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Contributions à la théorie du type simple d'homotopie

par Serge Maumary1)

Ce travail comporte une partie algébrique, et une partie géométrique. La première
a été suggérée par certaines applications de la «torsion de Whitehead», conduisant à

considérer des complexes de modules basiques munis d'une filtration. Le problème
se pose alors de calculer, lorsqu'elle est définie, la torsion de tels complexes à l'aide
de la filtration. Un cas particulier de ce problème est d'ailleurs traité dans [1]. Nous
en avons fait ici une théorie très générale, à l'aide de suites spectrales de couples
exacts. La seconde partie donne une description précise des équivalences homotopi-
ques simples (cf [3]). Bien que, d'une façon indépendante, on retrouve le résultat de

Wall (cf [7]), on précise ici non seulement la dimension mais aussi l'ordre des opérations

formelles qui décomposent une équivalence homotopique simple. Pour cela,

il a fallu considérer des CW-complexes relatifs (X, A), A et X étant 1-connexes, munis
d'une action cellulaire d'un groupe F, admettant un système fondamental fini de

cellules. Cela généralise aussi la situation classique où X est le revêtement universel
d'un CW-complexe fini.

Qu'il me soit permis d'exprimer à M. le Prof. G. de Rham ma profonde
reconnaissance pour ses encouragements constants. Je remercie aussi vivement M. le Prof.
V. Poenaru qui s'est intéressé à mon travail et m'a conseillé dans la présentation de

celui-ci.

I. Torsion de Whitehead et suites spectrales

1. Introduction
Nous commencerons par élargir considérablement la notion de modules quasi-

basiques introduite dans [1]. Ensuite, pour tout complexe fini C, dont les modules Ck

et les modules d'homologie Hk(C) sont quasi-basiques, la ^-torsion t(C) sera définie

dans le groupe abélien multiplicatif^1^) (cf [1]). Par ailleurs, pour tout complexe
fini filtré C, les termes Er de la suite spectrale associée peuvent être considérés canoni-

quement comme des complexes (monogradués). S'ils sont formés de modules quasi-

basiques, indépendants de r pour r assez grand, alors x(Er)eKi(A) est déterminée

pour tout r, et devient égale à 1 pour r assez grand. Dans ce cas, les modules Ck et

Hk{C) sont canoniquement quasi-basiques, et on aura le

THÉORÈME (4.4): Si la suite spectrale (Er) d'un A-complexe fini filtré C est

l) Ce travail a été soutenu en partie par le Fonds National Suisse de la Recherche Scientifique
(crédit n° 4241).
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formée de modules quasi-basiques, indépendants de r pour r assez grand, alors t(C)
{{rT{Er)dans K\A).
Nous nous bornerons à examiner deux cas particuliers de ce théorème (3.8).
a) Si la suite spectrale est dégénérée, c'est-à-dire si E*q 0 pour q > 0, alors t (C)

t(Eï). On retrouve ainsi une version un peu plus générale du résultat obtenu dans

b) Si la suite spectrale est de type sphérique, c'est-à-dire s'il existe un entier s^l
tel que Ep q

0 pour q^O ou s, alors t(C) t(E1)t((5), où © est la suite exacte

graduée canonique

dite «de Gysin».

Applications

PROPOSITION (4.1): Soit X un QKf-complexe fini, Y un sous-complexe rétract
par déformation de X, et Ya Xo cz Xl c • • • c Xn Xune suite croissante de sous-complexes,
tels que Hp+q(Xp+u Xp) 0 pour ##0. Alors la torsion de Whitehead x(X9 Y) est

égale à celle du complexe quasi-basique (acyclique) canonique

—>Hk(Xk+l, Xii)-+Hk-l(Xk, Xk_t)^"••,
où Xk est le revêtement de Xk induit par le revêtement universel de X.

Soit X un CW-complexe fini muni d'une action cellulaire libre d'un groupe F, et 6

un homomorphisme de F dans un anneau A, tel que les y4-modules Hk(X)e déduits de

Hk(X) par extension des scalaires soient quasi-basiques. Soit encore Sn la sphère
standard de dimension «> 1.

PROPOSITION (4.2): Pour toute action cellulaire de F sur XxSn, de la forme
y(x9y) (yx9y'), avec yeF, xeX, yeSn, on a Te(XxSn) xd(X)x{Sn\

Par exemple, si r est un groupe cyclique fini agissant librement sur S2""1"1, alors
le JT-complexe S2n+1 xS2n+1 muni de l'action y(x, y) (yx, yy), yeF, a une 0-torsion
égale à 1.

Nous utiliserons [1] et [2] comme références de base pour ce texte. On y trouve en
particulier les définitions et propriétés du foncteur R1, de la Â^-torsion d'une matrice
régulière et d'une suite exacte graduée de modules basiques, et enfin de la Ël-torsion
d'une équivalence homotopique de complexes basiques.

2. Modules quasi-basiques

2.1. DÉFINITION: On dira qu'un A-module M est quasi-libre (abrégé q-l) s'il
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admet une résolution finie libre (L, s), c'est-à-dire une suite exacte

où les modules Lk sont libres, de type fini.
Notons que, si A est un anneau principal ou local régulier, tout ^4-module de type

fini est q-1. Par ailleurs, un ^-module projectif P est q-1, si et seulement si il existe un
isomorphisme de la forme P®Ar&As. En effet, une résolution libre finie (L, s) de

P est scindée, donc il existe un isomorphisme P®kL2k+1 « ®kL2k- On retrouve ainsi
les modules q-1 au sens de [1].

2.2. THÉORÈME: Si, dans une suite exacte de A-modules O-+M'->M->M"->0,
deux d'entre eux sont q-l, alors le troisième l'est aussi.

La démonstration sera éclaircie par le lemme suivant et ses corollaires.

2.3. LEMME: Soient C et C deux complexes, formés de modules libres de type
fini en degré k pour 0^k<n, et nuls pour k<0 ou k>n.

Soit encore f:C-*C une équivalence homotopique. Alors il existe des complexes
acycliques T et T'', formés de modules libres de type fini, ainsi qu'un isomorphisme

g:C®TteC'®T' homotope àp'ofoi, oùi:C-*C®T et p' :C'®T ->C sont leséquiva-
lences homotopiques canoniques.

Preuve: Supposons, par induction sur k<n, qu'il existe des complexes T et T\
libres de type fini et nuls en degrés >n9 ainsi qu'une équivalence homotopique
g:C®T-+C'®T', formée d'isomorphismes en degrés <k, et homotope à p'ofd
Pour k=0, il surfit de prendre r=r'=0 et g=f. Notons D {Dp d3) le complexe
C© Tet posons Bj Im dj9 Zf Cokerdj+u Hj Hj (D). Avec des notations analogues

pour C'®Tf, on a le diagramme commutatif

k^ et gk-t sont des isomorphismes par hypothèse d'induction. Donc g* est un

isomorphisme. Considérons maintenant le diagramme commutatif

?0

où n et n' sont les projections canoniques. Comme Dk est libre pour k<n9 il existe
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un homomorphisme gk:Drk-+Dk, tel que nogk (gk) 1on'. Alors n'o(l-gkogk) 0,

donc de nouveau parce que Dk est libre, il existe un homomorphisme nk:Dk-*Dk+1,
tel que l-gkogk dk'+iorik.

Soient E et E' les complexes 0->Dk k+1)Dfe->0 et 0~*D'k k*i>D'k->0 respectivement,

où l'indice k+l à l'identité signifie qu'elle est la différentielle en degré fc+1.
Le diagramme commutatif

D'k + i
dk + 2

gfc-1

définit un morphisme de complexes h:D®E'-+D®E, tel que hj=gj pour j<k, et

** (g* + 4+1 o i/i) 0 (id. - gi) ((id. + gfc) © id.) o (id. © (id. - gO) •

Ces deux derniers facteurs étant des isomorphismes, hk en est aussi un. De plus, si

i:D->D®E' et p':D'®E-*D' sont les équivalences homotopiques canoniques, on a

pfohoi=g, donc h est une équivalence homotopique. En remplaçant Tpar T®E' et

T par T'@Ey on achève le pas d'induction. Dès lors, on peut supposer que g est un
isomorphisme en degrés ^n— 1. Dans le diagramme commutatif

^n# et g,,»! sont des isomorphismes, donc gn en est aussi un. cqfd.

