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The Changes of Sign of Certain Arithmetical Error-Terms

J. STEINIG

1. Introduction

If 2(x) denotes the number of primes not exceeding x, and lix= f(log?) ™! dt (x>2),
2

then the prime number theorem states that n(x)~lix, as x—o0. The error-term in
this asymptotic relation is 7 (x) —li x, and it was for long conjectured that z(x)—1lix<0
for all large x. J. E. LITTLEWOOD proved this conjecture false by showing [8] that
n(x)—lix=Q, (x'/*1og log logx/logx). The prime number theorem is equivalent to
the assertion that y(x)~x, where y is the well-known Chebyshev function. The
error-term here is Y(x)—x, and it changes sign an infinity of times, as shown by
PHRAGMEN [9]. PHRAGMEN’s result is a corollary of a general theorem of LANDAU’s [7]
on Dirichlet integrals. POLYA [11] refined LANDAU’s theorem, and considered, as a
particular case, the problem of estimating the number of changes of sign of y/(x)—x
in the interval 1 <x<t. If N(¢) denotes that number, then POLYA’s result implies that
— N(1)

lim —= > 0. (1.1
t—o0 10g ¢

The original proof of POLYA’s theorem contains a gap, first recognized by POLYA
himself, which is filled in § 2. POLYA’s theorem can be applied, as we shall show in
§ 2.3, to the error-term associated with the arithmetical function r,(n), which is the
number of representations of an integer » as a sum of k squares (k >2). This applica-

Q0

tion is made possible by the fact that the Dirichlet series ) r,(n)-n~° represents the

n=1

Epstein zeta-function {,(s), which satisfies HECKE’s functional equation, namely
-5 s—k/2 k k
L (s)Ce(s)=m r E—s & E—S , (1.2)

and this equation implies a fundamental identity given by K. CHANDRASEKHARAN and
RAGHAVAN NARASIMHAN [2].

More generally, we consider in § 3 the functional equation of CHANDRASEKHARAN
and NARASIMHAN, which includes (1.2), and study the problem of change of sign of
the “error-term” associated with the coefficients of Dirichlet series which satisfy
such an equation. Thus, given an equation such as

A(s) ¢(s) =4(6 =) 9 (3 - 9), (1.3)



386 JOHN STEINIG

where ¢ is a real number, 4(s) is a product of a finite number of gamma functions,

N o
say 4(s)= HlF(ocvs+ﬂv), and ¢(s)= Y, a,4, *, we define for ¢>0,
v= =1

n

1 I4
A(x)=——= a,(x — 4,0,
86 = oy ), 4

AnSx

which is the fractional integral of order g of the summatory function A3(x)=A(x)=
Y a,. CHANDRASEKHARAN and NARASIMHAN have shown [3] that corresponding to

An<x

the equation (1.3), there exists a “residual function” S,(x), such that

Re {Aﬁ (x) - Sa(x)} =Qy (x0)5 (1.4)

N
where @={45+(24-1)g—1%}/24, with A=) «,. (A similar result holds for the
v=1

imaginary part of 45(x)—S,(x).) The proof of this general Q-theorem rests on the
fact that equation (1.3) implies, for sufficiently large g, the formula

x“{44(x) = S,(x)} = i ¢, cos (p, x'24 + D) + g(x), (1.5)

a0
where ¢ is a real constant, Y. |c,| <0, 0<y,<y,<:+<y,— 00, 4 is asin (1.4), D is
n=1

a real constant, and g(x)=o0(1), as x— 0.

Clearly, (1.4) implies that the real part of the “error-term” 44(x)—S,(x) has an
infinity of changes of sign in the interval 0 <x < co. In this paper, we obtain a lower
bound for the number of changes of sign of Re{4%(x)~S,(x)}, and of Im {44(x)—
S,(x)}, in a given interval (Theorem 4.1). This is achieved by combining asymptotic
formula (1.5) with an argument introduced by LiOUVILLE, and later applied by
POLYA [12] to the study of the changes of sign of certain trigonometrical series. In the
case 0=0, Theorem 4.1 gives a lower bound for the number of changes of sign, in
any interval, of the error-term associated with such arithmetical functions as d(n),
the number of positive divisors of the positive integer n, or r,(n), or RAMANUJAN’S
function z(n).

