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On Meromorphic Solutions of Algebraic Differential Equations?)

by STEVEN BANK

1. Introduction

In this paper, we treat arbitrary first order algebraic differential equations (i.e.
equations of the form Q(z, y, dy/dz)=0 where Q is a polynomial in z, y and dy/dz).
Such equations were treated by Valiron in [4], and it was shown that any entire
function which satisfies a first order algebraic differential equation must be of finite
order. (In fact, Valiron showed that for an entire transcendental solution with maximum
modulus M(r), there are positive constants £ and A, with A rational, such that
lim,, ; , (log M (r)/kr*)=1.) In this paper, we consider solutions of Q(z, y, dy/dz)=0,
which are defined and meromorphic on the whole finite plane (i.e. mero-
morphic functions A(z) such that Q(z, h(z), #'(z))=0 at each point z where 4 is
analytic).

Our main result (§ 2 below) states that a meromorphic solution, which is not
identically zero, cannot be written as the quotient of two entire functions where one
is of finite order and the other is of infinite order. As a corollary (see §§ 4, 5), we show
that if a meromorphic solution /(z) has the property that for some rational function
R(z), the sequence of moduli of the zeros of h(z)— R(z) has a finite exponent of
convergence [1; p. 188], then 4 is a meromorphic function of finite order (where
order is defined as in [2; p. 30] using the Nevanlinna characteristic). We also show
that the same conclusion holds if the sequence of moduli of the poles of the solution
h(z) has a finite exponent of convergence. To the author’s knowledge, no examples
are known of meromorphic functions of infinite order which satisfy a first order
algebraic differential equation, and the problem of proving or disproving the existence
of such solutions for arbitrary first order algebraic differential equations is a very
interesting one. Certain special cases have been treated as, for example, in the special
case of the Riccati equation, it was shown by Wittich [6; p. 226] that all meromorphic
solutions of the Riccati equation with polynomial coefficients are of finite order.
However, the problem for arbitrary first order equations remains open, and we hope
that our results here concerning this problem will aid in its eventual solution.

2,

We now state our main result:

!) This research was supported in part by the National Science Foundation (GP 7374).
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THEOREM: A meromorphic function on the whole finite plane, which is not iden-
tically zero, and which is a solution of a first order algebraic differential equation,
cannot be written as the quotient of two entire functions where one is of finite order and
the other is of infinite order.

3. Proof of the Theorem

Let 4(z) be meromorphic, and not identically zero on the plane, and satisfy the
first order algebraic differential equation Q(z, y, y')=0 at each point of analyticity.
We may write Q in the form,

Q(z,5,¥) =Y Qui(2) Y ('Y 6))

where the Q, ; are polynbmials.

Let h=f/g where f and g are entire functions. We will show that if either for g
is of finite order then both of them are of finite order. Thus suppose either f or g is
of finite order. Without loss of generality, we may assume that

g is of finite order, 2

since the function 1/A=g/f is a meromorphic function which satisfies the first order
equation Y Q,;(z) (=1) y¥~**D(y")I=0 where N=max {k+2j:0,,;#0}. Now if
f(2) is a polynomial, the result holds. Hence we may also assume that,

fis an entire transcendental function. 3

Let M(r)=max;,,-|f(z)| andlet ), c,z" be the power series expansion of f (2).
For each r>0, let v(r) be the central index [1; p. 183] of f (i.e. v(r) is the maximum
j such that |¢;| r/ =max,lc,| r™). Then in view of (3),

v(r) is an unbounded increasing function of r, “4)

and it is proved in [3; pp. 198, 210] (and also in [5; pp. 95, 103]) that there exists
ae(0, 1) such that if we exclude from the interval (I, + c0) an infinite sequence of
exceptional finite open intervals (W,, W;) for which

a0
Y. (logW,—logW,) converges, %)
s=1

and for which we may assume,

W.<W,., foralls and lim W.=+o0, (6)

s

then in the remaining set (1, + c0)—E, where E=JX , (W,, W,), the following are
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true: There exists a number R, > 1 such that for r> R, and r¢ E, we have
logM (r) > c¢(v(r))*, where c is a positive constant @)
independent of r, and if z is any point on |z|=r at which | f(z)|=M (r), then
@)=z (1 +e(2) f(z), where [e(2)] <(v(r))™° )

for some fixed 6 >0. (The elements of (1, + c0)— E are called ordinary values of index
a in [3, 4, 5].)

