=0 pour p<k—t, D2=D}"' pour k—t<p<k. On en déduit
EP o~ Dy/Di™", EY., ,~D;", et une suite exacte canonique

st1 dttt ps+1 N s+1
G: — Dy B o —Ep 1, »Dy_4 »Eg 10—,

composée des suites exactes écrites plus haut et des suites exactes simples 0> E;>, ,—
»>D,—Ep ;—0. En graduant ® par Gy, =E"}, ®341 =D, ©34,=E;*}, ona
1(®)=]],73® par définition de 7(®), donc t(E**')=1(®). En supposant que les
modules g-b E}, , sont indépendants de r pour r>s, excepté pour r=1etr=¢+1, on
aura t(E")=1pour r#1, t+1, donc 1(€)=1(®) t(E)[[}Z T (E"). Si s<2, le dernier
produit tombe, ce qui donne ©(€)=1(®) 7 (E").

4. Filtrations quasi-basiques

4.1. Etant donné une filtration finie d’un complexe fini C, c’est-a-dire une suite
croissante de sous-complexes 0cC°cC!'c---=C"=C, on lui associe le 1-couple
exact fini

D-5D
¢ , formé par les modules
Ny P
E
D,,=H,.,(C"),E, ,=H,., (CP/CP™") et par les homomorphismes

-1, ip-1,q . ip, q 1\ kp, ,,—a -1
HP‘HI(CP —__-——_)Hp+q‘(cp) . p+q(c /Cp ) p+q—1(cp )

tirés de la suite exacte d’homologie $? de C? mod.C?~*. On a alors D,=H,(C) et
D} =Im (H,(C?)—H,(C)). La suite spectrale de €, complétée par le module bigradué
Eg,q=C" +,I/CI,“, s’appelle la suite spectrale de la filtration. Lorsque les modules
E, ,et E} sont tous g-b, la K'-torsion des complexes C?/C?™* est déterminée.

4.2. DEFINITION: On dira qu’une filtration d’'un complexe C est quasi-basique,
si les modules E', , , de la suite spectrale associée sont tous q-b, de maniére indépendante
de r pour r assez grand, et que t1(C?/CP~1)=1.

4.3. Les modules g-b E ;_, déterminent, d’une maniére déja vue, les modules C}
comme g-b. Quant aux modules D, - ,=H,(C?), ils sont a considérer comme g-b,
de maniére indépendante de p pour p assez grand. Dans ces conditions, les K*-torsions
7(C) et 7(C”) sont déterminées.

4.4. THEOREME: Soit C un complexe fini, muni d’une filtration g-b, et (E") la
Suite spectrale associée. Alors t1(C)=]],=1 ©(E").
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Preuve: En vertu du théoréme 2.20, on a t(C?)=1(C?~ ') 1(H?), donc t(C)=
=[], 7(9?). Mais le second membre est 7(€) par définition, ou € est le couple exact
associé a la filtration. La formule annoncée résulte alors du lemme 3.7. cqfd.

5. Applications géométriques

5.1. Rappelons d’abord que pour toute paire (X, Y) de CW-complexes, Y X,
et toute action cellulaire d’un groupe I sur (X, Y) qui est libre a syst¢éme fondamental
fini sur X— Y, on définit le ZI'-complexe basique C(X, Y) des chaines cellulaires de
X—Y, dont ’homologie n’est autre que I’homologie singuliere H, (X, Y) (cf [1] ou
[2]). Si celle-ci est g-b, éventuellement aprés une extension des scalaires 0:ZI'— 4,
alors la O-torsion 7,(X, Y) est déterminée, dans le groupe quotient de K (A) par le
sous-groupe engendré par les unités 0(I") = 4.

5.2. PROPOSITION: Soit Yc X, X, c--- < X,=X une suite croissante de sous-
complexes invariants, telle que H, , ,(X,, X,_,)=0 pour g>0. Alors la filtration induite
sur C(X, Y), est canoniquement g-b, et 14(X, Y) est égale a la O-torsion du complexe
q-b E':

-‘*Hk(st Xk-—1)9—a*Hk—1 (Xk—h Xk—z)a‘—’

Preuve: D’abord, les modules E, ,=C,.,(X,, X,_;), sont basiques. Ensuite les
modules E },,0 =H,(X,, X,_1)e sont g-1 d’aprés le corollaire 2.7, appliqué au complexe
C(X,, X,-1)s. La condition 74(X,, X,_;)=1 les détermine canoniquement comme
g-b. Enfin E7  étant nul pour ¢>0,0ona E 2 o=H,(X, Y),, supposé g-b. La proposi-
tion résulte alors du théoréme 4.4. cqfd.

