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On Meromorphic Solutions of Algebraic Differential Equations1)

by Steven Bank

1. Introduction

In this paper, we treat arbitrary first order algebraic differential équations (i.e.
équations of the form Q(z, y, dy/dz) 0 where Q is a polynomial in z, y and dy/dz).
Such équations were treated by Valiron in [4], and it was shown that any entire
function which satisfies a first order algebraic differential équation must be of finite
order. (In fact, Valiron showed that for an entire transcendental solution with maximum
modulus M(r), there are positive constants k and A, with A rational, such that
limr_» + 00 (logM(r)/krx)= 1.) In this paper, we consider solutions of O(z, y, dy/dz) 0,

which are defined and meromorphic on the whole finite plane (i.e.
meromorphic functions h(z) such that Q(z, h(z), hf (z)) 0 at each point z where h is

analytic).
Our main resuit (§ 2 below) states that a meromorphic solution, which is not

identically zéro, cannot be written as the quotient of two entire functions where one
is of finite order and the other is of infinité order. As a corollary (see §§ 4, 5), we show
that if a meromorphic solution h(z) has the property that for some rational function
R(z)9 the séquence of moduli of the zéros of h(z) — R(z) has a finite exponent of
convergence [1; p. 188], then h is a meromorphic function of finite order (where
order is defined as in [2; p. 30] using the Nevanlinna characteristic). We also show
that the same conclusion holds if the séquence of moduli of the pôles of the solution
h(z) has a finite exponent of convergence. To the author's knowledge, no examples
are known of meromorphic functions of infinité order which satisfy a first order
algebraic differential équation, and the problem of proving or disproving the existence
of such solutions for arbitrary first order algebraic differential équations is a very
interesting one. Certain spécial cases hâve been treated as, for example, in the spécial
case of the Riccati équation, it was shown by Wittich [6; p. 226] that ail meromorphic
solutions of the Riccati équation with polynomial coefficients are of finite order.
However, the problem for arbitrary first order équations remains open, and we hope
that our results hère concerning this problem will aid in its eventual solution.

We now state our main resuit:

1) This research was supportée in part by the National Science Foundation (GP 7374).



402 STEVEN BANK

THEOREM: A meromorphic function on the whole finite plane, which is not iden-

tically zéro, and which is a solution of a first order algebraic differential équation,
cannot be written as the quotient oftwo entire functions where one is offinite order and
the other is of infinité order.

3. Proof of the Theorem

Let h(z) be meromorphic, and not identically zéro on the plane, and satisfy the

first order algebraic differential équation O(z, y, y')=0 at each point of analyticity.
We may write Q in the form,

Q{z,y,/) 'LQ*j(z)/'(yy (i)

where the Qkj are polynomials.
Let h~f/g where/and g are entire functions. We will show that if either/or g

is of finite order then both of them are of finite order. Thus suppose either/ or g is

of finite order. Without loss of generality, we may assume that

g is of finite order, (2)

since the function l/h=g/fi$ a meromorphic function which satisfies the first order

équation Y.Qkji^i-iy yN~ik+S)(yf)J=0 where A^max{Jfc + 2/:gk^0}. Now if
f(z) is a polynomial, the resuit holds. Hence we may also assume that,

fis an entire transcendental function. (3)

Let M{r) maxj z j Œ r| f(z)\ and let ]T£L0 cnzn be the power séries expansion of/ (z).

For each r>0, let v(r) be the central index [1 ; p. 183] of/(i.e. v(r) is the maximum

j such that \Cj\ rJ=maxm^0 |cj rM). Then in view of (3),

v(r) is an unbounded increasing function of r, (4)

and it is proved in [3; pp. 198, 210] (and also in [5; pp. 95, 103]) that there exists

ae(0, 1) such that if we exclude from the interval (1, +oo) an infinité séquence of
exceptional finite open intervais (Ws, W^) for which

X (log W's - log Ws) converges, (5)
s=l

and for which we may assume,

W's < Ws+! for ail s and lim W's + oo, (6)
S-*CD

then in the remaining set (1, +oo)-£, where ^U^iC^ Ws)> toe following are
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true: There exists a number R^\ such that for r>Rx and r$E, we hâve

log M(r)> c (v (r))a, where c is a positive constant (7)

independent of r, and if z is any point on \z\ r at which |/(z)| =M (r), then

/' (z) (v(r)/z) (i + e(z)) / (z), where |e(z)| < (v(r))'a (8)

for some fixed ô > 0. (The éléments of (1, -h oo)—E are called ordinary values of index
a in [3, 4, 5].)