Since g is of finite order (by (2)), let A be any number greater than the order of g.
Let a,, a,, ... be the zeros (if any) of g lying outside the closed unit disk and let D
be the domain outside the closed unit disk exterior to all the disks |{ —a,|<]a,| ™%
Then it is proved in [5; p. 74], by using the representation for g given by the Hadamard
Factorization Theorem, that there exist R,>1 and ¢>0 such that |g'(z)/g(z)|<r°
for zeD and |z|=r>R,. Thus if we let F be the union of all the open intervals,
(laql—la,l %, la,| +la,| ~%) for n=1, 2,..., then clearly,

lg'(z)/g(z)| <#* on |z|=r if r>R, and r¢F. 9)

Now the series ) -, |a,| ~* converges since 4 is greater than the order of g (see [5;

pp. 51, 52]), and so it is clear that the set F can be written as the union of a sequence
of finite open intervals (T, T;) such that

T,<T,,, foralls, and ) (T;—T,) converges. (10)

sz21

In view of (5), (6) and (10), clearly we may write EU F as the union of a sequence
of finite open intervals,

EUF = G (V.,, VY, where (11)

Vi< VH:—lfor alls and limV,=+o (12)
and e

sil (log V; — log V,) converges. (13)

Now since g is of finite order, there exist >0 and R;>1 such that when r>R,,
lg(2)] < exp(r") on |z|=r. (14)

Also, since the coefficients Q, j(2) are polynomials, there exist 56>0 and R,>1
such that when r> R,,

[Qx;(2)I<r® on |zl=r forall k,j. (15)
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Now define,

a=1+max{o+1,b+1,d/a} (where «is as in (7)), (16)
and define

A={r|r>1 and v(r)>r"}. (17)

We now prove,
LEMMA A: There exists a number r*>1 such that An(r*, + ©)cEUPF.

Proof: Assume the contrary. Then there exists a sequence of distinct values of
rin (1, + o) tending to + oo such that

reA but réEUF. (18)

Let B be the set of values of r comprising this sequence. Now A= f/g satisfies the
relation,

2 0(2) (h(2)" (W (2)) =0, (19)
at all points z where £ is analytic. Let
p=max{k +j:Q,; #0} and m=max{j:Q,_; ; #0}. (20)

Let reB and let z be a point on |z|=r at which |f(z)|=M(r). Clearly f(z)#0
and since ré¢ F, g(z) #0. Thus k(z)#0 and h(z)# oo and so by dividing equation (19)
by (h(z))? (where p is as in (20)), and noting that A'/h=(f'[f)—(g’[g), we can write
equation (20) in the form,

A(z) = ®(z), where (21
Yo (@ _g@Y
[T RO (70 50) *
an
_ (1O _gQY (FRYH
o) = H;(pgk,()( -t (g(z)) . @)

We now assert that there exist real numbers r’>1 and K> 0 such that if re B and
r>r’, then,

|8 (2)| < K(M(r))~* exp(pr?), (24)

at each point of |z]=r at which | f(z)|=M(r).
To prove (24), we recall first from (18) that if reB then r¢ E and r¢F. Since
v(r)- + 00 as r— + oo (by (4)), we see that e(z) (in (8)) tends to zero as r— + co in B.
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Since M(r) also tends to + oo, there exists Rs>1 such that for re B and r> Rs, we
have

M@)>1, v(r)>1 and |e(z) <%, (25)

at every point of |z|=r at which | f(z)|=M(r). Let Rg=max, ¢;<sR; and let r be
any element of B such that r> R. Let z be any point on |z| =r at which | £ (2)| =M (r).
We refer to the right side of (23). If k+j<p then p—(k+j)>1, so | f(2)|** /7 ?=
=(M(r))¥*i=P<(M(r))~! since M(r)>1 by (25). Also |g(z)|<exp(rf) by (14) so
clearly |g(z)|?~** P <exp(pr?). Thus | £ (2)/g(@)|* "/ ~?<(M(r))~! exp(pr?). Also, by
(9) and (15), we have |g'(2)/g(2)| <r° and |Q; ;(2)| <rb. Since |e(2)| <4 by (25), we have
by (8) that | f'(2)/f (2)|<2(v(r)/r)<2v(r) since r>1. Thus noting that j<p<p+1
if k+j<p, we have from (23) and the above estimates that

19 (2)| < K" 2v(r) + 7" (M (r)) ! exp(pr?), (26)

for some constant K>0. Now let u(r)=r®(2v(r)+r°)?*! (M(r))” /2. We show that
u(r)—0 as r— + oo through elements of B. Now we may write,

o] g [T

Since f is an entire transcendental function (by (3)), we have by Cauchy’s estimate
(I5; p. 6]) that as r— + 0,

r*IM(r) and r*®*Y7/M(r) both tend to zero. (28)
Now if re B and r> R, then by (7), v(r)<(c™! log M (r))"/* Hence,