5.3. Considérons maintenant une paire polyédrale (K, L) munie d’une action de
I, libre avec systéme fondamental fini sur K— L, et un fibré X sur K, de fibre S",
n>1. Pour toute décomposition polyédrale de S”, X est un polyédre dont les cellules
sont les produits des cellules de K par celles de S". Le sous-fibré Y induit sur L est
un sous-complexe. Supposons que I' agisse cellulairement sur X, en induisant 1’action
donnée sur K via la projection X— L. Alors cette action est libre, & systéme fonda-
mental fini, sur X— Y. Soit X, le sous-complexe invariant de X induit sur K UL?, K”
étant le p-squelette de K, et E" la suite spectrale associée 2 la filtration ... C(X,_1, Y)
< C(X,, Y).... Les modules Ej =C,,,(X,, X,_,;) sont basiques. Les modules
E; ,=H,.,(X,, X,_,) sont canoniquement isomorphes, par homotopie, excision et
la formule de Kiinneth, a3 H,(K?, K?"')®H,(S"™) (voir aussi chap. 9.2 de [5]). En
particulier, E, ,=0 pour g#0 oun,et E; o~ H,(K* K*"")=Cy(K, L), E,t,,sz(K",
K* )= C,(K, L). En tenant compte des différentielles et des degrés, on a un isomor-
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phisme de complexes E'~C(K, L)®C(K, L)™". Comme E>=H(E"), on a E} o~
~H,(K, L), E{ ,~H(K, L). D’aprés 3.8 b), la suite exacte & s’écrit pour s=1 et
t=n,

—H (X, Y)->H(K,L)>H,_,_ (K, L)> H,_, (X, Y)—

5.4. Faisons maintenant une extension des scalaires 0:ZI'—-A4 qui respecte les
suites exactes et qui rende les modules H, (X, Y) et H, (K, L) g-b. Alors les 0-torsions
75(X, Y) et 74(K, L) sont déterminées, ainsi que celle de la suite exacte ®,. On posera

175(©) =1 (Gy).

5.5. PROPOSITION: Soit (X, Y) une paire polyédrale et 0:ZI — A un homomor-
phisme vérifiant respectivement les hypothéses 5.3 et 5.4. Alors

Ty (X, Y) = Ty (K, L)x(sn) To ((5) B

Preuve: D’aprés ce qui précede, la suite spectrale (Eg) est g-b. On I’a vu en effet
pour r=0, 1 et 2. Pour r=o0, cela résulte de la suite exacte g-b &4, dans laquelle E°
figure comme cycle. Maintenant t,(E")=1,(K, L)* si n est pair, et 14(E*)=1 si n est
impair, autrement dit 74(E')=14(K, L)**". D’aprés 3.8 b), on a 14(X,Y)=
To(E') x 15(®). cqfd.

5.6. Notons que, si le fibré est trivial, on a H, (X, Y)~ H (K, LY®H,_,(K, L) par
la formule de Kiinneth, et ® se décompose dans les suites exactes triviales
0-H,_,(K, L)>H,(X, Y)-H,(K, L)—0. Si les modules H,(K, L), sont g-b, les mo-
dules H,(X, Y) le sont aussi canoniquement, et 7,(®)=1. Alors 7,(X, Y) et 7,(K, L)
sont déterminée simultanément et 7,(X, Y)=1,(K, L)*©",

II. Deformations Formelles

Notre but ici est de donner une description trés précise des équivalences homoto-
piques simples, améliorant par une voie indépendante le résultat de Wall obtenu
dans [7]. Pour cela, nous aurons besoin de relativiser la théorie classique du type
simple d’homotopie, ce qui conduit par la méme occasion & une généralisation de
celle-ci. Nous choisirons [7] comme référence de base pour ce texte.