It may be remarked that the results obtained by appealing to POLYA’s theorem are
weaker than those obtained in §4 from asymptotic formula (1.5), since POLYA’S
theorem gives only a “lim sup result”, as in (1.1), for an interval 0 <x<¢, whereas
Theorem 4.1 gives a lower bound for the number of changes of sign of the error-term
under consideration in any given interval.

The problems discussed in this paper were suggested to me by Professor
K. CHANDRASEKHARAN; I take pleasure in recording here my gratitude for his advice
and constant encouragement.
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2. Polya’s Theorem

2.1. If w is a function of the real variable », bounded and integrable over every
finite interval 1<u< U, and s is a complex number, written s=0a+i¢, where ¢ and ¢

are real, and i?*= —1, then the integral | w(u)u~*du is called a Dirichlet integral.
1
A theorem of LANDAU’s ([7]; [6], p. 88) states that if w(u)is real-valued, and is of
constant sign for all sufficiently large , and if the integral f(s)= [ w(#)u"*du has a
1

finite abscissa of convergence ¢ =a,, then the real point s=a, of its line of conver-
gence is a singularity of the function f(s) which it represents.

In order to state this theorem in a more convenient form, we introduce a function
W(x) associated with the sign of w(u). We assume that w(u) is either of constant
sign for u> 1, or that there exists a sequence (u,), | =uy,<u, <u,<---, with no finite
point of accumulation, such that

(-1D)'ow(w)=20 for u, <u<u,, 2.1

and such that w(u) is not identically zero in any of the intervals u,_, <u<u,. If w(u)
is of constant sign for u>1, then W(x)=0; otherwise we define W(x)=n for
U,y <x<u, Thus W(x)is simply the number of changes of sign of () in the interval
] <u< x. LANDAU’s theorem then takes the following form.

THEOREM A (LANDAU). Let j' w(u)u"*du have a finite abscissa of convergence o,.
Let &(s)= jw(u)u *du be regular in the half-plane ¢ >0, but in no larger half-plane
o>0—¢ (a>0) If &(s) is regular at s=0, then lim W(x)= + co.

POLYA’s extension [11] of LANDAU’s theorem is as follows.

THEOREM B (POLYA). Let the integral j w(u)u"du have a finite abscissa of con-
vergence . Let

cp(s)=fw(u)u'sdu (2.2)

be regular in the half-plane ¢>0, but in no larger half-plane 6>0—¢ (¢>0). Further,
let ®(s) be meromorphic in 6>0—b, for some b>0. Then,

— W
lim (x) -,
— logx i

where vy is defined as follows: If ®(s) has poles on the line c=0, then s=0+iy is the
pole with the smallest non-negative imaginary part; otherwise, y= + 0.

(2.3)
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2.2. 'We shall now indicate how the gap in POLYA’s original proof of Theorem B
can be filled. POLYA’s proof applies previous results of his on entire functions of
exponential type [10]. Use is also made of certain properties of plane convex sets.
The argument runs as follows.

If w(u) is of constant sign for u>u,, Theorem A implies that y=0, and then (2.3)
is trivial. We therefore suppose that w(u) has an infinity of changes of sign. Let (u,)
be the points of change of sign of w(u), and let W(x) be the number of its changes of
sign in the interval 1 <u<x, as defined earlier. Set

— W(x)

d= lim ,
x—»o 10gX

and suppose at first that d < oo ; then POLYA shows that the infinite product

I {1~ ot} =70

is absolutely convergent, and that F is an entire function of exponential type ([11],
p. 22). He sets

2 4
a, z asz
Fle)=aot 5+

+ wray,
defines
a a a
f@="+"24 "2+, (2.4)
zZ  z z

and shows that series (2.4) converges (at least) for |z| > nd ([10], p. 578). Let J be the
convex hull of the singularities of f. Since fis an odd function, and the coefficients
(a,) are real, J is symmetric with respect to both real and imaginary axes. Let s=«
be the point at which the positive real axis intersects the boundary of J.