2v(r) - 2(c™ ' log M (r))'/®
(M(r))l/(4p+4) (M(r))l/(4p+4)

Since M(r)— +oo0 as r—+ oo, clearly the term on the right in (29) tends to zero
as r—+oco. Thus as r— + oo through elements of B, we have by (29) that
2v(r)/(M(r))/4r*4 0, Hence in view of (27) and (28), we have u(r)—0 as r— + o
through elements of B. Thus there exists r’ > R such that for re B and r>r’, we have
u(r)<1. In view of (26) and the definition of u(r), we obtain (24).

We now consider A(z) given by (22). Since Q,_,, ,, is a polynomial which is not
identically zero (by (20)), clearly there exist constants R,>r’ and L> 0 such that for
r>R,,

0< (29)

1Qp-mm(z) =L on |z]=r. (30)
Case I: m=0. Then A(z)= Q,p—m,m(2). Since A(z)=P(z) by (21), we have by (24)
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and (30) that LK K(M(r))~? exp(pr?) if re B and r> R,. Thus
M(r)exp(—2pr*) < (K/L)> if reB and r>R,. (31)

But if re B then re 4 and so v(r)>r® by (17). Hence by (7), log M (r)>cr®* and so
by (31), we have

exp(cr™ — 2pr?) < (K/L)*> if reB and r>R,. (32)

But by (16), a>d/a, and since d>0, >0 and ¢>0, clearly the left side of (32) tends
to + oo as r— + co. Thus (32) is impossible (since by our assumption (18), there exist
r-values in B tending to + 00). This contradiction proves Lemma A in the case m=0.

Case II: m>0. By (25), if reB and r>R, then |e(z)] <1 at each point of |z|=r
at which | f(2)|]=M(r), and so by (8), |zf'(@)/(f(z)v(r))|=1—]e(z)|>1. Thus,
[ @[f()|>4% (v(r)/r). Now if reB then red and so v(r)>r? by (17). Hence if
reB and r> R, then

If" @If ) > 47" (33)

at every point of |z|=r at which | f(z)|=M(r). Since re B implies r¢ F (by (18)), we
also have by (9) that |g’(2)/g(2)| <r°. Thus with (33), we obtain

’ ! !

By definition of @, 0 — (@—1)<0, and so by (34), there exists Rg> R, such that if
re B and r> Rg then

’ ’ |
f (Z) _ g (Z) > i_ra-l , (35)
f(z) g2
at every point of |z|=r at which | f(2)|=M (7).

We now assert that there exist constants »* > Ry and K* >0 such that if re B and
r>r*, then

|A(z)| = K* atall points of |z =r atwhich |f(z)]=M(r). (36)

To prove (36), we consider the quotients,

¥,(2) = Qs (/Cp-mm(2) (’}%-))—‘-;T()—)) 7

forj=0, 1,..., m—1, at points on |z| =r at which | f(z)| = M(r), where re B and r> Rs.
* By (15), (30) and (35), we have

¥, (2)l < (4™7J L) P Umm @D, (38)
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Now b>0, and by (16), a—1>b and so if j <m, we have (m—j) (a—1)=(a—1)>b.
Thus b+ (j—m) (a—1)<0 and so the right side of (38) tends to zero as r— + co. Hence
there exists a real number r* > Ry such that for r>r* and re B we have

|7;(z)| <(1)(m + 1)) for j=0,1,...m—1. (39)
Now in view of (22) and (37) we have,

16 = Oymn(@) (5 3 -E 2 (1+° v

f(@) g2
and so
(Z) _g@)" e
()] > 10y m(: fa (1= )

Thus in view of (30), (35) and (39), we have that if r>r* and reB then
|A(z)| = L4 (1)(m + 1)) @~V (40)

at every point of |z|=r at which | f(z)|=M(r). Since a—1>b>0 and m >0 we have
that m(a—1)>0. Thus since r* >1 we see that if r>r* then r™“~ V> 1, Hence (36)
follows from (40) by setting K* = L4~™(1/(m+1)).

Since A(z)=®(z) by (21), we have by (24) and (36) that K * < K(M(r))~'/? exp (pr?)
if r>r* and reB. Thus

M (r)exp(—2pr’) < (K/K*)* if r>r* and reB. (41)

But if re B then re 4 and so v(r)>r® by (17). Hence by (7), log M(r)>cr** and so by
(41),
exp(cr® — 2pr’) < (K/K*)* if r>r* and reB. (42)

But by (16), a> d/« and since d>0, a>0 and ¢>0, clearly the left side of (42) tends to
+ 00 as r— + oco. Thus (42) is impossible (since by our assumption (18), there exist
r-values in B tending to + o0). This contradiction proves the lemma in Case II, and
thus the proof of Lemma A is complete.