1. Opérations fondamentales
1.1. Etant donné un CW-complexe relatif (X, 4) et un groupe I', on notera (X, 4;

I') ce CW-complexe muni d’une action cellulaire de I' admettant un systéme fonda-
mental fini de cellules dans X-A. Lorsqu’on attachera une A-cellule e* & (X, 4; I') par
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une application ¢, on attachera simultanément toutesles A-cellules y x e, yeI', par y. ¢,
ce qui donnera de nouveau un CW-complexe relatif (XUl xe, 4;I). Avec cette
catégorie de complexes, il nous faut reprendre la définition classique des déforma-
tions formelles élémentaires. Ainsi, considérons le disque standard D* comme formé
de ’hémisphére sud D*~ ! et deés deux cellules e* ™! = D*~ ! et e* = D*. Pour toute appli-
cation continue

¢:(D*71, 847 (XA, X272,

ou X* est le k-squelette réunion de A et des cellules de dimension <k, on peut former
le CW-complexe relatif (X U, D*, A).

1.2. DEFINITION: On appelle expansion élémentaire de dimension A de (X, A; I')
l'opération attachant a (X, A; I') un disque D* par ¢|D*~", ainsi que tous les disques
y x D* par yo.¢, yeI'. L’opération inverse est appelée contraction élémentaire de dimen-
sion A.

'1.3. La projection orthogonale de D* sur D** détermine une rétraction par
déformation équivariante de (X UI'x D*, 4; ') sur (X, A; I'). Ainsi, 3 chacune des
deux opérations précédentes, on peut associer une équivalence homotopique équi-
variante: I’inclusion canonique X—X UTI x D* pour la premiére, et la rétraction
précédente pour la seconde. Toute suite finie d’expansions ou contractions formelles
élémentaires est appelée une déformation formelle; il lui est associé de manieére naturelle
une équivalence homotopique équivariante.

' 1.4. DEFINITION: On dira qu'une équivalence homotopique équivariante est
représentable par une déformation formelle, si elle lui est associée, a homotopie preés.

1.5. A toute équivalence homotopique équivariante f:(X, 4; I')—»(X’,4"; '), on
sait associer une W-torsion t(f), dans le groupe de Whitehead Wh(I") (cf [2] ou [3]),
et on dit que fest simple si 7(f)=1 (nous notons multiplicativement le groupe abélien
Wh(T’)). On vérifie aisément que I’équivalence homotopique associée a une déforma-
tion formelle est simple. Comme 7(f) est invariante par homotopie, il en est de méme
pour toute équivalence homotopique représentable par une déformation formelle.

1.6. Reprenons la définition suivante due & Wall (voir [7]): soient ¢, et ¢, deux
applications continues de S*~! dans X*~!, qui sont homotopes dans X*. L’opération
qui transforme (X U 4, I'x D*, A; ') en (X Uy, I x D*, A;I') sappelle un glissement
formel élémentaire, de dimension A. En fait, cette derniére opération est composée
d’une expansion suivie d’une contraction élémentaire, de dimension A+ 1 (voir [7])-
L’équivalence homotopique associée f induit un isomorphisme des ZI'-complexes
basiques f,:C(Xo, Af>C(X,, A), représenté en chaque degré par une matrice
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élémentaire, relativement a des bases cellulaires. Ces derniéres bases sont définies
comme celles qui correspondent canoniquement & un systéme fondamental de cellules
orientées de X;— A. L’assertion résulte du diagramme commutatif

0— Ck(X, A)"—) Ck(XO’ A)_') Ck(Xo, X)""O
id.l f*l Sx
0— G (X, 4)— Ci (X4, 4)— Ci(Xy, X)—0

ot Ci(X;, X)=0 pour k+#41, C,(X;, X) admettant un élément de base unique [e}],
tel que £ [eg] = [e]].

1.7. Si ’homotopie, qui définit un glissement formel élémentaire de dimension 4,
a lieu dans le (A—1)-squelette X*~1, le glissement sera plus précisément appelé une
isotopie formelle élémentaire. Plus généralement, soit (X, AxI; I') un CW-complexe
relatif, obtenu en attachant successivement des cylindres D* x I par des applications

S UxI—AxI U D*xI=X%"1,

u<ai

Chaque cylindre introduit les trois cellules ef=D*x0, e?=D*x 1, e**'=D*x I. En
outre, on suppose que ’application invariante 6: X— I, égale a la projection canonique
sur 4 x I et sur les cellules précédentes, est continue. Autrement dit, si X’ et 6’ sont ob-
tenus en attachant les k premiers cylindres, I'application d’attachement ¢:S*~ x I
- X’ du k+1°™° cylindre doit &tre compatible avec 8’ et la projection sur 1. Alors,
pour tout tel, (071(¢), 4; I') est un CW-complexe relatif.