Since g is of finite order (by (2)), let k be any number greater than the order of g.
Let au a2,... be the zéros (if any) of g lying outside the closed unit disk and let D
be the domain outside the closed unit disk exterior to ail the disks |Ç — an\<\an\~k.
Then it is proved in [5 ; p. 74], by using the représentation for g given by the Hadamard
Factorization Theorem, that there exist R2>1 and a>0 such that \g'{z)jg{z)\<ra
for zeD and |z| r>jR2. Thus if we let F be the union of ail the open intervais,
{ i~A) for w l, 2,..., then clearly,

\g'(z)lg{z)\<ra on \z\ r if r > R2 and r$F. (9)

Now the séries £*=1 |#nrA converges since k is greater than the order of g (see [5;
pp. 51, 52]), and so it is clear that the set F can be written as the union of a séquence
of finite open intervais (Ts, Ts') such that

T'S<TS+Î for ail s, and £ (T's - Ts) converges. (10)

In view of (5), (6) and (10), clearly we may write EkjFsls the union of a séquence
of finite open intervais,

£uF= U (VafV'J, where (11)
s=l

F; < Vs+! for ail s and lim F; + oo (12)
s-+co

and
00

£ (log F; - log Vs) converges. (13)
s=l

Now since g is of finite order, there exist d>0 and jR3 > 1 such that when r>R3,

|g(z)|<exp(rd) on |z| r. (14)

Also, since the coefficients Qkj(z) are polynomials, there exist b>0 and R4>1
such that when r>R4,

\QkM\<rb on |z| r for ail JfcJ. (15)
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Now define,

a 1 + max {a + 1, b + 1, d/a} (where a is as in (7)), (16)

and define

A {r | r > 1 and v(r) > ra}. (17)

We now prove,

LEMMA A : There exists a number r * > 1 such that An(r*, +oo)c:EvF.

Proof: Assume the eontrary. Then there exists a séquence of distinct values of
r in (1, H- oo) tending to + oo such that

reA but r^EuF. (18)

Let B be the set of values of r comprising this séquence. Now h—f\g satisfies the

relation,

at ail points z where h is analytic. Let

+ j:Qkj£0} and m max{j:Qp.JiJ^0}. (20)

Let reB and let z be a point on |z| r at which \f(z)\ M{r). Clearly/(z)^0
and since r$F, g(z)=£0. Thus h(z)^0 and h{z)^co and so by dividing équation (19)

by (h(z))p (where p is as in (20)), and notmg that h'lh (f'/f)-(g'lg), we can wnte
équation (20) in the form,

yl(z) #(z), where (21)

and

We now assert that there exist real numbers r'> 1 and #>0 such that if reB and

r>r\ then,

(24)

at each point of \z\=r at which |/(z)| M(r).
To prove (24), we recall first from (18) that if reB then r$E and r$F. Since

v(r)-> + oo as r-* + oo (by (4)), we see that e(z) (in (8)) tends to zéro as r-^ + oo in B.
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Since M(r) also tends to +00, there exists R5>1 such that for reB and r>R5, we
hâve

M(r)>l, v(r)>l and |e(z)|<±, (25)

at every point of \z\=r at which \f(z)\=M(r). Let R6 maxl<j^5Rj and let r be

any élément of B such that r>R6. Let z be any point on \z\ — r at which | /(z)| M(r).
We refer to the right side of (23). If k+j<p then p-(k+j)^l, so \f(z)\k+J~p

(M(r)f+j-p^(M(r))-1 since M(r)>\ by (25). Also |#(z)|<exp(rd) by (14) so

clearly |g(z)|*-(*+-/)<exp(prd). Thus |/(z)/^(z)|fc+-/-p<(M(r))"1 exp(prd). Also, by
(9) and (15), we hâve |g'(z)/g(z)| ^r* and |g*,.(z)| <rb. Since | e(z)| <£ by (25), we hâve

by (8) that |/'(z)//(z)|<2(v(r)/r)<2v(r) since r>\. Thus noting thatj<p<p+l
if k+j<p, we hâve from (23) and the above estimâtes that

|*(z)| < K#*(2v(r) + rff)p+1 (M(r))"1 exp(prd), (26)

for some constant K>0. Now let u(r)= rb(2v(r) + ra)p+1 (M(r))~1/2. We show that
w(r)->0 as r-> + 00 through éléments of B. Now we may write,

[4b
1/4 2 |1^ [] } (27)

Since / is an entire transcendental function (by (3)), we hâve by Cauchy's estimate

([5; p. 6]) that as r-* + 00,

r*b/M(r) and r4(p+1)ff/M(r) both tend to zéro. (28)