2.4. COROLLAIRE: Soit M un A-module q-1, et (K, rj) une résolution de M, de

longueur n, libre de type fini en degré < n. Alors il existe un entier s tel que Kn®As soit

H

Preuve : Soit (L, e) une résolution finie libre de M et (lin\ s) la résolution tronquée,
de longueur n, obtenue en remplaçant Ln par Zw_1 Ker(Lw_1-^Lfl_2). Il existe une
équivalence homotopique/: K->lSn) relevant l'identité de M (cf [4]). Donc, d'après le
lemme, il existe un isomorphisme de la forme Zn.i®ArwKn®A\ Comme Zn.l est
q-1, Zn-i®Ar l'est évidemment aussi, cqfd.
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2.5. COROLLAIRE: Soit 0->M'->M->M"-+0 une suite exacte de modules, M
étant de type fini et M" q-l. Alors M' est de type fini.

Preuve: Etant donné un homomorphisme surjectif e:Am-+M on en déduit le

diagramme commutatif

0 K>A*M

où K= Ker(i?oe). On voit que e' est surjectif, et il résulte du corollaire 2.4 que K est de

type fini. cqfd.

2.6. Preuve du théorème 2.2. Dans un premier cas, supposons que M' et M" sont

q-l, et prenons-en des résolutions finies libres (L', e') et (L", e"), respectivement. D'après
[4], il existe une résolution (K, r\) de M et une suite exacte de complexes 0-*L-*K->
->L"-»0 relevant la suite exacte donnée. Comme Lek est libre, on a Kk&Lk®L'k, donc

Kk est libre de type fini, pour tout k.
Dans un deuxième cas, supposons que M et M" sont q-l. Voyons d'abord que,

pour tout entier n>09 il existe une résolution (K\ rj') de M', de longueur «, libre de

type fini en degrés <n. Pour n= 1, cela signifie que M' est de type fini, ce qui résulte

du corollaire 2.5. Supposons par induction que (K\ rf) existe pour un entier n. Il
suffit alors de montrer que K'n est de type fini. Soit (L", s") une résolution finie libre
de M", et (L"(ll), e") la résolution tronquée, de longueur n. D'après [4], il existe une

résolution (K, rj) de M et une suite exacte de complexes 0->K'-+K-+l!l'(n)-*0, relevant
la suite exacte donnée. Dans 0-+K'n->Kn^>ZZ_ t -»0, Z^_ t est q-l, et Kn est de type fini

en vertu du corollaire 2.4. Donc Krn est de type fini, d'après le corollaire 2.5, ce qui
achève le pas d'induction. Choisissons alors n égal à la longueur de L". Il vient Z^_ x 0,

donc Js^&XR. D'après le corollaire 2.4, il existe un entier s, tel que Kn®As soit q-l.

En ajoutant à K' le complexe 0->As-^*As-+09 on obtient une résolution de M\ de

longueur n+1, libre de type fini en degrés <n, et égale à K^®AS en degré «. En la

composant avec une résolution finie libre de K'n®As, on obtient une résolution finie

libre de M\
Dans le dernier cas, on suppose que M' et M sont q-l. Voyons d'abord que, pour

tout entier n>0, il existe une résolution (K", ri") de M", de longueur n, et libre de type
fini en degrés <n. Pour w= 1, cela signifie que M" est de type fini, ce qui est évidemment

vrai. Supposons, par induction, que (K'\ rj") existe pour un entier n. Il suffit

alors de montrer que K% est de type fini. Soit (L', e') une résolution finie libre de M',
et (L'(ll), e') la résolution tronquée, de longueur n. Comme précédemment, il existe

une résolution (K, tj) de M et une suite exacte de complexes 0-+L(n) -+ K-+K"-*0.
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Dans 0-»ZJî_1-»Xn-*XlI'-+0, Kn est de type fini en vertu du corollaire 2.4, donc K^
est aussi de type fini, ce qui achève le pas d'induction. Choisissons alors n égal à la
longueur de L. Il vient Z'n_x 0, donc Kn^K^. D'après le corollaire 2.4, il existe s

tel que K^@AS soit q-1, ce qui entraîne comme ci-dessus que M" est q-1. cqfd.

2.7. COROLLAIRE: Soit C un complexe fini de modules q-l, qui est acyclique
excepté en un degré X. Alors HX(C) est un module q-l.

Preuve: En appliquant le théorème aux suites exactes 0-»ZJfe->Q->i?ik_1-»0, pour
des valeurs décroissantes de k, jusqu'à fc A+l, on voit que Bx est q-1. De même,
avec des valeurs croissantes de k jusqu'à k=À, on voit que Zx est q-1. Une nouvelle
application du théorème à la suite exacte 0-*Bx-+Zx-+HÀ-+0 montre que HX est q-1.

cqfd.

2.8. Rappelons (cf [1] ou [2]) qu'étant donné un anneau A ayant la propriété:
Ar&As=>r =s, on dit qu'un ^4-module M est basique, s'il est muni d'une famille de

bases finies se déduisant les unes des autres par des matrices de ^-torsion 1.

2.9. DÉFINITION: Une résolution finie libre (L,e) d'un A-module M sera dite
basique, si les modules Lk sont basiques, pour tout k. De plus, deux telles résolutions
(L, s) et (L', s') du même module M seront dites équivalentes, si les équivalences homoto-

piquesf:L-*L relevant Videntité de M sont simples (on sait que cesfsont toutes homo-

topes entre elles, donc ont toutes la même torsion).

2.10. Pour tout y4-module q-1 M, désignons par ^1(M) l'ensemble des classes

d'équivalence de résolutions basiques de M. Le groupe R1 (A) agit sur Ë1 (M) comme
suit: étant donné une matrice régulière P et une résolution basique (L, e) de M dont
on peut supposer que le rang de Lo est égal à celui de P, quitte à ajouter à L un complexe

de la forme 0 -?Arl-^+ Ar -?0 et remplacer P par I J, on effectue le changement

de base de matrice P dans Lo. La classe d'équivalence de cette dernière résolution
basique ne dépend que de celle de (L, s), et de la i^-torsion de P.

2.11. PROPOSITION: L'action canonique de RX(A) sur Ël(M) est simplement
transitive.

Preuve: Soient (L,s) et (L',e') deux résolutions basiques de M, etf:L-+U une
équivalence homotopique, relevant l'identité de M. On peut supposer que la Ë1-
torsion t(/) est égale à celle d'une matrice régulière P, de rang celui de Lo. En effectuant

le changement de base de matrice P dans L0,f devient simple. Autrement dit,
P transforme la classe d'équivalence de (L, s) dans celle de (L', s'), cqfd.
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2.12. DÉFINITION: Un A-module q-l M sera dit quasi-basique (abrégé q-b) s'il
est muni d'une classe d'équivalence de résolutions basiques. Les résolutions de cette classe

seront dites distinguées.

Par convention, le module nul sera considéré comme q-b, la résolution nulle étant
distinguée.

2.13. Etant donné un isomorphisme de ^4-modules q-b u:M&M', on peut relever

u en une équivalence homotopique f:L-+L de résolutions distinguées de M et M'
respectivement. Ce relèvement / est unique à homotopie près, donc la Â^-torsion
x(f)eËi(A) ne dépend que de u. Aussi, on posera t(w) t(/)5 et on appellera t(w)
la Ë1-torsion de u.