1.8. DEFINITION: En posant X,=0"1(0), X, =0"1(1), l'opération qui trans-
forme (X,, A; ') en (X,, A; I') sera appelée une isotopie formelle. Deux cellules e} et
et de (X,, A) et (X,, A) respectivement seront dites adjacentes si elles proviennent d’un
méme cylindre.

1.9. 11 est clair qu’une telle opération se compose d’expansions formelles de
(XoUAXI AXI; I') a (X, AxI; T') et de contractions formelles de (X, AxI;I') a
(X, VAXT, AXI; T ). L’équivalence homotopique associée induit un isomorphisme
des ZI-complexes basiques C(X,, 4)= C(X;, 4), qui est cette fois représenté en
chaque degré par la matrice unité, relativement a des bases cellulaires.

1.10. LEMME: Soit (Y, A; I') un sous-complexe de (X, A; I'). Alors toute isotopie
formelle de (Y, A; ') se prolonge a (X, A; I').

Preuve: Posons Y=2Z,, et soit (Z, A x I; I') un CW-complexe relatif, muni d’une
application 0:Z—1I, déterminant une isotopie de (Y, 4; I'). On peut supposer que
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X=YU ¢e‘1. Il existe une rétraction par déformation équivariante r,:Z—Z, tel,
telle que GorY)=t, ro=identité r,(Z®)=Z®. On attache alors & Z un cylindre
D* x I par Papplication ¥:S* ! xI-Z, Y(x, t)=ro¢(x). cqfd.

1.11. COROLLAIRE: Pour toute déformation formelle D de (Y, A; ') a (X, A; T)
et toute isotopie formelle de (Y, A; ') a (Y', A; T'), il existe une isotopie formelle de
(X,4;T)a(X’, A;T),ou (X', A; I') résulte de (Y', A; I') par la méme suite d’opéra-
tions élémentaires que celle qui compose D.

Preuve: Dans la démonstration précédente, il suffit de remplacer S*~! par D* 1.
cqfd.

1.12. Rappelons maintenant le lemme classique suivant, dit lemme des bases (voir
[7]): soit (X, 4; I') un CW-complexe relatif, et (¢;*) une base du ZI'-module basique
C,(X, A), =2, qui se déduit d’une base cellulaire par une matrice élémentaire. Alors
il existe un glissement formel de (X, 4;I') 3 un CW-complexe relatif (X', 4; I') tel que:

1°) X*~1 reste inchangé

2°) lisomorphisme induit C(X, A)—»C(X’, A) est représenté en degré A par la
matrice unité, relativement a (e/*) d’une part, et une base cellulaire de C,(X’, 4)
d’autre part, et en degrés > A par un produit de matrices élémentaires relativement a
des bases cellulaires. Autrement dit, (e}*) est une base cellulaire pour C,(X’, 4).

3°) la dimension du glissement est <dim X.

11 faut noter qu’on entend par glissement toute suite finie de glissements formels
élémentaires définis sur un sous-complexe et prolongés au complexe entier.

2. Décompositions des équivalences homotopiques simples

2.1. Nous avons vu qu’un glissement formel, resp. une isotopie formelle, est
représenté par un produit de matrices élémentaires, resp. par la matrice unité. Nous
allons voir que cette propriété est caractéristique, lorsque les CW-complexes relatifs
considérés (X, A; I') vérifient les hypothéses suivantes:

(i) A et X sont 1-connexes

(ii) (X, A) ne contient pas de cellules de dimension 0 et 1. Cette restriction exclut-
évidemment le cas 4=¢.