Now if reB and r>R6, then by (7), v(r)<(c-1 logAf(r))1/a. Hence,

/»>r/_.\M/r4D + 4) ^ ** / \\l/(4p + 4) * V ^

Since M(r)-> + 00 as r-> + oo, clearly the term on the right in (29) tends to zéro
as r-» + oo. Thus as r-^ + oo through éléments of B, we hâve by (29) that
2v(r)/(M(r))1/(4p+4)->0. Hence in view of (27) and (28), we hâve w(r)->0 as r-> + 00

through éléments of 1?. Thus there exists r'>R6 such that for re5 and r>r\ we hâve

"(r)< 1. In view of (26) and the définition of u{r\ we obtain (24).
We now consider A{z) given by (22). Since Qp-mtm is a polynomial which is not

identically zéro (by (20)), clearly there exist constants R7>r' and L>0 such that for

iep-m,m00l^ on |z| r. (30)

Case I: m 0. Then yl(z) £p_m>m(z). Since Â(z) <P(z) by (21), we hâve by (24)
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and (30) that L^K(M(r))~112 exp(prd) if reB and r>R7. Thus

M(r)exp(-2prd)<(X/L)2 if reB and r>JR7. (31)

But if reB then re^ and so v(r)>ra by (17). Hence by (7), logM(r)>craa, and so

by (31), we hâve

exp(crfla-2prd)<(K/JL)2 if reB and r>R7. (32)

But by (16), a>d/(x, and since d>0, a>0 and c>0, clearly the left side of (32) tends

to + oo as r-* + oo. Thus (32) is impossible (since by our assumption (18), there exist
r-values in B tending to -f oo). This contradiction proves Lemma A in the case m 0.

Case II: m>0. By (25), if reB and r>Rn then |e(z)|<i at each point of \z\=r
at which |/(z)|=M(r), and so by (8), \zf'(z)l(f(z)v(r))\>l-\e(z)\>h Thus,

|/'(z)//(z)|>| (v(r)/r). Now if reB then re^ and so v(r)>ra by (17). Hence if
reB and r>R7 then

\f'(z)/f(z)\>ir°-1 (33)

at every point of \z\=r at which |/(z)| M(r). Since reB implies r^F (by (18)), we
also hâve by (9) that \g'(z)lg(z)\^r". Thus with (33), we obtain

g' (*) >lra-lr* ra-lQ r,-(a-1)) (34)

By définition of a, g— (a—1)<0, and so by (34), there exists R8>R7 such that if
reB and r>R8 then

Al

¦V1, (35)

at every point of \z\ r at which |/(z)| =M(r).
We now assert that there exist constants r*>R8 and i£# > 0 such that if reB and

r>r#, then

\A (z)| ^ X# at ail points of \z\ r at which |/ (z)| M (r). (36)

To prove (36), we consider the quotients,

forj 0, 1,..., m-1, at points on |z| =r at which |/(z)| =M(r), where reB and r>l?8-
By (15), (30) and (35), we hâve

)(«-i). (38)
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Now b>0, and by (16), a— 1 >b and so if'j<m, we hâve (m—j) (a— l)^(a— \)>b.
Thus b + (j—m) (a—1)<0 and so the right side of (38) tends to zéro as r-+ + oo. Hence
there exists a real number r#>R8 such that for r>r# and reB we hâve

+ l)) for j 0,l,...,m-l. (39)

Now in view of (22) and (37) we hâve,

and so

Thus in view of (30), (35) and (39), we hâve that if r>r * and reB then

\A(z)\ ^ L4"m(l/(m + 1)) rm(a-1} (40)

at every point of \z\ r at which |/(z)| =M(r). Since a— 1 >6>0 and m>0 we hâve
that m(a—1)>0. Thus since r#>l we see that if r>r* then r1"^""1^!. Hence (36)
follows from (40) by setting K* =L4~m(l/(m+1)).

Since A(z) ^(z)by (21), we hâve by (24) and (36) that K* ^K(M(r))'1/2 exp(prd)
if r>r* and reB. Thus

M(r)exp(-2prd)^(X/X#)2 if r>r* and reB. (41)

But if reB then re^ and so v(r)>ra by (17). Hence by (7), logM(r)>craût and so by
(41),

exp(craa-2prd)<(X/X#)2 if r>r* and reB. (42)

But by (16), a>d/a and since d>0, a>0 and c>0, clearly the left side of (42) tends to
+ oo as r~> + oo. Thus (42) is impossible (since by our assumption (18), there exist
r-values in B tending to + oo). This contradiction proves the lemma in Case II, and
thus the proof of Lemma A is complète.