Theorem B is established by applying LANDAU’s Theorem A to the function

*(s) = f w(u) F(logu) u™*du. (2.5)

Because of the definition of F, combined with inequality (2.1), the integrand in (2.5)
satisfies the inequality .
o(u) F(logu) <0 (u>1). (2.6)
A theorem proved by POLYA in [10] (Satz V, p. 598) implies that &*(s) is regular in
the half-plane ¢>0+x ([11], p. 25). The behaviour of ®*(s) for o <6+« depends
on the behaviour of @(s), defined by (2.2), on the line 6=0. Accordingly, POLYA
distinguishes two cases:

(a) @ has poles on 6=0;

(b) @ is regular on 6=90.
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In Case (a), he shows that if nd<7y, then &* is regular at s=60+x, but has a
singularity at another point of the line ¢=0+x. But this is impossible, because of
(2.6) and Theorem A. Therefore nd>y.

The gap in POLYA’s proof occurs in Case (b). The argument here is that if d< oo,
then @* is regular at s=60+«, but has singularities arbitrarily near the line 6 =0+x,
in the half-plane o <0+ x. Again, this is impossible because of (2.6) and Theorem A.
Hence d= + .

In order to establish this part of Theorem B, we require the following result on
plane convex sets:

LemMA 2.1. Let U be a closed, bounded, plane convex set, whose boundary consists
only of extreme points'). Let I be a supporting line?) of W through EcWN. If B is a
translate of W, such that £€ B and B lies on the same side of | as N, then W and B
coincide.

Proof. Let 7 be the translation 7:UA—B. Since £€ B, éel, and B is entirely on
one side of /, / is a supporting line of B through &. Since the boundary of U consists
only of extreme points, there are exactly two points on the boundary such that the
supporting lines through these points are parallel to a given direction3). Now &'=
7(£) is a point on the boundary of B such that there is a supporting line I’ of B
through &’ which is parallel to /. Since B is on the same side of / as U, I’ must be that
one of the two supporting lines of B parallel to / which is closest to /. Therefore /=1
and £=¢', so that A and B coincide.

The problem which must be solved in order to establish Case (b) of Theorem B
may be stated geometrically as follows4).

Let (c,) be a sequence of points in the complex s-plane, with the following proper-
ties:

The points c, lie pairwise symmetric to the real axis. They have no @7
point of accumulation in the finite part of the plane. )
Re(c,) <0 forallv,and lim Re(c,)=6. (2.8)

v

1) An extreme point of a closed plane convex set K is a boundary point which is not an interior
point of any line segment belonging to K (for example, 2 can be a circle, or an ellipse, but not a
rectangle).

%) A supporting line of a closed plane convex set K is a line which contains at least one point of K,
and such that X lies entirely on one side of this line. A supporting line contains at most two extreme
points. There are exactly two supporting lines parallel to a given direction.

8) This follows from the remarks in Footnote (2): there are two supporting lines of U in each
direction, and since all boundary points of U are extreme points, each supporting line contains
exactly one boundary point.