2.2. PROPOSITION: Soient (X, A;T) et (X', A; I") des CW-complexes relatifs,
vérifiant (i) et (ii), et f: (X, A; ') (X', A; I') une équivalence homotopique équivariante
relative @ A. Si celle-ci induit des isomorphismes Ci(X, A)= C, (X', A), représentés par
la matrice unité relativement a des bases cellulaires, alors f est représentable par une
isotopie formelle.
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Preuve: Ordonnons les cellules d’un systéme fondamental fini de (X, 4; I'), resp.
de (X', A;I'), par dimension croissante et de sorte que f, [e;]=[e;]. En posant
X,=A V<, I xe, X,=AU,;,I Xe], supposons par induction quef[ X,_; détermine
une équivalence homotopique f: X,_; =X, _,, représentable par une isotopie formelle
(Z,-1, AxI), de paramétre 0:Z,_;—1. Cela signifie que f [ X,_, est homotope a
r|X »—1, Ol 7 est Paboutissement d’une rétraction par déformation r, de Z,_, sur
X',_, telle que Oor,=t, ror,=r. On peut supposer que f|X,_, =r|X,_;. Soit 1>2la
dimension des cellules e, et e,. Par approximation cellulaire, on peut supposer
f(X,) =X'*. Comme X, _, estsimplement connexe (pour A=2il a le type d’homotopie
de AvS?v...vS?) lisomorphisme de Hurewicz appliqué a la paire (X4, X;_,)
montre qu’il existe une homotopie /4 entre les applications fo® et @' de la paire (D,
S*-1) dans la paire (X'4, X,_,), ol @ et &' sont des applications caractéristiques
pour e, et e, respectivement. Il y a donc une isotopie (Z’, X, x I; I') transformant
X, -1 U,.sI xe*en X,. L’équivalence homotopique associée f* est I'identité sur X ,_,,
égale 3 @' sur un disque D* concentrique 2 €%, et égale & h/S*~! x I sur la couronne
restante. Comme dans le lemme 1.10, I'isotopie Z,_; se prolonge en une isotopie Z”,
transformant X, en X, ; U, 4T xe* L’équivalence homotopique associée f” est
donnée par r (ou f) sur X,_,, par I'identité sur un disque D* concentrique 2 e,, et par
f"(x, t)=ro®(x) sur la couronne S*~! x I restante. Ainsi, f'of"|é, est donnée par ¢’
sur D*, par 4| S*~! x I'sur une couronne entourant D*dans e, et parf”’ o f” (x, 1) =r «®(x)
sur la couronne restante. En utilisant ’homotopie 4 de @’ & f®, on voit qu’il existe
une homotopie de fo@ a f o f” | é,, constante égale a r -® sur § 4~1 Dot une homoto-

pie de f'of" & f| X,,, ce qui achéve le pas d’induction. cqfd.

2.3. COROLLAIRE: Si dans l’énoncé de la proposition précédente on remplace
la matrice unité par un produit de matrices élémentaires, alors f est représentable par
un glissement suivi d’une isotopie formels, ou vice-versa. De plus, la dimension du glisse-
ment est <sup {dim (X, 4), dim(X’, A)}.

Preuve: Par induction, supposons qu’il existe un glissement formel de (X, 4; I'),
a un CW-complexe (X,_;, 4; I'), tel que I’équivalence homotopique associée induise
un isomorphisme C(X, A)=>C(X,_,, A), représenté par la matrice unité en degrés
<4, relativement a des bases cellulaires. D’aprés le lemme des bases (1.12) il existe
un glissement formel de (X, _,, 4; I') 2 un CW-complexe (X, 4; I'), tel quela derniere
hypothése soit vérifiée jusqu’en dimension A. Ce procédé nous rameéne au cas envisagé
dans la proposition précédente. cqfd.

Le résultat essentiel est le suivant:

2.4. PROPOSITION: Soient (Y, A;T') et (Y', A; I') des CW-complexes relatifs
vérifiant (i) et (ii) (c¢f 2.1) et f:(Y, A; T)—(Y', A; ') une équivalence homotopique



434 SERGE MAUMARY

simple, relative a A. Alors il existe des expansions formelles transformant Y en X, Y’
en X', ainsi qu'une équivalence homotopique simple g:(X, A; I')—(X’, A; I') telles que:
1°) g induit un isomorphisme C(X, A)—C(X', A), simple en chaque dimension

2°) g | Y est homotope a f dans (X', A)
3°) dim(X, 4)=dim(X’, )< N=sup {dim(Y, 4), dim(Y’, 4)}.