2.14. Pour toute suite exacte 0-»M'->M-»M"->0 de ^4-modules q-b, il existe des

résolutions distinguées (L', s'), (L, e), (L"', s") de M', M" respectivement, ainsi qu'une
suite exacte de complexes 0->L'->L-*L"->0 relevant la suite exacte donnée. On le

voit en prenant (L', e') et (L", e") arbitrairement, et en posant L=L@L\ e e' + e",

quitte à ajouter à L un complexe de la forme 0-*Arl-^+Ar-+0 pour que L devienne

distinguée (prop. 2.11). En désignant par Xk la Z1-torsion de la suite exacte de modules

basiques 0-+Lk-+Lh-+L'k-*09 le produit fl*^?*^ °^ e(A:) (—l)k, ne dépend pas des

choix précédents. En effet, si 0-+K'-+K^>K"-*0 est une autre suite exacte de résolutions

distinguées relevant la suite exacte donnée, il existe des équivalences homotopi-
ques f':L'-+K'J:L-+K, f"\L°-*K" relevant l'identité de M', M, M " respectivement,
et formant un diagramme commutatif

(cf [4]). En passant aux complexes «cônes» de ces équivalences homotopiques, on a

un isomorphisme canonique C(/)«C(//)©C(/r/) dont la .^-torsion en degré k est

4/Jfc-i' où fik désigne le J^-torsion de la suite exacte 0-+Kkf->Kk-+K'k'-*Q. Comme/',
/et/" sont simples, on a YUi^k-if^^h c'est-à-dire n^^n*^- Cet élément

sera appelé la R1-torsion de la suite exacte donnée. Lorsqu'elle vaut 1, on dira

que la suite est simple. Si Ton fait agir un élément aeKi(A) sur (L', e') ou (L", s"),

alors Ao devient aX09 et Xk reste inchangé pour k>0. Donc le produit n*^(&)
est une fonction homogène de degré 1 sur ^(M') et Ë1(M/f). On voit de même que
c'est une fonction homogène de degré — 1 sur Kl{M). Par conséquent, si dans une

suite exacte de modules 0-»M'->M-»M'/--*0 deux d'entre eux sont q-b, la condition
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que cette suite soit simple détermine le troisième module comme q-b, de manière

unique.

2.15. DÉFINITION: On appellera complexe quasi-basique un complexe dont les

modules non nuls sont en nombre fini et sont q-b.

2,16. Etant donné un complexe q-b C=(Q, dk) dont les modules d'homologie
Hk sont tous q-b, on voit en appliquant le théorème 2.2 alternativement aux suites

exactes canoniques 0^>Bk-*Zk-+Hk^>0,0-+Zk-^Ck->Bk-i^0, où Bk lmdk+u Zk
Ker<4> que Bk et Zk sont q-1, pour tout k. En les considérant arbitrairement comme

q-b, on obtient des K1 -torsions afc et pk respectivement pour les suites exactes ci-
dessus. Le produit Y\k(^kPk)E(k+1) ne dépend pas des choix faits, car ak est une fonction
homogène de degré 1 sur K1 (Bk), de degré — 1 sur K1 (Zk), et /?fc une fonction homogène
de degré 1 sur J^O^-i) et %l(zk)- Aussi on Posera *(C) n*(aA)£(*+1) et on
appellera t(C) la ^-torsion de C. C'est une fonction homogène de degré (— l)k+1
sur K1 (Hkl de degré (-1)* sur K1 (Q).

2.17. LEMME: Soit

0 0 0

i i i
0->M2>2->M2)1^M2O-^0

I i I
0-^Mi 2-^Mj l-^M1 0->0

i ï i
0-^MOi2-^MO(1-^MOjO-*0

I J I
0 0 0

un diagramme commutatif de suites exactes de modules q-b. Désignons par x\ et t"
les ^-torsions des suites exactes

et

respectivement. Alors
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Preuve: Si les modules sont tous basiques, le diagramme se scinde et la formule
est évidente. Sinon, on peut trouver une résolution distinguée {Lu j, si} j) de Mu p ainsi

qu'un diagramme commutatif entre les Lu j qui relève le diagramme ci-dessus (cf [4]).

Il suffit alors d'appliquer la formule en chaque degré de ce diagramme, cqfd.

2.18. Comme application de ce lemme, on voit que la définition de la À^-torsion

t(C) d'un complexe q-b C, d'homologie également q-b, est autoduale: si a* et /?*

désignent les ^-torsions des suites exactes canoniques 0-*Hk-+Z£-*Bk-1-*0 et

0-+Bk^>Ck->Z£-+0 respectivement, alors x(C) Y\k((xk PtYik+1)- H résulte en effet du

lemme 2.17, appliqué au diagramme

0—*

0—>

0

rz*—*

]r0

0

!-,
r1
1.

J

0

r\

1

0

i—?O

i—»0

2.19. Considérons une suite exacte 0->C'->C->C"-»0 de complexes q-b, dont les

modules d'homologie respectifs Hk9 Hk et Hk sont aussi tous q-b. Graduons la suite

exacte d'homologie associée §, en posant $3k Hk, $>3k+i:=Hk,$3k+2 Hk'. Alors

t(§) est déterminée. C'est une fonction homogène de degré (-1)* sur K1 (Hk) et

et de degré (-1)*+1 sur Kl(Hk).

2.20. THÉORÈME: 5i 0-+C'ACAC%0 est une suite exacte comme ci-dessus,

de Extorsion ak en degré k, alors t(C) t(C") t(C") t(|>) []& <ik)-

Preuve: En utilisant l'homogénéité des /^-torsions précédentes, on se ramène au

cas où t(C)=T(C/)=t(C/f)=o"fe=1. Considérons d'abord les diagrammes commutatifs

de suites exactes canoniques suivantes:
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0 0 0 0 0 0

I I IIIr\ j£ d v d" v (\ f\ 7' u 7 v T C\

¦\ \ I rrr
0 0 0 0 0 0

0 0

i. I

f r.Or ^/z d a 11'

I -I
0 ,ivt >Hk" >Qk ^0

1 i I
0 0 0

ou

Kk Ker(Bk-^B'0, Lk

Mk Im(Hl^Hk)9 Nk

Pk Coker(B;AB,), Qk

d étant Phomomorphisme de connexion dans §. En vertu du théorème 2.2, tous les

modules ci-dessus sont q-1. Les modules Ck, Ck, Ck9 Hk, Hk9 Hk étant déjà q-b,
considérons les autres modules arbitrairement comme q-b et posons :

yk j^-torsion de 0 -* Kk -> Zk -> Mk -> 0

^fe= » » 0—>B'k -^Lk->Nk-+0
vk » » o->z; -*zk-+Lk -^o
X*= » » 0-*Mk-^>Hk->Nk->0
Xk- » » 0—>iVfc->/Jfc—?()*—>0

Les autres suites exactes peuvent d'emblée être supposées simples. En appliquant
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alors le lemme 2.17 aux diagrammes ci-dessus, on trouve 7^fc=/fcv^"1, vfc=l, x'^Hk-
Envisageons un moment le cas particulier où C est acyclique, et où C" n'a qu'un

module non nul C'x'. On a alors le diagramme commutatif

id. ^
U

Les deux suites exactes horizontales sont simples, et l'isomorphisme u\Z'x_x-^Zx^x
est aussi simple. Donc %{d)= 1 d'après le lemme 2.17. Comme Jr> se réduit à l'isomorphisme

d, on a t(§) 1. La formule est ainsi vérifiée dans ce cas. Elle l'est aussi dans
le cas dual, où C est acyclique et C" n'a qu'un module non nul, en utilisant les suites

exactes duales des précédentes, ainsi que la définition duale de la Â^-torsion d'un
complexe q-b.