%) The (¢») are the poles of @(s) in the strip §— b < o < 0; Jis the convex hull of the singularities
of f[c.f. (2.4)]. With the notation introduced in [11], and according to the Hilfssatz on p. 24 of [11],
C_ is a singularity of X*(s). Because of Satz V of [10], { is a regular point of ¥*(s). Hence, { is a
singularity of @* = ¥* 4+ X* ([11], pp. 24-25).
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Further, let J be a bounded, closed, plane convex set, which is symmetric with
respect to both the real and the imaginary axis, and is contained in the disc |s| <nd.
Let o=k be the supporting line of J which is perpendicular to the positive real axis.
Consider the sets ¢,+J%) (v=1, 2,...). We have to prove that for each ¢>0, there
exists a point {={(¢), which satisfies the following conditions:

0+x—e<Re(()<b+xk, (2.9)
{ is an extreme point of some set ¢, + J, (2.10)

and
(éc,+J for v#n. (2.11)

For that purpose, we consider the convex hull § of all the sets ¢, +J with Im(c,)>0.
Let & be (one of) the extreme point(s) of § on its supporting line parallel to the
real axis; and let H be that part of the boundary of $§ which is in the half-plane
o>Re(h). Then, $ and H have the following properties:

Each extreme point of § belongs to the boundary of one of the sets ¢, + J. (2.13)

Indeed, suppose, if possible, that p is an extreme point of § such that pé¢c,+J, for
all v. Then, since the sets ¢,+J are closed, we can find a circle € with p as centre,
such that € n(c,+J)=0, for all v. If € is small enough, the set obtained by removing
Cn$ from §) is contained in a proper convex subset $* of §, since p is an extreme
point of £¢). But since (En$H)(c,+J) is empty for all v, we would have §cH*,
which is absurd.

H contains no half-line. (2.13)

Indeed, because of (2.8), H could contain a half-line only if this line were on the
vertical o =0-+«. Now there cannot be a point g=(0+kx)+it on the line =0+«
such that all points of H with imaginary part greater than 7 lie on this line, while
those with imaginary part smaller than 7 lie to the left of it (Fig. 1). For if this were
the case, ¢ would be an extreme point of $§ and would therefore, by (2.12), belong
to one of the c¢,+J. But this is impossible, since Re(c,)<0.

There are extreme points of ) with arbitrarily large imaginary part. (2.14)

Indeed, let t,>0 be given. Because of (2.7) and (2.8), we can find a point p; € H such
that Im(p,)>1,. Because of (2.13), p, does not lie on any half-line belonging to H.
Therefore, if p, is not itself an extreme point of $), the supporting line of $) through
p; contains two extreme points of §. One of these, say p,, is such that Im(p;)>
Im(p,)=>1,.

5) By ¢y -+ J, we understand the translate of J through the vector c.
%) For a proof of this property of extreme points, see for instance [10], pp. 577-578.
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Now it follows from the conditions on the (c,) and from the convexity of § that
if hyeH and 0+x—e<Re(h;)<0+xk, all points h,e H for which Im(h,)>Im(h,)
also lie in the strip 6+x—e<o<0+«k. From this remark, and from (2.8) and
(2.14), it easily follows that there is a point {*, such that

(*eH, (2.15)
0+x—e<Re((*)<0+xk, (2.16)
(*lies on the boundary of a set ¢, + J with Im(c,) > 2nd. 2.17)

In order to locate a point { with properties (2.9), (2.10) and (2.11), we shall consider
two cases, according as the boundary of J consists only of extreme points, or not.

A. If the boundary of J consists only of extreme points, we may choose {={*.
Indeed, {* is an extreme point of ¢,+J. Since J is contained in the disc |s|<nd, it
follows from (2.17) that {*¢c,+ Jif Im(c,)<0. By applying Lemma 2.1 with A =c¢,+J
and &={(*, we see that {*¢c,+J if Im(c,)>0 and v#n.

B. If the boundary of J does not consist entirely of extreme points, {* need not
be an extreme point of ¢,+J. Also, {* may belong to the boundary of some other
translate of J, say of ¢, +J (Fig. 2). But if {* is not an extreme point of ¢,+J, the

N o=6+%

Fig. 1. Fig. 2.

supporting line g of c,+J through {* contains two extreme points of c,+J, say {3
and (7. One of these has a real part greater than that of {*; suppose that Re({7)>
Re({*). Then, 0+x—e<Re({})<Re(c,)+x<0+k, so that (i lies in the strip
O+x—e<o<O+x. If (T lies on the boundary of ¢, +J (as in Fig. 2), consider its
translate {3; {3 lies on g, is an extreme point of c,, +J, and is in the strip 0+ Kk —e<
0<0+xk.