Preuve: Par induction, supposons que f induise des isomorphismes simples
G (Y, A)SC (Y', A) pour k<A<N. Cela est évidlemment vrai pour A=1. Pour 1>2,
la restriction (Y21, 4)—(Y’*"1, A) de f induit des isomorphismes en homologie,
puisque celle-ci est égale a I’homologie des complexes C(Y, 4) et C(Y’, A) tronqués
en dimension > A, entre lesquels finduit un isomorphisme. Comme les espaces 4, Y*~1,
Y'*~1 et les paires (Y271, 4), (Y'*~1, 4) sont 1-connexes, il en résulte que f| Y*~*
est une équivalence homotopique équivariante (Y*~1, 4)—(Y’*~1, A). 1l existe donc
un inverse homotopique équivariant f': Y'— Y de f, tel que fof”’ | Y’*~! est homotope
a Iidentité dans Y'*~1, Soient e, U---Ue, et €] U--- Ue,, des systémes fondamentaux
de A-cellules de (Y, 4; ') et (Y', A; ') respectivement. En considérant le disque
standard D**! comme un CW-complexe formé des trois cellules e S*=0D**!,
e*=5%—¢e% et ¢**1=D**!, attachons n’ disques D}** 4 Y par identification des points
&) avec un point ae 4. Pour tout yeT, attachons y x D} ** au point ya, et soit (X, ¥; I')
le CW-complexe relatif ainsi obtenu. Cette opération est évidemment une expansion
formelle. De méme formons (X, Y’; I') en attachant 3 Y’ n disques D} "' =¢? Ue} U
Ue*!, de maniére équivariante. Tout d’abord, on va prolonger ’application Y*~*/,
—Y’¢ X’ en une application équivariante Y*£ X’ telle que g, [e;]=f, [e;] + [¢}] pour
toute cellule e,. Choisissons une application caractéristique @ : D*— Y pour une /l-cellule
e; de Y, et soit ¥:D*— X’ ‘une application déterminée par '

1°) fo®oh sur un petit disque concentrique D3 = D?*, ou 4 est une homothétie de
D} sur D*, :

2°) une application caractéristique pour & sur un petit disque D} = D* disjoint du
précédent.

3°) un chemin joignant f(é;) au point a dans Y'*~!, sur un segment rectiligne
joignant D a D, dans D*— D} — D},

4°) fo® | S*~! sur §*"1=0D%

5% Y (D*—Di—D)cy'*-1,

It suffit alors de poser g= ¥ sur e;. En procédant de méme pour toutes les cellules
e;, on obtient le prolongement désiré. Maintenant, on va prolonger g en une applica-
tion équivariante 4: X*— X', telle que h, [e}]=(1— fy of3) [e]1=) a; [&]] ou les q;e ZT
sont déterminés par f; [¢]]=Y a; [e}], et ;0. Posons a;=) )y, les entiers pJ; étant
non nuls, et choisissons une application caractéristique @’ pour la cellule orientée
fixée ¢}, et une application ¢; pour la cellule orientée vanable et Soit ¥:D*=X'
une application déterminée par o
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1°) sur un petit disque, homothétique par 4, D¢ = D?, ¥ représente (&' — fofs®")oh
dans le groupe =, (Y’%, Y'*"1), qui s’identifie canoniquement avec I’ensemble des
classes d’homotopie d’applications (D?*, S*~1)—»(Y'4, Y'*"!) en vertu de la 1-con-
nexité de Y'471,

2°) surun petitdisque D; , = D*— D}, associé a un'entier Y, ¥ est égale & ul; yo®;,
les disques Df,-),) étant mutuellement disjoints. ‘

3°) sur un segment rectiligne I; ;, joignant Dia 13?,-, , ¥ estun chemin dans Y4~ 1
reliant ¥ (ﬁé) au point ya. Les segments I; ,, sont pris mutuellement disjoints.