Revenons au cas général et interprétons les diagrammes commutatifs

0 0 0 0

i \j ij r
0 —+z'k-^Z'k—>0 0—>Z'k-^Z'k —»0

I -I i II0—>Qk+1—+Hk-^>Mk—+0 0—>Mk^>Mk—+0ii il0 0 0 0

comme des suites exactes de complexes (colonnes), entrant dans les cas particuliers
envisagés ci-dessus. Si Rk désigne l'homologie de degré 1 de 0-+B'k-*Zk-^Mk-+0, les

isomorphismes de connexion d:Rk-+Qk+i et ô: Qk+1-^Rk9 respectifs à ces diagrammes,
sont inverses l'un de l'autre. En appliquant la formule à chaque diagramme, on

trouve alors Àkx'k=yk9 où AJk=J^1-torsion de 0-+B'k-+Kk-+Qk+1->09 /^À^-torsion de

0-+Qk+1-*Hk-+Mk'->0. Un raisonnement analogue avec les diagrammes
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0 0 0 0

i
~*~*~*° °^î î ep°

D io«v d v Ci (\ v D îd.v n r\

o-J Li » o i Lï
0 0 0 0

où a> est tel que l'homomorphisme composé Zk+1^^Qk+1-^Pk est induit par d,

montre que la A^-torsion de Q-+Qk+l^>Pk->Bk->0 est À^1. Encore un raisonnement

analogue avec les diagrammes commutatifs

0 0 0 0

\
„

i
_o o

i i
^e

0 0 0 0

montre que Xk~l 1. En rassemblant les relations trouvées, on obtient xix^Zfc- Mais

par définition,

«$)=n x>
A: fc

et comme chaque facteur de ce produit vaut 1, on trouve t(§) 1. cqfd.

2.21. COROLLAIRE: Soit f:C-*Cune équivalence homotopique de complexes
q-b, à homologie aussi q-b. Alors

k

est l'isomorphisme induit parf en homologie.
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Preuve: Considérons la suite exacte canonique de complexes q-b 0-*C"-»C(/)->
-?C"1~>0, où C(f) est le cône de/, et C"1 est le complexe C avec la graduation
C^"1 Q_1. En chaque degré, cette suite exacte est simple, c'est-à-dire vk=\ pour
tout k. La suite exacte d'homologie associée § se réduit aux isomorphismes

A.:Ô3*+3^Ô3*+2. donc t(S) FI *(A.r+1)
k

II suffit alors d'appliquer le théorème 2.20, en tenant compte que t(C"1)=t(C)"1.
cqfd.

3. Suites spectrales quasi-basiques

3.1. Etant donné un entier r, un ^4-r-complexe bigradué E est une famille de

>4-modules Ep$q pour/?, qeZ, et d'homomorphismes dpq\EPiq-*Ep-.rq+r-.v tels que

dp-rq+r^1odpq 0 pour tout p, q. Les modules d'homologie de E sont définis par
HPiq'(E) Zp>q[(E)/BPfq(E), où Zp,q(E) KerdPtq et ^,,(^) Imrfp+ro,_r+1. On
considérera is comme un complexe ordinaire (Ek, dk) en posant Ek=®p+q=:k Ep$q et

dk ®p+q=kdPtq. Si les modules 2sPf€ et Hpq(E) sont tous q-b, alors les modules 2sfc et

Hk(E)= ®p+q=k Hpq(E) le sont aussi canoniquement, de sorte que t(Is) est déterminée.

D-UD

3.2. Un y4-r-couple exact fini (E:J\ ,/j est formé par deux ^-modules bigradués
E

D (Dpq)QtE=(Epq)9 pour/?, qeZ, et par trois homomorphismes bigradués

tels que la suite bigraduée

soit exacte.

L'hypothèse de finitude est que Epq Dp q=0 dans

p + q<0
chacun des cas <0

q assez grand, et encore Epq=0 pour/? assez grand. Il en résulte que

iPt q est un isomorphisme pour p assez grand, puisqu'alors

Ep+l,q ^ Ep-r + 2,q + r-2 0*

Ainsi, en posant

Dfe= lim (DPtk_p>ip>k_p)9
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Dk est canoniquement isomorphe à Dph-P pour p assez grand. On considérera (£

comme un complexe acyclique, défini par les modules

p+q=k p+q=k

et par les homomorphismes

*p, q W JPt 9
p + q k p + q k q=k

II se décompose en somme directe d'un nombre fini de complexes acycliques finis §A,

et d'une infinité de complexes de la forme

« 'Vp.^Dp+Lt-i ><>,

p étant assez grand. Nous dirons que le couple exact (£ est quasi-basique si tous les

EPt q sont q-b, les Dp q
étant tous q-1. On considérera alors ces derniers arbitrairement

comme q-b, mais de manière que les isomorphismes précédents iPtq soient simples.
En particulier, cela détermine Dk comme q-b. Le produit Y[x T tôA) ne dépend que
de ce dernier choix, car Dp q figure toujours en deux degrés consécutifs dans le complexe

G. On posera alors t((T) Y\x t(§a) et on appellera t((£) la ^-torsion du couple
exact q-b (£, relative aux modules q-b Dk.

3.3. Etant donné un r-couple exact (E:JS\ ,//> on sait lui associer unr+ 1-couple
D'^* Dr E

exact (T :fc\ fr appelé couple dérivé de G. Pour le construire, on fait d'abord de E un
E'

/•-complexe bigradué, en introduisant les homomorphismes dpq=jp^lqokPfq:EPtq-^
-+£p-r,,+r-i- On pose ensuite DPtq Imip-ltq+u EPiq Hp>q(E\ et on définit ïj',k'
par les diagrammes commutatifs

P' 9 * « h,

P,MKiq
hP, q\ y/k'p, q

où n est la projection canonique. Notons que D'k, défini par limD^ fc_p, est égal à Dk,

puisque *'p
q est un isomorphisme pour p assez grand. ~J*

D-UD
3.4. LEMME: Soit (£:£\ /) un couple exact fini dont les modules Ep%q sont tous

E
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q-b. Supposons que les deux couples dérivés successifs (£' et (£" soient q-b. Alors (£ est q-b,
et t(2s) t((£) t(C)"1 relativement aux modules q-b Dk.

Preuve: Considérons les diagrammes commutatifs de suites exactes

0 0

O-Kp,

0

0

U Jvci Kpt

0

0

1

0
0

'1'" "
(t

0

i(

1I

k
1 J

0

y
ver/c

i
0

0

0

1

I

0

p r,q+r

0

0

1

1

J
_

0

II résulte de l'hypothèse et du théorème 2.2, que tous les modules ci-dessus sont

q-1. En particulier, & est q-b. Les modules Dpq, D'pq, D'pq sont à considérer comme
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q-b, de la manière indiquée plus haut. En considérant les modules restant arbitrairement

comme q-b, posons :

<jPtq ^-torsion de 0->Ker kPtq-+ZPtq(E)-»Imk'p>q >0

a,,f » » 0->Bp,q(E) -+ZPiq(E)->Ep,q >0

fipq= » » 0->Zp,q(E) ^EPtq-*Bp_r,q+r^(E)-+0

Les autres suites exactes peuvent être supposées simples. Le lemme 2.17 appliqué aux
deux premiers diagrammes, donne Up,q Vp,qVp\ et PPiq ^P,q^pi1r En utilisant la
définition, on a

*(£)=ri /<
p. ^ p, «

et la formule annoncée résulte des relations précédentes, cqfd.
D±D

3.5. Etant donné un 1-couple exact fini (£:£\ ,/J, on lui associe, pour tout entier
Dr£*Dr E

r^ 1, le r-couple exact £r :fc\ /r, obtenu par r — 1 dérivations successives. Les r-com-
Er

plexes bigradués (Er, dr=/okr) forment ce qu'on appelle la suite spectrale de (L
Pour r assez grand, ^=0 puisque dr applique Ep>q dans Ep_r>q+r-l9 et que

Ep-r,q+r-i=0 implique Erp-r>q+r_1=0. Alors Er ne dépend plus de r, et on l'écrit E °°.

Quant au complexe (£r, il devient lorsque r est assez grand somme directe de suites

exactes courtes

En effet, on a

Ker f
et

mais£Ip+r_1 3_r+2 devient nul, comme précédemment, ainsi que Dp^rq+r^i. Par
définition, Drp+r_ltq-r+l est un sousmodule de Z)p+r_1>g_r+1, qui n'est autre que Dk

pour /• assez grand et k=p + q. Donc Z>p+r_1>g_r+1 devient canoniquement un
sousmodule D{ de Dk9 tel que /)£cz/)£+1, ce qui détermine une filtration de Dk. Les suites

exactes 0-»Z>£~1-+D£-^J£'£k_p--»0 déduites de Cr donnent des isomorphismes ca-
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noniques <pPfk-p:Dll^l~* *E™ k_p, c'est-à-dire un isomorphisme (j) du module gradué
GrDk9 associé à la filtration de Dk9 avec E™.