Should {3 lie on the boundary of some other translate c,,+J of J, we can find in
the same manner an extreme point (% of ¢n,+J on g and in the strip 0+k—e<o <
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0+ k. Proceeding in this manner, we must finally obtain a set ¢, +J and an extreme
point {F,, of this set which is exterior to all the other sets c,+J, for otherwise the
points ¢,, ¢,,, C,,, ..., Which lie on a parallel to g, would have a point of accumulation
in the finite part of the plane, in contradiction with condition (2.7). Then, we may
take {={}, ;.

This concludes the proof of Case (b), and hence of POLYA’s theorem.

2.3. A new application of Pélya’s theorem

Let r,(n) denote the number of representations of the positive integer » as a sum
of k integral squares (k >2), representations which differ only in sign, or order, being
counted as distinct.

The generating function of r,(n) is {,(s), EPSTEIN’s zeta-function of order k [5],
which has the representation

[e.¢]

Ges) = Z L )

n=1

in the half-plane Re(s)>k/2, and satisfies the functional equation

n L (s) {(s) = n° %21 (g ~ s) G (g ~ s). (2.18)
Let

k/2 _et+k/2 ]

nTX X

¢(x) = ! ’r n)(x — n)® —
RO = ) G- e e (@20)

the dash meaning that if ¢=0 and x is an integer, the last term in the sum must be
multiplied by 4. If ¢=0, P2(x) is the error-term in the lattice-point problem for the
sphere in k-dimensional space. Indeed, if we define r,(0)=1, we have

Tcxk/2
PRE= Y r(n)— o)

A A 2.19)
O<n<x F(k/2 + 1) (

if x is not an integer, Y’ r.(n)is equal to the number of lattice-points in a sphere of
osnsx .
radius /%, whose centre is a lattice-point, and (mx)¥?/I'(k/2+1) is the volume of
this sphere.
K. CHANDRASEKHARAN and RAGHAVAN NARASIMHAN have shown [2] that func-

tional equation (2.18) implies the identity

Vit [ B st de = @nft T s, G20

n=1
0
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where F?(x)=PZ(2x), Re(s)>0, r is a sufficiently large integer, and

sy +v+r)
022V(S2+8n2n2)y+v+r’

8= 3 (-1

where y=0+3k+1, and the e, are constants.
If k is odd, this identity allows the application of POLYA’s theorem to P?(x).
Indeed, if we make the change of variable x—logx in the integral on the left-hand
side of (2.20), we obtain an identity which shows that the function of s defined by
the integral

f log?"x- F2 (log? x) x ' "*dx
1

is regular in the half-plane ¢ >0, and has singularities on the imaginary axis, at the
points s= + nn\/——S (n=1,2,...).

If k is odd, these singularities are poles. POLYA’s theorem can then be applied to
obtain the following result, announced in [13]:

If k is odd, and if W,(t) denotes the number of changes of sign of P_(x) in the

interval 0<x<t, then

— W, (1
im0
t— 00 \/t

If k is even, identity (2.20) cannot be used to estimate the number of changes of sign
of P)(x); in this case, POLYA’s theorem gives information only on the changes of
sign of those P¢(x) for which ¢ =4 (mod 1). This is curious, since results on repre-
sentations of an integer as a sum of an odd number of squares are usually more
difficult to obtain than results on representations as a sum of an even number of
squares.

Identities analogous to (2.20), which involve the error-terms arising from other
solutions of the functional equation I'(s) ¢(s)=I(d—s) ¢ (6—s), can be deduced
from a general identity given in [2] (Lemma 3, p. 491), of which (2.20) is a particular
case. However, these identities permit the application of POLYA’s theorem only when
d+0+1% is an integer, and this condition often precludes the possibility of obtaining
a result in the case ¢ =0.