4°) sur S*~1=0D*, ¥ est constante sur le point a. ‘

5°) ¥(D*—Do— U D )= Y1,

L’existence d’une telle application ¥ résulte du fait que fof” | Y’*~1 est homotope
a I'identité dans Y'*~!, En posant A=V sur e’}, et en procédant de méme avec les
autres cellules &}, on obtient le prolongement désiré. Comme 4 | ¢} est homotope & 0
dans X', on peut prolonger 2 Y* UT' x &i*'. Enfin, & | Y* étant évidemment homo-
tope a f | Y* dans X’, on peut prolonger 4 4 tout X. L’homomorphisme induit
he:C,(X, A)»C,(X’, A) a la forme

C,(Y,4) @ C,(Y, A)

v 1
C}. (YI’ A)@ C/l (Y’ A)

en identifiant [¢;] avec [e;] et [¢;] avec [e;]. 1l se décompose en deux isomorphismes
((d. + f)®id.). (id. @ (id. — f;)), représenté chacun par des matrices strictement trian-
gulaires. Ceci achéve le pas d’induction. Pour A= N, il résulte du fait que f induit des
isomorphismes C,(Y, A)~C,(Y’, A) pour k<N et des isomorphismes entre
Phomologie des complexes C(Y, A) et C(Y', A) que f induit un isomorphisme
Jen:Cy(Y, A)x Cy(Y’, A). En vertu de la formule (f)=[Ti t(far)*®, e(®)=(—-1)*,
(cf [2]) et de ’hypothése t(f)=1(fu)=1 pour k<N, on a t(fyn)=1. cqfd.

2.5. COROLLAIRE: Soient (Y, A;I') et (Y', A; ') des CW-complexes relatifs
vérifiant (i) et (ii) et f:(Y, A;T)—(Y', A; ') une équivalence homotopique simple.
Alors f est représentable, a une isotopie formelle prés, par la composition d’une expansion,
d’'un glissement et d’une contraction formelles. De plus la dimension de ces opérations
ne dépasse pas sup {N, 3} avec N=sup {dim(Y, 4), dim(Y’, 4)}.

-

Preuve: D’apres la proposition précédente, il existe des expansions, de dimension
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< N, transformant (Y, A; I') et (Y', A; ) en (X, A; ') et (X', A; I') respectivement,
ainsi qu’une équivalence homotopique g:(X, A; I')-»(X’, 4; I') induisant un isomor-
phisme g,:C(X, A)> C(X’, A), représenté en chaque dimension <N par un produit
de matrices élémentaires relativement a des bases cellulaires. En dimension N, I'iso-
morphisme g, : Cy(X, A)~ Cy(X’, A) est seulement simple, mais il suffit de faire une
expansion formelle de dimension sup {N, 3} sur (X, 4; ') et (X', 4; I'), et de pro-
longer trivialement g, pour que la matrice de g, satisfasse la condition précédente.
Alors, d’apres le corollaire 2.3, g est représentable par un glissement formel, a isotopie
prés. Comme de plus, le diagramme

(Y,4;N)L(Y', A;T)
N N
(X,4;T)E5(X'",A;T)

est homotopiquement commutatif, f est bien représentable de la maniére annoncée.
cqfd.

2.6. En ce qui concerne les cellules de dimension O et 1, nous utiliserons le procédé
d’élimination suivant, dd a J. H. C. Whitehead:

Soit (X, A; I') un CW-complexe relatif A-connexe, avec A>1. Alors il existe une
déformation formelle de (X, 4; I') 2 un CW-complexe relatif (X', 4; I') ne contenant
pas de cellules de dimension <A. De plus, la dimension des opérations élémentaires
qui la composent ne dépasse pas A+2.

2.7. Par ce procédé, on élimine de tout CW-complexe relatif (X, A; I') 1-connexe
les cellules de dimension 0 et 1, & I’aide de déformations formelles de dimension <3.
On peut alors reprendre le corollaire 2.5, en y supprimant I’hypotheése (ii), ce qui donne:

2.8. THEOREME: Soient (Y, A;T) et (Y', A; I') des CW-complexes relatifs, A,

Y et Y’ étant simplement connexes, et f:(Y, A; I')>(Y’, A; I') une équivalence homo-

topique simple relative a A. Alors f est représentable a isotopie prés par une déformation

formelle Do CoGoE'oD', ot D et D' sont de dimension <3, C est une contraction et E’

une expansion, toutes deux de dimension < N=sup {dim(Y, 4), dim(Y’, 4)}, et G un
glissement. :
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