3.6. DÉFINITION: La suite spectrale (Er) d'un 1-couple exact fini Œ sera dite

quasi-basique, si les modules ErPt q sont tous q-b, et de manière indépendante de r, pour
r assez grand.

3.7. Cette définition a les conséquences suivantes:

1°) t(Er) est déterminé pour tout r, puisque les modules d'homologie Er+1 de Er
sont q-b. De plus x(Er)= 1 pour r assez grand.

2°) les modules E*
q sont canoniquement q-b.

3°) les couples dérivés Q? de G sont tous q-b. Il suffit de le voir pour r assez grand,
d'après le lemme 3.4, autrement dit que les modules D\ sont q-1, Dk étant q-b. Or via

l'isomorphisme $, GxDk est q-b. D'après le théorème 2.2, si le module gradué d'un
module filtré est q-1, alors les termes de la filtration le sont aussi. En exigeant que les

suites exactes 0-+Z)\~1 -+D\-*D\\Dl~1 ->0 soient simples, chaque module D\ devient

canoniquement q-b. Ainsi, t(C) est déterminée pour tout r, et t((£r)= 1 pour r assez

grand.

3.7. LEMME: Si un 1-couple exact fini (£ a une suite spectrale q-b, alors t(C)

Preuve: D'après le lemme 3.4, on a T(F')=T((Ef)T(£r+1)~1 pour tout r, donc

r)-Mais ^1=^

3.8. Cas particuliers
a) Supposons que j£5'*=0 pour q>0. Alors £^=0 pour tout r^2 et <7>0.

Comme <f applique ErPtq dans 2?p-r>r-i, rfr=0 pour r^2 et alors £r+1 £r. Donc

EP,q=Eï?,r Par ail^111*8» Ep,q est isomorphe à D l\D{~19oxxk=p +q,ce qui montre que

D%/Dl~1=0 pour /?<fe, c'est-à-dire Df=0 pour p<k. On obtient ainsi EltO&Dk.
En supposant que les modules q-b Erk0 sont indépendants de r pour r ^2, on aura

t(Er)=l pour r >2, donc T((£;)=T(iE:1j.

b) Supposons qu'il existe des entiers 5 et f, tels que 1 <.?<;*, et Espq=0 pour ^ 7e 0

ou t. Alors 2sp)4=0 pour tout r^s, et ^#0 ou /. Comme dr applique ETpq dans

Le complexe Et+l est somme directe des suites

donc Kerdt+i=Et+o, Coker rff+1=£pt.^lft et on obtient ainsi une suite exacte

OE»oo 17S+I d* + 1 r»s+l v coo VAj.^ o ?Ilp>o >&p-t-l,t ^^p-f-l.t >U-
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Si yp désigne sa Â^-torsion, on a ï(Et+i) l\pyPip) par définition de x(Et+1). Par
ailleurs, l'isomorphisme (fr'.GrD&E™ montre que Dkp D{~1 pour p^k ou k—f,
c'est-à-dire Dpk 0 pour p<k-t, Dpk D1kt~t pour k-t^p<k. On en déduit
Ek^DkjDkk~\ Ek_titttD\~\ et une suite exacte canonique

®v n t?s+ l d* + 1v 17S+1 vn vCs+l>/;fc >hkt0 >hk_t..1}t >L>k-i >£*-i,o > *>

composée des suites exactes écrites plus haut et des suites exactes simples 0->2s£°_M--»

-+/)k-»2;fc%-»0. En graduant © par ®3k ECo\ ®3*+i=Ak> ©3*+2 £*-U on a

T(©) rip<ypP) Par définition de t(©), donc T(£'f+1) T(©). En supposant que les

modules q-b Erpq sont indépendants de r pour r^s, excepté pour r= 1 etr=f-h 1, on
aura %{Er)= 1 pour r # 1, t+1, donc t((£) t(©) t(E^lftll x(Er). Si 5^2, le dernier
produit tombe, ce qui donne t((£) t(©)t(£'1).

4. Filtrations quasi-basiques

4.1. Etant donné une filtration finie d'un complexe fini C, c'est-à-dire une suite
croissante de sous-complexes OczC°c:C1cz"-czC" C, on lui associe le 1-couple
exact fini

D-i+D
(£•

y9 formé par les modules

E

Dpq Hp+q(Cp), Ep,q Hp+q(Cp/Cp~l) et par les homomorphismes

tirés de la suite exacte d'homologie £p de Cpmod.Cp~1. On a alors Dh=Hk(C) et

/)f Im(/fk(CJ0-^HJk(C)). La suite spectrale de G, complétée par le module bigradué
E°Ptq Cpp+qlCppi\, s'appelle la suite spectrale de la filtration. Lorsque les modules
E°p

q et Epq sont tous q-b, la À4-torsion des complexes Cp/Cp~1 est déterminée.

4.2. DÉFINITION: On dira qu'une filtration d'un complexe C est quasi-basique,
si les modules Erp+qde la suite spectrale associée sont tous q-b, de manière indépendante
de r pour r assez grand, et que %{CpjCp~l)= 1.

4.3. Les modules q-b E°Pt k_p déterminent, d'une manière déjà vue, les modules C£

comme q-b. Quant aux modules DPfk^p=Hk(Cp), ils sont à considérer comme q-b,
de manière indépendante de/? pour/? assez grand. Dans ces conditions, les ^-torsions
t(C) et z(Cp) sont déterminées.

4.4. THÉORÈME: Soit C un complexe fini, muni d'une filtration q-b, et (Er) la
suite spectrale associée. Alors T(C)=]f]r=i
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Preuve: En vertu du théorème 2.20, on a t(Cp)=t(Cp~1)t(£p), donc t(C)
rip T($>P)' Ma*s *e second membre est t(£) par définition, où (£ est le couple exact

associé à la filtration. La formule annoncée résulte alors du lemme 3.7. cqfd.

5. Applications géométriques

5.1. Rappelons d'abord que pour toute paire (X Y) de CW-complexes, FcJ,
et toute action cellulaire d'un groupe F sur (X9 Y) qui est libre à système fondamental
fini sur X— F, on définit le ZF-complexe basique C(X9 Y) des chaînes cellulaires de

X-Y, dont Phomologie n'est autre que l'homologie singulière H*(X, Y) (cf [1] ou

[2]). Si celle-ci est q-b, éventuellement après une extension des scalaires 6:ZF-+A9
alors la 0-torsion t0(X, Y) est déterminée, dans le groupe quotient de KX(A) par le

sous-groupe engendré par les unités 6(F) a A.

5.2. PROPOSITION : Soit Fc Xo c j^ c • • • c Xn Xune suite croissante de sous-

complexes invariants, telle que Hp+q(Xp9 Xp_1) 0pour q>0. Alors lafiltration induite

sur C(X, Y)e est canoniquement q-b, et t0(X, Y) est égale à la 0-torsion du complexe

q-b E1:

Hk(Xk, fc_l5 Xk-2

Preuve: D'abord, les modules Ep>q Cp+q(Xp9 Xp-t)e sont basiques. Ensuite les

modules Ep>0 Hp(Xp, Xp^1)0 sont q-1 d'après le corollaire 2.7, appliqué au complexe

C(XP, Xp_))e. La condition re(Xp9 Xp^l)=l les détermine canoniquement comme

q-b. Enfin E2Pi
q

étant nul pour q>0, on a E2Pt 0 Hp(X, Y)e, supposé q-b. La proposition

résulte alors du théorème 4.4. cqfd.