Identities of this type in the case of functional equations with more than one
gamma factor are not known. In the following sections, we shall apply a different
method, and obtain a lower bound for the number of changes of sign, in a given
interval, of the error-terms arising from any given instance of functional equation (1.3).

2. (2.21)
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3. The Functional Equation

3.1. We begin by defining, after CHANDRASEKHARAN and NARASIMHAN [3], the
general functional equation with which we shall be concerned.

DEFINITION 3.1. Let (4,) and (u,) be two sequences of real numbers such that
O<iy <) < <i,—»o0,
0<py <pp<-<p,—0,

and let (a,), (b,) be two sequences of complex numbers, not all zero. Let 6 be a real
number, and s a complex variable with real part ¢ and imaginary part . Let

N
A(s)=T] I'(x,s+B,), (3.1)
v=1
N
where N>1, «,>0 and B, is complex, and let A= ) «,. We say that the functional
equation v=1
A()9() =4 - )Y — ) (3.2)
holds, if the functions ¢ and y are representable by the Dirichlet series
an bn
0= ) % b= ) 2 63
n=1 " n=1 "

each of which is absolutely convergent in some half-plane, and if there is a domain D
in the s-plane, which is the exterior of a bounded, closed set .S, and in which there
exists a holomorphic function y with the properties

lim y(c +it)=0,

|t] = o0
uniformly in every interval — o0 <06;<0<0,<+ 0, and

2()=4(s) p(s), for o>cy,
x(s)=4(0 —s)yY(6—s5s), for o<c,,
where ¢, and ¢, are some constants.
3.2. For >0, we define
A° a,(x — 4,)°, (34)

the accent indicating that the last term of the sum is to be multiplied by % if ¢=0 and
x=2A,. We shall restrict our considerations to the case where g is an integer.
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Let
x**ds, 0>0, 3.5)

1L [ I(s)e()
Se(x)=2niff(s+g+ 1)

where @(s)= ) a, 4, °, as in (3.3), and where % is a curve enclosing all the singu-
n=1

larities of the integrand.
Further, let

and let

L(x)= x’*eTsds, (3.6)

1 I —s)4(s)
i JT(0+o0+1—-5)4(0—5)
L
where %" is a curve formed by the lines 6=c,+it, with |¢|> R, together with three
sides of the rectangle whose vertices are ¢,—iR, c,+r—iR, c,+r+iR and c,+iR.
We assume that B

ce>max(—Re—), v=12,..,N,

&y

and choose r and R in such a manner that all the poles of the integrand in (3.6) are
to the left of ¢".
It is shown in [3, §4] that the identity

0

b,
A2(x) = S,(x) = Z 5 L) 37
n=1

holds for ¢>>2A4f— A5—4, where B is such that i |6,] 1 # < 00.
For I,(x) we have, as in [3, §4], the asymptot;'c= tl“ormula
I(x) = c-x @ VP24 cog(hx'?4 + D) + o(x @~ 1/D124), (3.8)
as x— o0, where ¢ and D are real constants, o =45+ (24— 1)g and h=2e™ %24 with
0=2{ ilav logcxv—/i logA}, and J, a, and A are as in Definition 3.1. A more

precise asymptotic formula for I,(x) is given in [4, Lemma 1], but (3.8) is sufficient
for our purposes.

By combining (3.7) and (3.8) we obtain, for integral ¢ >2ABf—A46—4%, the
asymptotic formula

[o0]

b —
Ag.(X) -_ SQ(X) = Z ”éia (I’tnx)(w_I/Z)IZA COS(h(,un x)1/2A + D) + o(x(m 1/2)/2A)’
n

n=1 (3.9)

as x— oo,
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In order to obtain a lower bound for the number of changes of sign of the real
and imaginary parts of A45(x)—S,(x) in a given interval, for a given non-negative
integer ¢, we shall require, beside (3.9), the following trivial extension of ROLLE’s
theorem, which we state without proof.