We now prove,

LEMMA B: There exists a real number ro>1 such that v(r)<2r® for all r>r,.

Proof: By Lemma A, there exists r*>1 such that
An(r* +0)cEUF. (43)

Now by (11), (12) and (13), Eu F is the union of a sequence of open intervals (V;, V)
Where V; <V, ., lim,. , V, =+, and Y, log(V;/V,) converges. Since the series
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converges, lim,,,(V;/V,)=1 and hence lim,,, (V;/V,)*=1. Since also
lim,_, , V, = + o0, clearly there exists s, such that

Vi>r* and (ViV)' <2 for s>s,. (44)

We now show that if r, is taken to be V;, then the conclusion of Lemma B holds.
Let r>r,.

If r¢ A, then by (17), v(r)<r® and so v(r)<2r®.

Suppose now re 4. Then by (43), re EU F. Hence for some s, re(V,
r<Vj while r>V; clearly (by (12)), s, >, so (44) holds for s,. Thus

V. >r* and (V,/V,)' <2. (45)

Now the endpoint V, is clearly not in EU F and so by (43), V; ¢A. Thus v(V; )<
<(V:)% and so by (45), v(V;,)<2(V,,)* Since v is increasing, we thus have v(r)<
<v(V;)<2(V,,)" But ¥,,<r and so we obtain v(r)<2r® which proves Lemma B
completely.

In view of Lemma B, we have lim sup,., , ., (logv(r)/logr)<a.Butin [5; pp. 33-34],
it is shown that logv(r)/logr and loglog M (r)/logr have the same limit superior as
r— + oo. Hence lim sup, ., , , (loglog M (r)/logr)<a, thus proving that the entire func-
tion fis of finite order at most a. This concludes the proof of the theorem stated in § 2.

V,). Since

1?

4. Corollary

Let h(z) be a meromorphic function on the whole finite plane which is a solution of
a first order algebraic differential equation. Then h(z) can be written as the quotient
of two entire functions where both are of finite order, if either of the following two
conditions is satisfied:

(A) For some rational function R(z), the sequence of moduli of the zeros of the
Sfunction h(z)— R(z) has a finite exponent of convergence [1; p. 188].

(B) The sequence of moduli of the poles of h(z) has a finite exponent of convergence.

Proof: Suppose (A)holds for a rational function R(z). Letting ¢ (z) be the canonical
product [1; p. 195] corresponding to the sequence of zeros of £(z) — R(z), we have that
¢(2) is an entire function of finite order by [1; p. 195], and that the function Y/ (z)=
=@(2)/ (h(z)— R(2)) is entire. Now if h(z) satisfies the equation Y, Q, ;(z) y*(»')’=0
(where the Q,; are polynomials) then clearly 4 (z) — R(z) satisfies the equation

Y. 0;(2) (y + R@) (V' + R (2)) =0. (46)

Since R(2) is a rational function and the Q, ; are polynomials, it is clear that by multi-
plying equation (46) through by a suitable polynomial, this equation becomes a first
order algebraic differential equation. Since A(z)— R(2) is a solution, and since 4(z)—
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—R(2)=@(2)/Y(z) where ¢(z) is of finite order, we have by the theorem in § 2 that
Y (z) is also of finite order. Writing R(z)=T; (z)/ T, (z) where T; and T, are polynomials,
we have h(z)= (T{y + T,¢)/(T,¥) which is a representation of 4 as the quotient of
two entire functions of finite order.

If (B) holds, we form the canonical product ¢(z) corresponding to the poles of
h(z). Then ¢(z) is of finite order and Y (z) =@ (2)h(z) is entire. By the theorem in § 2,
Y (z) is of finite order also and so #(z)=y(z)/@(z) is the desired representation.

5. Remark

By the corollary, if either (A) or (B) is satisfied, then 4 is the quotient of two
entire functions of finite order. It easily follows (using [2; p. 15]) that 4 is a mero-
morphic function of finite order (where order is defined as in [2; p. 30] using the
Nevanlinna characteristic). In this case, (B) must hold by [2; p. 31], and since ~(z)—
— R(z) will also be a meromorphic function of finite order (for any rational function
R(z) by [2; pp. 15-16]), we see that (A) must hold for all rational functions R(z) by
[2; p. 31].
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