5.3. Considérons maintenant une paire polyédrale (K, L) munie d'une action de

F, libre avec système fondamental fini sur K—L, et un fibre X sur K, de fibre Sn,

n^l. Pour toute décomposition polyédrale de Sn, Xest un polyèdre dont les cellules

sont les produits des cellules de K par celles de Sn. Le sous-fibré Y induit sur L est

un sous-complexe. Supposons que F agisse cellulairement sur X, en induisant l'action
donnée sur K via la projection X^>L. Alors cette action est libre, à système
fondamental fini, sur X— Y. Soit Xp le sous-complexe invariant de X induit sur KULP, Kp

étant le/7-squelette de K9 et Er la suite spectrale associée à la filtration C(XP_1? Y)

cCftJ),.,. Les modules EPtq=Cp+q(Xp, Xp.x) sont basiques. Les modules

E^^Hp+^Xp, Xp^i) sont canoniquement isomorphes, par homotopie, excision et

la formule de Kûnneth, à Hp(Kp,Kp'1)®Hq(Sn) (voir aussi chap. 9.2 de [5]). En

particulier, £^€=0pour q*0 oun^tElo^H^KKK^^C^K.LlEl^H^K",
i^*~1) Ck(K, L). En tenant compte des différentielles et des degrés, on a un isomor-
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phisme de complexes E1&C(K9 L)®C(K, L)~n. Comme E2 H(E1)9 on a £^0«
&Hk(K, L), Ekn^Hk(K, L). D'après 3.8 b), la suite exacte © s'écrit pour .y=l et

f=n,

5.4. Faisons maintenant une extension des scalaires 0:ZF-+A qui respecte les

suites exactes et qui rende les modules Hk(X, Y) et Hk(K, L) q-b. Alors les 0-torsions
t9(X, Y) et xe{K9 L) sont déterminées, ainsi que celle de la suite exacte ©0. On posera

5.5. PROPOSITION: Soit (X, Y) une paire polyédrale et 6:ZF-*A un homomor-

phisme vérifiant respectivement les hypothèses 5.3 et 5.4. Alors

Preuve: D'après ce qui précède, la suite spectrale (Erd) est q-b. On l'a vu en effet

pour r=0, 1 et 2. Pour r oo, cela résulte de la suite exacte q-b ©0, dans laquelle E%

figure comme cycle. Maintenant Te(E1) re(K9 L)2 si n est pair, et t0(E1)= 1 si n est

impair, autrement dit Te(E1) xe(K9 L)x(Sn\ D'après 3.8 b), on a ze(X, Y)

^ cqfd.

5.6. Notons que, si le fibre est trivial, on a Hk{X, Y)&Hk(K, L)®Hk_n(K, L) par
la formule de Kûnneth, et © se décompose dans les suites exactes triviales
0-+Hk_n(K, L)-+Hk(X, Y)-+Hk(K9 L)->0. Si les modules Hk(K, L)9 sont q-b, les
modules Hk(X, Y) le sont aussi canoniquement, et tô(©)= 1. Alors td(X, Y) et t$(K, L)
sont déterminée simultanément et re(X9 Y) re(K, L)x(sn).

n, Déformations Formelles

Notre but ici est de donner une description très précise des équivalences homoto-
piques simples, améliorant par une voie indépendante le résultat de Wall obtenu
dans [7]. Pour cela, nous aurons besoin de relativiser la théorie classique du type
simple d'homotopie, ce qui conduit par la même occasion à une généralisation de
celle-ci. Nous choisirons [7] comme référence de base pour ce texte.

1. Opérations fondamentales

1.1. Etant donné un CW-complexe relatif {X, A) et un groupe F, on notera (X, A ;

H ce CW-complexe muni d'une action cellulaire de F admettant un système fondamental

fini de cellules dans X-A. Lorsqu'on attachera une A-cellule ex à (X, A ; F) par
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une application $, on attachera simultanément toutes les A-cellules y x e* yeF, par y o</>,

ce qui donnera de nouveau un CW-complexe relatif (XvFxe,A;F). Avec cette

catégorie de complexes, il nous faut reprendre la définition classique des déformations

formelles élémentaires. Ainsi, considérons le disque standard Dk comme formé
de l'hémisphère sud DkSl et des deux cellules ek "1 Ô\~l et ek=Ù\ Pour toute
application continue

où Xk est le ^-squelette réunion de A et des cellules de dimension <£, on peut former
le CW-complexe relatif (Aru^/)A, A).

1.2. DÉFINITION : On appelle expansion élémentaire de dimension À de (X, A; F)
l'opération attachant à (X, A; F) un disque Dk par <f)\Dk~i, ainsi que tous les disques

y x Dkpar yo(j), yeF. L'opération inverse est appelée contraction élémentaire de dimension

À.

1.3. La projection orthogonale de Dk sur Dk~1 détermine une rétraction par
déformation équivariante de (XUFxDk, A; F) sur (X, A; F). Ainsi, à chacune des

deux opérations précédentes, on peut associer une équivalence homotopique
équivariante: l'inclusion canonique X-*XuFxDk pour la première, et la rétraction
précédente pour la seconde. Toute suite finie d'expansions ou contractions formelles
élémentaires est appelée une déformationformelle; il lui est associé de manière naturelle

une équivalence homotopique équivariante.

1.4. DÉFINITION: On dira qu'une équivalence homotopique équivariante est

représentable par une déformation formelle, si elle lui est associée, à homotopie près.

1.5. A toute équivalence homotopique équivariante f:(X, A; F)-+(X', A'; F), on

sait associer une W-torsion t(/), dans le groupe de Whitehead Wh(F) (cf [2] ou [3]),

et on dit que/est simple si t(/)= 1 (nous notons multiplicativement le groupe abélien

Wh(F)). On vérifie aisément que l'équivalence homotopique associée à une déformation

formelle est simple. Comme t(/) est invariante par homotopie, il en est de même

pour toute équivalence homotopique représentable par une déformation formelle.

1.6. Reprenons la définition suivante due à Wall (voir [7]): soient <j>0 et <i>x deux

applications continues de Sk"1 dans Xk~x> qui sont homotopes dans Xk. L'opération
qui transforme (Xu^FxD\ A; F) en (XV^FxDk, A; F) s'appelle un glissement

formel élémentaire, de dimension 1. En fait, cette dernière opération est composée

d'une expansion suivie d'une contraction élémentaire, de dimension A+l (voir [7]).

L'équivalence homotopique associée / induit un isomorphisme des ZF-complexes

basiques f*;C(X0, À^+C(Xt9A)9 représenté en chaque degré par une matrice



Contributions à la théorie du type simple d'homotypie 431

élémentaire, relativement à des bases cellulaires. Ces dernières bases sont définies

comme celles qui correspondent canoniquement à un système fondamental de cellules
orientées deX^ — A. L'assertion résulte du diagramme commutatif

v c (Y A\ t C (Y A\ t C (Y Y\ *.ft

«.J /.| /.j
—> Cfc X, Aj —> Cfc (Aj, A) —? Ck X l, A —> 0

où Ck(X,, AT) O pour k±k9 Cx(Xl9 X) admettant un élément de base unique [ef]9

1.7. Si Phomotopie, qui définit un glissement formel élémentaire de dimension k9

a lieu dans le (A—l)-squelette Xx~19 le glissement sera plus précisément appelé une
isotopîe formelle élémentaire. Plus généralement, soit (X, A xi; F) un CW-complexe
relatif, obtenu en attachant successivement des cylindres Dxxl par des applications

S*'1 xI->AxI u D» xI X(x~1\

Chaque cylindre introduit les trois cellules eQ Ôx xO, el Ôx x l, ex + 1 Ôx x î. En

outre, on suppose que l'application invariante Q\X-+I, égale à la projection canonique
sur A x I et sur les cellules précédentes, est continue. Autrement dit, si X' et 0' sont
obtenus en attachant les k premiers cylindres, l'application d'attachement tp'.S1"1 x/-»
-*X' du k+ lème cylindre doit être compatible avec &' et la projection sur /. Alors,
pour tout tel, (fl'HO» M F) est un CW-complexe relatif.