LeEMMA 3.1. Let f be continuous in the closed interval [a, b] and differentiable in
the open interval (a, b), except perhaps at c€(a, b) at which, however, the left and right
hand derivatives f'~(c) and f'*(c) exist. Let f(a)=f(b). Then, f'~, f'* and
Y(f'~+ f'*) all change sign at least once in (a, b).

We also state as a lemma some properties of 4%(x) and S,(x) which are easily
verified with the definitions (3.4) and (3.5) of these functions.

LEMMA 3.2. For ¢=0,
d
Sa(x) = dx Se+1 (x) .
For ¢>0,
d
A(x) = A5 (x).

dx
For 0=0 and x+#7,,

d
AO — __‘ Al ,
2 (%) dx z](x)
whereas if x=4,,

1/d* d~
Ag(x)=5-<— + —)A,ll(x),

dx dx
since
CH0=F a ad L A= ¥
- x) = a, and — = a,.
dx * Pl dx Al An<x

4. A Lower Bound for the Change of Sign Function
4.1. We are now in a position to prove the following result on the changes of
sign of the real and imaginary parts of A5(x)—S,(x).
THEOREM 4.1. Suppose that the functional equation
A4($)e(s)=A4(6—s)Y (6 —s)
is satisfied as in Definition 3.1. Let ¢ be a non-negative integer. Let Wi(t) denote the

number of changes of sign of the function Re{A4(x)—S,(x)} in the interval 0<x<t.
If Re(b,) #0 for at least one value of n, then")

1/24
We () > [_’l_(_’fi;?_.] _cC, (4.1)

7) Here, [£] denotes the largest integer <¢&.
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where C is a number independent of t, and h=2e~ %24, with

N
0=2 { Y a,loga, — A logA}.
v=1
Let V{(t) denote the number of changes of sign of Im{A5(x)— S,(x)} in the interval
0<x<t. If Im(b,)50 for at least one value of n, then

1/24
ROE [;i(ﬁig———] —c,
where C' is independent of t.

Proof. We shall assume that Re(b,)#0, as we may. The idea of the proof is to
obtain first a lower bound for the number of changes of sign of Re {44 ™ (x) =S, + (%)}
in 0<x<t, where m is a sufficiently large non-negative integer. This is achieved by
applying relation (3.9). Then, by differentiating m times, and applying Lemmas 3.1
and 3.2, we get (4.1).

Given ¢ >0, we choose an integer m >0 which is so large, that

o+m=2Ap—A6—13%, 4.2)
and that also
|Re(b1)| lRe(b )l “43)
ﬂl .un
n=2
where
3=(A0+0o+m+3)24. 4.4)

Then, because of (4.2), (3.9) holds, with ¢+ m in place of g, and we have the relation

@

Re(b
¢ x*7I7e" Re {44 (x) = Spum(X)} = Z On)cos (1 (u,%)"4 + D) + £,
n=1 (4.5)
where ¢’ is a real constant, 3 is defined by (4.4), and
g(x)=o0(1), (4.6)

as x— 00,
Because of (4.3) and (4.6), we can find an X such that

IRe(b1)| Z |Re(b,)| (bn)l

Iln

, for x=X. 4.7)

lg(x)] <

1
n=2

Now let the sequence x,<x,; <X, <-- be such that x,> X, and

cos(h(uyx,)"**+D)=(-1), v=0,1,2,.... 4.8)
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Then, we have
sgn Re {45"™(x,) = S,+m(x,)} = (— 1)’ sgn Re(b,) 49)
for v=0,1, 2,....
Indeed, on setting x=x,, the right-hand side of (4.5) becomes

Re(b,) Z Re(b,,)

#1

(-1 ¢a(x) +8(%) = G(x,),

n
n=2

say, where c,(x)=cos(h(u,x)"/*4+ D). We have
— |Re(b,)| < Re(b,)-cq(x,) < |Re(b,)], (4.10)
and it is easily seen that inequalities (4.7) and (4.10) imply that