We now prove,

LEMMA B: There exists a real number ro>\ such that v(r)<2ra for ail r>r0.

Proof: By Lemma A, there exists r*> 1 such that

An(r*, +ao)czEu F. (43)

Now by (11), (12) and (13), EuFis the union of a séquence of open intervais (Fs, F/)
where F;<FS+1, linv^F;^ + oo, and JjLt log(Fs7Fs) converges. Since the séries
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converges, lim^^F^/F^l and hence lims_>00(Fs7Fs)a=l. Since also

lim^oo Vg + oo, clearly there exists s0 such that

V's>r* and (V'JVs)a < 2 for s>s0. (44)

We now show that if r0 is taken to be Vs'o, then the conclusion of Lemma B holds.
Let r>rQ.

lfr$A9 then by (17), v(r)^ra and so v(r)<2ra.
Suppose now reA. Then by (43), reEuF. Hence for some sl9 re(VSl, F/J. Since

r< V^ while r> Fs'o clearly (by (12)), sx>s0 so (44) holds for st. Thus

V;i>r* and (v:jVaiy<2. (45)

Now the endpoint F^ is clearly not in ^u^Fand so by (43), VS\$A. Thus v(V^)^
<(V8\)a9 and so by (45), v(Fs'1)<2(Fsl)a. Since v is increasing, we thus hâve v(r)<
<v(Fs/1)<2(Fsl)a. But Vsi<r and so we obtain v(r)<2ra which proves Lemma B

completely.
In view of Lemma B, we hâve lim supr_> + ^ (logv(r)/logr)^#. But in [5; pp. 33-34],

it is shown that logv(r)/logr and loglogM(r)/logr hâve the same limit superior as

r-> + oo. Hence lim supr_> + œ (loglogM(r)/logr) <a, thus proving that the entire func-

tion/is of finite order at most a. This concludes the proof of the theorem stated in § 2.

4. Corollary

Let h(z) be a meromorphic function on the whole finite plane which is a solution of
a first order algebraic differential équation. Then h{z) can be written as the quotient

of two entire functions where both are of finite order, if either of the following two
conditions is satisfied:

(A) For some rational function R(z), the séquence of moduli of the zéros of the

function h(z) — R(z) has a finite exponent of convergence [1 ; p. 188].

(B) The séquence ofmoduli of the pôles ofh(z) has afinite exponent of convergence.

Proof: Suppose (A) holds for a rational function R(z). Letting ç (z) be the canonical

product [1 ; p. 195] corresponding to the séquence of zéros ofh(z) — R(z), we hâve that
q>(z) is an entire function of finite order by [1 ; p. 195], and that the function ^(z)

(p(z)l(h(z) — R(z)) is entire. Now if h(z) satisfies the équation 5] Qkj(z)yk(y')J—®
(where the Qkj are polynomials) then clearly h(z) — R(z) satisfies the équation

I (M*) (y + R(z)f (y' + R'(zW °- (46)

Since R(z) is a rational function and the Qkj are polynomials, it is clear that by multi-
plying équation (46) through by a suitable polynomial, this équation becomes a first
order algebraic differential équation. Since h(z)—R(z) is a solution, and since h(z)—



Meromorphic Solutions of Algebraic Differential Equations 409

— R(z) (p(z)/\l/(z) where q>(z) îs of fimte order, we hâve by the theorem in § 2 that
ij/ (z) îs also of fimte order. Wnting R (z) Ti (z)/ T2 (z) where Tx and T2 are polynomials,
we hâve h(z)= (T1\l/+T2(p)/(T2\I/) which îs a représentation of h as the quotient of
two entire functions of fimte order.

If (B) holds, we form the canomcal product <p(z) corresponding to the pôles of
h{z) Then cp(z) îs of fimte order and \l/(z) (p(z)h(z) îs entire. By the theorem in § 2,

ij/(z) îs of fimte order also and so h(z) il/(z)/(p(z) îs the desired représentation.

5. Remark

By the corollary, if either (A) or (B) îs satisfied, then h îs the quotient of two
entire functions of fimte order. It easily follows (usmg [2, p. 15]) that h îs a
meromorphic function of fimte order (where order îs defined as in [2; p. 30] usmg the
Nevanhnna charactenstic). In this case, (B) must hold by [2, p. 31], and since h(z) —

— R(z) will also be a meromorphic function of fimte order (for any rational function
R(z) by [2, pp. 15-16]), we see that (A) must hold for ail rational functions R(z) by
[2, p. 31].
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