1.8. DÉFINITION: En posant Xo e~1(0), X^fT^l), Vopération qui
transforme (Xo, A; F) en (Xu A; F) sera appelée une isotopie formelle. Deux cellules e$ et
e\ de (Xo, A) et (Xu A) respectivement seront dites adjacentes si elles proviennent d'un
même cylindre.

1.9. Il est clair qu'une telle opération se compose d'expansions formelles de

(Xo UA x I, A x I; F) à (X, AxI;F) et de contractions formelles de (X, AxI;F) à

(^i U,4 x/, A xi; F). L'équivalence homotopique associée induit un isomorphisme
des ZAcomplexes basiques C(X0, A)^C(Xl9 A% qui est cette fois représenté en
chaque degré par la matrice unité, relativement à des bases cellulaires.

1.10. LEMME: Soit (Y, A; F) un sous-complexe de (X, A; F). Alors toute isotopie
formelle de (Y, A; F) se prolonge à(X,A; F).

Preuve: Posons F=Z0, et soit (Z, A xi; F) un CW-complexe relatif, muni d'une
application 0;Z-+I, déterminant une isotopie de (Y, A; F). On peut supposer que
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I=7u/. Il existe une rétraction par déformation équivariante rt;Z-*Z, tel,
telle que 0crt(Y) t9 ro identité rt(Z(k))c:Z(kK On attache alors à Z un cylindre
Z>Ax/par l'application WiS^1 xI-+Z, W(x, t)= rfO<H*). cqfd.

1.11. COROLLAIRE: Pour toute déformation formelle D de (Y, A; F) à (X, A; F)
et toute isotopie formelle de (Y, A; F) à (Y', A; F), il existe une isotopie formelle de

(X, A; F) à (X', A ; F), où (X\ A ; F) résulte de (Y', A; F) par la même suite d'opérations

élémentaires que celle qui compose D.

Preuve: Dans la démonstration précédente, il suffit de remplacer Sx~1 par Z>i~\
cqfd.

1.12. Rappelons maintenant le lemme classique suivant, dit lemme des bases (voir
[7]): soit (X, A; F) un CW-complexe relatif, et (e'f) une base du ZF-module basique

CX(X, A), X^2, qui se déduit d'une base cellulaire par une matrice élémentaire. Alors
il existe un glissement formel de (X, A ; F) à un CW-complexe relatif (A", A ; F) tel que :

1°) Xk'x reste inchangé
2°) l'isomorphisme induit C(X, A)-+C(X', A) est représenté en degré k par la

matrice unité, relativement à (e\x) d'une part, et une base cellulaire de Ck{X\ A)
d'autre part, et en degrés >k par un produit de matrices élémentaires relativement à

des bases cellulaires. Autrement dit, (e-A) est une base cellulaire pour CX{X'9 A).
3°) la dimension du glissement est <dimX
II faut noter qu'on entend par glissement toute suite finie de glissements formels

élémentaires définis sur un sous-complexe et prolongés au complexe entier.

2. Décompositions des équivalences homotopiques simples

2.1. Nous avons vu qu'un glissement formel, resp. une isotopie formelle, est

représenté par un produit de matrices élémentaires, resp. par la matrice unité. Nous
allons voir que cette propriété est caractéristique, lorsque les CW-complexes relatifs
considérés (X9 A ; F) vérifient les hypothèses suivantes :

(i A et X sont 1-connexes

(ii) (X, A) ne contient pas de cellules de dimension 0 et 1. Cette restriction exclut-

évidemment le cas A — <p.

2.2. PROPOSITION: Soient (X, A; F) et (X\ A; F) des CW-complexes relatifs,

vérifiant (i) et (ii), etf: (X, A ; r)->(X', A; F) une équivalence homotopique équivariante
relative à A. Si celle-ci induit des isomorphismes Ck(X9 A)^+Ck{Xf, A), représentés par
la matrice unité relativement à des bases cellulaires, alorsf est représentable par une

isotopie formelle.
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Preuve: Ordonnons les cellules d'un système fondamental fini de (X, A; F), resp.
de (X\ A; F), par dimension croissante et de sorte que /*fe]=[eî]. En posant

XP=A Ui<prxeti Xp A U^pTxeJ, supposons par induction que f\Xp_i détermine

une équivalence homotopique/: Xp^-^Xp..!, représentable par une isotopie formelle

(Zp^uAxI), de paramètre O:ZP_1-+I. Cela signifie que f\Xp_l est homotope à

r|Xp_!, où r est l'aboutissement d'une rétraction par déformation rt de Zp_x sur

Xp^t telle que 6ort t9 rort r. On peut supposer que/|Xp_1=r|Xp_1. Soit X^2 la
dimension des cellules ep et e'r Par approximation cellulaire, on peut supposer

f(Xp) c X'x. Comme Xp _ x est simplement connexe (pour X=2 il a le type d'homotopie
de A vS2 v... vS2) Pisomorphisme de Hurewicz appliqué à la paire (X'x, X'p_x)
montre qu'il existe une homotopie h entre les applications/0# et $' de la paire (DA,

Sx~x) dans la paire {X'x, Xp^t), où $ et $' sont des applications caractéristiques

pour ep et ep respectivement. Il y a donc une isotopie (Z', Xfp_1 x/; F) transformant
X'p_ x U rotffF x el en Xp. L'équivalence homotopique associée/' est l'identité sur X'p^u
égale à $' sur un disque Dx concentrique à ex, et égale à h/Sx~l x / sur la couronne
restante. Comme dans le lemme 1.10, l'isotopie Zp.t se prolonge en une isotopie Z",
transformant Xp en X'p^x Uro^FxeA. L'équivalence homotopique associée/" est

donnée par r (ou/) sur Xp_l5 par l'identité sur un disque Dx concentrique à ep, et par
f"(x, t) ro$(x) sur la couronne Sx~1xl restante. Ainsi,/'o/" |êp est donnée par <&'

sur Dx, par h | S x ~1 x /sur une couronne entourant Dx dans ep et par/' of" (x, t) r o^ (x)
sur la couronne restante. En utilisant l'homotopie h de $' à/0$, on voit qu'il existe

une homotopie de/o# à/'o/;/1 ëp, constante égale à r o# sur ^S11"1. D'où une homotopie

de/'o/" à/| Xp, ce qui achève le pas d'induction, cqfd.

2.3. COROLLAIRE: Si dans l'énoncé de la proposition précédente on remplace
la matrice unité par un produit de matrices élémentaires, alors f est représentable par
un glissement suivi d'une isotopie formels, ou vice-versa. De plus, la dimension du glissement

est ^sup {dim(JT, A), dim(X', A)}.

Preuve: Par induction, supposons qu'il existe un glissement formel de (X, A; F),
à un CW-complexe (XA_X, A; F), tel que l'équivalence homotopique associée induise

un isomorphisme C(X, A)^C(XX.U A), représenté par la matrice unité en degrés

<A, relativement à des bases cellulaires. D'après le lemme des bases (1.12) il existe

un glissement formel de (Xx _ t, A ; F à un CW-complexe (Xx, A ; F tel que la dernière

hypothèse soit vérifiée jusqu'en dimension L Ce procédé nous ramène au cas envisagé
dans la proposition précédente, cqfd.

Le résultat essentiel est le suivant:

2.4. PROPOSITION: Soient (Y, A; F) et (Y', A; F) des CW-complexes relatifs
vérifiant (i) et (ii) (cf 2.1) et f:(Y, A; F)-+(Y\ A; F) une équivalence homotopique
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simple, relative à A. Alors il existe des expansions formelles transformant Y en X, Y'
en X'f ainsi qu'une équivalence homotopique simple g :(X, A ; F)->(Xf9 A ; F) telles que:

1°) g induit un isomorphisme C(X, A)-+C(X\ A), simple en chaque dimension

2°) g\Yest hamotope àf dans (X'9 A)
3°) dim(Z, A) dim(Xf, A)^N=sup{dim(7, A), dim(Y', A)}.