Re(b Re(b Re(b Re(b
(_ l)v (‘9 l) _ l (3 1)] < G(x,,) < (_ 1)v o (s 1) + I e(s 1),, (4.11)
131 Ky Hq Hq
whence (4.9) follows immediately.
Therefore, Re {45 ™(x)— S, +m(x)} changes sign at least once in each of the open
intervals (x,, X, +), v=0, 1, 2,.... Consequently, its number of changes of sign in the

interval 0 <x<t is not less than

e

where k is a number independent of ¢. By applying Lemma 3.2 and Rolle’s theorem
(or Lemma 3.1, if ¢=0), we conclude that Re{44(x)—S,(x)} has at least

[M]_k_m

T

changes of sign, as x varies from O to ¢; this proves our theorem.

4.2. We have actually proved slightly more in the case ¢ =0. Because of Lemma
3.1, it follows from our proof that besides Re {4)(x)—S,(x)}, the functions

Re{ y a,,——So(x)} and Re{ ¥ a,,—So(x)}

An<x AnS<x

also change sign at least [A(u,t)"/?>4/n]— C times in (0, t].

4.3. Itis clear that the method used to prove Theorem4.1 can be applied to prove

THEOREM 4.1°. Under the same assumptions as in Theorem 4.1, there exists @
positive constant X such that if a> X, then Re{A}(x)—S,(x)} changes sign at least
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[Aul2 4624 — a2 4)|n]— C” times in the interval a<x <b, where C" depends neither
on a nor on b. .

[In fact, X is the real number which appears in inequality (4.7), and C"=m, the
integer which satisfies inequalities (4.2) and (4.3).]

It may be of interest to remark that a result of this sort, for an arbitrary interval
[a, b], does not follow from POLYA’s theorem.

4.4. In the same manner as above, results analogous to Theorems 4.1 and 4.1’
can be proved for the changes of sign of the real and imaginary parts of B2(x)—S,(x).

4.5. We shall now apply Theorem 4.1 to the error-terms connected with the
arithmetical functions r,(n) and d(n).

The lattice-point function r,(n). As we have already seen in § 2, the generating
function of r(n) is the Epstein zeta-function {,(s). It is regular in the finite part of the
plane, except for a simple pole with residue n*/?/I'(k/2) at s=k/2. It vanishes at
s=-—1, —2,..., and has the value —1 at s=0. Functional equation (3.2) is satisfied
by @(s)=y (s)=n"°{(s), with a,=b,=r(n), A,=p,=nn and 6=k/2. We have 4=1
and h=1. It follows that

AL = Se() = ) m(n) (v —mn) = e ) T Fe s D)

ki2+¢ Q

X

In the case 9 =0, if we make the substitution x— = x, and set r,(0)=1, Theorem 4.1
implies that as x varies from O to ¢, the error-term

o / ( P x)k/z
P (x) = osin:Sx ri(n) — rk2+1)
changes sign at least 2./f — 4, times, where 4, is independent of ¢. This result is
obviously stronger than inequality (2.21), which we deduced from POLYA’s theorem,
and which holds only for odd k.

The divisor function d(n). Let d(n) denote the number of positive divisors of n. Its
generating function is {?(s), the square of RIEMANN’s zeta-function, and functional
equation (3.2) is satisfied by ¢(s)=y/(s)=n"*¢?(s), a,=b,=d(n), A,=p,=nn, and
d=1. We have N=2, o, =a, =4, whence 4=1 and h=2. Further,

-0 - Y O e St

1<2v+1<e . o+l F/
T X X
+ = - —2+0)+1o -—),
F(e+2)<n) (y pGrotles
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where y is Euler’s constant (see [3], p. 130). If we consider the case 9 =0, and make the
substitution x— nx, it follows from Theorem 4.1 that the error-term

Y d(n)— {xlogx + 2y — 1)x + 4}

n<x

has at least 4 ,/7 — A4, changes of sign in the interval 0 < x<¢, where 4, is independent
of t.
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