Preuve: Par induction, supposons que / induise des isomorphismes simples

Ck(Y, A)^Ck{Y\ A) pour k^À<N. Cela est évidemment vrai pour A= 1. Pour A^2,
la restriction (Yx~i, A)-^(Y/X"19 A) de/induit des isomorphismes en homologie,
puisque celle-ci est égale à Phomologie des complexes C(Y9 A) et C(Y\ A) tronqués
en dimension ^ A, entre lesquels/induit un isomorphisme. Comme les espaces A, Yx ~1,

Y'1'1 et les paires (Yx'\ A), (YfX~\ A) sont 1-connexes, il en résulte que/| YX~L

est une équivalence homotopique équivariante (Yx~x9 A)-*(Y'X~X9 À). Il existe donc

un inverse homotopique équivariant/': Y'-* Y de/, tel que/o/' | Y'x~x est homotope
à l'identité dans Y'x~x. Soient ex U««« Uen et e\ U••• \Je'n9 des systèmes fondamentaux
de A-cellules de (Y, A; F) et (Y', A; F) respectivement. En considérant le disque
standard Dx+1 comme un CW-complexe, formé des trois cellules e°eSx=^dDx+l9
eA SA-£° et 8A+1 =ÔA+1, attachons n' disques Dx+X h Y pat identification des points
e°j avec un point aeA. Pour tout yeJT, attachons y x Z>j+x au point ya9 et soit (X, Y; F)
le CW-complexe relatif ainsi obtenu. Cette opération est évidemment une expansion
formelle. De même formons (X'9 Y'\ F) en attachant hY' n disques Df+1 -a? Uef u
VJ ef+1, de manière équivariante. Tout d'abord, on va prolonger l'application Yx~ 11¥

-*Y'c+X' en une application équivariante Yx^Xf telle que g* [et] =/* [et] + [sf] pour
toute cellule et. Choisissons une application caractéristique $ : DA~> Fpour une A-cellule

et de Y9 et soit W:DX-*X' une application déterminée par
1°) fo^oh sur un petit disque concentrique DqCzÙx9 où h est une homothétie de

Z>o sur Dx.

2°) une application caractéristique pour ef sur un petit disque Dxabx disjoint du

précédent.
3°) un chemin joignant f{ê^ au point a dans YrX~19 sur un segment rectiligne

joignant 0% à A dans Dx-Ùq-Ùx.
4°) fo$ \ Sx'x sur Sx'1^dD\
5°) W(Dx-Ût-Ûi)czYfX-K
H suffit alors de poser g— W sur e{. En procédant de même pour toutes les cellules

eî9 on obtient le prolongement désiré. Maintenant, on va prolonger g en une application

équivariante A:JSrA-^Z/,tellequeAs|c[ej]=(l-/^c/;) [e'j]-Yaad&à où les^eZf
sont déterminés par/£ [e}]=J] at [ef]9 et at#0. Posons a^XyjuJi'y, les entiers ^}, étant

non nuls, et choisissons une application caractéristique #' pour la cellule orientée

fixée e}, et une application #* pour la cellule orientée variable ef. Soit W:DX-+Xr

une application déterminée par
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1 °) sur un petit disque, homothétique par A, Dq c= Da, *P représente (#' -/o/o$') o h

dans le groupe nÀ(Y'x, F^"1), qui s'identifie canoniquement avec l'ensemble des

classes d'homotopie d'applications (D\ 5tA~1)->(F/A, Y'*"1) en vertu de la 1-con-

nexitéde Y'*'1.
2°) sur un petit disque Dku y) c Dx — Dq, associé à un entier ix)t, *P est égale à fiyjt y o#f,

les disques Dxiy) étant mutuellement disjoints.
3°) sur un segment rectiligne I(i> A) joignant Ùq à Ùku y), W est un chemin dans Ya~1,

reliant W(Ôq) au point y#. Les segments I(iA) sont pris mutuellement disjoints.
4°) sur Sx~1 dDx, W est constante sur le point a.

5°) ViD'-Do-UD^^czY"-1.
L'existence d'une telle application W résulte du fait que/o/' | Y'x~x est homotope

à l'identité dans F''1"1. En posant h=W sur ej, et en procédant de même avec les

autres cellules e), on obtient le prolongement désiré. Comme h | &) est homotope à 0

dans X\ on peut prolonger h à Yk Uf x ex+ \ Enfin, A | 7A étant évidemment homotope

à /1 Yk dans X', on peut prolonger h à tout X. L'homomorphisme induit
K ' Cx(X> A)-+CX(X\ A) a la forme

CX(Y,A) ®CX(Y',A)

CÀ(Y',A)®CÀ(Y,A)

en identifiant [ej] avec [ej\ et [aj avec [^J. Il se décompose en deux isomorphismes
((id. +/J[s)®id.)o (id.©(id. -/*)), représenté chacun par des matrices strictement
triangulaires. Ceci achève le pas d'induction. Pour À N, il résulte du fait que/induit des

isomorphismes Ck{Y, A)&Ck(Y', A) pour k<N et des isomorphismes entre

Phomologie des complexes C(Y9 A) et C(Yf9 A) que / induit un isomorphisme
f*N:CN(Y9A)*CN(Y'9 A). En vertu de la formule T(/) n*T(/**)'w> <k) (~l)\
(cf [2]) et de l'hypothèse t(/) t(/^)=1 pour k<N, on a t(/*n)=1. cqfd.

2.5. COROLLAIRE: Soient (Y, A; T) et (Y', A; T) &,s CW'-complexes relatifs
vérifiant (i) ef (ii) et f:(Y, A; F)-+{Y\ A; F) w«e équivalence homotopique simple.
Alorsfest représentable, à une isotopieformelle près, par la composition d'une expansion,
d'un glissement et d'une contraction formelles. De plus la dimension de ces opérations
ne dépasse pas sup{JV, 3} avec iV=sup{dim(7, A), dim(Fr, A)}.

Preuve: D'après la proposition précédente, il existe des expansions, de dimension
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<i\T, transformant (7, A; F) et (Y\ A; F) en (X, A; F) et (X\ A; F) respectivement,
ainsi qu'une équivalence homotopique g:(X, A; F)->(X', A; F) induisant un isomor-
phisme g* : C(X, A)^+C(X\ A), représenté en chaque dimension <Npar un produit
de matrices élémentaires relativement à des bases cellulaires. En dimension N, Tiso-

morphismeg^Cjy^, A)&CN(X'9 A) est seulement simple, mais il suffit de faire une
expansion formelle de dimension sup{N, 3} sur (X, A; F) et (X\ A; F), et de

prolonger trivialement g, pour que la matrice de g* satisfasse la condition précédente.
Alors, d'après le corollaire 2.3, g est représentable par un glissement formel, à isotopie
près. Comme de plus, le diagramme

n n
(x,A;r)l>(x\A;F)

est homotopiquement commutatif, / est bien représentable de la manière annoncée.

cqfd.

2.6. En ce qui concerne les cellules de dimension 0 et 1, nous utiliserons le procédé
d'élimination suivant, dû à J. H. C. Whitehead:

Soit (X, A; F) un CW-complexe relatif A-connexe, avec X^ 1. Alors il existe une

déformation formelle de (X, A; F) à un CW-complexe relatif (X\ A; F) ne contenant

pas de cellules de dimension <A. De plus, la dimension des opérations élémentaires

qui la composent ne dépasse pas X+2.

2.7. Par ce procédé, on élimine de tout CW-complexe relatif (X, A; F) 1-connexe

les cellules de dimension 0 et 1, à l'aide de déformations formelles de dimension <3.
On peut alors reprendre le corollaire 2.5, eny supprimant l'hypothèse (ii), ce qui donne :

2.8. THÉORÈME: Soient (Y, A; F) et (F', A; F) des CW-complexes relatifs, A,

Y et Y' étant simplement connexes, etf:(Y, A; F)-+(Y\ A; F) une équivalence homo-

topique simple relative à A. Alorsfest représentable à isotopie près par une déformation

formelle DoCoGoE' oD\ où D et D'sont de dimension <3, C est une contraction et E'
une expansion, toutes deux de dimension <J/V=sup{dim(7, A), dim(7/, A)}, et G un

glissement.
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